
HAL Id: hal-03772799
https://hal.science/hal-03772799v1

Preprint submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling the Correctness of Aggregation Operations
During Sessions of Interactive Analytic Queries

Eric Simon, Bernd Amann, Rutian Liu, Stéphane Gançarski

To cite this version:
Eric Simon, Bernd Amann, Rutian Liu, Stéphane Gançarski. Controlling the Correctness of Aggre-
gation Operations During Sessions of Interactive Analytic Queries. 2022. �hal-03772799�

https://hal.science/hal-03772799v1
https://hal.archives-ouvertes.fr


Controlling the Correctness of Aggregation Operations During Sessions of
Interactive AnalyticQueries

ERIC SIMON, SAP France, France

BERND AMANN, LIP6 – Sorbonne Université, CNRS, France

RUTIAN LIU, SAP France, LIP6 – Sorbonne Université, CNRS, France

STÉPHANE GANÇARSKI, LIP6 – Sorbonne Université, CNRS, France

We present a comprehensive set of conditions and rules to control the correctness of aggregation queries within an interactive

data analysis session. The goal is to extend self-service data preparation and BI tools to automatically detect semantically incorrect

aggregate queries on analytic tables and views built by using the common analytic operations including filter, project, join, aggregate,

union, difference, and pivot. We introduce aggregable properties to describe for any attribute of an analytic table, which aggregation

functions correctly aggregate the attribute along which sets of dimension attributes. These properties can also be used to formally

identify attributes which are summarizable with respect to some aggregation function along a given set of dimension attributes. This

is particularly helpful to detect incorrect aggregations of measures obtained through the use of non-distributive aggregation functions

like average and count. We extend the notion of summarizability by introducing a new generalized summarizability condition to

control the aggregation of attributes after any analytic operation. Finally, we define propagation rules which transform aggregable

properties of the query input tables into new aggregable properties for the result tables, preserving summarizability and generalized

summarizability.

CCS Concepts: • Information systems → Data management systems; Data provenance; Inconsistent data; Data warehouses.

Additional Key Words and Phrases: analytic queries, summarizability, data quality, multi-dimensional data model, interactive query

sessions

1 INTRODUCTION

1.1 Problem statement and motivations

Analytic datasets are ubiquitous in numerous application domains and their usage includes, for example, the classic

reporting on business activities in transactional applications [26], the monitoring of the behavior of on-line systems

based on log analysis (e.g., Splunk [49], Elasticsearch/Kibana [25], Datadog [11]), trend analysis in finance or social

networks, or the conduct of epidemiological studies in healthcare [17]. In a world where an overwhelming amount

of raw data is collected and stored at an affordable price in cloud object stores (e.g., Amazon S3 [45], Azure Blob

Storage [35]), properly aggregated and cleaned data is the data foundation layer on which "augmented" analytics are

built with the help of machine learning pipelines.

The creation and maintenance of analytic datasets for supporting Business Intelligence (BI) applications has tradition-

ally been the entitlement of experienced data engineers in IT organizations. Today, the emergence of self-service data

preparation and BI tools (e.g., [37, 46, 53], [41, 42, 51]) empowers business users and data scientists to directly create

and mash up analytic datasets according to their needs. With these tools, data analysis becomes an interactive and

iterative process whereby a user issues a data analysis action (translated into a query), receives a result, and possibly

Authors’ addresses: Eric Simon, eric.simon@sap.com, SAP France, France; Bernd Amann, bernd.amann@lip6.fr, LIP6 – Sorbonne Université, CNRS,

France; Rutian Liu, rutian.liu.fr@gmail.com, SAP France, LIP6 – Sorbonne Université, CNRS, France; Stéphane Gançarski, stephane.gancarski@lip6.fr,

LIP6 – Sorbonne Université, CNRS, France.

1

ar
X

iv
:2

11
1.

13
92

7v
2 

 [
cs

.D
B

] 
 6

 D
ec

 2
02

1



2 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

decides which action to perform next. Eventually, a user may decide to share the final analytic dataset thus obtained in

the form of a reusable view. Interactive data analysis sessions facilitate the exploration and creation of analytic datasets,

even for users lacking knowledge of SQL, MDX and any programming languages.

However, data experts who directly manipulate analytic datasets created by others expose themselves to possible

disappointments, particularly when data aggregation – the most common operation done by analysts – is involved.

Imagine a simple use case with the analytic datasets shown in Table 1, representing multidimensional facts that hold

measures and refer to one or more hierarchical dimensions [21]. The dimension table 𝑅𝐸𝐺𝐼𝑂𝑁 (Table 1b) describes a list

of cities. These cities are referenced by the fact table DEM(ographics) which contains three dimension attributes CITY,

STATE, COUNTRY from dimension 𝑅𝐸𝐺𝐼𝑂𝑁 and one attribute YEAR from another dimension table 𝑇 𝐼𝑀𝐸 (not displayed).

Attributes POP and UNEMP are measure attributes that respectively represent the population and the unemployment rate

in that city.

Table 1. Fact and dimension tables for demographics

(a) Fact table DEM (Demographics)

CITY STATE COUNTRY YEAR POP UNEMP (%)

Dublin California USA 2017 61 3.1

Palo Alto California USA 2017 67 2.1

Dublin California USA 2018 63 3.0

Palo Alto California USA 2018 66 2.0

San Jose California USA 2018 1,028 2.2

Dublin Ohio USA 2018 44 3.7

Washington D.C - USA 2018 672 6.2

Dublin - Ireland 2018 1,348 6.71

(b) Dimension table 𝑅𝐸𝐺𝐼𝑂𝑁

CITY STATE COUNTRY REGION

Dublin California USA North America

Palo Alto California USA North America

San Jose California USA North America

Dublin Ohio USA North America

Washington D.C - USA North America

Dublin - Ireland Europe

Suppose that a business user wants to aggregate the measures in the DEM fact table. A first concern is to express

aggregations that produce semantically correct results. For measure POP, any common aggregation function can be

used, but the dimension attributes along which aggregation can be done must be restricted to CITY, STATE and COUNTRY.

That is, aggregation can only be done within every partition of DEM by YEAR, otherwise the population will be double

counted for the cities of ’Palo Alto’ and ’Dublin’ in California. For measure UNEMP, only a limited set of aggregation

functions can be applied (MIN,MAX), because the attribute represents a ratio that cannot be summed or averaged

along any dimension. Expressing valid aggregation operations therefore requires a clear understanding of the semantics

of measure attributes and the dimensions on which they depend. Ideally, the querying system should automatically

control which aggregation operation is valid using metadata properties that express the above restrictions on the DEM

table.



Controlling the Correctness of Analytic Queries 3

Fig. 1. Interactive data analysis session 1 over DEM

Now, suppose that a business user, in the interactive data analysis session displayed in Figure 1, first wants to count

(without duplicates) the number of cities per state, and country. This can be achieved using a "roll-up" action which

aggregates the DEM data along attribute CITY and attribute YEAR. This action can be translated into a SQL aggregate

query on table DEM by doing a COUNT_DISTINCT(CITY) group by STATE and COUNTRY whose result table 𝑇1 is

displayed in Table 2a (the count has been renamed into NB_CITIES which is a measure).

Table 2. Results of aggregate queries in the session of Figure 1

(a) Table𝑇1

NB_CITIES STATE COUNTRY

1 Ohio USA

3 California USA

1 - USA

1 - Ireland

(b) Table𝑇2

SUM(NB_CITIES) COUNTRY

5 USA

1 Ireland

(c) Table𝑇 ′
2

SUM(NB_CITIES) COUNTRY

7 USA

1 Ireland

Later, suppose that the business user, in the same interactive session, aggregates further NB_CITIES by COUNTRY using

function SUM, yielding a new table T2 displayed in Table 2b. The value of SUM(NB_CITIES) in 𝑇2 is however hard to

interpret: for country ’USA’, it is neither the count with duplicates nor the count without duplicates of cities by country,

if we refer to the original table DEM. If the intention of the user was to obtain a count without duplicates of cities, the

result of that interactive session is incorrect. On the other hand, if the first aggregate query in the session of Figure 1

was counting cities with duplicates, and the subsequent aggregate query was summing NB_CITIES as before, the result

table 𝑇 ′
2 of the interactive session, displayed in table Table 2c, would be correct. It is easy to figure out that this problem

is non-trivial for a non-expert user.

This problem is known as a summarizability issue: we shall say that attribute CITY is not summarizable with respect

to grouping set {STATE, COUNTRY} and function COUNT_DISTINCT using function SUM. As before, a business user

may expect that the querying system controls what aggregation is valid on table 𝑇1 using proper metadata associated

with that table. Thus, if the user cannot compute a global count of cities without duplicates per country using 𝑇1, she

would have to backtrack within the interactive session to a result over which such a global count is expressible (in our

example, backtrack to the original table DEM).

This summarizability issue can be generalized to an arbitrary sequence of interactive analytic queries. Consider the

analytic datasets shown in Table 3. The dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 describes a list of stores that are referenced by the

fact table STORE_SALES containing four dimension attributes STORE_ID, CITY, STATE and COUNTRY from dimension

𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 and one attribute YEAR from dimension𝑇 𝐼𝑀𝐸. Attribute AMOUNT is a measure attribute and UNIT is a detail

attribute of that measure.

A data analyst might want to build a new analytic dataset, named SALES_DEM_USA, using the interactive data

analysis session shown in Figure 2 (the dashed lines will be explained later). First, STORE_SALES is filtered on



4 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Fig. 2. Interactive data analysis session 2 yielding SALES_DEM_USA

COUNTRY = ’USA’ and YEAR = ’2018’, yielding a table named T3. Then, an aggregate SUM(AMOUNT) is computed for each

partition of CITY, STATE, COUNTRY, YEAR, yielding a table named T4 displayed in Table 4. At this point, we can control

that each tuple in T4 is correct because it would also be a tuple in the result of the same aggregate query computed

over STORE_SALES (the original data).

Table 3. Fact and dimension tables for store sales

(a) Dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺

STORE_ID CITY STATE COUNTRY

Ca_01 Dublin California USA

Sa_01 San Jose California USA

Oh_01 Dublin Ohio USA

Wa_01 Washington DC - USA

Du_01 Dublin - Ireland

(b) Fact table STORE_SALES

STORE_ID CITY STATE COUNTRY YEAR AMOUNT UNIT

Ca_01 Dublin California USA 2018 5.3 mega dollar

Ca_02 Dublin California USA 2018 1.4 mega dollar

Ca_01 Dublin California USA 2017 3.5 mega dollar

Sa_01 San Jose California USA 2018 22.8 mega dollar

Oh_o1 Dublin Ohio USA 2018 1.2 mega dollar

Wa_o1 Washington DC - USA 2018 16.1 mega dollar

Wa_o2 Washington DC - USA 2018 27.6 mega dollar

Du_01 Dublin - Ireland 2018 7.8 mega euro

Next, the schema of T4 is augmented with the measure attribute POP of table DEM, yielding a new table named T5

(Table 5a). This latter action, called a left-merge, can be translated into a natural left outer join SQL query between T4

andDEM on attributes CITY, STATE, COUNTRY and YEAR. Thus, in table T5, attributes CITY, STATE and COUNTRY represent

attributes of both dimensions 𝑅𝐸𝐺𝐼𝑂𝑁 and 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 . However, measure attribute POP depends on dimension

𝑅𝐸𝐺𝐼𝑂𝑁 while attribute SUM(AMOUNT) depends on dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 .

In the last step of the interactive data analysis session 2, the measure attributes SUM(AMOUNT) and POP of T5 are

summed by STATE, COUNTRY and YEAR, yielding the final result SALES_DEM_USA displayed in Table 5b. However,

the value of SUM(POP) in SALES_DEM_USA is misleading because it does not correspond to the population of each

state as it would be obtained from the DEM table. Indeed, the population of cities without any store, such as the city of

’Palo Alto’, has not been counted. Thus, the aggregation along CITY of SUM(POP) should not be allowed on T5 (or at least,



Controlling the Correctness of Analytic Queries 5

Table 4. Result T4 in session 2 of Figure 2

CITY STATE COUNTRY YEAR SUM(AMOUNT)

Dublin California USA 2018 6.7

San Jose California USA 2018 22.8

Dublin Ohio USA 2018 1.2

Washington DC - USA 2018 43.7

a warning must be raised that it only accounts for the population of cities in dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺). To obtain the

total population of each state, suppose that the user backtracks to the previous step of the session and expresses the

summation of POP along CITY on tableDEM, yielding a new tableDEM′
(in Table 6a), before performing the left-merge

operation. This backtracking is depicted by the dashed line labelled "1" in Figure 2.

Table 5. Results T5 and SALES_DEM_USA in session of Figure 2

(a) Result T5 in session of Figure 2

CITY STATE COUNTRY YEAR SUM(AMOUNT) POP

Dublin California USA 2018 6.7 61

San Jose California USA 2018 22.8 1,028

Dublin Ohio USA 2018 1.2 44

Washington - USA 2018 43.7 672

(b) Fact table SALES_DEM_USA with misleading SUM(POP)

STATE COUNTRY YEAR SUM(AMOUNT) SUM(POP)

California USA 2018 29.5 1,089

Ohio USA 2018 1.2 44

- USA 2018 43.7 672

However, after performing the left-merge of T4 with DEM′
(result is displayed in Table 6b), the summation of

SUM(POP) should again be disallowed. Indeed, it would be incorrect with respect to the same summation computed over

tableDEM′
, since population of California would be double-counted. The proper explanation is that tuples fromDEM′

match multiple tuples of T4 because they don’t have the same dimension granularity.

Hence, the user has to backtrack to T3 (backtracking is depicted by the dashed line labelled "2" in Figure 2) and

aggregate SUM(AMOUNT) by STATE, COUNTRY and YEAR, yielding a new table T4′. After merging T4′ with DEM′
, the

final table SALES_DEM_USA is obtained, as displayed in Table 7. The actual flow of interactive queries that produced

the final result is displayed in Figure 3.

The previous examples hopefully showed that it is easy for an end user such as an analyst to perform erroneous or

misleading aggregation operations during an interactive data analysis session. This motivated our design of a method

that automatically controls the validity of aggregation operations and provides explanations that are easy to understand

for an end user.



6 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Table 6. Results after first backtracking in session of Figure 2

(a) Fact table DEM′

STATE COUNTRY YEAR SUM(POP)

California USA 2017 61

California USA 2017 128

California USA 2018 1,157

Ohio USA 2018 44

- USA 2018 672

- Ireland 2018 1,348

(b) Result of the left-merge of T4 with DEM′

CITY STATE COUNTRY YEAR SUM(AMOUNT) SUM(POP)

Dublin California USA 2018 6.7 1,157

San Jose California USA 2018 22.8 1,157

Dublin Ohio USA 2018 1.2 44

Washington - USA 2018 43.7 672

Table 7. Result of the left-merge of T4′ with DEM′
with correct SUM(POP)

STATE COUNTRY YEAR SUM(AMOUNT) SUM(POP)

California USA 2018 29.5 1,157

Ohio USA 2018 1.2 44

- USA 2018 43.7 672

Fig. 3. Final flow of interactive queries yielding a correct instance of SALES_DEM_USA

1.2 Limitations of previous related work

As mentioned before, the occurrence of an incorrect sequence of two aggregations is known as a summarizability

problem. In the original definition of the problem [30], an initial fact table represents "micro-data", at the finest

granularity level, and a summarization query is expressed over an attribute A of this fact table, yielding another fact

table representing "macro-data". A summarization query over a fact table performs an aggregation operation 𝐹 (𝐴)
using a function F for each partition of the table defined by a grouping set of attributes X. In essence, the problem of

summarizability is to determine whether, for some summarization query over attribute F(𝐴) of the macro-data using a

function G (possibly identical to F), there exists a summarization query over attribute A of the micro-data using F that

returns exactly the same result. If this is the case, the summarization query over F(𝐴) of the macro-data is said to be



Controlling the Correctness of Analytic Queries 7

correct. For instance, using the previous example of Figure 1, if table DEM represents the micro-data, and table T1

represents the macro-data obtained after summarizing attribute CITY using function COUNT_DISTINCT, then the

query that summarizes NB_CITIES using function SUM is incorrect.

In the most general formulation of the problem, attribute A in the micro-data is defined to be summarizable with

respect to a grouping set X and a function F using function G if for any subset of attributes 𝑍 of X, any aggregation

𝐺 (𝐹 (𝐴)) with grouping set 𝑍 over the macro-data is correct (with the above meaning). Ideally, we want to determine

the largest subset of attributes of X for which the above summarizability condition holds.

To address the summarizability problem, a first group of model-based solutions proposes to model dimension and

fact tables in a restricted and controlled way so that any aggregation query over a previously aggregated fact table is

always correct. Some solutions even propose to modify the hierarchical dimension data to enforce the restrictions that

assure the summarizability of aggregate queries. See [34] for a survey of these solutions and more recently [8].

A second group of constraint-based solutions defines summarizability constraints over the schemas and the data of

dimension and fact tables, which can be evaluated to determine whether an attribute of a fact table is summarizable

with respect to a grouping set using an aggregation function. We focus our work on this second group of solutions

which, instead of imposing constraints on the analytic data model, control the summarizability of aggregate queries to

avoid incorrect results. These solutions are better suited to an environment where analytic data is created by multiple

independent parties using different data modeling techniques.

However, the detailed analysis of the best existing constraint-based solutions to the summarizability problem

[20, 27, 28, 30, 40], reveals the following limitations. Firstly, within the hierarchy of a dimension, any non-null value of

an attribute must map to a single parent attribute value. This discards the use of dimension tables like 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 (in

Table 3a), wherein a city can have multiple states. Secondly, measure attributes in a fact table must depend on all the

identifiers of the dimensions over which the fact table is defined. This discards the use of fact tables such as the result

of the left-merge of T4 with DEM′
in Table 6b, where measure attribute SUM(POP) depends only on STATE, COUNTRY

and YEAR. Thirdly, it is assumed that aggregate (summarization) operations do not handle null values in their grouping

set, which creates too restrictive conditions for summarizable queries in the case of SQL aggregate operations. Finally,

summarizability conditions depend on the size of the dimension data, because they require either testing disjointness

conditions over fact table partitions defined by some dimension attributes [30] or reasoning on dimension constraints

whose number depends on the paths that exist in the dimension hierarchies [20].

Another important limitation is that the existing methods do not consider the case when an aggregate query occurs

after another type of query such as a filter or a left-merge query, as in the data analysis session of Figure 2. In real

life scenarios though, "mash-up" queries are popular because analytic data is often siloed in the context of a specific

business activity (e.g., product marketing, medical care) or a particular application domain (e.g., monitoring system logs).

For example, analytic data on hospitalized patients contains measures on those patients that are treated in hospitals.

Other analytic data may contain measures about ambulatory patients who are treated by medical doctors in the city, or

measures about patient demographics. Typical epidemiological studies therefore require mashing up this data using

filter and merge operations.

Other research efforts related to the problem studied in this paper exist. Some works address the correctness issues

raised by the semantics of various aggregation functions and their applicability depending on the domain of values on

which they are applied [29, 31] or the issues caused by the SQL implementation of relational operations when they are

applied over an empty set of values or over a set of values containing null values [10, 16]. In our work, we assume a

standard implementation of SQL aggregate queries for null values.



8 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Other works propose methods which automatically control or enforce the consistency of arithmetic and aggregation

query results with respect to the scales, units and currencies associated with measure attributes in fact tables [18, 44, 52].

We are not addressing this problem which is complementary to the correctness issues targeted by this paper.

Finally, recommendation-based approaches suggest queries for the interactive exploration of databases. The collabo-

rative filtering approach uses previously collected query logs of a dataset (SQL queries in [13, 24], and OLAP queries in

[1, 33]) to recommend queries on the same initial dataset. The data-driven approach [5, 9, 12, 23, 47, 48], recommends a

single type of exploration actions whose result are expected to optimize a measure of “interestingness” with respect to

the current analysis context of a user on a given dataset. For instance, [23] suggests different ”drill-down” operations

on a given table, each producing a different set of tuples. However, these works do not control the correctness of the

recommended ”drill-down” exploration actions with respect to the summarizability property we introduced before.

1.3 Research contributions

In this article we present a comprehensive set of conditions to control the correctness of aggregation queries within a

data analysis session consisting of a large variety of interactive queries, which includes the most common operations

that are supported by self-service data preparation and BI tools, such as filter, project, inner and outer joins, aggregate,

union, difference, and pivot. These operations also subsume the traditional operations used in interactive exploration

sessions of OLAP cubes, such as roll-up, drill-down, dice, and slice and our correctness criteria for aggregate queries

include as a special case the summarizability property addressed by previous work.

The analytic data model we introduce in Section 2 is more expressive than the other data models considered by the

previous work on summarizability, because it accepts arbitrary dimension hierarchies and fact tables. In our data model,

dimension tables are defined as views over non-analytic tables (that is, regular relational tables), and fact tables are

initially defined as views over dimension tables and non-analytic tables. Then, new fact or dimension tables are defined

as the result of interactive queries over previously defined dimension and fact tables.

At the core of our approach is the definition of two types of metadata associated with analytic tables which help to

check the correctness of analytic queries. Firstly, attribute graphs are used to describe literal functional dependencies

between the attributes of hierarchical dimensions with possible 𝑛𝑢𝑙𝑙 values (as in the example of dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺).

We showed in a previous paper [32] how to efficiently compute attribute graphs through the analysis of dimension data

samples. Secondly, aggregable properties describe, for any attribute of an analytic table, which aggregation functions can

be used, and along which set of dimension attributes these aggregation functions can be applied. Default rules assist the

designer of a table to define aggregable properties when the table is initially created as a view from source data (i.e.,

from non-analytic tables) and, using these properties, it is then possible to automatically control which aggregations

are possible on an analytic table.

The central technical results of this article are propagation rules, which automatically compute the aggregable

properties for a table resulting from an interactive analytic query and thereby allow us to control the correctness of

aggregate queries at any stage of an interactive data analysis session. Our correctness criteria for aggregate queries

include the semantic properties of measure attributes (like in the first examples of aggregate queries over table DEM

that we presented before). Furthermore, these criteria not only subsume the sufficient conditions defined in previous

work to assure that aggregate queries are expressed over summarizable attributes, but their propagation makes it also

possible to characterize the results of sessions composing two or more aggregate queries as being correct, with respect

to summarizability, when previous work would view them as being incorrect. Conversely, any aggregate query that

previous works characterize as correct is also detected as correct using our aggregable properties. Finally, in the case of



Controlling the Correctness of Analytic Queries 9

a sequence composed of any interactive query followed by an aggregate query, we introduce the novel notion of G

(generalized) summarizability to characterize correct aggregate queries.

In summary, we make the following main research contributions:

(1) In Section 3, we extend the notion of aggregable properties introduced in [32], as a general means to express,

for any attribute of an analytic table, which aggregation functions are correctly applicable along which sets of

dimension attributes. We use aggregable properties to express the semantic properties of measures previously

defined in [19, 26, 30, 36, 40, 50] and provide default rules to minimize the effort of end users for defining

aggregable properties on analytic tables built from source data (i.e., non-analytic data). We then provide a first set

of propagation rules to automatically compute aggregable properties in the results of interactive analytic queries.

