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Abstract: Optimal sensor and actuator placement is performed for active vibration control. The
components are selected to minimize the vibration impact on the strip byH2-norm minimization.
Then, active vibration control is based on a PI-observer design allowing, not only to estimate
the state, but also the disturbances. Some numerical results illustrate the performance of the
proposed active vibration control.
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1. INTRODUCTION

Reducing vibrations on a galvanizing line will improve
efficiency by minimizing maintenance costs and energy
consumption. To do so, optimal placement of sensors and
actuators can be the solution, allowing to maximize both
the information collected on the process and the efficiency
of the active vibration control.
Based on optimization notions and control theory, the
choice of component placement is used in different indus-
trial fields as water network and treatment (Villez et al.,
2016), steel industry (Wang et al., 2016), vibration control
(Botta et al., 2013). Several methods exist to reduce/reject
the disturbance such as a model based-control method
using a feedforward control in Saxinger et al. (2020). These
methods can be divided into heuristic-based approach (e.g.
TABOU technique (Kincaid and Padula, 2002)) and ana-
lytical approach (e.g. H2 optimization).

An overview of the optimal placement of sensors and
actuators for active vibration control of flexible structures
is presented in (Borairi and Soufian, 2017), two algebraic
Riccati equations are formulated for the control and the
observation. A relation between sensor placement, fault
detection and isolation is shown in (Rostek, 2015), where
a branch-and-bound algorithm is used to solve the in-
teger optimization problem. In this paper, the simulta-
neous placement of sensors and actuators method is ad-
dressed. Different approaches can be cited as Gramian-
based method for linear time-invariant descriptor systems
(Marx et al., 2004). In (Dhingra et al., 2014) the solution
of optimal components placement is proposed via linear
convex relaxation method using the so-called alternating
direction method of multipliers. The H2/H∞ strategy is
used in (Deshpande and Bhattacharya, 2021) for observer

design, without any control objectives. The same strategy
with D-stability for dynamic output feedback control is
applied in (Argha et al., 2016) but conduct to large LMI
problems and thus to numerical problems. In (Brakna
et al., 2021) the optimal placement of sensors and actu-
ators is obtained by minimizing the energy transfer from
disturbances to the controlled output using H2 strategy
but the disturbance estimation was not envisaged.

The present paper is divided into fourth steps. The first
step, detailed in the second section, consists in the devel-
opment of a vibration propagation model in the steel strip
using the partial differential equation (PDE) describing an
axially moving strip. The third section is devoted to the
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Fig. 1. Schematic diagram of the galvanizing process



principal problem: the search for the optimal placement
of the sensors and actuators to minimize the disturbance
effect on the behavior of the steel strip. In section four,
are gathered the simulation results of the active vibration
control based on the optimal placement of sensors and
actuators, and finally some remarks are given.

2. STRIP MODELING

The continuous hot-dip galvanizing process could be mod-
eled as an axially moving strip steel. The interesting part
of the strip is between the top and the stabilizing rolls (see
Figure 1) of uniform volumic mass ρ, damping coefficient
c and a thickness of h pulled by a specific tension Nξ and
traveling at a velocity of v. The strip is excited by a force
F (ζ, ξ, t) including disturbances from the air-knife of the
wiping system and cooling boxes, and/or electromagnets
force, ζ, ξ are the vertical and horizontal position (see
Figure 1). The transversal displacement z(ζ, ξ, t) is de-
duced from the solution of the following partial differential
equation (PDE):

D∇(4)z + ρh(
∂2z

∂t2
+ 2v

∂2z

∂ζ∂t
+ v2

∂2z

∂ζ2
)−Nξ

∂2z

∂ζ2

+ c(
∂z

∂t
+ v

∂z

∂ζ
) = F (ζ, ξ, t)

(1)

where

∇(4) =
∂4

∂ζ4
+ 2

∂4

∂ζ2∂ξ2
+

∂4

∂ξ4
, D =

Eh3

12(1− ν)

and D, E, ν are respectively the flexural rigidity, Young’s
modulus and Poisson coefficient.

Remark 1. The pilot used for the tests has a length of
Lζ = 7.2m between the two rolls and a width of Lξ =
1.2m.