(2) In Section 4.1, we formally define summarizability conditions for attributes and in Section 4.2, we refine our

propagation rules for the case of aggregate queries to compute aggregable properties of attributes such that

subsequent aggregate queries over these attributes can only be expressed if the attributes are summarizable. In

Section 5, we show that our aggregable properties subsume the summarizability conditions defined in previous

work [20, 27, 28, 30, 40].

(3) In Section 4.3, we introduce the new notion of G-summarizability that extends the summarizability property of

attributes to the case of an aggregate query expressed over the result of an arbitrary analytic query. We then

refine our propagation rules in Section 4.4 to compute aggregable properties such that aggregate queries over

some attributes can be expressed only if these attributes are G-summarizable.

(4) Finally, in Section 5 we focus on previous works that propose conditions on the schema of a fact table, or

on the parameters of an aggregate query expressed over that fact table, to determine if the aggregate query

returns a correct result with respect to some summarizability definition. In our analysis, we establish that our

data model is more general than the data models considered by previous work. In the case of a sequence of

two aggregate queries, 𝑄1 followed by 𝑄2, our sufficient conditions to determine if 𝑄2 is correct, subsume the

conditions proposed by previous work. To the best of our knowledge, no previous work addressed the case of a

sequence made of an arbitrary analytic query followed by an aggregate query, which is addressed by our notion

of G-summarizability.

2 MULTI-DIMENSIONAL DATA MODEL AND ANALYTIC QUERIES

In this section, we first present our multidimensional data model, composed of dimension and fact tables, and some

logical and structural constraints on dimensions expressed using an attribute graph. We then present the types of

analytic queries that can be expressed on our data model. We use conventional relational database notations [14]. Each

table𝑇 is a finite multiset of tuples over a set of domains of values S = {A1, ..., A𝑛}, called attributes, where each domain

may contain a null marker. We call S the schema of 𝑇 .

2.1 Dimension and fact tables

We consider datasets in which data is separated into non-analytic tables and analytic tables. Non-analytic tables

correspond to relational tables storing the source data. Analytic tables, or analytic views, are defined by queries over

non-analytic and analytic tables.

Example 1. Figure 4 details the definitions of two analytic tables STORE_SALES and 𝑃𝑅𝑂𝐷 . The analytic table

𝑃𝑅𝑂𝐷 represents a dimension that is defined by a join-project query over three non-analytic tables (represented by



10 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

square rectangles). The analytic table STORE_SALES represents a fact table that is defined by a join-project query

over a non-analytic table ct_SALES and three analytic tables 𝑇 𝐼𝑀𝐸, 𝑃𝑅𝑂𝐷 and 𝑆𝑇𝑂𝑅𝐸 representing dimensions.

(a) Definition of dimension table 𝑃𝑅𝑂𝐷 (b) Definition of fact table STORE_SALES

Fig. 4. Two analytic tables (views)

Attributes in analytic tables are categorized into two types: dimension attributes and measures. Dimension attributes

describe entities like stores, customers and dates whereas measure attributes are used to define facts about these entities.

Following this distinction of attributes, analytic tables are categorized into two types: dimension tables and fact tables.

An analytic table is a dimension table if it only contains dimension attributes and a fact table if it contains at least one or

more dimension attributes from one ore more dimensions and one measure attribute.

Example 2. A complete example of analytic tables, which will be used throughout this paper, is shown in Table 8.

Dimension table names are in italic font to distinguish them from fact tables. The first three tables are dimension tables

identifying and describing products (dimension 𝑃𝑅𝑂𝐷), stores (dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺) and dates (dimension 𝑇 𝐼𝑀𝐸).

The schema of fact tables STORE_SALES was already introduced in Section 1. Fact table PRODUCT_LIST, shown

in Table 8e, describes the sold quantity (QTY) of products (attributes PROD_SKU, BRAND and COUNTRY from dimension

𝑃𝑅𝑂𝐷), by year (attribute YEAR from dimension 𝑇 𝐼𝑀𝐸). Attribute value "-" in these tables represents a null marker.

We consider a classical multi-dimensional data model which organizes a set of dimension attributes X into an

attribute hierarchy noted (𝑋, ≼). Unlike several other models, which we shall review in Section 5, we make no special

assumption on the attribute hierarchy: there can be one or more bottom or top level attributes, and an attribute can

have multiple parents.

A hierarchy instance of an attribute hierarchy A = (𝑋, ≼) is a set of values 𝑁 and a partial order ≤, where 𝑁 contains

for each attribute X𝑖 ∈ 𝑋 a non empty subset of values 𝑁𝑖 ⊆ 𝑁 such that each order relation 𝑣𝑖 ≤ 𝑣 𝑗 preserves the

ancestor/descendant relation ≼∗ between the corresponding attributes X𝑖 and X𝑗 , i.e., 𝑣𝑖 ∈ 𝑁𝑖 , 𝑣 𝑗 ∈ 𝑁 𝑗 ⇒ X𝑖 ≼
∗ X𝑗 .

We also assume that (𝑁, ≤) is transitively reduced, i.e., there is no pair of values that is connected by an order relation

(≤) and a sequence of two or more order relations.

Example 3. The left part of Figure 5 illustrates an attribute hierarchy for dimension 𝑃𝑅𝑂𝐷 : PROD_SKU≼ BRAND ≼

COUNTRY, and PROD_SKU ≼ SUBCATEGORY ≼ CATEGORY, in which PROD_SKU is a bottom level attribute and CATEGORY and

COUNTRY are two top level attributes. An instance of that attribute hierarchy is displayed on the right where attribute

values are horizontally aligned with the name of each attribute.

We can now formally define dimension and fact tables.



Controlling the Correctness of Analytic Queries 11

Table 8. Fact and dimension tables

(a) Dimension table 𝑃𝑅𝑂𝐷

PROD_SKU BRAND COUNTRY SUBCATEGORY CATEGORY

coco-can-33cl Coco Cola USA Soft Drinks Drinks

coco-can-25cl Coco Cola USA Soft Drinks Drinks

cz-tshirt-s Zora Spain Woman Tops Clothes

cz-tshirt-s Coco Cola USA Woman Tops Clothes

(b) Dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺

STORE_ID CITY STATE COUNTRY

Oh_01 Dublin Ohio USA

Ca_01 Dublin California USA

Ca_02 Palo Alto California USA

Pa_01 Paris - France

Ly_01 Lyon - France

Ir_01 Dublin - Ireland

(c) Dimension table𝑇 𝐼𝑀𝐸

DATE WEEK MONTH YEAR

1/1/2018 1 1 2018

2/1/2018 1 1 2018

3/1/2018 1 1 2018

. . . . . . . . . . . .

(d) Fact table STORE_SALES

STORE_ID CITY STATE COUNTRY YEAR AMOUNT

Oh_01 Dublin Ohio USA 2017 3.2

Ca_01 Dublin California USA 2017 5.3

Oh_01 Dublin Ohio USA 2018 8.2

Ca_01 Dublin California USA 2018 6.3

Pa_01 Paris - France 2017 45.1

(e) Fact table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s Coco Cola USA 2017 5 000

cz-tshirt-s Coco Cola USA 2018 7 000

cz-tshirt-s Zora Spain 2017 5 000

cz-tshirt-s Zora Spain 2018 7 000

coco-can-33cl Coco Cola USA 2017 10 000

Definition 1 (Dimension table). A dimension table 𝐷 over some attribute hierarchy A = (S, ≼) is a table 𝐷 (S) where
each tuple 𝑡 of 𝐷 corresponds to a complete path in the hierarchy instance of A . Attributes of S are henceforth called

dimension attributes.

In practice [26], dimension tables also include detail attributes that functionally depend on one or more dimension

attributes, and these dependencies are part of the metadata of the dimension table. Examples of detail attributes for the

dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 could be: ZIPCODE, COUNTRY_CODE, STORE_NAME, STORE_SQUARE_METERS, etc. We shall not

consider such detail attributes because they do not impact the results presented in this paper.



12 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Fig. 5. Attribute hierarchy and hierarchy instance defined by dimension table 𝑃𝑅𝑂𝐷

Definition 2 (Fact table). A fact table over a set of dimensions 𝐷1, · · · , 𝐷𝑛 is a table𝑇 (S) without any duplicate where

schema S contains a non-empty subset X𝑖 of dimension attributes from dimension 𝐷𝑖 , and a non-empty set of attributes

Z representing one or more measures. Each tuple of values 𝑡 .𝑋𝑖 in 𝑇 has a corresponding tuple of values in 𝐷𝑖 .

In practice [26], each measure in a fact table is usually represented by one attribute having the role of Value and a

possibly empty group of attributes having the role of Detail. The Value attribute of a measure carries the actual value

while the Detail attributes provide optional auxiliary information on the measure such as a unit (as in example of fact

table STORE_SALES in the introduction) or a currency. In this paper, we shall not discuss how to control the quality

of aggregation queries with respect to different units and currencies, and refer the interested reader on this topic to

[44]. So we shall later only consider measure attributes carrying actual values.

2.2 Literal functional dependencies and attribute graphs

Null markers in dimension attributes represent non applicable values. This semantics is different from other interpreta-

tions where null values represent missing or unknown values and are considered as placeholders for non-null values.

We consider null markers as regular values and apply the same literal equality semantics as in SQL unique constraints

(see e.g.,[14]): two attribute values 𝑡1 .A and 𝑡2 .A are literally equal, denoted by 𝑡1 .A ≡ 𝑡2 .A, iff 𝑡1 .A = 𝑡2 .A or both values

are null markers. Observe that 𝑡1 .A = 𝑡2 .A implies 𝑡1 .A ≡ 𝑡2 .A but the opposite is not true. Literal equality naturally

extends to sets of attributes and leads to the notion of Literal Functional Dependencies (LFD) [3]. Let X and Y be two

sets of attributes in a schema S, an LFD X ↦→ Y holds for some table 𝑇 over S iff for any two tuples 𝑡1, 𝑡2 of 𝑇 , when

𝑡1 .X ≡ 𝑡2 .X then 𝑡1 .Y ≡ 𝑡2 .Y. Note that if X does not contain any nullable attribute, the LFD X ↦→ Y is equivalent to

the Functional Dependency with Nulls (NFD) X → Y [2]. A set of LFDs on a schema S expresses semantic properties

constraining the possible “valid” tables over S.

LFDs provide a formal system to define a set of logical and structural constraints over dimension tables. However,

their practical use for characterizing a set of valid dimension tables is limited. The number of LFDs might rapidly

increase for non-linear hierarchy types and the rule-based syntax does not exploit the hierarchical type structure to

help user in defining validity constraints. In [32], we thus introduced the notion of attribute graph, which is a graph

representation for LFDs in dimension tables, that characterizes all possible “valid” hierarchy instances of a dimension

in a simple and natural way.

We provide an informal definition of attribute graphs through the following example.



Controlling the Correctness of Analytic Queries 13

Fig. 6. Attribute graph of dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺

Example 4. Figure 6 shows an attribute graph that is validated by dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 . First, the lower and

upper bound attributes are respectively STORE_ID and COUNTRY. In the attribute graph, they are therefore respectively

connected to special nodes ⊥ and ⊤. Second, for each pair of parent-child attributes in the attribute hierarchy of the

dimension, there is a corresponding edge in the attribute graph. This yields edges: (STORE_ID, CITY), (CITY, STATE) and
(STATE, COUNTRY). An additional edge is added between two attributes when the attributes between them in the attribute

hierarchy can have null values and the higher attribute functional depends (literally or not) on the lower attribute).

This yields edges: (STORE_ID, STATE), (STORE_ID, COUNTRY), and (CITY, COUNTRY), because both CITY and STATE can have

null values. Third, each edge is assigned a unique label encoding the presence of functional (label 1) or literal functional

dependency constraints (label f), or none of them (+), between the connected attributes.

By convention, the labels of outgoing edges of⊥ are labelled as + and the labels of the incoming edges of⊤ are labelled

as f . Attribute STORE_ID literally determines CITY, STATE and COUNTRY and, therefore, the three arcs (STORE_ID, CITY),
(STORE_ID, STATE) and (STORE_ID, COUNTRY) are labeled by f . The arc (CITY, STATE) is labeled by +, which signifies that

tuples with the same (possibly null) value for CITY can have different values for STATE. Similarly, the arc (CITY, COUNTRY)
is labeled by +. Finally, the arc (STATE, COUNTRY) is labeled by 1, since there exists a functional dependency from non-null

STATE values to COUNTRY, but not a literal functional dependency.

Similarly, we define the attribute graph of dimension 𝑃𝑅𝑂𝐷 in Figure 7.

Fig. 7. Attribute graph of dimension 𝑃𝑅𝑂𝐷

Attribute graphs must be defined by the designer of dimension tables. However, we showed in [32] that attribute

graphs can also be automatically and efficiently computed from dimension tables or samples thereof. More details about

the acquisition and maintenance of attribute graphs can be found in [44].

We also provided in [32] an efficient algorithm to compute the minimum set of dimension attributes (called dimension

identifier) that literally determines all other dimension attributes. Using the same properties of attribute graphs, we

can determine if a set of dimensions attributes 𝑈 in a dimension table, literally determines a dimension attribute 𝐵 (i.e.

𝑈 ↦→ B).



14 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

2.3 Analytic queries

An interactive data analysis session consists of a tree of interactive analytic queries having one or more (input) analytic

tables as leaves and a single root which is the final result of the session. We assume that the result of any interactive

data analysis session can be saved as an analytic view whose definition is the tree of interactive queries that have been

performed in the session. Hence, views can be reused to start a new interactive data analysis session. As usual, users

can backtrack in their session and come back to a previous result. An example of an interactive data analysis session

was given in Figure 3.

In this paper, we consider analytic queries consisting of unary operations (filter, project, aggregation, pivot, and

binary operations (union, difference, merge). All these operations, except pivot, are based on relational operations but

their semantics is tailored to the case of analytic tables by restricting their usage depending on the type of attributes

(dimension or measure) that are manipulated. Our set of operations includes the most common data transformation

operations supported by self-service data preparation and BI tools [37, 41, 42, 46, 51, 53]. They also subsume the

traditional interactive operations on a multidimensional (OLAP) cube, such as Roll-up, Drill-down, Slice, or Dice, as

defined for instance in [15, 21, 54, 56]. In this section, we precisely define the semantics of these operations with a

special attention to their manipulation of null values.

2.3.1 Analytic filter queries.

The first single table analytic queries allow users to select a subset of tuples in the input table.

Definition 3 (Filter query). Let𝑇 (S) be an analytic table. We denote by Q (𝑇 ) = Filter𝑇 (𝑃 | Y), an analytic filter query

that returns all tuples in 𝑇 satisfying a predicate 𝑃 on a set of attributes Y ⊆ S.

Observe that 𝑃 can be any well-formed Boolean predicate using negation, conjunction and disjunction over any

subset of attributes in S. We consider that predicate 𝑃 is a Boolean function which is also defined for tuples with 𝑛𝑢𝑙𝑙

value attributes: except for literal equality, any comparison of an attribute value with a null marker evaluates to false.

Analytic filter queries support operations on a multidimensional cube known as "slice" (selection by subset of values

of a dimension) or "dice" (selection by subset of values of more than one dimension) [56]. However, in our definition, a

filter predicate can be expressed on any attribute.

Example 5. Consider the table 𝑇 (S) in Table 9a. The result of two filter queries Q 1 = Filter𝑇 ({A1 =‘𝑎1’} | {A1}) and
Q 2 = Filter𝑇 ({A2 ≠‘𝑏2’} | {A2}) are shown in Table 9b and Table 9c.

Table 9. Filter queries

𝑇 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 𝑦3
𝑎2 𝑏2 − 𝑥4 𝑦4

(a) Input table𝑇

Q 1 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2

(b) Filter𝑇 ( {A1 = 𝑎1 } | {A1 })

Q 2 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 𝑦2

(c) Filter𝑇 ( {A2 ≠ 𝑏2 } | {A2 })



Controlling the Correctness of Analytic Queries 15

2.3.2 Analytic projection queries.

Projection can be used to remove measure attributes and add new calculated measure attributes.

Definition 4 (Analytic projection query). Let 𝑇 (S) be an analytic table with dimension attributes S𝐷 ⊆ S. Let Y be a

subset of S such that S𝐷 ⊆ Y ⊆ S. Let 𝑓 (Z) → 𝐴 be an optional expression where 𝑓 (Z) is an expression involving a set

of attributes Z ⊆ S, constants, arithmetic operators and string operators, and A is a new name for a measure attribute that

results from the calculation implied by 𝑓 (𝑍 ). We denote by Q (𝑇 ) = Project𝑇 (Y, 𝑓 (Z) → A) (resp. Q (𝑇 ) = Project𝑇 (Y)
) an analytic projection which returns a table 𝑇𝑟 with schema Y ∪ {𝐴} (resp. Y), such that for every tuple 𝑇 of 𝑇 , there

exists a unique tuple 𝑡 ′ in 𝑇𝑟 such that 𝑡 ′.𝐵 = 𝑡 .𝐵 for every 𝐵 ∈ Y, and 𝑡 ′.A = 𝑓 (𝑡 .𝑍 ).

An analytic projection over an analytic table 𝑇 (S) is a special case of an extended projection [14]. It can add a new

measure attribute, whose value for each tuple is possibly computed from the values of other attributes of that tuple.

The definition can easily be extended to a set of expressions 𝑓 (𝑍 ) → 𝐴. Note that expression 𝑓 (𝑍 ) → 𝐴 is optional in a

projection query.

Table 10. Analytic projection queries

𝑇 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 𝑦3
𝑎2 𝑏2 − 𝑥4 𝑦4

(a) Input table𝑇

Q 3 A1 A2 A3 M

𝑎1 𝑏1 𝑐1 𝑥1
𝑎1 𝑏1 − 𝑥2
𝑎2 𝑏1 𝑐1 𝑥3
𝑎2 𝑏2 − 𝑥4

(b) Project
𝑇
( {A1, A2, A3,M})

Q 4 A1 A2 A3 M
′

𝑎1 𝑏1 𝑐1 𝑥1 + 𝑦1
𝑎1 𝑏1 − 𝑥2 + 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 + 𝑦3
𝑎2 𝑏2 − 𝑥4 + 𝑦4

(c) Project
𝑇
( {A1, A2, A3 }, (M + N) → M

′)

Example 6. Reconsider the table 𝑇 (S) in Table 10a. Table 10b and Table 10c show the result of two projections. The

first projection Project𝑇 ({A1, A2, A3,M}) simply keeps a subset of attributes of S whereas the second projection creates

a new attribute M
′
which is the sum of M and N.

Projections must keep all dimension attributes of the original table. To remove dimension attributes, we introduce

aggregate queries as explained next.

2.3.3 Analytic aggregate queries.

Aggregate queries generally partition analytic tables along a subset of dimension attributes and aggregate the values

of certain attribute in each partition. Analytic aggregate queries support operations on a multidimensional cube known

as "roll-up" (aggregation of data from a lower level to a higher level of granularity within a dimension hierarchy) or

"dice" (grouping of data with respect to a subset of dimensions of a cube).

Definition 5 (Analytic aggregate query). Let 𝑇 (S) be an analytic table with dimension attributes S𝐷 ⊆ S, A be an

aggregable attribute in S, and F be an aggregation function. We denote by Q (𝑇 ) = Agg𝑇 (F(A) | X) where X ⊆ S𝐷 , an

analytic aggregate query on table 𝑇 that aggregates A using aggregation function F with group-by attributes X. We say

that 𝑇 is aggregated along A using F. The result contains one tuple for every tuple of distinct values of attributes in X

including null values (as for SQL group-by operations).



16 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

The above definition can be easily generalized by replacing attribute A with a set of attributes. Unlike SQL Rollup

[15, 54], note that our definition does not include tuples that represent subtotals in the query result. This facilitates

the composition of aggregate queries, without having to deal with these special tuples, and better fits the purpose of

interactive data analysis sessions.

Example 7. Reconsider the table𝑇 (S) in Table 11a with dimensional attributes A1, A2 from 𝐷1 and A3 from dimension

𝐷2. The result of Q 5 = Agg𝑇 (SUM(M) | {A3}) is shown in Table 11b. Note that, as with SQL semantics, a group-by

operator supports literal equality semantics for 𝑛𝑢𝑙𝑙 values. The result of aggregate query Q 6 = Agg𝑇 (SUM(M) |
{A1, A3}) is shown in Table 11c.

Table 11. Analytic aggregate queries

(a) Input table𝑇

𝑇 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 𝑦3
𝑎2 𝑏2 − 𝑥4 𝑦4

(b) Agg
𝑇
(SUM(M) | {A3 })

Q 5 A3 SUM(M)
𝑐1 𝑥1 + 𝑥3
− 𝑥2 + 𝑥4

(c) Agg
𝑇
(SUM(M) | {A1, A3 })

Q 6 A1 A3 SUM(M)
𝑎1 𝑐1 𝑥1
𝑎1 − 𝑥2
𝑎2 𝑐1 𝑥3
𝑎2 − 𝑥4

2.3.4 Analytic pivot queries.

Pivot queries also partition tables along a subset of dimension attributes. But instead of aggregating all values of a

non partitioning attribute into a single value for each partition, it generates a new attribute for each value. Analytic

pivot queries are particularly useful in the data preparation phase of machine learning application scenarios like feature

engineering [32, 57]. They should not be mistaken with the OLAP cube pivot operation that keeps the schema of the

input table unchanged.

Definition 6 (Analytic pivot query). Let 𝑇 (S) be a fact table with dimension attributes S𝐷 ⊆ S and A be a measure

attribute in S. We denote by Q (𝑇 ) = Pivot𝑇 (A | X), where X ⊂ S𝐷 , an analytic pivot query which pivots attribute A

over X. The result is a table 𝑇𝑟 with all attributes in S𝐷 −X and an attribute A_𝑣𝑖 for each value 𝑣𝑖 in the domain of

𝑇 .X. The value 𝑡 .A of each tuple 𝑡 ∈ 𝑇 such that 𝑡 .X = 𝑣𝑖 is a value in the attribute A_𝑣𝑖 of the unique tuple 𝑡
′
in 𝑇𝑟

such that 𝑡 .(S𝐷 −X) = 𝑡 ′.(S𝐷 −X).

The above definition can be easily generalized by replacing attribute A with a set of attributes.

Example 8. Reconsider the table𝑇 (S) in Table 12a. The result of pivot query Q 7 = Pivot𝑇 (M | A1) that pivots attribute
𝑀 over A1 is shown in Table 12b. The schema of the resulting table 𝑇𝑟 contains all attributes in S − A1 and two new

attributes M_𝑎1 and M_𝑎2 for each value of 𝑇 .A1. The value 𝑡 .𝑀 of each tuple 𝑡 ∈ 𝑇 such that 𝑡 .A1 = 𝑣 is a value in

the attribute M_𝑣 of the unique tuple 𝑡 ′ in 𝑇𝑟 such that 𝑡 .({A2, A3}) = 𝑡 ′.({A2, A3}). The result of another pivot query
Q 8 = Pivot𝑇 (M | A2) is shown in Table 12c.