2.1 Numerical solution of the PDE

The method used to solve (1) consists in discretizing the
spatial variables (ζ, ξ) by the finite difference method using
differential quotients based on the Taylor series expansions
in order to transform a PDE into an ordinary differential
equation ODE. The equation (1) becomes:

z̈i,j = b1żi,j + b2żi+1,j + b3żi−1,j + a1zi,j + a2zi+1,j

+ a3zi−1,j + a4(zi,j+1 + zi,j−1) + a5(zi+2,j + zi−2,j)

+ a6(zi,j+2 + zi,j−2) + a7(zi+1,j+1 + zi+1,j−1
+ zi−1,j+1 + zi−1,j−1) + a8(ui,j + wi,j)

(2)

where the index i ∈ {1, .., N} (resp. j ∈ {1, ..,M}) denotes
the vertical (resp. horizontal) position of the considered
discretization points and N (resp. M) the number of the
discretization points on the vertical (resp. horizontal) axis.
The equations (2) of the system completed by the output
matrix can be written as:{

ẋ(t) = Ax(t) +Buu(t) +Bww(t)
y(t) = Cx(t)

(3)

with x = [zT żT ]T , where z ∈ Rn gathers the strip
displacements at all discretized points, w = [w1, w2, ...]

T ∈
Rnw , u ∈ Rnp , A,Bu, Bw, C are the state, the control
input, the disturbance and the output matrices.

2.2 Boundary conditions

As part of the solution of (1), the boundary conditions can
be:

• Clamped and simply supported edges:
· at the bottom: z(0, ξ, t) = w1(t),∀ξ ∈ [0, Lξ]
· at the top: z(Lζ , ξ, t) = w2(t),∀ξ ∈ [0, Lξ].

• Free edges:

∂2z(ζ, ξ, t)

∂ζ2
+ ν

∂2z(ζ, ξ, t)

∂ξ2
= 0 for ξ = 0 and ξ = Lξ

2.3 Experimental modeling validation

The objective of this section is to validate the theoretical
model developed in section 2.1. To do so, a comparison
is made between the numerical simulation of (3) and the
experimental data of the pilot equipped with an actuator
and 3 sensors S1, S2 and S3 (as displayed on Figure 2).

Fig. 2. The experimental pilot of the galvanizing line
with the placement of sensors and actuators used for
modeling validation.

The parameters and placement of the used components
are defined in Table 1.

Table 1. Pilot parameters

Thickness h 0.7 mm
Specific tension Nξ 17000 N/m
Volumic mass ρ 7850 kg/m3

Young’s modulus E 200 GPa
Damping c 1
Actuator position {ζ, ξ}act {3.9, 0.6}m
Sensor position 1 {ζ, ξ}S1

{3.2, 0.6}m
Sensor position 2 {ζ, ξ}S2 {3.2, 0.2}m
Sensor position 3 {ζ, ξ}S3 {3.2, 1.0}m

On Figure 3, one may compare the frequency contents
of the free responses measured on the experimental pilot
(blue lines) to the one simulated (red lines) with the model
(2) augmented by an actuator model. The same input
signal is applied on the pilot by an electromagnet actuator
and on the simulator.

Remark 2. A similarity is observed in the free responses of
the theoretical model and of the pilot on different locations
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(b) At sensor 3.
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(c) At sensor 2.
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(d) At sensor 1.

Fig. 3. Frequency responses around the first resonance
frequency of the simulated (red) and measured (blue)
free responses at different locations.

except for one of the free edges (the one equipped with
the sensor S2). This discrepancy is caused by a slight
asymmetry in the steel strip generating a non constant
specific tension. The results in the Figure 3 illustrate the
accuracy of the discretized model (2).

3. SENSOR/ACTUATOR POSITIONING STRATEGY
FOR DISTURBANCE EFFECT REDUCTION OF THE

GALVANIZING SYSTEM

As stated in the preamble, the disturbance effect reduction
resulting from the steel strip vibrations is important for
the efficiency of a galvanizing process. Although the sys-
tem has been engineered so that its functioning minimizes
the vibration impact its by mechanical conception, the de-
sign of the control system remains crucial and contributes
to the steel strip stabilization.

As mentioned before, the optimal positioning of the sen-
sors aims at providing an optimal estimation of the system
states and disturbance affecting the steel strip behavior.
The optimal actuators locations allows an optimal reduc-
tion of vibrations on the system. The problems of sensors
and actuators locations may be addressed simultaneously
if degrees of freedom exist in both placements.

In addition to the requirements previously cited, on the
one hand, hardware constraints could be added: e.g. lim-
ited number of components for economic reasons or the
prohibition of some component placements on the galva-
nizing line due to some technical or physical reasons. On
the other hand, the software constraints are related to the
state space dimension of the system because the capacities
of the computer are limited for large calculations of the
observer and the controller (e.g. even if the observer-based
control is calculated off-line, the real time implementation
needs also sufficient CPU capacity). In what follows, some
of these constraints will not be taken into account, to
focus on the optimal component placement for PIO-control
based control.

Let us consider a large scale system with n state variables
and pn (resp. qn) actuators (resp. sensors) to be placed,
the number of possible configurations is C

np
n · Cnq

n . Fur-
thermore, taking into account some physical or economical
constraints limits the computational burden by defining

a new set of possible placements for the actuators (resp.
sensors) denoted Da (resp. Ds), defined by:

Da = {i | zi can be actuated},
Ds = {j | zj can be measured}, (4)

of cardinal p̃ (resp. q̃). The number of possible placements
becomes : C

np

p̃ ·C
nq

q̃ < C
np
n ·Cnq

n . The considered dynamic
system with a control u, output y and subject to a
disturbance w, defined by Bu(p) ∈ Rn×np , C(q) ∈ Rnq×n

and Bw ∈ Rn×nw respectively :{
ẋ(t) = Ax(t) +Bu(p)u(t) +Bw w(t)
y(t) = C(q)x(t)

(5)

The system (5) includes two parameters p ∈ Nnp and
q ∈ Nnq that can be defined as two vectors of integers
whose entries are the number of the columns of Bu and
of the rows of C in the system (3), corresponding to
the selected actuators and sensors. These two parameters
must be optimally chosen by placing the actuator and the
sensor (resp. parameter p and q ) in order to minimize the
disturbance effect w on the system output y.

Remark 3. In order to optimize the computational cost,
the author in Potami (2008) proposes to reduce the num-
ber of simultaneous optimal placement possibilities of com-
ponents by imposing a collocation of the sensor/actuator
couple (p = q). For the sake of generality, this hypothesis
is not assumed in the presented results.

3.1 Observed state feedback control law

In order to efficiently control the perturbed system, an
extended state feedback control law based on a PI observer
is considered. The basic idea of this control configuration
is to not only take benefits of the system state estimation
for the control, but also to obtain an accurate estimation
of the disturbance for process monitoring. To do so, a PI
observer is used since it is well known for its ability to
estimate unknown inputs (see Marx et al. (2003); Koenig
and Mammar (2002)). The proportional integral observer
is described by:

˙̂x(t) = Ax̂(t) +Bu(p)u(t) +Bwŵ(t)+
Ly(q)(y(t)− ŷ(t))

ŷ(t) = C(q)x̂(t)
˙̂w(t) = Lw(q)(y(t)− ŷ(t))

(6)

From (5) and (6), the state estimation error e(t) = x(t)−
x̂(t) and the disturbance estimation error ew(t) = w(t) −
ŵ(t) are described by:{

ė(t) = (A− Ly(q)C(q))e(t) +Bwew(t)
ėw(t) = ẇ(t)− Lw(q)C(q)e(t)

(7)

where Ly(q), Lw(q) are the gains of the PI observer (pro-
portional and integral gains resp.). In matrix form it be-
comes :[

ė(t)
ėw(t)

]
=


[
A Bw
0 0

]
︸ ︷︷ ︸

Ao

−
[
Ly(q)
Lw(q)

]
︸ ︷︷ ︸
Lo(q)

[C(q) 0]︸ ︷︷ ︸
Co(q)

[ e(t)ew(t)

]
(8)

where ẇ(t) = 0 is assumed, which is a classical assumption
when designing PI observer. The applied control law is
defined by:

u(t) = −Kx(p)x̂(t)−Kw(p)ŵ(t) (9)