2.3.5 Analytic merge queries.

Analytic left-merge queries combine the tuples of two analytic tables and correspond to natural left outer-join

operations defined in the extended relational algebra with null values. Analytic left-merge queries play an important



Controlling the Correctness of Analytic Queries 17

Table 12. Analytic pivot queries

𝑇 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 𝑏1 − 𝑥2 𝑦2
𝑎2 𝑏1 𝑐1 𝑥3 𝑦3
𝑎2 𝑏2 − 𝑥4 𝑦4

(a) Input table𝑇

Q 7 A2 A3 M_𝑎1 M_𝑎2

𝑏1 𝑐1 𝑥1 𝑥3
𝑏1 − 𝑥2 −
𝑏2 − − 𝑥4

(b) Pivot𝑇 (M | A1)

Q 8 A1 A3 M_𝑏1 M_𝑏2

𝑎1 𝑐1 𝑥1 -

𝑎1 − 𝑥2 -

𝑎2 𝑐1 𝑥3 -

𝑎2 − - 𝑥4

(c) Pivot𝑇 (M | A2)

role in so-called schema augmentation scenarios [32] and can support the OLAP cube operation known as "drill-down"

(the inverse of roll-up) by merging a fact table, that provides a higher-level of granularity within a dimension hierarchy

for some measures, with a fact table that provides a lower level of granularity for the exact same measures.

In our definition, we allow the merge of two fact tables on their common dimension attributes (which have the

same names in the two fact tables) but we accept that the common attributes belong to different dimensions in each

fact table. An example of such a merge operation was given in Section 1, between SALES_STORES and DEM, on

common attributes CITY, STATE, COUNTRY. These attributes belong to dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 in SALES_STORES and

dimension 𝑅𝐸𝐺𝐼𝑂𝑁 in DEM.

Definition 7 (Analytic left-merge query). Let Q = 𝜋𝑋 (𝑇 ) where𝑇 = 𝑇 ⊲⊳𝑃1∧···∧𝑃𝑘 𝑇
′
,𝑇 (S) and𝑇 ′(𝑆 ′) are two analytic

tables, ⊲⊳ is a left-outer join operator, 𝑃𝑖 are join equality predicates over a set of (common) dimension attributes Y, and

𝜋𝑋 is the duplicate elimination relational projection over a set of attributes X defined below. Then Q is a left-merge

merge analytic query if the following conditions hold:

(1) For each A𝑖 ∈ Y, ∃𝑃𝑖 such that 𝑃𝑖 = (𝑇 .A𝑖 = 𝑇 ′.A𝑖 ) ∨ (𝑇 .A𝑖 = 𝑛𝑢𝑙𝑙 ∧𝑇 ′.A𝑖 = 𝑛𝑢𝑙𝑙) (𝑛𝑢𝑙𝑙 is a literal).
(2) If for each pair of attributes A1, A2 ∈ Y that belongs to both a dimension 𝐷1 in 𝑇 and a dimension 𝐷2 in 𝑇 ′

(𝐷1 ≠ 𝐷2), A1 and A2 are either connected with the same labelled paths in their respective attribute graphs or

not connected by any path, then X = 𝑆 ∪ 𝑆 ′ else X = 𝑆 ⊎ 𝑆 ′ (⊎ denotes disjoint union, i.e. union after renaming

conflicting attributes).

In the following, we will abbreviate Q = 𝜋𝑋 (𝑇 ⊲⊳𝑃1∧···∧𝑃𝑘 𝑇
′)) by Q = 𝑇 ⊲⊳𝑌 𝑇

′
, whereY is the set of join attributes,

call it a left-merge query, and refer to the result of Q as a merge table.

Item 1 manages the join predicates in the merge query in the presence of nulls (we apply literal equality which is

different from the SQL equality semantics for null values). The merge table preserves all rows in 𝑇 (with possible row

duplication) and contains all attributes in 𝑇 and 𝑇 ′
(the merge query does not project out any attribute).

Item 2 checks that, when two different dimensions are joined on their common attributes, the structure and properties

of their respective hierarchies for the joined attributes are identical, that is, the attribute graphs (defined in Section 2.2),

restricted to all common attributes and all paths connecting these attributes, are identical. When this is not the case

(e.g., they differ on their hierarchical relationships or they have different functional dependencies), the merge query

keeps the join attributes separately for each table and applies a disjoint union.

Left-merge queries can also be generalized to a full-outer join ( ⊲⊳ ) between two tables, called an analytic full merge

query, or restricted to a natural join (⊲⊳), called an analytic strict merge query. Right-merge queries Q (𝑇,𝑇 ′) = 𝑇 ⊲⊳ Y 𝑇
′

are equivalent to the symmetric left-merge queries Q (𝑇 ′,𝑇 ) = 𝑇 ′ ⊲⊳Y 𝑇 on the switched tables.



18 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Example 9. Consider the fact tables 𝑇 and 𝑇 ′
in Table 13a and Table 13b, respectively defined over dimension 𝐷1

(where A1 ≼ A2 ≼ A3) and dimension 𝐷2 (where A2 ≼ A3). Suppose that in both dimensions, we have A2 ↦→ 𝐴3, then

by Item 2, since attributes A2 and A3 are connected by the same labelled paths in their respective attribute graphs, they

appear only once in the merge table, and the result of a left merge Q 10 = 𝑇 ⊲⊳𝑇 ′
is shown in Table 13c. If the labelled

paths between A2 and A3 were different in the attribute graphs of 𝐷1 and 𝐷2, all the dimension attributes of 𝑇 and 𝑇 ′

will be kept separately in the result of the merge.

Table 13. Analytic merge queries

𝑇 A1 A2 A3 M

𝑎1 𝑏1 𝑐1 𝑥1
𝑎1 − 𝑐2 𝑥2
𝑎2 𝑏1 𝑐3 𝑥3
𝑎3 − 𝑐2 𝑥4

(a) Input table𝑇

𝑇 ′
A2 A3 N

𝑏1 𝑐1 𝑦1
𝑏1 𝑐3 𝑦2
𝑏2 𝑐4 𝑦3
𝑏3 𝑐4 𝑦4

(b) Input table𝑇 ′

Q 10 A1 A2 A3 M N

𝑎1 𝑏1 𝑐1 𝑥1 𝑦1
𝑎1 − 𝑐2 𝑥2 −
𝑎2 𝑏1 𝑐3 𝑥3 𝑦2
𝑎2 − 𝑐2 𝑥4 −

(c)𝑇 ⊲⊳𝑇 ′

2.3.6 Analytic set queries.

Analytic tables are sets of tuples and can therefore be combined using set operations. However, compared to standard

relational set operations, analytic set operations must respect additional constraints related to the separation between

dimension and measure attributes and the condition that all measure attributes are determined by a subset of dimension

attributes.

Definition 8 (Analytic set queries). Let𝑇 and𝑇 ′
be two analytic tables having the same schema with a set of dimension

attributes Y (referring to the same dimensions):

• If 𝜋Y (𝑇 ) ∩ 𝜋Y (𝑇 ′) = ∅, Q = 𝑇 ∪𝑇 ′
is a union analytic query where ∪ is the set union operator.

• Q = 𝑇 −𝑇 ′
is a difference analytic query where "−" is the set difference operator based on literal equality of

attribute values.

Observe that analytic intersection𝑇 ∩𝑇 ′
is equivalent to𝑇 −(𝑇 −𝑇 ′). Analytic union queries are useful to complement

dimension or fact tables. A full merge query Q = 𝑇 ⊲⊳ 𝑌 𝑇
′
between two analytic tables 𝑇 and 𝑇 ′

having exactly the

same set of dimension attributes Y, and such that 𝜋Y (𝑇 ) ∩ 𝜋Y (𝑇 ′) = ∅, expresses an analytic outer-union between

the two tables. Note that a data fusion operation [4] can be expressed as a full merge query followed by an analytic

projection.

Example 10. Table 14 shows two tables and the result of two analytic set queries. Observe that the union𝑇 ∪𝑇 ′
is not

defined since 𝜋𝐴1,𝐴2,𝐴3
𝑇 ∩ 𝜋𝐴1,𝐴2,𝐴3

𝑇 ′ ≠ ∅.

3 AGGREGABILITY OF ATTRIBUTES IN ANALYTIC TABLES

An attribute of an analytic table does not necessarily aggregate with all aggregation functions along all dimension

attributes. Describing when this aggregation is possible has been extensively studied for statistical and OLAP databases

(see [34] for a survey). Focusing on function SUM, [26], [19] and [36] proposed that the designer of a fact table declares

the additivity category of each measure: fully-additive measures can be summed along any dimension, semi-additive



Controlling the Correctness of Analytic Queries 19

Table 14. Analytic set queries

𝑇 A1 A2 A3 M

𝑎1 𝑏1 𝑐1 𝑥1
𝑎1 𝑏1 − 𝑥2
𝑎2 𝑏1 𝑐1 𝑥3
𝑎2 𝑏2 − 𝑥4

(a) Input table𝑇

𝑇 ′
A1 A2 A3 M

𝑎1 𝑏1 𝑐1 𝑥1
𝑎1 𝑏1 − 𝑥2
𝑎1 𝑏2 𝑐1 𝑥5
𝑎2 𝑏2 𝑐1 𝑥6
𝑎2 𝑏1 − 𝑥7

(b) Input table𝑇 ′

𝑇 A1 A2 A3 M

𝑎2 𝑏1 𝑐1 𝑥3
𝑎2 𝑏2 − 𝑥4

(c)𝑇 −𝑇 ′

𝑇 A1 A2 A3 M

𝑎1 𝑏1 𝑐1 𝑥1
𝑎1 𝑏1 − 𝑥2
𝑎2 𝑏1 𝑐1 𝑥3
𝑎2 𝑏2 − 𝑥4
𝑎1 𝑏2 𝑐1 𝑥5
𝑎2 𝑏2 𝑐1 𝑥6
𝑎2 𝑏1 − 𝑥7

(d) (𝑇 −𝑇 ′) ∪𝑇 ′

measures can be summed along some, but not all, dimensions, and non-additive measures cannot be summed along any

dimension. This approach has been implemented in several OLAP systems.

Generalizing this approach, we introduce aggregable properties that enable a designer to declare for any attribute

of an analytic table, which aggregation function is applicable and the set of dimension attributes along which this

aggregation function can be computed. We introduce default rules that assist the designer of a table to define these

properties. Finally, we show that aggregable properties can be automatically computed on the tables resulting from an

analytic query, thereby saving the human effort to define them.

3.1 Aggregable properties of attributes

If some attribute A is aggregable along a set of dimension attributes X, then it is also aggregable along any subsets of X.

In the following, we denote by agg
A
(F,X) the aggregable property of A and state that property agg

A
(F,X) holds in

𝑇 if X is the maximal set of attributes along which A is aggregable using F in 𝑇 . We now formally define aggregable

properties agg
A
(F,X).

Definition 9 (Aggregable Property). Let S𝐷 be the set of dimension attributes in an analytic table 𝑇 (S), A be an

aggregable attribute in S and F be an aggregation function.

• Let X𝑓 ⊆ S𝐷 be the set all dimension attributes B such that any aggregation of A with F along B is considered

to be meaningless by the user. We call X𝑓 the set of forbidden dimension attributes along which A cannot be

aggregated using F.

• If A is a measure attribute, let X𝑑 ⊆ S𝐷 be a minimal subset of dimension attributes such that X𝑑 ↦→ A. Let

X+
𝑑
be the set of all dimension attributes B ∈ S𝐷 such that X𝑑 ↦→ B. We call X𝑑 a determinant of A and X+

𝑑
the

closure of X𝑑 in S𝐷 .

Then the aggregable property agg
A
(F,X) holds in 𝑇 for F and X ⊆ S𝐷 −X𝑓 , where:

(1) Function F is applicable to A.

(2) If A is a measure attribute then X = X+
𝑑
−X𝑓 .

(3) If A is a dimension attribute then X = S𝐷 − {A} −X𝑓 .

Item 1 and the definition of the forbidden attributes X𝑓 in Definition 9 cover the "information semantics" of an

attribute A and restrict the functions and the dimensions for the aggregation of the attribute. Different categorizations

have been proposed in the literature to determine the aggregation functions which are applicable to some measure



20 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

attribute, such as a statistic classification of measurements [36, 50, 52], the attribute’s aggregation behaviour [39, 40], or

the compatibility between the type of dimensions and the type of a measure [30]. These categorizations can also be

used in our context to determine both the "applicability" of a function F and the set X𝑓 of forbidden dimensions for a

given measure attribute.

Item 2 covers the "logical semantics" defined by the literal functional dependencies between dimension and measure

attributes. Essentially the closure X+
𝑑
of the determinant X𝑑 of A contains all dimension attributes which are "logically

related to" measure attribute A through literal functional dependencies. First, it is easy to see that all partitions generated

by X+
𝑑
have the same value for A. Second, Item 2 considers that any aggregation of A along any subset of X+

𝑑
is logically

correct and it is semantically meaningful if it also respects the applicability constraint (Item 1) and excludes the attributes

in X𝑓 . Symmetrically, all attributes that are not in X+
𝑑
are considered as logically independent of measure A and must

be preserved by the partitioning (i.e., appear in the GROUP BY clause of an SQL query).

Finally, Item 3mainly states that any dimension attribute can be aggregated along all other dimension attributes except

those defined as "meaningless" in X𝑓 . This follows from the observation that all dimension attributes are considered to

be descriptive and the only aggregation functions that can be applied are COUNT and COUNT_DISTINCT (see

also Table 16 below). Then, we assume that there exists no "logical" constraint defined by LFDs when counting some

values along any "semantically meaningful" set of attributes (see Example 11).

Observe that in Item 2, there may exist several determinants X𝑑 of A and each such determinants might define a

different set of attributes X𝑖 along which A can be aggregated using F. However, it is easy to show that if A can be

aggregated along any subset of X1 and any subset of X2 using F, it also can be aggregated along any subset of the

union X1 ∪X2.

In practice, the designer of a fact table is asked to indicate the set of semantically meaningless dimension attributes

X𝑓 and, in the case of a measure attribute only, a minimum set of logically correct dimension attributes X𝑑 on which

this attribute depends. The closure X+
𝑑
is automatically obtained using the attribute graphs of the dimensions. Thus, for

each minimal set X𝑑 provided by the user, Item 2 of Definition 9 gives the corresponding aggregable property of a

measure attribute.

Example 11. Consider the fact table PRODUCT_LIST (PROD_SKU, COUNTRY, BRAND, YEAR, QTY) displayed in Table 15.

Suppose that the designer of the fact table indicates that the measure attribute QTY literally depends on the minimal set of

attributesX𝑑 = {PROD_SKU, YEAR}, and that SUM aggregation is meaningful along any dimension attribute (i.e.,X𝑓 = ∅).
Since X𝑑 does not determine any other attribute, by Item 2 of the definition, X𝑑 is the largest set of attributes for which

the aggregable property agg
QTY

(SUM,X𝑑 ) holds in PRODUCT_LIST. In other words, QTY can only be aggregated

along attributes PROD_SKU and YEAR. For dimension attribute PROD_SKU, suppose that the designer indicates thatX𝑓 = ∅,
then agg

PROD_SKU
(F,X) holds for F ∈ {COUNT,COUNT_DISTINCT} and X = {BRAND, COUNTRY, YEAR}.

Next, consider the fact table STORE_SALES (Table 3b) and suppose that the designer of the fact table indicates

that the measure attribute AMOUNT depends on X𝑑 = {STORE_ID, YEAR} and X𝑓 = ∅ for function SUM. Since STORE_ID

literally determines the dimension attributes CITY, STATE, and COUNTRY, by Item 2 of the definition, AMOUNT is aggregable

along any subset of the dimension attributes of STORE_SALES.

Finally, consider the fact tableDEM (Demographics) displayed in Table 1a. Summing up measure attribute POP along

dimension attribute YEAR would clearly be incorrect, while it would be correct along any attribute of dimension 𝑅𝐸𝐺𝐼𝑂𝑁 .

Thus, the designer of the fact table should define X𝑓 = {YEAR} for SUM and POP. After indicating that POP depends



Controlling the Correctness of Analytic Queries 21

on dimension attributes X𝑑 = {CITY, COUNTRY, YEAR}, property agg
POP

(SUM, {CITY, COUNTRY}) can automatically be

computed.

Table 15. PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s Coco Cola USA 2017 5 000

cz-tshirt-s Zora Spain 2017 5 000

coco-33cl-can Coco Cola USA 2017 10 000

Two aggregable properties:

with user input: agg
QTY

(F, {PROD_SKU, YEAR}) for F ∈ {SUM,COUNT,AVG, ...}
default: agg

PROD_SKU
(F, {BRAND, COUNTRY, YEAR}) for F ∈ {COUNT,COUNT_DISTINCT}

3.2 Default rules for aggregable properties

By inspecting the properties of measure attributes and aggregation functions, we define rules to obtain default aggregable

properties for every aggregable attribute of every analytic table. The effort required from the designer of analytic tables

is then to inspect and possibly correct the result produced by the application of the default rules, according to the

known information semantics of attributes. With respect to Definition 9, the only possible corrective actions taken by

a designer consist of adding dimension attributes to the forbidden attribute set X𝑓 , or removing attributes from the

determinant set X𝑑 if X𝑑 is not minimal.

Default applicable functions: Existing methods that categorize measures to determine the applicability of an aggrega-

tion function rely on some external knowledge and require an analysis of every aggregable attribute of an analytic

table. To reduce the user effort, we provide a default categorization into three categories of attributesNUM (numerical),

DESC (descriptive/categorical) and STAT (statistical). These categories can automatically be extracted from the

schema metadata: the two categories NUM and DESC are inferred from the (SQL) data type of attributes and the

category STAT denotes a result from the use of some statistical function. Table 16 describes the six common SQL

aggregation functions applicable to each category, which will be used in the examples of this paper. We therefore use

the attribute category of A to define which aggregation function F is applicable to A. As mentioned before, a scale-based

categorization of measure attributes could also be used (e.g., [52]).

Table 16. Categories of attributes and their properties

Attribute category Properties

NUM • Numerical values

• Applicable functions: SUM, AVG, COUNT, COUNT_DISTINCT,MIN,MAX

DESC • Descriptive or categorical values
• Applicable functions: COUNT, COUNT_DISTINCT

STAT • Numerical statistical values

• Applicable functions: COUNT, COUNT_DISTINCT,MIN,MAX



22 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Default values of 𝑋𝑑 and 𝑋𝑓 for a measure attribute: If A is a measure attribute of 𝑇 for which no minimal set of

attributes that determines A has been defined by a user, then we use the default rule that A depends on all dimension

attributes. This actually means that in Item 2, X𝑑 contains the identifiers of all dimensions (automatically determined

using the attribute graphs of the dimensions).

We implicitly assume that X𝑑 is minimal, which is a necessary condition in the definition of aggregable property.

If A does not logically depend on some dimension, this must be indicated by the designer of the fact table, and the

corresponding dimension attributes are removed from X𝑑 .

We assume by default that the set of meaningless attributes is empty (X𝑓 = ∅). If there exists a "meaningless"

aggregation along some dimensions (like in the fact table DEM of the previous example), this should be indicated by

the designer of the fact table, by adding the corresponding dimension attributes to X𝑓 .

Default value of 𝑋𝑓 for a dimension attribute: As already mentioned before, if A is a dimension attribute, we assume

that its category is DESC to determine the applicable aggregation functions (COUNT and COUNT_DISTINCT).

By definition, we also assume that all aggregations using these two functions along any set of attributes (except A)

are correct. As before, we also assume that there exist no meaningless aggregations, and we use the default rule that

X𝑓 = ∅.

Important consequence. We assure that each aggregable property agg
A
(F,X), with its determinant X𝑑 and forbidden

attribute set X𝑓 , is part of the metadata of attribute A in table 𝑇 . This is particularly needed when a user takes some

action to either minimize the default value of X𝑑 or add attributes to X𝑓 . Without keeping the values of X𝑑 and X𝑓 , it

would not be possible to infer them from the value of X.

The default values and possible user actions are summarized in Table 17.

Table 17. Default values of X𝑑 and X𝑓 and possible user actions

Attribute Default values Possible user action

Measure X𝑑 = fact identifier; X𝑓 = ∅ remove attributes to minimize X𝑑 ;

add attributes to X𝑓

Dimension X𝑓 = ∅ add attributes to X𝑓

Example 12. Continuing with Example 11, since attribute QTY in table PRODUCT_LIST is of category NUM, we

get from Table 16 the list of applicable aggregation functions. Then, by default, the minimum set of attributes X𝑑 that

determines QTY will be the fact identifier of PRODUCT_LIST, X𝑑 = {PROD_SKU, BRAND, YEAR}. This set is however
not minimal (QTY only depends on {PROD_SKU, YEAR}) and the designer of the table should remove attribute BRAND from

X𝑑 . Finally, using the default rule that X𝑓 = ∅, we get the aggregable property displayed on the bottom of Table 15.

The dimension attribute PROD_SKU is of category DESC, which determines its applicable aggregation functions.

Then, using the default rule for X𝑓 , we get the aggregable property displayed on the bottom of Table 15. However, if

the user considers that it makes no sense to count products along the time dimension, he might remove YEAR from the

aggregable property by adding it to the set of forbidden attributes X𝑓 .



Controlling the Correctness of Analytic Queries 23

3.3 Propagating aggregable properties

We wish to limit the effort required from the designers of analytic tables, regarding the verification and possible

correction of default rules, to the case of analytic tables that are defined from non-analytic tables. As shown in Figure 8,

this corresponds to dimension tables built from non-analytic tables, or fact tables built from dimension tables and

non-analytic tables, using database queries (represented by bold arrows). These are the tables over which all other

custom analytic tables are built, using self-service data preparation and BI tools.

For analytic tables that result from (analytic) queries over analytic tables with aggregable properties (represented by

dashed arrows in Figure 8), the following two sections present propagation rules to obtain the aggregable properties of

their attributes. In most of the cases, these rules do not require any user input.

Fig. 8. Definition of aggregable properties

3.3.1 Propagating aggregable properties to the results of unary operations.

To determine the aggregable property of some attribute A
′
in the result 𝑇𝑟 = Q (𝑇 ) of a query Q over 𝑇 , we must

first identify the aggregate functions which are applicable to A
′
. This falls into one of the following cases:

(1) If A
′
is also an attribute of 𝑇 and F is applicable to A

′
in 𝑇 then F is also applicable to A

′
in 𝑇𝑟 .

(2) If A
′
holds pivoted values of an attribute A of 𝑇 and F is applicable to A in 𝑇 , then F is also applicable to A

′
in 𝑇𝑟 .

(3) If A
′ = F(A) is the result of applying some aggregation function F over an attribute A in 𝑇 , then the aggregate

functions that are applicable to A
′
are determined by the co-domain category of function F using Table 18.

(4) If A
′
is a new attribute resulting from the evaluation of an expression 𝑓 (Z) → 𝐴′

in 𝑄 , then the aggregation

functions that are applicable to A
′
are determined by the category of A

′
(default or user-defined) using Table 16.

Filter and pivot queries do not change the category of aggregable attributes of 𝑇 that are in the result 𝑇𝑟 . Therefore,

all functions that were applicable for attributes in 𝑇 , are still applicable to these attributes in the result of any filter or

pivot query over𝑇 . This is not true for aggregate and projection queries which might generate new attribute values of a

different category than the aggregated or projected attributes by applying a function. For example, while an attribute A

of category NUM in 𝑇 is still of category NUM in 𝑇𝑟 when F = SUM(A), the resulting attribute becomes of category

STAT when F = AVG(𝐴). This change is detected using the classification in Table 18.



24 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Table 18. Domain and co-domain categories for common SQL aggregation functions

Functions Domain category Co-domain category

SUM,MIN,MAX NUM NUM

MIN,MAX STAT STAT

COUNT,COUNT_DISTINCT NUM,DESC, STAT NUM

AVG NUM STAT

The identification of all aggregation functions F that are applicable to an attribute A
′
in the result 𝑇𝑟 of a query is

not sufficient for defining the aggregable properties of A
′
that hold in 𝑇𝑟 . We must also determine for each attribute A

′
,

the maximal subset of dimension attributes X′
of 𝑇𝑟 along which an aggregation using F is correct. The propagation

rules in Table 19 for determining X′
, can be applied when A

′
is an attribute in the result of a filter, projection, pivot or

aggregate query. The last column shows how to determine the new determinant X′
𝑑
(for measure attributes) and the

new forbidden attribute set X𝑓 (for dimension and measure attributes) as well as the required user actions displayed in

italics font (None means no action required).

Proposition 1 (Propagation rules for filter, project and pivot). Let 𝑇𝑟 (𝑆𝑟 ) = Q (𝑇 ) be the result of a filter, project or
pivot query Q over an analytic table𝑇 (S), A′ be an attribute of𝑇𝑟 , and S𝐷 be the set of dimension attributes in𝑇 . Then

the propagation rules of Table 19 for filter, project and pivot are correct.

Proof. Suppose that whenever A
′ ∈ 𝑇 then agg

A
′ (F,X) holds in 𝑇 , for X ⊆ S𝐷 .

(1) Filter queries: Let 𝑇𝑟 = Filter𝑇 (𝑃 | Y). Then 𝑇𝑟 is a subset of 𝑇 and all conditions, and in particular the literal

functional dependencies, in the Definition 9 of for agg
A
′ (F,X) still hold for A

′
and we obtain X′

𝑑
= X𝑑 and

X′
𝑓
= X𝑓 .

(2) Projection queries: Let 𝑇𝑟 = Project𝑇 (Y, 𝑓 (Z) → M).
• A

′ ∈ Y: Since, by definition of projection,Y contains all dimension attributes of𝑇 ,𝑇𝑟 also contains all dimension

attributes of 𝑇 (and possibly some other measure attributes). Therefore, all conditions in Definition 9 still hold

for all measure and dimension attributes A
′ ∈ Y and we obtain X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

• For new measure attribute M, we have to show that X′
𝑑
must be a determinant of M: Since X′

𝑑
is a determinant

of Z and M is the result of a function applied to attributes Z, by transitivity, X′
𝑑
is also a determinant of M.

(3) Pivot queries: Let 𝑇𝑟 = Pivot𝑇 (A | Y).
• A

′
in S − Y − {A} and agg

A
′ (F,X) holds in 𝑇 : If X𝑑 ∩ Y = ∅, by definition of pivot, each tuple 𝑡 ∈ 𝑇 is

mapped to a tuple 𝑡 ′ ∈ 𝑇𝑟 where 𝑡 .(X𝑑 ∪ A
′) = 𝑡 ′.(X𝑑 ∪ A

′) and we obtain X′
𝑑
= X𝑑 is a determinant of A

′
. If

X𝑑 ∩Y ≠ ∅, we cannot conclude that the remaining attribute set in X𝑑 −Y is still a determinant of A
′
and

we must apply the default rules to find X′
𝑑
. However, observe that A

′
existed in the input table and we can

conclude that all remaining forbidden attributes X′
𝑓
= X𝑓 −Y are still forbidden.

• A
′
is a new attribute that holds pivoted values of A and agg

A
(F,X) holds in 𝑇 : If X𝑑 is a determinant of A

in 𝑇 and X𝑑 ⊈ Y, we can conclude that the "remaining" attributes X′
𝑑
= X𝑑 − Y are a determinant of A

′
.

Suppose that there are two tuples 𝑡1 and 𝑡2 in 𝑇𝑟 which have the same value for X𝑑 −Y, but different values

for attribute A
′
: 𝑡1 .A

′ ≠ 𝑡2 .A′. By definition of pivot, these two tuples are the result of two distinct tuples 𝑡 ′1 and

𝑡 ′2 in 𝑇 where 𝑡1 .A
′ = 𝑡 ′1 .A

′
, 𝑡2 .A

′ = 𝑡 ′2 .A
′
, 𝑡 ′1 .Y = 𝑡 ′2 .Y, and 𝑡 ′1 .(X𝑑 −Y) = 𝑡 ′2 .(X𝑑 −Y). We get 𝑡 .X𝑑 = 𝑡 ′.X𝑑

and 𝑡 ′1 .A
′ ≠ 𝑡 ′2 .A

′
which is in contradiction with X𝑑 is a determinant of A

′
. If X𝑑 ⊆ Y we have to recompute



Controlling the Correctness of Analytic Queries 25

Table 19. Propagation rules for unary operations on𝑇 (𝑆) returning table𝑇𝑟 (S′)

Unary query on 𝑇 (S) Propagation rule for inferring the aggregable properties of attribute

A
′ ∈ 𝑆𝑟 in the result 𝑇𝑟 (𝑆𝑟 )

User action

Filter𝑇 (𝑃 | Y) attribute A
′ ∈ 𝑆𝑟 and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

None

Project𝑇 (Y, 𝑓 (Z) → M) dimension attribute A
′ ∈ Y and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

None

new measure attribute A
′ = M:

if G can be applied on M as defined in Table 16

then agg
A
′ (G,X′) holds in 𝑇𝑟 where X′

is defined by the rules of

Table 17 with X′
𝑑
= determinant of Z and X′

𝑓
= ∅.

Minimize X′
𝑑

Complete X′
𝑓

Pivot𝑇 (A | Y) attribute A
′ ∈ 𝑆𝑟 − {A} and agg

A
′ (F,X) holds in 𝑇 :

if X𝑑 ∩Y = ∅
then agg

A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y, X′

𝑑
= X𝑑 and

X′
𝑓
= X𝑓 −Y.

None

else agg
A
′ (F,X′) holds in 𝑇𝑟 where X′

is defined by the rules of

Table 17 with X′
𝑑
= fact identifier and X′

𝑓
= X𝑓 −Y.

Minimize X′
𝑑

new pivot attribute A
′ ∈ 𝑆𝑟 and agg

A
(F,X) holds in 𝑇 :

if X𝑑 ⊈ Y
then agg

A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y, X′

𝑑
= X𝑑 −Y

and X′
𝑓
= X𝑓 −Y

None

else agg
A
′ (F,X′) holds in 𝑇𝑟 where X′

is defined by the rules of

Table 17 with X′
𝑑
= fact identifier and X′

𝑓
= X𝑓 −Y

Minimize X′
𝑑

Agg𝑇 (F(A) | Y) dimension attribute A
′ ∈ Y and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∩Y and X′

𝑓
= X𝑓 ∩Y

None

new measure attribute A
′ = F(A) and agg

A
(F,X) holds in 𝑇 :

if G can be applied on A
′
as defined in Table 16

then aggF(A) (G,X′) holds in 𝑇𝑟 with X′ = Y, X′
𝑑
= fact identifier

and X′
𝑓
= ∅.

Minimize X′
𝑑

Complete X′
𝑓

the determinant set of all pivoted attributes. All attributes which were forbidden for A are also forbidden for

A
′
and we obtain X′

𝑓
= X𝑓 −Y.

□

We next define the following proposition for attributes in the result of an aggregate query.

Proposition 2 (Propagation rule for aggregation). Let𝑇 (S) be an analytic table with dimension attributes S𝐷 ⊆ S, and

agg
A
(F,X) be an aggregable property that holds in𝑇 with determinantX𝑑 and forbidden setX𝑓 . Let𝑇𝑟 = Agg𝑇 (F(A) |

Y) be a valid aggregate query (i.e., S𝐷 −X ⊆ Y). Then the propagation rule of Table 19 for aggregation is correct.

Proof. We prove each case of attribute A
′
:



26 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

(1) Every attribute A
′ ∈ Y is a dimension attribute in 𝑇 and 𝑇𝑟 . For every aggregable property agg

A
′ (F,X) that

holds in 𝑇 , we must only determine X′
and X′

𝑓
for agg

A
′ (F,X′) in 𝑇𝑟 . Since A

′
is aggregable along X, it is

also aggregable along the subset of remaining attributes X′ = X ∩ Y and all remaining forbidden attributes

X′
𝑓
= X𝑓 ∩Y are still forbidden. We conclude that agg

A
′ (F,X′) holds in𝑇𝑟 whereX′ = X∩Y andX′

𝑓
= X𝑓 ∩Y.

(2) We show that aggF(A) (G,X′) holds for new attribute F(A) in𝑇𝑟 withX′ = X
′+
𝑑
−X′

𝑓
= Y. By the assumption in

Item 1 of Definition 9, G is applicable to F(A). By applying the default rules of Table 17 X′
𝑑
is the fact identifier

of 𝑇𝑟 and determines F(A) as well as all attributes in Y (Y = X
′+
𝑑

is the closure of X𝑑 ). X
′
𝑓
is by default empty.

X′
𝑑
and X′

𝑓
and must be validated by the user by removing incorrect attributes from X′

𝑑
and adding meaningless

attributes to X𝑓 .

□

Example 13. Consider fact tablePRODUCT_LIST in Table 20 and attribute QTY. As seen in Example 11, agg
QTY

(SUM |
X) holds in PRODUCT_LIST for X = {PROD_SKU, YEAR}, X𝑑 = {PROD_SKU, YEAR} and X𝑓 = ∅.

Table 20. Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s Coco Cola USA 2017 5 000

cz-tshirt-s Coco Cola USA 2018 7 000

cz-tshirt-s Zora Spain 2017 5 000

cz-tshirt-s Zora Spain 2018 7 000

coco-can-33cl Coco Cola USA 2017 10 000

First, let 𝑇𝑟 = FilterPRODUCT_LIST ({YEAR = ‘2017’}). By Table 19, agg
QTY

(SUM | X) still holds in 𝑇𝑟 . Next, let
𝑇𝑟 = PivotPRODUCT_LIST (QTY | BRAND) be a query producing two new attributes QTY_COCOCOLA and QTY_ZORA with

values from attribute QTY. Then, by Table 19, sinceX𝐷 ⊈ 𝑌 , both aggregable properties agg
QTY_COCOCOLA

(SUM | X′)
and agg

QTY_ZORA
(SUM | X′) hold in 𝑇𝑟 where X′ = X − {BRAND} = X = {PROD_SKU, YEAR}. Finally, let 𝑇𝑟 =

AggPRODUCT_LIST (SUM(QTY) | Y) with Y = {BRAND, YEAR}. Function SUM returns a value of category NUM, so

by Table 19, aggSUM(QTY) (G | X′) holds in table 𝑇𝑟 with X′ = Y = {BRAND, YEAR} and G ∈ {SUM,AVG,COUNT,

COUNT_DISTINCT,MIN,MAX}. By default, X′
𝑑
= {BRAND, YEAR} is the fact identifier of 𝑇𝑟 and X𝑓 is empty.

Let us now consider attribute PROD_SKU. As seen in Example 11, properties agg
PROD_SKU

(COUNT | X) and
agg

PROD_SKU
(COUNT_DISTINCT | X) hold in PRODUCT_LIST for X = {BRAND, COUNTRY, YEAR}. Let 𝑇𝑟 =

AggPRODUCT_LIST (F(PROD_SKU) | {BRAND, YEAR}), with F = COUNT or F = COUNT_DISTINCT.

Both of these functions return values of category NUM. So by Table 19, aggF(PROD_SKU) (G | X′) holds in table 𝑇𝑟

for G ∈ {SUM,AVG,COUNT,COUNT_DISTINCT,MIN,MAX} and X′ = X ∩ {BRAND, YEAR} = {BRAND, YEAR}.

3.3.2 Propagating aggregable properties to the results of binary operations.

We now consider the problem of determining the aggregable properties of the attributes in the result of binary merge

queries and binary set queries (union, difference). The propagation rules are summarized in Table 21

Proposition 3 (propagation rule for merge). Let 𝑇 (𝑆) and 𝑇 ′(𝑆 ′) be two analytic tables with dimension attributes

𝑆𝐷 ⊆ 𝑆 and 𝑆 ′
𝐷

⊆ 𝑆 ′ respectively. Let 𝑇𝑟 (𝑆𝑟 ) be the result of a merge query between 𝑇 and 𝑇 ′
over a set of common



Controlling the Correctness of Analytic Queries 27

Table 21. Propagation rules for binary operations

Binary query on

𝑇 (𝑆) and 𝑇 ′(𝑆 ′)
Propagation rule for inferring the aggregable properties of attribute A

′ ∈ 𝑆
in the result 𝑇𝑟 (S𝑟 )

User action

𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇
′

𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′

dimension attribute A
′ ∈ 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−Y) −X′

𝑓
and X′

𝑓
= X𝑓 .

Complete X′
𝑓

𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′

𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇 ′
measure attribute A

′ ∈ 𝑆 − 𝑆𝐷 and agg
A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓

Complete X′
𝑓

𝑇𝑟 = 𝑇 ∪𝑇 ′
dimension attr. A

′ ∈ 𝑆𝑟 and agg
A
′ (F,X) holds in 𝑇 and 𝑇 ′

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

None

measure attr. A
′ ∈ 𝑆𝑟 and agg

A
′ (F,X) holds in 𝑇 and 𝑇 ′

:

if X𝑑 ↦→ A
′
holds in 𝑇𝑟

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

None

else agg
A
′ (F,X′) holds in 𝑇𝑟 where X′

is defined by the rules of

Table 17 with X′
𝑑
= fact identifier and X′

𝑓
= X𝑓 .

Minimize X′
𝑑

𝑇𝑟 = 𝑇 −𝑇 ′
attribute A

′ ∈ 𝑆𝑟 and agg
A
′ (F,X) holds in 𝑇 and 𝑇 ′

:

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = 𝑋

′+
𝑑

− 𝑋 ′
𝑓
where X

′+
𝑑

is the set of

attributes in 𝑆𝐷 ∪ 𝑆 ′
𝐷
literally determined by X′

𝑑
with X′

𝑑
= X𝑑

and X′
𝑓
= X𝑓 .

None

dimension attributes Y ⊆ 𝑆𝐷 ∩ 𝑆 ′
𝐷
and let S

𝑟
𝐷
= 𝑆𝐷 ∪ 𝑆 ′

𝐷
be the dimension attributes in 𝑇𝑟 . Let A

′ ∈ 𝑆𝑟 be an attribute

of 𝑇 with aggregable property agg
A
′ (F,X) holding in 𝑇 .

Then the propagation rules of Table 21 for merge queries are correct.

Proof. We proceed with each case of attribute A
′
:

(1) If A
′
is a dimension attribute, by Definition 9, X = 𝑆𝐷 − {A′} − X𝑓 and since {A′} ∪ X𝑓 ⊆ 𝑆𝐷 (all forbidden

attributes are in 𝑆𝐷 ), we can add all attributes of 𝑆 ′
𝐷
which are not in 𝑆𝐷 to X′

: X′ = X ∪ (𝑆 ′
𝐷
−Y). The user

must add all new meaningless attributes in 𝑆 ′
𝐷
to X′

𝑓
= X𝑓 .

(2) If A
′
is a measure attribute, A

′
is an attribute of table 𝑇 but not of table 𝑇 ′

. Let X = X+
𝑑
−X𝑓 , as in Definition 9.

We show that the LFD X𝑑 ↦→ A
′
is still valid in 𝑇𝑟 . Suppose that there exist two tuples 𝑡 and 𝑡

′
in 𝑇𝑟 such that

𝑡 .𝑋𝑑 ≡ 𝑡 ′.𝑋𝑑 and 𝑡 .A′ . 𝑡 ′.A′. We show that, for each merge operation, the projection of these two tuples on 𝑆

would also exist in 𝑇 , which contradicts that LFD X𝑑 ↦→ A
′
holds in 𝑇 :

• If 𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇
′
(left merge): by definition of ⊲⊳Y any projection on 𝑆 of a tuple 𝑇 in 𝑇𝑟 is also a tuple in 𝑇

(similar to filter queries).

• If 𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′
(right merge): any projection on 𝑆 of a tuple 𝑇 in 𝑇𝑟 is either a tuple in 𝑇 or a tuple that does

not exist in 𝑇 and has a null value for each attribute in 𝑆 − Y. In the latter case, the LFD is preserved in 𝑇𝑟

because all these tuples also have a null value on A and there is no tuple in 𝑇 that has null values on X𝑑 and a

non-null value for A.



28 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

• If 𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′
(full merge): The proof as a combination of the proofs for left merge and right merge (any

projection on 𝑆 of a tuple 𝑇 in 𝑇𝑟 is either a tuple in 𝑇 or a tuple that does not exist in 𝑇 and has a null value

for each attribute in 𝑆 −Y).

• If 𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇 ′
(strict merge): any projection on 𝑆 of a tuple 𝑇 in 𝑇𝑟 is also a tuple in 𝑇 .

Then X𝑑 is still a minimum set of dimension attributes in 𝑇𝑟 which literally determines A
′
(otherwise it would

not be minimum in 𝑇 ) and, by Definition 9, X′
contains all attributes determined by X𝑑 in 𝑇𝑟 (closure of X𝑑

in 𝑇𝑟 ). Similarly, all meaningless attributes in X𝑓 remain meaningless and the user can add new meaningless

attributes from 𝑆 ′ −Y.

□

In Table 21, in the case of a merge query, X′
𝑓
= X𝑓 by default and for a measure attribute, the attribute graphs of

each dimension are used to compute the closure X+
𝑑
over 𝑆 ′

𝐷
. In the propagation rule, we only considered the case of an

attribute A in 𝑇 , but the same result would apply for an attribute A in 𝑇 ′
due to the symmetry of the merge operations.

Example 14. In Table 22, table STORE_SALES_YEARLY is defined over dimensions 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 and𝑇 𝐼𝑀𝐸, table

DEM2 is defined over 𝑅𝐸𝐺𝐼𝑂𝑁 (see Table 1b) and 𝑇 𝐼𝑀𝐸, and table STORE_SALES_DEM is the result of the

left-merge query:

STORE_SALES_DEM = STORE_SALES_YEARLY ⊲⊳CITY,YEAR DEM2

We first consider attribute AMOUNT. Suppose that agg𝐴𝑀𝑂𝑈𝑁𝑇 (SUM,X) holds in STORE_SALES_YEARLY

for X = {STORE_ID, CITY, YEAR}, with X𝑑 = {STORE_ID, YEAR} and X𝑓 = ∅. Then, Z = {CITY, STATE, COUNTRY} is the set
of attributes determined by X𝑑 in DEM2. Then, X

′+
𝑑

= X+
𝑑
∪ Z = {STORE_ID, YEAR, CITY, STATE, COUNTRY} is the set of

attributes determined by X𝑑 in STORE_SALES_DEM. So, by the propagation rule of Table 21, aggregable property

agg
AMOUNT

(SUM,X′) holds in STORE_SALES_DEM where X′ = X
′+
𝑑

−X′
𝑓
= X

′+
𝑑
.

Observe that the aggregable property computed by the propagation rule for merge queries does not guarantee

that any aggregation query of AMOUNT produces the same result when it is applied on STORE_SALES_YEARLY

or on STORE_SALES_DEM. We will show in Section 4.2 how to refine the propagation rule to guarantee this

summarizability property.

We now consider attribute UNEMP in DEM2 of category STAT. Suppose that agg
UNEMP

(F,X) holds in DEM2

for X = {YEAR, CITY, STATE, COUNTRY}) and F ∈ {COUNT,COUNT_DISTINCT,MIN,MAX} with X𝑑 = 𝑋 . We use

the propagation rule of Table 21 on the (equivalent) right-merge of DEM2 with STORE_SALES_YEARLY. No

new attribute of STORE_SALES_YEARLY is determined by X𝑑 , so X
′+
𝑑

= X𝑑 . Hence, by the propagation rule,

agg
UNEMP

(F,X′) holds in STORE_SALES_DEM for X′ = X
′+
𝑑

−X′
𝑓
= X𝑑 = X.

The next proposition states which aggregable properties hold for attribute A
′
in the union 𝑇𝑟 = 𝑇 ∪𝑇 ′

and the set

difference 𝑇𝑟 = 𝑇 −𝑇 ′
, knowing the aggregable properties of A

′
in tables 𝑇 and 𝑇 ′

.

Proposition 4 (propagation rules for union and difference). Let 𝑇 (𝑆) and 𝑇 ′(𝑆) be two tables over the same schema 𝑆

having a set of dimension attributes X. Let A’ ∈ 𝑆 be an attribute with aggregable property agg
A
′ (F,X) holding in both

tables 𝑇 and 𝑇 ′
. Then the propagation rules of Table 21 for set union and difference are correct.

Proof. We distinguish each case where A
′
is a dimension attribute or a measure attribute in 𝑇𝑟 (𝑆𝑟 ):



Controlling the Correctness of Analytic Queries 29

Table 22. Example of a left-merge query

(a) STORE_SALES_YEARLY

STORE_ID CITY YEAR AMOUNT

Oh_01 Dublin 2017 3.2

Ca_01 Dublin 2017 5.3

Oh_01 Dublin 2018 8.2

Ca_01 Dublin 2018 6.3

Pa_01 Paris 2017 45.1

(b) DEM2

CITY STATE COUNTRY YEAR UNEMP

Dublin Ohio USA 2017 4.2

Dublin California USA 2017 3.1

Palo Alto California USA 2017 2.1

Paris - France 2017 11.9

Dublin - Ireland 2017 6.7

(c) STORE_SALES_DEM (left merge of STORE_SALES_YEARLY and DEM2)

STORE_ID CITY STATE COUNTRY YEAR AMOUNT UNEMP

Oh_01 Dublin Ohio USA 2017 3.2 4.2

Oh_01 Dublin California USA 2017 3.2 3.1

Oh_01 Dublin - Ireland 2017 3.2 6.7

Ca_01 Dublin California USA 2017 5.3 3.1

Ca_01 Dublin Ohio USA 2017 5.3 4.2

Ca_01 Dublin - Ireland 2017 5.3 6.7

Oh_01 Dublin - - 2018 8.2 -

Ca_01 Dublin - - 2018 6.3 -

Pa_01 Paris - France 2017 45.1 11.9

(1) If A
′
is a dimension attribute: let X′ = S𝐷 − {𝐴} −X𝑓 , where S𝐷 is the set of dimension attributes in S. Since

𝑆𝑟 = S for difference and union, and X𝑓 is defined for a given set of attributes (independently of a specific table),

X′
does not change in the aggregable property of 𝑇𝑟 for A

′
.

(2) If A
′
is a measure attribute: let Z = X+

𝑑
−X𝑓 . Then X𝑑 ↦→ A

′
in each table𝑇 and𝑇 ′

. We analyze each query case:

• Difference: By definition of analytic difference queries, 𝑇𝑟 ⊆ 𝑇 , thus X𝑑 ↦→ A
′
also holds in 𝑇𝑟 = 𝑇 −𝑇 ′

.

• Union: there could be two tuples that have the same values on their X attributes, so we must check that

X𝑑 ↦→ 𝐴 holds in 𝑇𝑟 = 𝑇 ∪𝑇 ′
. Otherwise, we apply the default rules for initializing X′

𝑑
.