The closed-loop system (5)-(6)-(9) is:{
ẋ(t) = (A−Bu(p)Kx(p))x(t) +Bu(p)Kx(p)e(t)

+ Bu(p)Kw(p)ew(t) + (Bw −Bu(p)Kw(p))w(t)
y(t) = C(q)x(t)

(10)

From (8) and (10), the augmented form can be written as:{
ẋc(t) = Ac(p, q)xc(t) +Bc(p)w(t)
y(t) = Cc(q)xc(t)

(11)

with xc(t) =
[
xT (t) eT (t) eTw(t)

]T
, Cc(q) = [C(q) 0 0],

Bc(p) = [Bw −Bu(p)Kw(p) 0 0]
T

and

Ac(p, q) =

[
A−Bu(p)Kx(p) Bu(p)Kx(p) Bu(p)Kw(p)

0 A− Ly(q)C(q) Bw
0 Lw(q)C(q) 0

]
From the separation principle, the gain Lo(q) is deter-
mined to make the matrix (Ao − Lo(q)Co(q)) Hurwitz.
Thus, from (8), P (q) and Lo(q) must satisfy the following
matrix inequalities:

{
(Ao − Lo(q)Co(q))TP (q) + P (q)(Ao − Lo(q)Co(q)) < 0,

P (q) > 0
(12)

where P (q) is a symmetric positive definite matrix. The
system (12) can be rewritten as:{

ATo P (q) + P (q)Ao − CTo (q)QT (q)−Q(q)Co(q)) < 0,

P (q) > 0
(13)

with Lo(q) = P−1(q)Q(q).

Lemma 1. Let us denote λ ∈ C the eigenvalues of matrix
(Ao − Lo(q)Co(q)). In order to improve the temporal
response, the error estimation eigenvalues are placed in a
vertical band defined by Re(λ) ∈ [−2β,−2α] (see Chilali
et al. (1999)), with α > 0 and β > 0,{

H(q)T +H(q) < −αP (q),

H(q)T +H(q) > −βP (q)
(14)

where H(q) = P (q)Ao −Q(q)Co(q).
The observed state denoted x̂ is provided by (6) and the
feedback gain K(p) is given by:

K(p) = [Kx(p) Kw(p)] (15)

where
Kx(p) = M−1BTu (p)Pk(p)

Kw(p) = M−1BTu (p)hw(p)
(16)

Pk(p) is the solution of the following Riccati equation:

ATPk(p) +Pk(p)A−Pk(p)Bu(p)M−1BTu (p)Pk(p) +R = 0
(17)

and hw(p) is defined by:

hw(p) = (Pk(p)Bu(p)M−1BTu (p)−AT )−1Pk(p)Bw (18)

derived from the minimization of the following quadratic
cost function:

Φ =

∫ ∞
0

x(t)TRx(t) + u(t)TMu(t)dt (19)

where R and M are two parameters respectively set to pay
a particular attention to the vibration reduction on some
given points of the strip and to limit the control energy.

3.2 Optimal positioning of the sensor/actuator pair

The dynamics of the augmented state system is presented
in (11), according to the objective of reducing the distur-
bance effect on the controlled outputs (y ∈ Rn/2) of the
system Even if p and q are chosen, then the controller and
the observer gains (resp. K(p), L(q)) should be calculated.
To evaluate the efficiency of observer-based control in
minimizing the perturbation impact on the displacement
states, the H2 or H∞-norms criterion is chosen (only H2-
gain is addressed below to envisage the whole frequency
domain, and not only the worst case). From (11), the
transfer function reflecting this influence is:

Tyw(p, q, s) = C̃c(sI −Ac(p, q))−1Bc(p) (20)

where C̃c =
[
Cn/2 0n/2,3n/2+nw

]
selects all the variables z.

Clearly the choice of a sensor/actuator subset (via p and
q) has an influence on the disturbance effect reduction.