Finally, X𝑓 must be the same in 𝑇𝑟 since it only depends on the schema.

□

Propagation rules for all operations, except union, are immediate to compute because they only involve the manipu-

lation of metadata properties. In the case of union, when a measure depends on a subset of the dimensions of a fact

table, the propagation rule requires a uniqueness test (to check the LFD X𝑑 ↦→ 𝐴) on the result of the union. Since

the uniqueness test involves hierarchical dimension attributes only, it can be performed efficiently using specific data

structures used to represent fact tables in main-memory (see [6, 7]).

4 SUMMARIZABILITY OF AGGREGABLE ATTRIBUTES

In this section, we consider the properties of attributes that characterize the equivalence between computing an

aggregated value of an attribute from a table 𝑇 and computing the same aggregated value from the result of a query Q

over 𝑇 . In Section 4.1, we first define the property of summarizable attributes in the case when Q is an aggregate query,

which corresponds to the traditional notion of summarizability addressed by previous work. In Section 4.2, we then



30 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

extend our propagation rules to compute aggregable properties such that aggregate queries can only be expressed over

summarizable attributes. Finally, in Section 4.3, we introduce the new property of G-summarizability of attributes in the

case when Q is any analytic query. In Section 4.4, we then again extend our propagation rules to compute aggregable

properties such that aggregation queries are expressed over G-summarizable attributes only.

4.1 Summarizable attributes and distributive functions

Figure 9 illustrates the definition of summarizable attributes. It depicts that when some attribute A of table𝑇 is aggregated

with some function F for each partition of attributes Z2, it is possible to obtain the same result, by first aggregating A

for each partition of attributes Z1 where 𝑍2 ⊂ 𝑍1, using function F, and then further aggregating A for each partition

Z2, using either the same function F or a different function G. We shall say that A is summarizable with respect to

grouping set Z1 and function F, using function G.

Fig. 9. Summarizable attribute 𝐴 with respect to 𝑍1 and F using G

The Definition 10 below formalizes Figure 9 and, as shown later in Section 5, subsumes the definition of summarizabil-

ity addressed in previous work. For simplicity, we use the expression valid aggregate query for a query Agg𝑇 (F(A) | Z)
such that there exists an aggregable property agg

A
(F,X) that holds in 𝑇 , and 𝑍 contains the dimension attributes of 𝑇

that are not in X.

Definition 10 (Summarizable attribute). Let 𝑇 (S) be an analytic table, A be an aggregable attribute of 𝑇 , and 𝑇1 =

Agg𝑇 (F(A) | Z1) be a valid aggregate query over 𝑇 . If for any subset Z2 ⊂ Z1, there exists an applicable aggregate

function G such that the equation

Agg𝑇1 (G(F(A)) | Z2) = Agg𝑇 (F(A) | Z2) (1)

holds, then A is said to be summarizable in 𝑇 with respect to grouping set Z1 and function F using function G.

Attribute summarizability is related to the notion of distributive aggregation functions, also called decomposable

aggregation functions in [22].

Definition 11 (Distributive aggregation function). Let F be an aggregation function applicable to a set of domain

values V and 𝑃 = {V1, . . . ,V𝑛}, 𝑛 ≥ 1 be a partitioning of V. If there exists an aggregate function G such that

F(V1 ∪ . . . ∪V𝑛) = G(F(V1) ∪ . . . ∪ F(V𝑛)) then F is said to be distributive on partitioning 𝑃 using function G.

If F is distributive using function G on any partitioning of domain V, we say that F is distributive using function G

over domain V. If F is distributive using function G over any domain V, we say that F is distributive using function G,

and if F = G, we simply say that F is distributive.

It is easy to show that functions SUM,MIN and MAX are distributive, function COUNT is distributive using

function SUM whereas function COUNT_DISTINCT is distributive using function SUM only on partitionings



Controlling the Correctness of Analytic Queries 31

where the same value does not appear in two distinct partitions. Finally, function AVG is distributive over all domains

𝑉 containing only two elements or where all elements are identical.

Example 15. For𝑉 = {1, 2, 2, 3} we have COUNT_DISTINCT(V) = 3. Then COUNT_DISTINCT is distributive

using SUM on partitioning 𝑃 ′ = {{1, 2, 2}, {3}}:

SUM(COUNT_DISTINCT({1, 2, 2}),COUNT_DISTINCT{3})) = 3

However, COUNT_DISTINCT is not distributive using SUM on partitioning 𝑃 = {{1, 2}, {2, 3}}:

SUM(COUNT_DISTINCT({1, 2}),COUNT_DISTINCT({2, 3}) = SUM(2, 3) = 4

We say that F is distributive using functionG on attribute A of table𝑇 with partitioning attributes Z if F is distributive

using function G on all partitions of the values of A in 𝑇 defined by Z and any subset of Z. The following proposition

relates the definition of distributive functions to the notion of summarizable attributes.

Proposition 5 (Function distributivity and attribute summarizability). Let 𝑇 (S) be an analytic table with dimension

attributes S𝐷 ⊆ S and an aggregable attribute A such that agg
A
(F,X) holds in 𝑇 . If F is distributive using function G

on attribute A in table𝑇 with partitioning attributes Z ⊇ S𝐷 −X then A is summarizable with respect to grouping set Z

and function F using function G.

Proof. Suppose that agg
A
(F,X) holds in 𝑇 and 𝑇1 = Agg𝑇 (F(A) | Z1) and F is distributive using function G on

attribute A of table 𝑇 with partitioning attributes Z1. To prove that A is summarizable in 𝑇 with respect to grouping set

Z1 and F using function G, we prove that for any subset Z2 ⊂ Z1, the following equation holds:

Agg𝑇 (F(A) | Z2) = Agg𝑇1 (G(F(A)) | Z2) (2)

First, it is obvious that both tables 𝑇 and 𝑇1 contain the same Z2 values and therefore, the result tables in Eq. (2)

contain the same tuples with distinct Z2 values. We now show that for each pair of tuples 𝑡 ∈ Agg𝑇 (F(A) | Z2)
and 𝑡 ′ ∈ Agg𝑇1 (G(F(A)) | Z2) where 𝑡 .Z2 = 𝑡 ′.Z2, we have 𝑡 .F(A) = 𝑡 ′.G(F(A)). Let 𝑥 = 𝑡 .Z2 = 𝑡 ′.Z2 and

𝑇𝑥 = 𝜎Z2=𝑡 .Z2
(𝑇 ) and 𝑇𝑥1 = 𝜎Z2=𝑡 .Z2

(𝑇1) be the partitions of 𝑇 and 𝑇1 on attributes Z2 corresponding to the tuples

used to compute 𝑡 .F(A). For each tuple 𝑡 ′
𝑖
∈ 𝑇𝑥1 there also exists a partition 𝑇 𝑦𝑖 = 𝜎Z1=𝑦𝑖 (𝑇 ) of 𝑇 where 𝑦𝑖 = 𝑡

′
𝑖
.Z1

and 𝑡 ′
𝑖
.F(A) = F(𝜋A (𝑇 𝑦𝑖 )). All tuples 𝑡 ′

𝑖
have the same Z2 value 𝑥 = 𝑡 .Z2 and are aggregated to tuple 𝑡 ′ whose

value for attribute 𝑡 ′.G(F(A)) = G(F(𝜋𝐴 (𝑇 𝑦1 ) ∪ . . . ∪ F(𝜋A (𝑇 𝑦𝑛 ). Since F is distributive using function G and

𝑇𝑥 = 𝑇 𝑦1 ∪ . . . ∪𝑇 𝑦𝑛
, we obtain G(F(𝜋A (𝑇 𝑦1 ) ∪ . . . ∪ F(𝜋A (𝑇 𝑦𝑛 )) = F(𝜋A (𝑇 𝑦1 ) ∪ . . . ∪ 𝜋A (𝑇 𝑦𝑛 )) = F(𝜋A (𝑇𝑥 )). We

conclude 𝑡 .Z2 = 𝑡 ′.Z2 and 𝑡 .F(A) = 𝑡 ′.G(F(A)). □

Example 16. FunctionCOUNT is distributive using function SUM. Therefore, PROD_SKU in table PRODUCT_LIST

(Table 15 on Page 21) is summarizable with respect to grouping set Z = {BRAND, COUNTRY, YEAR} and COUNT using

function SUM. Thus, if Z2 = {COUNTRY, YEAR} and 𝑇1 = Agg𝑃𝑅𝑂𝐷𝑈𝐶𝑇 _𝐿𝐼𝑆𝑇 (COUNT(PROD_SKU) | Z), the following
equation folds:

Agg𝑃𝑅𝑂𝐷𝑈𝐶𝑇 _𝐿𝐼𝑆𝑇 (COUNT(PROD_SKU) | Z2) = Agg𝑇1 (SUM(COUNT(PROD_SKU)) | Z2)

However, as explained before, COUNT_DISTINCT is only distributive using SUM if no pair of partitions share

the same value. This is not the case (there exist two partitions of 𝑍 with the same product ”cz-tshirt-s”), so attribute

PROD_SKU is not summarizable with respect to grouping set 𝑍 and function COUNT_DISTINCT.



32 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Function distributivity is a sufficient but not a necessary condition for summarizability. This is illustrated in the

following proposition, which defines a sufficient condition for summarizability with COUNT_DISTINCT and SUM.

Proposition 6 (Summarizability with COUNT_DISTINCT and SUM). Let 𝑇 (S) be an analytic table with a set of

dimension attributes S𝐷 and an aggregable attribute A. Let 𝑇1 = Agg𝑇 (COUNT_DISTINCT(A) | Z1) be a valid

aggregate query over 𝑇 , where Z1 ⊆ S𝐷 . If Z2 ⊂ Z1 and the literal functional dependency Z2 ∪ {A} ↦→ Z1 holds in 𝑇 ,

the following equation is true:

Agg𝑇1 (SUM(COUNT_DISTINCT(A)) | Z2) = Agg𝑇 (COUNT_DISTINCT(A) | Z2) (3)

We say that attribute A (in𝑇 ) is summarizable with respect to grouping set Z1 andCOUNT_DISTINCT using function

SUM with partitioning attributes Z2.

Proof. The previous proposition mainly states that A is summarizable with respect to Z1 andCOUNT_DISTINCT

using function SUM with partitioning attributes Z2 if all tuples 𝑇 in some partition 𝑇𝑥 ⊆ 𝑇 defined by attributes

Z2 ⊆ Z1 which have the same value for attribute 𝑡 .A are assigned to the same partition 𝑇 𝑦 ⊆ 𝑇 defined by attributes

Z1. This avoids the double counting of distinct A values when taking the SUM of COUNT_DISTINCT over the

partitions generated by attributes Z1.

We first show by contradiction that when Z2 ∪ {A} ↦→ Z1 −Z2 holds in𝑇 , all tuples𝑇 in some partition𝑇𝑥 ⊆ 𝑇 of𝑇

generated by attributes Z2 with the same value for attribute 𝑡 .A are assigned to the same partition𝑇 𝑦 ⊆ 𝑇 generated by

attributes Z1.

Let 𝑇𝑥 be a partition of 𝑇 which contains all tuples 𝑇 such that 𝑡 .Z2 = 𝑥 . Since Z2 ⊂ Z1, 𝑇
𝑥
is the union of a set of

partitions𝑇
𝑦

0 . . . ,𝑇
𝑦
𝑛 , 𝑛 ≥ 0 of𝑇 defined by attributes Z1. Suppose that there exist two tuples 𝑡 ∈ 𝑇 𝑦

𝑖
and 𝑡 ′ ∈ 𝑇 𝑦

𝑗
where

𝑖 ≠ 𝑗 and 𝑡 .A = 𝑡 ′.A. Then, we have 𝑡 .Z2 = 𝑡 ′.Z2 = 𝑥 , 𝑡 .A = 𝑡 ′.A and, since 𝑖 ≠ 𝑗 , 𝑡 .Z1 ≠ 𝑡 ′.Z1 (two different partitions

generated by Z1 contain the same values for Z2 and A). This is in contradiction with Z2 ∪ {A} ↦→ Z1 − Z2. Then, if 𝑑𝑖

is the number of distinct A values in some partition𝑇𝑥
𝑖

⊆ 𝑇 , we can easily show that

∑𝑛
𝑖=0 𝑑𝑖 is the number of distinct A

values in partition 𝑉 . □

Observe that if Eq. (3) holds for any subset Z2 ⊂ Z1, A is summarizable with respect to grouping set Z1 and

COUNT_DISTINCT using function SUM (Definition 10).

Example 17. Let 𝑇1 = AggPRODUCT_LIST (COUNT_DISTINCT(PROD_SKU) | Z1) where Z1 = {BRAND, COUNTRY}.
Attribute PROD_SKU is not summarizable with respect to grouping set 𝑍1 and function COUNT_DISTINCT using

SUM. However, if PROD_SKU ↦→ COUNTRY holds in table PRODUCT_LIST, then for Z2 = {BRAND} and A = PROD_SKU,

we have {PROD_SKU, BRAND} ↦→ {BRAND, COUNTRY}. Therefore, PROD_SKU is summarizable with respect to Z1 and

COUNT_DISTINCT using function SUM with partitioning attribute Z2 = {BRAND}.

4.2 Controlling attribute summarizability using aggregable properties

Given the result of an aggregate query 𝑇1 = Agg𝑇 (F(A) | Z1) over some attribute A, we want to control the possible

aggregations of attribute F(A) depending on the summarizability of A. We use aggregable properties for that purpose,

as shown on Figure 10. We want to automatically compute the subset of dimension attributes X′ ⊆ Z1 of 𝑇1 such that

aggF(A) (G,X′) holds in 𝑇1, for some function G that is applicable to F(A), and which guarantees the summarizability

of A in 𝑇1 for any Z2 such that Z1 −X′ ⊆ Z2. Our rationale is therefore to refine the propagation rules introduced in

Section 3.3 to take into account the summarizability correctness criteria.



Controlling the Correctness of Analytic Queries 33

Fig. 10. Aggregable property that controls the summarizability of 𝐴 in𝑇 with respect to grouping set 𝑍1

We next define the notion of summarizability preserving aggregable property which formalizes Figure 10.

Definition 12 (Summarizability preserving aggregable property). Let 𝑇 (S) be an analytic table and 𝑇1 = Agg𝑇 (F(A) |
Z1) be the result of a valid aggregate query. We say that aggF(A) (G,X′) preserves the summarizability of A with respect

to grouping set Z1 if for any subset Z2 such that Z1−X′ ⊆ Z2, attribute A is summarizable in𝑇 with respect to grouping

set Z2 and function F using G.

The next proposition uses Proposition 5 and Proposition 6 to refine the previous propagation rule for aggregation

in Table 19 so that summarizability preserving aggregable properties are inferred. The refined rule for the case when

A
′ = F(𝐴) is displayed in Table 23.

Table 23. Propagation rule for aggregate operation preserving summarizability

Query on 𝑇 (S) New propagation rule for inferring the aggregable properties of new measure

attribute A
′
in the result 𝑇𝑟 (𝑆𝑟 )

User action

Agg𝑇 (F(A) | Y) new measure attribute A
′ = F(A) and agg

A
(F,X) holds in 𝑇 :

if G can be applied on A
′
(Table 16) and F is distributive using G

then aggF(A) (G,X′) holds in 𝑇𝑟 with X′ = X ∩Y, X′
𝑑
= fact identifier in 𝑇𝑟

and X′
𝑓
= ∅.

Minimize X′
𝑑

Complete X′
𝑓

if F = COUNT_DISTINCT and X′
is a maximal subset of X ∩Y

such that (Y −X′) ∪ {𝐴} ↦→ Y holds in 𝑇

then aggF(A) (SUM,X′) holds in 𝑇𝑟 with X′
𝑑
= fact identifier in 𝑇𝑟 and X′

𝑓
= ∅.

Minimize X′
𝑑

Complete X′
𝑓

Proposition 7 (Propagation of aggregable properties with summarizability preservation). Let 𝑇 (S) be an analytic

table with dimension attributes S𝐷 ⊆ S and let 𝑇𝑟 = Agg𝑇 (F(A) | Y) be the result of a valid aggregate query. Then the

aggregable properties inferred by the rule of Table 23 when A
′ = 𝐹 (𝐴) preserve the summarizability of A with respect

to grouping set Y.

Proof. By Definition 12, we have to show that for any subset Z2 ⊆ Y such that Y − X′ ⊆ Z2, attribute A is

summarizable in 𝑇 with respect to Z2 and function F using G. We examine both cases of Proposition 7:

• G can be applied on A
′
as defined in Table 16 and F is distributive usingG: Since F is distributive using function

G, it is also distributive on attribute A with partitioning attributes Y. Then, by Proposition 5, A is summarizable

with respect to Y and F using function G, and Equation (1) in Definition 10 holds for any subset Z2 ⊆ Y.



34 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

• F = COUNT_DISTINCT and X′
is a maximal subset of X ∩ Y such that (Y − X′) ∪ {𝐴} ↦→ Y holds in 𝑇 :

By Proposition 6, it is sufficient to show that Z2 ∪ {A} ↦→ Y for all Z2 where Y − X′ ⊆ Z2 ⊂ X ∩ Y. Since

(Y −X′) ∪ {A} ↦→ Y and Y −X′ ⊆ Z2 we also have Z2 ∪ {A} ↦→ Y.

□

For the second condition in Table 23, observe that there might exist several maximal subsets of attributes X′
𝑖
. The

process to compute these subsets is quite simple. Each maximal subset X′
𝑖
corresponds to a minimal subset of attributes

𝐾𝑖 = Y −X′
𝑖
⊂ Y such that 𝐾𝑖 ∪ {𝐴} determines all attributes of Y. These sets K𝑖 can easily be computed using the

attribute graphs of the corresponding dimensions to obtain X′
𝑖
= (Y ∩X) −K𝑖 .

Example 18. Aggregable property agg
PROD_SKU

(COUNT | X) holds in table PRODUCT_LIST (Table 8e)

for X = {BRAND, COUNTRY, YEAR}. Let 𝑇𝑟 = AggPRODUCT_LIST (COUNT(PROD_SKU) | Y), where Y =

{BRAND, COUNTRY, YEAR}.
By the first condition in Table 23 and distributivity of COUNT using SUM, the aggregable property

aggCOUNT(PROD_SKU) (SUM | X′), where X′ = X ∩Y = {BRAND, COUNTRY, YEAR}, preserves the summarizability of

PROD_SKU with respect to grouping set Y.

Example 19. Property agg
PROD_SKU

(COUNT_DISTINCT | X) holds in table PRODUCT_LIST for X =

{BRAND, COUNTRY, YEAR}. Let 𝑇𝑟 = AggPRODUCT_LIST (COUNT_DISTINCT(PROD_SKU) | Y) where Y = {BRAND,
COUNTRY, YEAR}. By the second condition in Table 23, we must compute the maximum subset X′

of X ∩ Y such

that (Y − X′) ∪ {A} ↦→ Y. We use the method explained before. By the attribute graphs of dimension 𝑇 𝐼𝑀𝐸 and

𝑃𝑅𝑂𝐷 , the only LFD which holds among the attributes of Y is BRAND ↦→ COUNTRY. Thus, there is a single minimal set

𝐾 = {BRAND, YEAR} such that 𝐾 ∪ {PROD_SKU} determines all attributes in Y. We obtain that X′ = Y − 𝐾 = {COUNTRY}.
Hence, aggCOUNT_DISTINCT(PROD_SKU) (SUM | {COUNTRY}) preserves the summarizability of PROD_SKUwith respect

to grouping set Y.

Aggregable properties provide "explanations" for end users of which aggregate queries preserve the summarizability

condition of the aggregated attribute in a given stage of the data analysis session. In the previous example, the aggregable

property aggCOUNT_DISTINCT(PROD_SKU) (SUM | {COUNTRY}) of 𝑇𝑟 explains that table 𝑇𝑟 can be used to count the

number of distinct products per brand and year by taking the sum ofCOUNT_DISTINCT(PROD_SKU) along COUNTRY.

However, 𝑇𝑟 cannot be used to obtain the number of distinct products by brand or by year. In this case, the user must

"backtrack" in the interactive data analysis session to the table PRODUCT_LIST to obtain this number.

4.3 Generalized attribute summarizability

In the previous sections, as illustrated in Figure 9, we defined an attribute A in some table 𝑇 to be summarizable

with respect to some aggregate query Q (𝑇 ) = AggT (F(A) | Z1) and function F using G, if for any query Q ′(𝑇 ) =
AggT (F(A) | Z2) aggregating A along a subset Z2 of Z1, there exists an equivalent aggregate query Q ′′(𝑇1) =

AggT1
(G(F(A)) | Z2) on the result 𝑇1 of Q (𝑇 ). Definition 13 generalizes this notion to any analytic query Q as

follows.

Definition 13 (Generalized summarizable attribute). Let 𝑇 (S) be an analytic table that is the input of an analytic

query Q returning a table 𝑇1 (S1). Let A be an aggregable attribute of both 𝑇 and 𝑇1 and Z be a subset of the dimension

attributes of S ∩ S1. If for any two valid aggregate queries Q ′(𝑇 ) = Agg𝑇 (F(A) | Z
′) and Q ′(𝑇1) = Agg𝑇1 (F(A) | Z

′)



Controlling the Correctness of Analytic Queries 35

such that Z ⊆ Z′
, and any two tuples 𝑡1 ∈ Q ′(𝑇 ) and 𝑡2 ∈ Q ′(𝑇1), we have:

𝑡1 .Z
′ ≡ 𝑡2 .Z′ ⇒ 𝑡1 .F(A) ≡ 𝑡2 .F(A)

then A is said to be G-summarizable in 𝑇 with respect to query Q , grouping set Z and function F.

Fig. 11. G-summarizable attribute 𝐴 in𝑇 with respect to𝑄 , grouping set 𝑍 and function 𝐹

The above definition is illustrated in Figure 11. We make a few observations. First,𝑇2 and𝑇 ′
2 are not necessarily equal,

i.e.𝑇2 might contain tuples that are not in𝑇 ′
2 and vice versa. Second, in Section 3.3, we established the propagation rules

to compute the aggregable properties on A that hold in 𝑇1 for F, which are used in the definition to determine which

aggregate queries Q ′
on 𝑇1 are valid. Third, an implicit assumption is that A is an attribute that exists in both 𝑇 and 𝑇1.

Therefore, in the case of an aggregate or a pivot query Q , A must be a dimension attribute (since measure attributes of

𝑇 do not exist anymore in 𝑇1 - they have either been aggregated, pivoted or eliminated). Finally, grouping set Z defines

a set of attributes that must be contained in Z′
and implicitly restricts the attributes along which aggregation can be

done in Q ′
.

Before formalizing sufficient conditions for G-summarizability, we present a few examples.

Example 20. Consider a fact table 𝑇 (in Table 24) defined over two dimension 𝐷1 and 𝐷2 with dimension attributes

A1, A2, A3 from dimension 𝐷1 (where A1 ≼ 𝐴2 ≼ 𝐴3) and B1, B2 from dimension 𝐷2 (where 𝐵1 ≼ 𝐵2). We shall say that

within table 𝑇 , A3 is the highest attribute of 𝐷1 while 𝐵2 is the highest attribute of 𝐷2.

Table 24. G-summarizability in𝑇 with respect to a filter query

𝑇 A1 A2 A3 B1 B2 M

𝑡0 𝑎1 𝑏1 𝑐1 𝑓1 𝑒1 𝑥1
𝑡1 𝑎2 𝑏2 𝑐1 𝑓1 𝑒1 𝑥2
𝑡2 𝑎3 𝑏1 𝑐1 𝑓2 𝑒1 𝑥3
𝑡3 𝑎2 𝑏1 𝑐2 𝑓2 𝑒1 𝑥4

Q 1 (𝑇 ) A1 A2 A3 B1 B2 M

𝑡0 𝑎1 𝑏1 𝑐1 𝑓1 𝑒1 𝑥1
𝑡1 𝑎2 𝑏2 𝑐1 𝑓1 𝑒1 𝑥2
𝑡2 𝑎3 𝑏1 𝑐1 𝑓2 𝑒1 𝑥3

Q 2 (𝑇 ) A1 A2 A3 B1 B2 M

𝑡2 𝑎3 𝑏1 𝑐1 𝑓2 𝑒1 𝑥3
𝑡3 𝑎2 𝑏1 𝑐2 𝑓2 𝑒1 𝑥4

Take query Q 1 (𝑇 ) = Filter𝑇 ({A3 = 𝑐1} | {A3}) whose result table 𝑇1 is displayed in Table 24. If we take a grouping

set Z = {A3}, then for each partition 𝑇𝑝 = 𝜎A3=𝑝 (𝑇 ) of 𝑇 we either have Q 1 (𝑇𝑝 ) = 𝑇𝑥 or Q 1 (𝑇𝑝 ) = ∅. In our

example, we have: Q 1 (𝑇𝑐1 ) = 𝑇𝑐1 and Q 1 (𝑇𝑐2 ) = ∅. Thus, for any subset Z′
of dimension attributes of 𝑇 containing

A3, we either have ΠZ′ (Q 1 (𝑇𝑝 )) = ΠZ′ (𝑇𝑝 ) or ΠZ′ (Q 1 (𝑇𝑝 )) is empty, where Π is a projection without duplicate



36 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

elimination. Therefore, any valid aggregation query with grouping attributes Z′
containing A3 returns, for each partition

of 𝑇1 defined by Z′
, the same result as for the corresponding partition of 𝑇 defined by Z′

. Hence, any attribute A is

G-summarizable in𝑇 with respect to query Q 1, grouping set Z = {𝐴3} and any function F applicable to A in𝑇 . Observe

that this is not the case for any other grouping set 𝑍 that does not contain attribute A3. For instance, if Z = {A2} then
for partition 𝑇𝑏1

, Q 1 (𝑇𝑏1 ) ≠ 𝑇𝑏1
.

However, the previous reasoning does not apply if 𝑇 is filtered on a measure attribute M, like in query Q 2 (𝑇 ) =
Filter𝑇 ({M ∈ {𝑥3, 𝑥4}} | {M}). Since a measure attribute cannot belong to the grouping set of an aggregate query, we

cannot define a partitioning set Z = {M}. Then, to identify a set of dimension attributes Z such that all attributes A are

G-summarizable in 𝑇 with respect to query Q 2, grouping set Z and an applicable function F, we must find a set of

dimension attributes Z that partitions 𝑇 into Q 2 (𝑇 ) and 𝑇 − Q 2 (𝑇 ). In our example, Z = {B1} would be a possible

solution that cannot be easily found.

Example 21. Consider now the fact tables 𝑇 and 𝑇 ′
defined over the same dimensions 𝐷1 and 𝐷2 as before, as shown

below in Table 25. Take the left-merge query Q (𝑇,𝑇 ′) = 𝑇 ⊲⊳Y 𝑇
′ = 𝑇1 where Y = {𝐴1, 𝐴2, 𝐵1, 𝐵2}. Any attribute A

of 𝑇 is G-summarizable in 𝑇 with respect to Q , grouping set Z = ∅, and any function F applicable to A, because the

duplicate preserving projection of 𝑇1 on the attributes of 𝑇 is equal to table 𝑇 .

Let us look at the G-summarizability of attributes in 𝑇 ′
with respect to Q and F. First, grouping set Z = {A2, B2}

containing the "highest" attributes in Y defines two partitions of 𝑇 ′
. We can see that partition 𝑇 ′𝑏1,𝑒1

is different from

the duplicate-preserving projection of 𝑇
𝑏1,𝑒1
1 on the attributes of 𝑇 ′

(tuples 𝑡3, 𝑡4 of 𝑇 ′
have no corresponding tuples in

𝑇1). So, any valid aggregation query over a partitioning on 𝑍 would violate the G-summarizability property. Indeed, the

only grouping set Z for which we have the equality of non-empty partitions is Z = {𝐴1, 𝐴2, 𝐵1, 𝐵2}. We shall see later

that if a valid aggregation can be expressed over 𝑌 in 𝑇 ′
then 𝑍 can be equal to 𝑌 .

Table 25. G-summarizability in𝑇 with respect to a left-merge query

𝑇 A1 A2 B1 B2 M

𝑡0 𝑎1 𝑏1 𝑓2 𝑒1 𝑥1
𝑡1 𝑎4 𝑏2 𝑓4 𝑒2 𝑥2

𝑇 ′
A1 A2 A3 B1 B2 M

′

𝑡3 𝑎1 𝑏1 𝑐1 𝑓1 𝑒1 𝑦1
𝑡4 𝑎2 𝑏1 𝑐1 𝑓2 𝑒1 𝑦3
𝑡5 𝑎1 𝑏1 𝑐1 𝑓2 𝑒3 𝑦4
𝑡6 𝑎1 𝑏1 𝑐1 𝑓2 𝑒1 𝑦5

𝑇 ⊲⊳𝑇 ′
A1 A2 A3 B1 B2 M M

′

𝑡10 𝑎1 𝑏1 𝑐1 𝑓2 𝑒1 𝑥1 𝑦5
𝑡11 𝑎4 𝑏2 - 𝑓4 𝑒2 𝑥2 -

Now take the same left-merge query Q as before applied to the tables displayed in Table 26. For grouping set

Z = {A2, B2}, the partition of 𝑇 ′
with values (𝑏1, 𝑒1) has a corresponding identical partition in 𝑇1 after a duplicate-

preserving projection on the attributes of 𝑇 ′
. The partition of 𝑇 ′

with values (𝑏1, 𝑒3) has a corresponding empty

partition in 𝑇1. However, the partition of 𝑇1 with values (𝑏2, 𝑒1) has one extra tuple with respect to the corresponding

partition in 𝑇 ′
because tuple 𝑡7 is matched by two tuples of 𝑇 and its attribute values appear duplicated in 𝑇1 (in tuples

𝑡12 and 𝑡13). Hence, for attributes of 𝑇
′
, G-summarizability in 𝑇 ′

with respect to 𝑄 and grouping set Z = {A2, B2} must

be restricted to functions that are insensitive to duplicates (i.e., COUNT_DISTINCT,MIN,MAX).

Finally, any attribute of 𝑇 is G-summarizable in 𝑇 with respect to Q and grouping set Z = ∅ because the duplicate

preserving projection of𝑇1 on the attributes of𝑇 is equal to𝑇 . Thus,𝑇1 is aggregable over any partitioning of attributes

of 𝑇 .



Controlling the Correctness of Analytic Queries 37

Table 26. G-summarizability in𝑇 ′
with respect to a left-merge query

𝑇 A1 A2 A3 B1 B2 M

𝑡0 𝑎1 𝑏1 𝑐1 𝑓1 𝑒1 𝑥1
𝑡1 𝑎2 𝑏1 𝑐1 𝑓1 𝑒1 𝑥2
𝑡2 𝑎3 𝑏2 𝑐1 𝑓2 𝑒1 𝑥3
𝑡3 𝑎3 𝑏2 𝑐2 𝑓2 𝑒1 𝑥4
𝑡4 𝑎4 𝑏2 𝑐1 𝑓2 𝑒1 𝑥5

𝑇 ′
A1 A2 B1 B2 M

′

𝑡5 𝑎1 𝑏1 𝑓1 𝑒1 𝑦1
𝑡6 𝑎2 𝑏1 𝑓1 𝑒1 𝑦2
𝑡7 𝑎3 𝑏2 𝑓2 𝑒1 𝑦3
𝑡8 𝑎2 𝑏1 𝑓3 𝑒3 𝑦4

𝑇 ⊲⊳𝑇 ′
A1 A2 A3 B1 B2 M M

′

𝑡10 𝑎1 𝑏1 𝑐1 𝑓1 𝑒1 𝑥1 𝑦1
𝑡11 𝑎2 𝑏1 𝑐1 𝑓1 𝑒1 𝑥2 𝑦2
𝑡12 𝑎3 𝑏2 𝑐1 𝑓2 𝑒1 𝑥3 𝑦3
𝑡13 𝑎3 𝑏2 𝑐2 𝑓2 𝑒1 𝑥4 𝑦3
𝑡14 𝑎4 𝑏2 𝑐1 𝑓2 𝑒1 𝑥5 -

Proposition 8 (Queries satisfying G-summarizability). Let Q be a unary or binary analytic query with some input

table 𝑇 (𝑆) returning a table 𝑇1 (S1) and 𝑆𝐷 be the dimension attributes in 𝑆 ∩ S1. Let Z be a subset of 𝑆𝐷 , and A
′
be

an attribute in 𝑆 ∩ S1 such that agg
A
′ (F,X) and agg

A
′ (F,X1) hold in 𝑇 and 𝑇1 respectively. Then, the attribute A′ is

G-summarizable in 𝑇 with respect to query Q , grouping set Z, and function F in the following cases:

Unary queries:

(1) Q = Filter𝑇 (𝑃 | Y), Y ⊆ 𝑆𝐷 , A′ ∈ 𝑆 and Z = 𝑆𝐷 −X1 ∪Y.

(2) Q = Project𝑇 (Y, 𝑓 (Z
′) → M), A′ ∈ Y and Z = 𝑆𝐷 −X1.

(3) Q = Agg𝑇 (G(A) | Y), A′ ∈ Y, Z = Y −X1 and F ∈ {MIN,MAX,COUNT_DISTINCT}.
(4) Q = Pivot𝑇 (A | Y), A′ ∈ 𝑆 −Y − {A}, Z = 𝑆𝐷 −X1 −Y − {A}) and F ∈ {MIN,MAX,COUNT_DISTINCT}.

Merge queries: In the following, let Y𝑡𝑜𝑝 ⊆ Y denote the subset of "highest" attributes in the set of join attributes Y.

(1) Q = 𝑇 ⊲⊳Y 𝑇
′
, A

′ ∈ S, Z = S𝐷 −X1 and if Y ̸↦→ 𝑆𝑟 then F ∈ {MIN,MAX,COUNT_DISTINCT}.
(2) Q = 𝑇 ⊲⊳ Y 𝑇

′
or Q = 𝑇 ⊲⊳ Y 𝑇

′
:

(a) If A
′ ∈ Y and for all non-empty partitions 𝑇 ′𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) of 𝑇 ′

, the corresponding partition 𝑇 𝑦 =

𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ) of 𝑇 is empty or 𝜋Y (𝑇 𝑦) is equal to 𝜋Y (𝑇 ′𝑦), then Z = S𝐷 −X1 ∪Y𝑡𝑜𝑝

(b) If A
′ ∈ S−Y and for all non-empty partitions𝑇 ′𝑦 = 𝜎Y=𝑦 (𝑇 ′) of𝑇 ′

and corresponding partitions𝑇 𝑦 = 𝜎Y=𝑦 (𝑇 )
of 𝑇 , 𝜋Y (𝑇 𝑦) is a subset of 𝜋Y (𝑇 ′𝑦), then Z = S𝐷 −X1.

(c) Otherwise, Z = (S𝐷 −X1) ∪Y.

In addition, for all cases, if Y ̸↦→ 𝑆𝑟 then F ∈ {COUNT_DISTINCT,MIN,MAX}.
(3) Q = 𝑇 ⊲⊳Y 𝑇 ′

, A
′ ∈ S: if for all non-empty partitions 𝑇 ′𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) and corresponding partitions

𝑇 𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ), 𝜋Y (𝑇 ′𝑦) contains 𝜋Y (𝑇 𝑦) then Z = S𝐷 −X1 ∪Y𝑡𝑜𝑝
else Z = S𝐷 −X1 ∪Y.

In addition, if Y ̸↦→ 𝑆𝑟 then F ∈ {COUNT_DISTINCT,MIN,MAX}.

Set queries: In the following, let Y𝑡𝑜𝑝 ⊆ 𝑆𝐷 denote the set of "highest" attributes in the set of dimension attributes

𝑆𝐷 ⊆ 𝑆 of 𝑇 and 𝑇 ′
.

(1) Q = 𝑇 ∪𝑇 ′
, A

′ ∈ S and if 𝜋Y𝑡𝑜𝑝 (𝑇 ) ∩ 𝜋Y𝑡𝑜𝑝 (𝑇 ′) = ∅, then Z = 𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

(2) Q = 𝑇 − 𝑇 ′
, A

′ ∈ S and if all partitions 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ) are equal to or disjoint with 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′), then Z =

𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

Proof. Unary queries:We shall use symbol Π to denote the duplicate preserving projection and 𝜋 do denote duplicate

eliminating projection. For each case of a unary query Q on some table 𝑇 producing a table 𝑇1, we first prove that,

for any partition 𝑇𝑥 = 𝜎Z=𝑥 (𝑇 ) of 𝑇 and 𝑇𝑥1 = 𝜎Z=𝑥 (𝑇1) of 𝑇1, we have: (1) 𝜋Z,A′ (𝑇𝑥1 ) = 𝜋Z,A′ (𝑇𝑥 ) (both partitions are

equal modulo duplicates), or (2) 𝑇𝑥 is empty, or (3) 𝑇𝑥1 is empty. We call the previous condition the G-summarizability



38 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

condition on 𝑇 and 𝑇1 for Z and A′. If this condition holds, we can show that A
′
is G-summarizale in 𝑇 with respect to

Q , grouping set Z and F as follows:

• In case (1), if Z ↦→ A
′
, then ΠZ,A′ (𝑇𝑥1 ) = ΠZ,A′ (𝑇𝑥 ) (both partitions are identical including duplicates) and it is

obvious that any query, that aggregates A
′
using F grouped by Z′

containing all attributes in Z, produces the

same result on𝑇 and𝑇1 and the conditions for G-summarizability are fulfilled. Otherwise, if Z ̸↦→ A
′
,Fmust be re-

stricted to aggregation functions that are not sensitive to duplicates (F ∈ {COUNT_DISTINCT,MIN,MAX}).
• In cases (2) and (3), the aggregated value does not exist, respectively, in the input table 𝑇 or the result table 𝑇1.

This is also sufficient for satisfying the G-summarizability property.

Then, since agg
A
′ (F,X1) holds in 𝑇1, any query that aggregates A

′
using F grouped by Z′

containing all dimension

attributes in 𝑆𝑟 ∩ 𝑆𝐷 −X1 is valid. Thus it is sufficient to show that Z contains all dimension attributes in 𝑆𝑟 ∩ 𝑆𝐷 −X1.

We call this condition the aggregable property condition.

(1) Analytic filter 𝑇1 = Filter𝑇 (𝑃 | Y): By the condition Y ⊆ 𝑆𝐷 , all attributes in Y are dimension attributes. By

Z = 𝑆𝐷 − X1 ∪ Y we have Y ⊆ Z. Then for any non-empty partition 𝑇𝑥 = 𝜎Z=𝑥 (𝑇 ) of 𝑇 we can show that

if 𝑃 is true for some tuple in 𝑇𝑥 , it is true for all tuples in 𝑇𝑥 : Z contains all attributes of filtering predicate 𝑃

and we can show that for all Z = 𝑥 either Z = 𝑥 ⇒ 𝑃 (Y) or Z = 𝑥 ⇒ ¬𝑃 (Y). Therefore, the corresponding
partition 𝑇𝑥1 = 𝜎Z=𝑥 (Filter𝑇 (𝑃 | Y)) = Filter𝑇 (𝑃 ∧ Z = 𝑥 | Z) is either empty or equal to 𝑇𝑥 . Hence, for any 𝑇𝑥

and attribute A
′
in 𝑆 , we either have ΠZ,A′ (𝑇𝑥1 ) = ΠZ,A′ (𝑇𝑥 ) (both partitions are identical with duplicates) or 𝑇𝑥1

is empty. Finally, the aggregable property condition holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y.

(2) Analytic projection𝑇1 = Project𝑇 (Y, 𝑓 (Z
′) → M): By definition of analytic projection, for any subset X ⊆ Y, we

have ΠX (𝑇1) = ΠX (𝑇 ). Since Z = 𝑆𝐷 −X1 ⊆ 𝑆𝐷 ⊆ Y and A
′ ∈ Y, we have ΠZ,A′ (𝑇1) = ΠZ,A′ (𝑇 ). Finally, the

aggregable property condition holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1.

(3) Analytic aggregate𝑇1 = Agg𝑇 (G(A) | Y): By definition of aggregate queries, for anyX ⊆ Y and partition𝑇𝑥 , we

have 𝜋X (𝑇𝑥1 ) = 𝜋X,A′ (𝑇𝑥 ) (duplicate eliminating projection). Since Z ⊆ Y and A
′ ∈ Y, we then have 𝜋Z,A (𝑇𝑥1 ) =

𝜋Z,A (𝑇𝑥 ). However, 𝑇𝑥 generally contains several tuples that are merged into a single tuple in 𝑇1. Therefore, F

must be restricted to functions that are not sensitive to duplicates (F ∈ {COUNT_DISTINCT,MIN,MAX}).
Finally, the aggregable property condition holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = Y −X1 ⊆ Z = Y −X1.

(4) Analytic pivot 𝑇1 = Pivot𝑇 (A′ | Y): We apply similar arguments as for aggregate queries on the remaining

attributesY′ = 𝑆 −Y− {A} in𝑇1. By definition of pivot queries, for any subsetX ⊆ Y′
and partition𝑇𝑥 , we have

𝜋X (𝑇𝑥1 ) = 𝜋X (𝑇𝑥 ) (duplicate eliminating projection) and 𝜋Z,A′ (𝑇𝑥1 ) = 𝜋Z,A′ (𝑇𝑥 ) in particular for Z ⊆ Y′
and

A
′ ∈ Y′

. However, in the general case, 𝑇𝑥 contains several tuples that are merged into a single tuple in 𝑇1 and F

must be restricted to functions that are not sensitive to duplicates (F ∈ {COUNT_DISTINCT,MIN,MAX}).
Finally, the aggregable property condition holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −Y −X1 − {A} ⊆ Z = 𝑆𝐷 −X1 −Y − {A}.

Merge queries: For merge queries Q over two tables𝑇 and𝑇 ′
producing a table𝑇1, we also check the G-summarizability

condition and the aggregable property condition as for unary queries:

• For any couple of partitions 𝑇𝑥 = 𝜎Z=𝑥 (𝑇 ) and 𝑇𝑥1 = 𝜎Z=𝑥 (𝑇1), either at least one of the two partitions is empty

or 𝜋S (𝑇𝑥 ) is equal to 𝜋S (𝑇𝑥1 ).
• Z contains all dimension attributes in 𝑆𝑟 ∩ 𝑆𝐷 −X1.

(1) Left-merge query 𝑇 (S) ⊲⊳Y 𝑇
′(S′): By definition, 𝜋S (𝑇 ) = 𝜋S (𝑇1) (each tuple of 𝑇 produces one or more tuples

in 𝑇1 and vice versa). Thus, for any Z ∪ {A′} ⊆ S𝑑 we also have 𝜋Z,A′ (𝑇 ) = 𝜋Z,A′ (𝑇1). By definition, a tuple in 𝑇



Controlling the Correctness of Analytic Queries 39

can only appear twice in ΠZ (𝑇1) if Y ̸↦→ S
′
. If that is the case, F must be restricted to functions that are not

sensitive to duplicates: F ∈ {COUNT_DISTINCT,MIN,MAX}. Finally, the aggregable property condition

holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1.

(2) Right-merge query 𝑇 (S) ⊲⊳ Y 𝑇
′(S′) or full-merge query Q = 𝑇 (S) ⊲⊳ Y 𝑇

′(S′):
(a) A

′ ∈ Y: We assume that for all non-empty partitions 𝑇 ′𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) of 𝑇 ′
, the corresponding partition

𝑇 𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ) is either empty or 𝜋𝑌 (𝑇 𝑦) is equal to 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)). From this assumption and the

definition of right-outer join, it directly follows that for any non-empty partition 𝑇
𝑦

1 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇1) of 𝑇1 and

corresponding partition 𝑇 𝑦
, 𝑇 𝑦 = ∅ or 𝜋S (𝑇 𝑦) = 𝜋S (𝑇

𝑦

1 ). Then, for all X ⊇ Y𝑡𝑜𝑝
, all non-empty partitions

𝜋X (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥 (𝑇1)) and since, by definition of Z, Z∪{A′} ⊇ Y𝑡𝑜𝑝
, the previous condition

also holds forX = Z∪ {A′}. Therefore the G-summarizability condition holds on𝑇 and𝑇1 for Z and A
′
. Finally,

the aggregable property condition also holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

(b) A
′ ∈ S −Y: We assume that for all non-empty partitions, 𝑇 ′𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′), and corresponding partitions

𝑇 𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ), 𝜋𝑌 (𝑇 𝑦) is a subset of 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)). From this assumption and the definition of right-

outer join, it directly follows that for any non-empty partition 𝑇
𝑦

1 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇1) and corresponding partition

𝑇 𝑦
, 𝜋S−Y (𝑇 𝑦

1 ) − 𝜋S−Y (𝑇 𝑦) only contains 𝑛𝑢𝑙𝑙 values. Then, for all X ⊆ S𝐷 and A
′ ∈ S − Y, all non-empty

partitions 𝜋X,A′ (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥∧A′≠𝑛𝑢𝑙𝑙 (𝑇1)) and since, by definition of Z, Z ⊆ S𝐷 , the

previous condition also holds for X = Z ∪ {A′}. Therefore, the G-summarizability condition holds on 𝑇 and 𝑇1

for Z and A
′
. Finally, the aggregable property condition also holds: 𝑆𝑟 ∩𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1∪Y.

(c) Otherwise: From the definition of right-merge and full-merge, it directly follows that for any non-empty

partition 𝑇
𝑦

1 = 𝜎Y=𝑦 (𝑇1), the corresponding partition 𝑇 𝑦
is either empty or equal to 𝜋S (𝑇

𝑦

1 ). Then, for all
X ⊇ Y, all non-empty partitions 𝜋X (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥 (𝑇1)) and since, by definition of Z,

Z∪ {A′} ⊇ Y, the previous condition also holds for X = Z∪ {A′}. Therefore, the G-summarizability condition

holds for𝑇 and𝑇1 for Z and A
′
. Finally, the aggregable property condition also holds: 𝑆𝑟 ∩𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆

Z = 𝑆𝐷 −X1 ∪Y.