According to the complexity of the analytical expression
of the transfer function Tyw(p, q, s) that depends on p
and q, finding the sensor/actuator pair is based on a
numerical procedure. Initially the H2-norm of the transfer
Tyw(p, q, s) is calculated by:

‖ Tyw(p, q) ‖22= trace
(
BTc (p)P̃ (p, q)Bc(p)

)
(21)

where P̃ (p, q) is the solution of the following Lyapunov
equation:

Ac(p, q)
T P̃ (p, q) + P̃ (p, q)Ac(p, q) + C̃Tc C̃c = 0 (22)

The solution is obtained by minimizing (21) with respect
to the possible values of p and q:

{p̂, q̂} = argminp∈Da,q∈Ds
‖ Tyw(p, q) ‖22 (23)

Algorithm (1) gathers the different steps of the proposed
optimal sensor/actuator placement for PI observer-based
control.

Algorithm 1 Sensor/actuator positionning

Set up the matrices A,Bu,C and Bw from (3)
Define the parameters R, M , α and β in (19) and (14)
for p ∈ Nnp s.t. pi ∈ Da and pi 6= pj for i 6= j do

for q ∈ Nnq s.t. qi ∈ Ds and qi 6= qj for i 6= j do
Update the matrices Bu(p) and C(q)
Compute the gain Lo(q) by solving the LMI’s (14)
Compute the gain K(p) by solving (16) and (17)
Update the matrices Ac(p, q), Bc(p) and Cc(q) in
(11)

Solve (22) with respect to P̃ (p, q)
Compute the norm ‖ Tyw(p, q) ‖22 (21)

end for
end for
Determine the solution p̂, q̂ by solving (23).

4. NUMERICAL RESULTS AND DISCUSSION

This section includes two parts. First, the proposed results
for optimal component placement are illustrated. Accord-
ing to the vibrations sources, two cases are studied:



• Case A : The bottom roll is excited (the M first
columns of Bw).
• Case B : The top and the bottom rolls are excited

(all columns of Bw).

The Figure 4 represents the value of the H2 norm of the
system (20) according to the sensor locations for a given
actuator position. Among the N = 18 possible locations,
only four choices are displayed for the sake of clarity.

The optimal placement obtained for a single component
in case A is defined by {popt, qopt}A = {1, 1} (corre-
sponding to {ζ, ξ} = {0.4, 0.4}m) and for the case B
the optimal location of two sensors and two actuators
is at {popt, qopt}B = {{1, 18}, {1, 18}} corresponding to
{ζ, ξ} = {{0.4, 6.8}, {0.4, 6.8}}m.
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Fig. 4. H2 norm values of the system (20) according to the
placement of the sensors and actuators.

Second, based on the obtained optimal sensor and actuator
location, the PI observer and controller results are now
presented. The state (resp. disturbance) estimation is
illustrated on the Figure 5 (resp. 6).

As can be seen in the Figure 5, in the case A with one sen-
sor placed at {ζ, ξ} = {0.4, 0.4}m in case A or in the case
B with two sensors ({ζ, ξ} = {{0.4, 6.8}, {0.4, 6.8}}m), all
states of the system are correctly estimated. On the Figure
6, one can see that the disturbance affecting the steel strip
is also accurately estimated.

In order to illustrate the efficiency of the proposed control,
the open-loop and closed-loop strip behaviors are com-

(a) Case A.

(b) Case B.

Fig. 5. Comparison between the system state and its
estimate at the top, the middle and the bottom of
the steel strip in the cases A and B.

Fig. 6. Comparison between disturbance and its estimate.

pared at different locations on the Figure 7.

Analyzing the Figure 7 and the data of the table 2,
clearly the control based on the proposed optimal sensor
and actuator location efficiently reduces the steel strip
vibrations caused by the bottom (and top) roll(s) in
both cases (in case A, the vibration amplitudes have
been reduced six times in closed loop with the optimal
placement, similar results are obtained for the case B).
The energy in Table 2 is calculated by:

E =

N∑
i=0

M∑
j=0

T∑
k=0

(z(ζi, ξj , tk))2

where T is the number of time instants.



(a) Case A.

(b) Case B.

Fig. 7. Comparison of the system responses with and
without active vibration control at different places of
the steel strip (the top, the middle and the bottom)
in the cases A and B.

Table 2: Energy of the system responses in open and
closed-loop.