(3) Q = 𝑇 (S) ⊲⊳Y 𝑇 ′(S′):
(a) "if" part: We assume that for all non-empty partitions 𝑇 ′𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′), the corresponding partition

𝑇 𝑦 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ) is contained in 𝜋Y (𝑇 ′𝑦). From this assumption and the definition of inner join, it directly

follows that any non-empty partition𝑇
𝑦

1 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇1) in the result is equal to the corresponding partition𝑇 𝑦
:

𝜋S (𝑇 𝑦) = 𝜋S (𝑇
𝑦

1 ). Then, for all X ⊇ Y𝑡𝑜𝑝
, all non-empty partitions 𝜋X (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥 (𝑇1))

and since, by definition of Z, Z ∪ {A′} ⊇ Y𝑡𝑜𝑝
, the previous condition also holds for 𝑋 = Z ∪ {A′}. Therefore

the G-summarizability condition holds on 𝑇 and 𝑇1 for grouping set Z and attribute A
′
. Finally, the aggregable

property condition also holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

(b) "else" part: From the definition of inner join, it directly follows that for any non-empty partition𝑇
𝑦

1 = 𝜎Y=𝑦 (𝑇1),
the corresponding partition𝑇 𝑦

is equal to 𝜋S (𝑇
𝑦

1 ). Then, for allX ⊇ Y, all non-empty partitions 𝜋X (𝜎X=𝑥 (𝑇1))
are equal to 𝜋X (𝜎X=𝑥 (𝑇 )) and since, by definition of Z, Z ∪ {A′} ⊇ Y, the previous condition also holds for

X = Z ∪ {A′}. Therefore the G-summarizability condition holds on𝑇 and𝑇1 for groupîng set Z and A
′
. Finally,

the aggregable property condition also holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y.

Set queries: In the following, let Y𝑡𝑜𝑝 ⊆ 𝑆𝐷 denote the set of "highest" attributes in the set of dimension attributes

𝑆𝐷 ⊆ 𝑆 of 𝑇 and 𝑇 ′
.



40 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

(1) Q = 𝑇 (S) ∪ 𝑇 ′(S): By the assumption 𝜋Y𝑡𝑜𝑝 (𝑇 ) ∩ 𝜋Y𝑡𝑜𝑝 (𝑇 ′) = ∅ and the definition of union, it follows that

for any non-empty partition 𝑇
𝑦

1 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇1) in the result, the corresponding partition 𝑇 𝑦
is either empty or

𝑇 𝑦
is equal to 𝑇

𝑦

1 . Then, for all X ⊇ Y𝑡𝑜𝑝
, all non-empty partitions 𝜋X (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥 (𝑇1))

and since, by definition of Z, Z ⊇ Y𝑡𝑜𝑝
, the previous condition also holds for Z = S𝐷 −X1 ∪Y𝑡𝑜𝑝

. Finally, the

aggregable property condition also holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

(2) Q = 𝑇 (S) −𝑇 ′(S): By assumption, all partitions 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ) are equal to or disjoint with 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′). Then, by
the definition of set-difference, it follows that for any non-empty partition 𝑇

𝑦

1 = 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇1) in the result, the

corresponding partition𝑇 𝑦
is either empty or𝑇 𝑦

is equal to𝑇
𝑦

1 . Then, for allX ⊇ Y𝑡𝑜𝑝
, all non-empty partitions

𝜋X (𝜎X=𝑥 (𝑇 )) are equal to 𝜋X (𝜎X=𝑥 (𝑇1)) and since, by definition of Z, Z ⊇ Y𝑡𝑜𝑝
, the previous condition also

holds for X = Z ∪ {A′}. Therefore, the G-summarizability condition holds on 𝑇 and 𝑇1 for Z and A
′
. Finally, the

aggregable property condition also holds: 𝑆𝑟 ∩ 𝑆𝐷 −X1 = 𝑆𝐷 −X1 ⊆ Z = 𝑆𝐷 −X1 ∪Y𝑡𝑜𝑝
.

□

Observe that for merge queries and set queries we choose the "highest" dimension Y𝑡𝑜𝑝
as candidates for checking

the G-summarizability conditions. In fact, we might check this condition for any subset Y′
of attributes from Y or

𝑆𝐷 instead of Y𝑡𝑜𝑝
, and identify the minimal candidates for which these conditions hold. There are two main reasons

for only choosing Y𝑡𝑜𝑝
. First, checking the G-summarizability condition for a subset of attributes mainly corresponds

to comparing the size of partitions in two different tables obtained by two aggregate queries. This basic operation is

costly and the systematic exploration of all attribute subsets Y′
might, even with efficient pruning techniques, take too

much time in an interactive data exploration session. Secondly, the choice of the highest attributes Y𝑡𝑜𝑝
is based on

the realistic hypothesis that the majority of analytic queries aggregate values along these attributes and other lower

attributes.

4.4 Controlling G-summarizability using aggregable properties

The following proposition refines the propagation rules for aggregable properties of Section 3.3, using the results of

Proposition 8, to guarantee the G-summarizability of attributes.

Proposition 9 (aggregable properties with G-summarizability for unary queries). Let Q be a unary analytic query

with some input table 𝑇 (𝑆) returning a table 𝑇𝑟 (S′), and S𝐷 be all the dimension attributes of 𝑆 ∩ S
′
. Let A

′
be an

attribute in 𝑆 ∩ S
′
such that agg

A
′ (F,X) holds in𝑇 . Then, in the cases of queries Q of Table 27, the aggregable property

agg
A
′ (F,X′) holds in𝑇𝑟 and is such that for all Z where S𝐷 −X′ ⊆ Z, A′ is G-summarizable in𝑇 with respect to query

Q , grouping set Z, and function F.

Proof. The proof mainly consists in defining the "new" X′
as the "complement" of Z as defined in Proposition 8

where X′
is replaced by its definition in Table 19. For example, for filter queries, since Z = (𝑆𝐷 −X′) ∪Y and X′ = X,

we obtain Z = 𝑆𝐷 − (X − Y) and its complement X′ = 𝑆𝑟 − Z = X − Y. For aggregation queries, Z = Y − X1 and

X1 = Y ∩X and we obtain Z = Y − (Y ∩X) and its complement X′ = Y − Z = Y ∩X. □

We make the following observations on the rules of Table 27. First, the rule for Project is unchanged with respect

to Table 19. Second, when 𝑄 is an aggregate query Q = Agg𝑇 (G(B) | Y), the aggregable property for attribute G(B)
is computed using the rule of Table 19 to guarantee the summarizability of attribute 𝐵. For attributes of Y, the only



Controlling the Correctness of Analytic Queries 41

Table 27. Propagation rules for unary operations on𝑇 (𝑆) preserving G-summarizability

Query on 𝑇 (S) Propagation rule for inferring the aggregable properties for

attributes A
′ ∈ 𝑆 ∩ 𝑆𝑟 of the result 𝑇𝑟 (𝑆𝑟 )

User action

Filter𝑇 (𝑃 | Y) attribute A
′ ∈ 𝑆𝑟 , Y ⊆ 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y, X′

𝑑
= fact identifier

and X′
𝑓
= X𝑓 −Y

Minimize X′
𝑑

Project𝑇 (Y, 𝑓 (Z) → M) dimension attribute A
′ ∈ Y and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

None

Pivot𝑇 (A | Y) attribute A
′ ∈ 𝑆𝑟 − {A} and agg

A
′ (F,X) holds in 𝑇 :

if X𝑑 ∩Y = ∅
then agg

A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y, X′

𝑑
= X𝑑

and X′
𝑓
= X𝑓 −Y

None

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′

as defined by the rules of Table 17 with X′
𝑑
= fact identifier

and X′
𝑓
= X𝑓 −Y

and F ∈ {MIN,MAX,COUNT_DISTINCT}
Minimize X′

𝑑

Agg𝑇 (G(A) | Y) dimension attribute A
′ ∈ Y and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∩Y and X′

𝑓
= X𝑓 ∩Y.

and F ∈ {MIN,MAX,COUNT_DISTINCT}

None

refinement to the rule in Table 19 is to restrict the scope of F. The same observation applies to the refined propagation

rule for a pivot query.

Proposition 10 (aggregable properties with G-summarizability for binary queries). Let𝑇 (𝑆) and𝑇 ′(𝑆 ′) be two analytic
tables with dimension attributes 𝑆𝐷 ⊆ 𝑆 and 𝑆 ′

𝐷
⊆ 𝑆 ′ respectively, 𝑆𝑡𝑜𝑝

𝐷
𝑝 denote the highest attributes in 𝑆𝐷 and

Y𝑡𝑜𝑝
denote the highest attributes in Y = 𝑆𝐷 ∩ 𝑆 ′

𝐷
. Let 𝑇𝑟 (𝑆𝑟 ) be the result of a binary query between 𝑇 and 𝑇 ′

and

A
′ ∈ 𝑆𝑟 ∩ 𝑆 be an attribute of 𝑇 with aggregable property agg

A
′ (F,X) holding in 𝑇 . Then, for all queries Q satisfying

the conditions of Table 28, the aggregable property agg
A
(F,X′) holds in𝑇𝑟 and is such that for all Zwhere S𝐷 −X′ ⊆ Z,

A
′
is G-summarizable in 𝑇 with respect to query Q , grouping set Z, and function F.

Proof. As for unary queries, the proof mainly consists in defining the "new" X′
as the "complement" of Z as defined

in Proposition 8 where X′
is replaced by its definition in Table 19. For dimension attributes A

′
, we can show that we

always obtain a new X′
which is equal to the old X′

defined in Table 19. For example, for right-merge and full-merge

queries, if A
′
is a dimension attribute in 𝑆𝐷 , X

′ = X ∪ 𝑆 ′
𝐷
−Y −X′

𝑓
and in the first case where Z = (𝑆𝐷 −X′) ∪Y𝑡𝑜𝑝

,

we obtain Z = 𝑆𝐷 − (X ∪ 𝑆 ′
𝐷
−Y −X′

𝑓
) ∪Y𝑡𝑜𝑝 = 𝑆𝐷 − (X ∪ 𝑆 ′

𝐷
−Y −X′

𝑓
−Y𝑡𝑜𝑝 ) = 𝑆𝐷 − (X ∪ 𝑆 ′

𝐷
−Y −X′

𝑓
) which

we also obtain in the second case: Z = (𝑆𝐷 −X′) ∪Y = 𝑆𝐷 − (X ∪ 𝑆 ′
𝐷
−Y −X′

𝑓
−Y) = 𝑆𝐷 − (X ∪ 𝑆 ′

𝐷
−Y −X′

𝑓
).

For measure attributes, Z = S𝐷 −X′
and X′ = X, we obtain the new X′ = X. □

We make the following observations on the rules of Table 28 and Table 29. First, all rules refine the conditions and

actions of the propagation rules of Table 21 by taking into account the restrictions described in Proposition 8. Second,

in the case of a right-merge, full-merge, union and difference query, it is possible to search for any subset Y′ ⊆ Y

instead of Y𝑡𝑜𝑝
for which the conditions on Y𝑡𝑜𝑝

hold. If no such Y′
is found then the set of attributes Y must be



42 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

removed from X′
(we illustrated that in Example 21). Third, note that the propagation rule for right-merge assumes

that A
′
is an exclusive attribute of 𝑇 . If A′ is also in 𝑇 ′

then its aggregable property is computed using the propagation

rule for left-merge.

Table 28. Propagation rules for merge operations with G-summarizability

Merge query on

𝑇 (𝑆) and 𝑇 ′(𝑆 ′)
Propagation rule for inferring the aggregable properties of

attributes A
′ ∈ 𝑆 in the result 𝑇𝑟 (S𝑟 )

User action

if Y ̸↦→ S
′
then F ∈ {COUNT_DISTINCT,MIN,MAX}

𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇
′

dimension attribute A
′ ∈ 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) and X′

𝑓
= X𝑓

Complete X′
𝑓

measure attribute A
′ ∈ 𝑆 − 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

Complete X′
𝑓



Controlling the Correctness of Analytic Queries 43

Table 28. Propagation rules for merge operations with G-summarizability

Merge query on

𝑇 (𝑆) and 𝑇 ′(𝑆 ′)
Propagation rule for inferring the aggregable properties of

attributes A
′ ∈ 𝑆 in the result 𝑇𝑟 (S𝑟 )

User action

if Y ̸↦→ S
′
then F ∈ {COUNT_DISTINCT,MIN,MAX}

𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′

𝑇𝑟 = 𝑇 ⊲⊳ Y 𝑇
′

dimension attribute A
′ ∈ Y and agg

A
′ (F,X) holds in 𝑇 :

if 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)) or 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = ∅
for all non-empty partitions 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) :

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓 .

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) −Y

and X′
𝑓
= X𝑓 .

Complete X′
𝑓

dimension attribute A
′ ∈ S𝐷 −Y and agg

A
′ (F,X) holds in 𝑇 :

if 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) ⊆ 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)) or 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = ∅
for all non-empty 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) ≠ ∅:

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
)

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) −Y

and X′
𝑓
= X𝑓 .

Complete X′
𝑓

measure attribute A
′ ∈ 𝑆 − 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

if 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) ⊆ 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)) or 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = ∅
for all non-empty 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) ≠ ∅:

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X, X′

𝑑
= X𝑑 and X′

𝑓
= X𝑓 .

Complete X′
𝑓

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y and X′

𝑓
= X𝑓 . Recompute X′

𝑑

if Y ̸↦→ S
′
then F ∈ {COUNT_DISTINCT,MIN,MAX}

𝑇𝑟 = 𝑇 ⊲⊳Y 𝑇 ′
dimension attribute A

′ ∈ 𝑆𝐷 and agg
A
′ (F,X) holds in 𝑇 :

if 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) ⊆ 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)) or 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = ∅
for all non-empty partitions 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) ≠ ∅:

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓 .

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X ∪ (𝑆 ′

𝐷
−X′

𝑓
) −Y

and X′
𝑓
= X𝑓 .

Complete X′
𝑓



44 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Table 28. Propagation rules for merge operations with G-summarizability

Merge query on

𝑇 (𝑆) and 𝑇 ′(𝑆 ′)
Propagation rule for inferring the aggregable properties of

attributes A
′ ∈ 𝑆 in the result 𝑇𝑟 (S𝑟 )

User action

measure attribute A
′ ∈ 𝑆 − 𝑆𝐷 and agg

A
′ (F,X) holds in 𝑇 :

if 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) ⊆ 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′)) or 𝜋Y (𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 )) = ∅
for all non-empty partitions 𝜎Y𝑡𝑜𝑝=𝑦 (𝑇 ′) ≠ ∅:

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓 .

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y and X′

𝑓
= X𝑓

Recompute X′
𝑑

Complete X′
𝑓

4.5 Wrapping up results on summarizability

To wrap up our results on summarizability and G-summarizability, we illustrate them using the motivating example

presented in the introduction of this paper. We then discuss some directions for future work around the generation of

explanations associated with the result of an analytic query.

Table 29. Propagation rules for set operations with G-summarizability

Set query on

𝑇 (𝑆) and 𝑇 ′(𝑆 ′)
Propagation rule for inferring the aggregable properties of

attributes A
′ ∈ 𝑆 in the result 𝑇𝑟 (S𝑟 )

User action

𝑇𝑟 = 𝑇 ∪𝑇 ′
dimension attribute A

′ ∈ 𝑆𝐷 and agg
A
′ (F,X) holds in 𝑇 and 𝑇 ′

:

if 𝜋
S
𝑡𝑜𝑝

𝐷

(𝑇 ) ∩ 𝜋Y𝑡𝑜𝑝 (𝑇 ′) = ∅

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓

Recompute X′
𝑑

measure attribute A
′ ∈ S and agg

A
′ (F,X) holds in 𝑇 and 𝑇 ′

:

if 𝜋Y𝑡𝑜𝑝 (𝑇 ) ∩ 𝜋Y𝑡𝑜𝑝 (𝑇 ′) = ∅
then if X𝑑 ↦→ A

′
holds in 𝑇𝑟

then agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓 . Recompute X′

𝑑

else agg
A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y𝑡𝑜𝑝

,

X′
𝑑
= X𝑑 and X′

𝑓
= X𝑓 Minimize X′

𝑑

𝑇𝑟 = 𝑇 −𝑇 ′
A
′ ∈ 𝑆𝑟 and agg

A
′ (F,X) holds in 𝑇 and 𝑇 ′

:

if all partitions 𝜎Y𝑡𝑜𝑝 (𝑇 ) are equal to or disjoint with 𝜎Y𝑡𝑜𝑝 (𝑇 ′)
then agg

A
′ (F,X′) holds in 𝑇𝑟 with X′ = X −Y𝑡𝑜𝑝

and X′
𝑓
= X𝑓

Recompute X′
𝑑

None

Example 22. Consider the example of interactive data analysis session of Figure 2 on the tables in Table 2. Table

T3 is obtained by a filter query FilterSTORE_SALES (𝑃 |COUNTRY,YEAR) and attribute AMOUNT in STORE_SALES

is aggregable along all dimension attributes except attribute YEAR. By the G-summarizability rule for filter queries



Controlling the Correctness of Analytic Queries 45

for attribute AMOUNT in T3, we obtain the aggregable property agg
AMOUNT

(SUM,X3) where X3 now contains all

attributes of STORE_SALES except COUNTRY and YEAR. Since the table T4 is obtained by summarizing AMOUNT

by Z = CITY, STATE, COUNTRY, YEAR, the aggregate operation over T3 leading to T4 is correct with respect to the G-

summarizability of AMOUNT.

Next, the table T5 is obtained by a merge query adding the attribute POP from table 𝐷𝐸𝑀 to table T4. For attribute

POP in T5, we have agg
POP

(F,X5), where F and X5 are defined according to Table 28 for right merge (𝐷𝐸𝑀 is the

"outer" merge table). We have join attributesY = {CITY, STATE, COUNTRY, YEAR} withY𝑡𝑜𝑝 = {COUNTRY, YEAR}. However,
𝜋Y (𝜎COUNTRY=′𝑈𝑆𝐴′∧YEAR=2018 (T4)) ⊂ 𝜋𝑌 (𝜎COUNTRY=′𝑈𝑆𝐴′∧YEAR=2018 (DEM)) (city of ’Palo Alto’ is missing in

T4). Thus, we have X5 = Y in the above aggregable property. Consequently, the aggregation of SUM(POP) along CITY is

incorrect with respect to the G-summarizability property.

Table 𝐷𝐸𝑀 ′
in Table 6a is obtained by aggregating the population in table 𝐷𝐸𝑀 along attribute CITY. In table

𝐷𝐸𝑀 , we have agg
POP

(SUM,X) with X = {CITY, STATE, COUNTRY}. So the aggregation along CITY leading to table

𝐷𝐸𝑀 ′
is correct, and by Proposition 7, agg

POP
(SUM,X′) holds in 𝐷𝐸𝑀 ′

with X′ = X ∩ Y = {STATE, COUNTRY}
(function SUM is distributive). Next, in the merge result of T4 with DEM′

, we have agg
POP

(F,X4), where F and

X4 are defined by the rule for outer merge (𝐷𝐸𝑀 ′
is the outer merge table). We have Y = {STATE, COUNTRY, YEAR}

and Y𝑡𝑜𝑝 = {COUNTRY, YEAR}. We also have 𝜋𝑌 (DEM ⋉Y𝑡𝑜𝑝 T4) = 𝜋𝑌 (DEM), and since agg
POP

(SUM,X′) holds in
DEM′

, we get X4 = 𝑋 ′ −Y𝑡𝑜𝑝 = {STATE}. Finally, since Y does not literally determine the schema of T4, F must be

restricted to one of {COUNT_DISTINCT,MIN,MAX}.

The question that naturally arises is what options should be provided to the end user when G-summarizability is

violated (i.e., the conditions given by aggregable properties are not satisfied). A first option is to reject an incorrect

aggregate query with respect to G-summarizability and return the grouping set of the aggregable property as an

explanation. This is the option we have described in this paper. However, another option could be to accept the

aggregate query provided that some metadata is added to the resulting table to enable a non-ambiguous and correct

interpretation of the tuples in that table. We explain the idea in the next example and leave it for future work.

Example 23. Consider again the interactive session of Figure 2 and suppose that the first filter query on

STORE_SALES is: STATE ≠ 𝑛𝑢𝑙𝑙 (expecting that this eliminates all European countries) and YEAR = ’2018’. Next,

suppose that the aggregate operation over T3 sums AMOUNT for each partition defined by attributes COUNTRY and YEAR.

It will be difficult for an end user to figure out that an incorrect aggregate value has been computed for country ’USA’ if

the user ignores that ’Washington DC’ has no state. With our current proposition, this aggregate operation will be

rejected since the grouping set does not include attribute STATE (we would have agg
AMOUNT

(SUM, {CITY, COUNTRY})
in T3). However, to disambiguate the result of the aggregate operation, it would be sufficient to "attach" the filter

condition STORE_SALES.STATE ≠ 𝑛𝑢𝑙𝑙 as metadata to table T4 to indicate that the amount for stores in those states

has not been accounted for. It is then possible for the end user to query those stores from table STORE_SALES to

visualize them and decide if table T4 is satisfactory.

The same principle applies to the result of the left-merge operation between T4 and DEM. As we have seen in the

previous example, we have agg
POP

(SUM,X5) in T5 and the aggregate operation on T5 is rejected. However, we could

accept the operation and simply mark that measure attribute SUM(POP) now depends on dimension 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 . This

would indicate that the population is summed for the cities in 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 , that is, the cities that have stores.

The idea is therefore to make each analytic table, resulting from an interactive data analysis session, "self-explanatory"

with respect to its aggregated attributes.



46 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

5 RELATEDWORK

In this section, we focus on previous works that propose conditions on the schema of a fact table, or on the parameters

of an aggregate query expressed over that fact table, to determine if the aggregate query returns a correct result with

respect to some summarizability definition. Previous papers on summarizability use heterogeneous notations and

concepts and are sometimes difficult to read because they lack some details or hide some assumptions. To facilitate

comparisons with our work, we reformulated each previous proposition using the notations introduced in this paper.

In our detailed analysis, we establish the following:

(1) Our data model is more general than the data models considered by previous work.

(2) In the case of a sequence of two aggregate queries, 𝑄1 followed by 𝑄2, our sufficient conditions to determine if

𝑄2 is correct subsume the conditions proposed by previous work.

(3) To our best knowledge, no previous work addressed the case of a sequence made of an arbitrary analytic query

followed by an aggregate query, which is addressed by our notion of G-summarizability.

5.1 Summarizability of a query over a statistical object

The notion of summarizability was initially defined by Rafanelli and Shoshani [43] for statistical databases and later

refined in their seminal paper [30]. In their context, base data, also referred to as "micro-data", describe all the details

about the objects or individuals over which a summarization operation can be applied to produce a so-called statistical

object, also referred to as "macro-data". There are a few constraints. In the base data, an object of interest must be

identified (e.g., a product, a customer, a store) using some attributes, all other attributes being viewed as "descriptors" of

the object. A statistical object is a table defined by a summarized attribute (i.e., an attribute of the base data on which a

summarization function is applied) and a set of "category" attributes defining the partitions of the base table on which

the summarization function is applied. Using the terminology defined in Section 2, base data can be modelled as a

non-analytic table and summarization operations are aggregate queries which ignore partitions with null values in

their partition identifiers. We shall keep the expression "summarization operation" to distinguish it from our analytic

aggregate operation that handles null values as regular values. A statistical object can be modeled as a fact table that

results from a summarization operation over the base data where category attributes represent dimensions and the

summarized attribute is a measure.