Open-loop Closed-loop Closed-loop

optimal No Yes

{ζ, ξ} {∅} {4.0, 3.2}m {0.4, 0.4}m
Case A 462.49 121.14 74.75

5. CONCLUSION AND PERSPECTIVE

The purpose of this paper is to find the optimal placement
of actuators and sensors in order to reduce the disturbance
impact on the behavior of the steel strip. this requires both
the knowledge of the vibrations propagation model, closed-
loop synthesis for the active control and the observer
for the estimation of the system states. The proposed
approach analyzes the efficiency of the sensor and actuator
positioning to minimize the disturbances effect. The dis-
cretized model is validated by the results obtained during
the experimental trials, simulations results of the closed-
loop system with optimal sensor and actuator placement
were performed and presented. The next works will be
focused to the implementation of the current results of
the active control on experimental pilot to validate the
theoretical results and extend these results to improve the
control system performances.

REFERENCES

Argha, A., Su, S.W., and Savkin, A. (2016). Optimal actu-
ator/sensor selection through dynamic output feedback.
In 2016 IEEE 55th Conference on Decision and Control
(CDC), 3624–3629.

Borairi, M. and Soufian, M. (2017). Optimal actuator /
sensor placement and controller design for large flexible
space structures and robotics. In IEEE International
Symposium on Industrial Electronics. Edinburgh, UK.

Botta, F., Dini, D., Schwingshackl, C., Di Mare, L., and
Cerri, G. (2013). Optimal placement of piezoelectric
plates to control multimode vibrations of a beam. Ad-
vances in Acoustics and Vibration, 2013, ID 905160.

Brakna, M., Marx, B., Pham, V., Khelassi, A., Maquin,
D., and Ragot, J. (2021). Sensor and actuator optimal
location for robust control of a galvanizing process.
In 6th IFAC Workshop on Mining, Mineral and Metal
Processing. Nancy, FRANCE.

Chilali, M., Gahinet, P., and Apkarian, P. (1999). Robust
pole placement in LMI regions. IEEE Transactions on
Automatic Control, 44(12), 2257–2270.

Deshpande, V.M. and Bhattacharya, R. (2021). Sparse
sensing and optimal precision: An integrated framework
for H2/H∞ optimal observer design. IEEE Control
Systems Letters, 5(2), 481–486.

Dhingra, N.K., Jovanovic, M.R., and Luo, Z. (2014). An
ADMM (alternating direction method of multipliers)
algorithm for optimal sensor and actuator selection. In
53rd IEEE Conference on Decision and Control, 4039–
4044. Los Angeles, CA, USA.

Kincaid, R.K. and Padula, S.L. (2002). D-optimal designs
for sensor and actuator locations. Computers and
Operations Research, 29(6), 701–713.

Koenig, D. and Mammar, S. (2002). Design of
proportional-integral observer for unknown input de-
scriptor systems. IEEE Transactions on Automatic
Control, 47, 2057– 2062.

Marx, B., Koenig, D., and Georges, D. (2004). Optimal
sensor and actuator location for descriptor systems
using generalized Gramians and balanced realizations.
In American Control Conference. Boston, MA, USA.

Marx, B., Koenig, D., and Georges, D. (2003). Robust
fault diagnosis for linear descriptor systems using pro-
portional integral observers. In 42nd IEEE Conference
on Decision and Control, volume 1, 457 – 462 Vol.1.
Maui, USA.

Potami, R. (2008). Optimal sensor/actuator placement
and switching schemes for control of flexible structures.
Ph.D. thesis, Worcester Polytechnic Institute, MA,USA.

Rostek, K. (2015). Advanced Mechatronics Solutions,
chapter Optimal Sensor Placement for Fault Informa-
tion System. Springer.

Saxinger, M. Marko, L., Steinboeck, A., and Kugi, A.
(2020). Feedforward control of the transverse strip
profile in hot-dip galvanizing lines. Journal of Process
Control, 92, 35–49.

Villez, K., Vanrolleghem, P., and Corominas, L. (2016).
Optimal flow sensor placement on wastewater treatment
plants. Water Research, 101, 75–83.

Wang, Y.Q., Huang, X.B., and Li, J. (2016). Hydroelastic
dynamic analysis of axially moving plates in continuous
hot-dip galvanizing process. International Journal of
Mechanical Sciences, 110, 201–216.