The fact tables that represent statistical objects in [30] are however more restricted than the fact tables enabled by our

data model. Firstly, dimensions are restricted to strict hierarchies, that is, each attribute has at most one parent attribute

in the hierarchy type, each attribute value of a dimension has at most one parent attribute value in the hierarchy of the

dimension, and hierarchy types must have a single bottom and top level attribute. Secondly, all dimensions in a fact

table must be independent (that is, no attribute in some dimension functionally depends on an attribute of another

dimension). Finally, all facts in a fact table have the same dimensions, i.e., the measure attribute does not depend on a

subset of the dimensions.

An important distinction, with respect to multidimensional data models, is that there is no notion of managed

dimensions in [30, 43]. The notion of dimension hierarchy is purely local to a statistical object and depends on the

functional dependencies that are supposed to hold in the base data on which the object is built. If these dependencies

change, the dimensions hierarchies are adjusted to fit the strictness constraint explained before.

In [30, 43], summarizability is defined as the property of a summarized attribute F(A) of a fact table (statistical
object) 𝑇 which guarantees that a summarization operation G over F(A)produces a correct result. Suppose we have a



Controlling the Correctness of Analytic Queries 47

base table 𝑇0 and a fact table 𝑇 (𝑆), which results from a summarization operation applying aggregation function F on

attribute A along attributes X:

𝑇 = Agg∗𝑇0 (F(𝐴) | X)

where Agg∗ denotes a summarization operation that does not consider partitions where an attribute of X has a null

value. Let Q be a summarization query over 𝑇 :

Q = Agg∗𝑇 (G(F(A)) |Z)

where G is a function applicable to the summarized attribute F(A) of 𝑇 , and Z is a set of dimension attributes in X.

Then, the summarization query Q is said to be correct, if the following condition holds:

Agg∗𝑇0 (𝐹 (A) |Z) = Agg∗𝑇 (𝐺 (𝐹 (A)) |Z)

To guarantee the correctness of summarization query Q , [30] defines three necessary properties on the summarization

query Q and the dimensions 𝐷 of 𝑇0. Let X𝐷 ⊆ X be the set of dimension attributes for dimension 𝐷 in 𝑇 , X𝑏𝑜𝑡
𝐷

∈ 𝑋𝐷
be the bottom level attribute of 𝐷 in 𝑇 and 𝐷𝑏𝑜𝑡

be the bottom level attribute of 𝐷 in 𝑇0 (then, 𝐷𝑏𝑜𝑡 = 𝑋𝑏𝑜𝑡
𝐷

or

𝐷𝑏𝑜𝑡 ≼∗ 𝑋𝑏𝑜𝑡
𝐷

). The properties are:

(1) Disjointness. For each dimension 𝐷 along which summarization is done in Q , at least one of the following

conditions must hold: (a) X𝐷 − 𝑍 = {𝐷𝑏𝑜𝑡 } consists of the bottom level attribute of 𝐷 and the partitions of 𝑇0

using 𝐷𝑏𝑜𝑡
are disjoint with respect to the identifier attributes of the object of interest in 𝑇0; (b) every value in

𝑇0 of a dimension attribute A1 that is a below an attribute A2 in X𝐷 − 𝑍 in 𝐷 (A1 ≼
∗
A2) must map to a single

value of its parent attribute (many-to-one mapping);

(2) Completeness with respect to 𝐹 (A). For each dimension 𝐷 of 𝑇 , the domain of each attribute in X𝐷 is complete

in 𝑇0, if both of the following conditions hold: (a) all values of the identifier attributes of the object of interest

which are required by 𝐹 (A) appear in 𝑇0, and (b) one of the two following conditions holds: if X𝐷 − 𝑍 = {𝐷𝑏𝑜𝑡 }
consists of the bottom level attribute of 𝐷 in 𝑇0 then the value of this attribute cannot be null in 𝑇0. Otherwise,

every value of a dimension attribute that is a child of X𝑏𝑜𝑡
𝐷

must map to a parent value in X𝑏𝑜𝑡
𝐷

within 𝑇0.

(3) Applicable summary function. The summary function G is "applicable" to the summarized attribute F(𝐴) with
respect to all dimensions along which summarization is done in Q .

We now analyze each one of the previous conditions and relate it to our work.

Disjointness: In the original formulation of [30], the disjointness property requires that the dimension attributes

along which summarization is done form disjoint subsets over the "objects of interest" defined in the base table. Two

different disjointness conditions are then given, depending on whether the dimension attribute is a bottom attribute

of the dimension or not. The goal of the disjointness property is mainly to avoid double counting by overlapping

subsets. In our work, we address the disjointness property by defining aggregable properties and propagation rules.

Each aggregable property describes for a given attribute A in fact table 𝑇0 along which attributes it can be aggregated

using some function F. The summarizability preserving propagation rules then produce all aggregable properties of

F(𝐴) in𝑇 after the aggregation operation on𝑇0 is done (see Proposition 2). Summarizability is defined using the notion

of function distributivity and literal functional dependencies. There is no need to choose an object of interest in the

base data for defining the scope of summarizability, and any attribute can be summarized.



48 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Completeness: In completeness condition (2.a) of [30], it is not clear how the set of "all possible values" for the

identifier attributes is determined to assess completeness. Thus, we used the interpretation that the possible values

are those listed in some reference directory. Furthermore, condition (2.a) applies to the identifier values required for

computing 𝐹 (A) which means that the user who is formulating query Q must decide whether completeness is needed

or whether the values listed in 𝑇 are sufficient to compute a summary attribute. We shall see in Example 25 that this

condition (2.a) is useless for checking summarizability. The Item (2.b) of the completeness condition is required because

summarization operations cannot deal with attributes of 𝑍 that have null values. In our work, we do not have such a

restriction since our SQL aggregate operations handle null values as regular values.

Function applicability: The third condition focuses on testing the compatibility between the type of dimensions and

the type of measures used in 𝑇 . The following types of measures can be used by the designer of a fact table: stock (i.e., a

simple value at a particular point in time), flow (i.e., cumulative values over a period of time) and value-per-unit (i.e,

determined value for a fixed time). Dimensions can be of type temporal or non-temporal. When a measure attribute A is

aggregated using a given function over some dimension 𝐷 , the types of A and 𝐷 should be compatible with respect

to that function. In our work, applicable functions are captured by the more general notion of aggregable property,

which leaves the method to decide which function is applicable to an attribute open. Furthermore, we use propagation

rules and default rules to infer the functions that are applicable to an attribute that has been aggregated. Thus, a user

is not forced to define the type of the measure attributes in 𝑇 since aggregable properties for these attributes will be

automatically computed using propagation rule (see Proposition 2).

The following two examples illustrate the conditions of [30] and emphasize the differences with our work.

Table 30. Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s Coco Cola USA 2017 5 000

cz-tshirt-s Coco Cola USA 2018 7 000

cz-tshirt-s Zora Spain 2017 5 000

cz-tshirt-s Zora Spain 2018 7 000

coco-can-33cl Coco Cola USA 2017 10 000

Example 24. Consider the base table PRODUCT_LIST (PROD_SKU, COUNTRY, BRAND, YEAR, QTY), whose instance

is displayed on Table 30, and where the "object of interest" is a product identified by PROD_SKU. To comply with the

constraint of strict dimensions defined by [30], attribute PROD_SKU must belong to a separate dimension (it determines

no other attribute), attributes BRAND, COUNTRY belong to a dimension 𝑀𝐾𝑇_𝑃𝑅𝑂𝐷 , and attribute YEAR belongs to a

dimension 𝑇 𝐼𝑀𝐸.

Next, suppose that we define a statistical object PRODUCT_SUM (BRAND, YEAR, NB_PROD_SKU) built using a

summarization query with function F = COUNT_DISTINCT:

PRODUCT_SUM = Agg∗𝑃𝑅𝑂𝐷𝑈𝐶𝑇 _𝐿𝐼𝑆𝑇 (COUNT_DISTINCT(PROD_SKU) |BRAND, YEAR)

The result is displayed on Table 31 (we renamed the summarized attribute as NB_PROD_SKU). The user should associate

the summarized attribute NB_PROD_SKU with a type flow since the number of distinct products sold is cumulative over

time.



Controlling the Correctness of Analytic Queries 49

Table 31. Table PRODUCT_SUM

BRAND YEAR NB_PROD_SKU

Coco Cola 2017 2

Coco Cola 2018 1

Zora 2017 1

Zora 2018 1

The first summarization query Q 1 aggregates NB_PROD_SKU along YEAR using function G = SUM to count the

number of distinct products by brand :

𝑄1 = Agg∗𝑃𝑅𝑂𝐷𝑈𝐶𝑇 _𝑆𝑈𝑀 (SUM(NB_PROD_SKU) |BRAND)

Since YEAR is a bottom attribute of dimension 𝐷 = 𝑇 𝐼𝑀𝐸 in𝑇0, Item (1.a) of the disjointness condition must be tested

over𝑇0. It fails because the product “cz-tshirt-s” belongs to two different partitions of𝑇0 = PRODUCT_LIST by YEAR.

Thus, query 𝑄1 is incorrect. Indeed, the number of distinct products by brand reported by query 𝑄1 (e.g., value 2 for

brand Zora) would be different from the number directly computed from PRODUCT_LIST (e.g., 1 for brand Zora).

The second summarization query Q 2 aggregates NB_PROD_SKU along BRAND:

𝑄2 = Agg∗𝑃𝑅𝑂𝐷𝑈𝐶𝑇 _𝑆𝑈𝑀 (SUM(NB_PROD_SKU) |YEAR)

Since BRAND is again a bottom attribute of dimension𝑀𝐾𝑇_𝑃𝑅𝑂𝐷 in 𝑇0, Item (1.a) of the disjointness condition must

be tested. It fails since the product “cz-tshirt-s” maps to different partitions of 𝑇0 by BRAND. Thus, query 𝑄2 is also

incorrect. Again, the number of distinct products by year reported by query 𝑄2 (e.g., value 2 for year 2018) would be

different from the number directly computed from PRODUCT_LIST (e.g., 1 for year 2018).

By comparison with our work, let’s assume that the aggregable property agg
PROD_SKU

(COUNT_DISTINCT |
Z), where Z = {BRAND, COUNTRY, YEAR}, has been validated by the designer of table PRODUCT_LIST. Then, by

Proposition 7, we infer that the aggregable property controlling summarizability, agg
NB_PROD_SKU

(SUM | ∅), holds
in PRODUCT_SUM. Therefore, we also detect that both 𝑄1 and 𝑄2 are incorrect. However, our detection does not

require running any query over the base data, unlike the disjointness condition of [30]. We only use the knowledge of

the attribute graphs of the dimensions and of the aggregable properties defined on fact tables.

Example 25. Suppose that we have a base object, represented by table STORE_SALES introduced earlier (see

Table 8d), in which stores are the objects of interest (identified by STORE_ID). A statistical object, modeled by fact table

STORE_SALES_YEARLY (displayed in Table 32a), is computed using the following summarization query:

STORE_SALES_YEARLY = Agg∗𝑆𝑇𝑂𝑅𝐸_𝑆𝐴𝐿𝐸𝑆 (SUM(𝐴𝑀𝑂𝑈𝑁𝑇 ) |CITY, STATE, COUNTRY, YEAR)

We assume that the summarized attribute SUM(AMOUNT) is renamed as AMOUNT and has been associated with type

flow, i.e., it can be summed along any dimension. To fulfill the constraints on dimensions, there will be four dimension

hierarchies respectively formed of the following attributes: {CITY}, {STATE}, {COUNTRY}, and {YEAR}.

Consider the following summarization query Q 3 whose result is displayed in Table 32b:

𝑄3 = Agg∗𝑆𝑇𝑂𝑅𝐸_𝑆𝐴𝐿𝐸𝑆 (SUM(𝐴𝑀𝑂𝑈𝑁𝑇 ) |COUNTRY, YEAR)



50 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

Table 32. Results of summarization queries

(a) STORE_SALES_YEARLY

CITY STATE COUNTRY YEAR AMOUNT

Dublin Ohio USA 2017 3.2

Dublin california USA 2017 5.3

Dublin Ohio USA 2018 8.2

Dublin California USA 2018 6.3

(b) Result of Q 3 (STORE_SALES_YEARLY)

COUNTRY YEAR SUM(AMOUNT)

USA 2017 8.4

USA 2018 14.5

The disjointness condition is obviously satisfied since a store in table STORE_SALES belongs to a single partition

by CITY and a single partition by STATE. Now, assume that the directory of all possible values for STORE_ID is given by

the dimension table 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 of Table 8d. Then, the completeness condition (2.a) is violated since store 𝐶𝑎_02 is

missing in the list of values of STORE_ID in STORE_SALES. However, from a strict summarizability point of view, it is

easy to see that the result of𝑄3 is the same as the result of the same aggregation executed over table STORE_SALES.

So completeness constraint (2.a) is useless for checking summarizability.

Completeness constraint (2.b) is also violated since bottom attribute STATE, has a null value in STORE_SALES

for city ‘Paris’. Hence, there is no tuple for ‘Paris’ in STORE_SALES_YEARLY and therefore also no tuple

for country ‘France’ in the result of 𝑄3. The summarizability property is thus clearly violated since the result of

𝑄3 applied to STORE_SALES returns a different result containing the tuple (𝐹𝑟𝑎𝑛𝑐𝑒, 2017, 45.1). In our work,

STORE_SALES_YEARLY would contain a tuple for city ‘Paris’ with a null value for STATE, and therefore a tuple

for country ‘France’ in the result of 𝑄3.

5.2 Summarizability of attributes in fact tables

In previous works on multidimensional databases, summarizability is expressed over fact tables in a way similar to our

Definition 10 illustrated by Figure 9. In this context, we first review the work of [39, 40] that uses a multidimensional

data model close to ours, and generalizes the summarizability conditions of [30]. Note that other solutions propose

alternative analytic data models and methods to modify the representation of dimensions to enforce summarizability.

In the following, we do not consider these solutions for which a survey can be found in [34]. Thus, like in our work, we

concentrate on summarizability models which characterize correct compositions of two aggregation queries over fact

tables with fixed dimensions.

Given a summarization query Q = Agg∗
𝑇
(𝐹 (A) |X) over a fact table 𝑇 (S), we define summarizability as a property

of an attribute A with respect to grouping set X and function F. More exactly, [40] considers an attribute A to be

summarizable with respect to X and F if for any subset 𝑍 ⊂ X of dimension attributes, the following condition holds:

Agg∗𝑇 (F(A) |Z) = Agg∗Q (F(F(A)) |Z) (4)

Note that this definition is more restrictive than our notion of summarizability in Definition 10, since it imposes that

the same function F is used in the two queries. The following conditions provided by [40] are sufficient for ensuring

Equation (4). Let X𝐷 denote the set of dimension attributes for dimension 𝐷 in X:

(1) Function F is applicable to A,

(2) Function F is distributive over the domain of values in A.



Controlling the Correctness of Analytic Queries 51

(3) For every dimension 𝐷 , all the value mappings between the bottom level attribute of 𝐷 in 𝑇 and any attribute of

X𝐷 are many to one.

(4) For every dimension 𝐷 , every value of an attribute in𝑇 that is a sub-level of an attribute of X𝐷 must be non null.

We now comment each condition and draw comparisons with our work. In the first condition, [40] assumes that we

know the functions that are applicable to A. Three types of aggregation functions are distinguished: (1) functions, which

are applicable to data that can be added together (e.g., SUM,COUNT,AVG), (2) functions, which are applicable to data

that can be used for average calculations (e.g., COUNT, AVG,MIN,MAX), and (3) functions which are applicable

to data that can only be counted. However, unlike our work, the notion of aggregation type does not consider the

dimensions along which a summarization can be performed. The second condition uses a definition of distributive

function that is more restrictive than our Definition 11 because it requires that F is such that for any two sets, 𝑉1 and

𝑉2, 𝐹 (𝑉1,∪𝑉2) = 𝐹 (𝐹 (𝑉1) ∪ 𝐹 (𝑉2)). Thus, functions like COUNT are discarded. The third condition is similar to the

disjointness condition of [30] which we already compared with our work. The fourth condition is equivalent to the

second completeness condition (2.b) of [30] but does not cover the first completeness condition (2.a). As mentioned

before, aggregation functions in our work handle null values in dimensions as regular values, and can ignore condition

(2.b) to guarantee summarizability.

5.3 Multidimensional normal forms

Several works proposed multidimensional normal forms for analytic tables that provide guarantees for the correctness

of summarization queries [27, 28]. These normal forms can be used to design dimension and fact tables over which

correct summarization queries can be easily detected and evaluated. In the sequel, we are not interested in the design

aspects but we examine the definitions of these normal forms as a way to formulate summarizability conditions.

We first introduce a few concepts and vocabulary. A dimension attribute (also called a dimension level) which can

have a null value is called optional and otherwise called mandatory. Dimensions must have a single bottom level type

and an implicit top level type, called ALL. The hierarchy in each dimension is strict using "functional dependencies

with nulls" (NFD), that is, each attribute A𝑖 has at most one parent attribute A𝑗 and each arc (𝐴𝑖 , 𝐴 𝑗 ) in the attribute

graph of the dimension is labelled with a 1 (Section 2.2).

The novelty of [27, 28] in comparison with [40] is the following. A dimension is also associated with a (possibly

empty) set of context dependencies: let A𝑖 and A𝑗 be two dimension attributes of a dimension 𝐷 such that A𝑖 is optional,

A𝑗 ≠ 𝐴𝐿𝐿, and A𝑖 ≼ 𝐴 𝑗 . If 𝑐 ∈ 𝑑𝑜𝑚(𝐴 𝑗 ) and 𝑐 ≠ 𝑛𝑢𝑙𝑙 , then (𝐴𝑖 , 𝐴 𝑗 , 𝑐) is a context dependency for 𝐷 stating that for

every tuple 𝑇 of the dimension table, 𝑡 .A𝑗 = 𝑐 ⇔ 𝑡 .A𝑖 ≠ 𝑛𝑢𝑙𝑙 . Intuitively, the interpretation of a context dependency is

that A𝑗 plays the role of a discriminating attribute in the hierarchy and value 𝑐 is the discriminating value to indicate

when the optional attribute A𝑖 has a non-null value. Note that the use of an equivalence (⇔), in the above formula, is

quite strong since it forces the existence of a single discriminating value.

In [27, 28], a fact table is defined over a set of dimensions at the finest level of detail, that is, all dimension attributes

of a dimension are included in the schema of the fact table, and each measure in the fact table is determined (with NFD

constraints) by the set of bottom level dimension attributes in each dimension. Thus, fact tables are similar to the "micro

data" of [30]. Note that although fact tables in [40] can represent facts at a coarser granularity, their summarizability

conditions impose that the bottom level dimension attributes of each dimension determine (with NFD constraints) all

measure attributes. In [27], summarizability constraints express the dimension hierarchy along which a measure can be

aggregated using some aggregation function. However, no formal treatment of summarizability constraints is provided,



52 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

unlike our use of aggregable properties for analyzing aggregate queries and propagating summarizability constraints to

query results. In [28], the same categorization of measure attributes as [30] is used.

In [28], two different multidimensional normal forms are presented. The first one is called Multidimensional

Normal Form (MNF) and provides conditions similar to the work of [30] and [40]. The second one, called Generalized

Multidimensional Normal Form (GMNF), provides more general conditions which have been slightly extended in [27].

In the following we will describe the GMNF as defined by [27]. Let 𝑇 be a fact table defined over a set of dimensions

with a measure (summary) attribute A. Then 𝑇 is in GMNF if all of the following conditions are satisfied:

(1) For each dimension 𝐷 of 𝑇 :

(a) for every optional dimension attribute A𝑖 of 𝐷 , there exists a context dependency (A𝑖 , A𝑗 , 𝑐) in 𝐷 ;
(b) the values of the bottom level dimension attribute in 𝑇 are complete.

(2) All dimensions are mutually independent, i.e., there exists no NFD between any two dimension attributes of two

distinct dimensions.

(3) The set of (unique) bottom level attributes of all dimensions functionally determines (FD) attribute A.

We comment these conditions. Condition 1a and condition 3 enforce the third and fourth conditions of [40] presented

in Section 5.2. Indeed, if all dimension attributes are mandatory, they cannot have null values and all dependencies

between dimension attributes become functional dependencies. Condition 1b is analogous to the completeness condition

of [30]. Here again, the means to test this requirement are left unspecified and seem to require some external knowledge.

Finally, condition 2 ensures that dimensions do not share dimension attributes and is not really needed for guaranteeing

summarizability. Note that by conditions 2 and 3 the bottom level dimension attributes in the schema of 𝑇 form a

primary key in 𝑇 and there is no other primary key for A. The novelty with respect to the previous models is brought

by 1a. It constrains the semantics of every optional dimension attribute A𝑖 so that there exists at an upper level an

attribute A𝑗 that plays the role of discriminator for A𝑖 . Note that A𝑗 can itself be an optional attribute, in which case

there will again be a context dependency (A𝑗 , A𝑘 , 𝑐
′) in 𝐷 . Eventually, the discriminator attribute will be a mandatory

attribute since by definition of context dependency, the upper level attribute cannot be 𝐴𝐿𝐿.

We can now reformulate the previous GMNF conditions on dimensions as summarizability conditions on measure

attributes and aggregate queries. Let 𝑇 be a fact table in GMNF, and Q = Agg∗
𝑇
(F(A) |X) be a summarization query

over 𝑇 . Then, A is summarizable with respect to function F and grouping set X, i.e., for all Z ⊆ X: Agg∗
𝑇
(F(A) |Z) =

Agg∗Q (F(F(A)) |Z)) if the following conditions hold:

(1) F is applicable to A with respect to any subset of X in the result of Q .

(2) One of the two conditions hold:

(a) X does not contain any optional dimension attribute, or

(b) if X contains an optional attribute A𝑖 then, assuming that (A𝑖 , A𝑗 , 𝑐) is the associated context dependency, a

filter condition: A𝑗 = 𝑐 must be applied on 𝑇 before the summarization query is applied

Here, the condition 1 is determined using either the categorization of A [28] or the summarizability constraints on A

[27], the latter being more precise as we stated earlier. The condition 2 states that summarizability holds provided that

a (filtered) subset of the fact table is considered, and this subset is given by the context dependencies of the dimensions

over which the fact table is defined.

Example 26. Consider a product dimension, 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 , whose attribute graph is depicted in Figure 12. A new

optional attribute VIDEO_RES provides the video resolution for products with screens where VIDEO_RES ≼ CATEGORY and



Controlling the Correctness of Analytic Queries 53

Table 33. PROD_NEW_SALES

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND AMOUNT

p_01 Video projector video 1920x1080 Epson 42

p_02 TV video 3840x2160 Philips 58

p_05 TV video 3840x2160 Samsung 90

p_03 Radio audio - Philips 45

p_04 CD-player audio - Samsung 5

PROD_SKU ≼ VIDEO_RES. Consider the fact table PROD_NEW_SALES over 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 whose instance is displayed

in Table 33.

Fig. 12. Attribute graph of 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊

Assume that the designer of the dimension table 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 defined a context dependency :

(VIDEO_RES, CATEGORY, ‘video’). Then, table PROD_NEW_SALES is in GMNF if we assume that all products

are listed in the table. It is easy to see that conditions 2 and 3 are satisfied on the attribute graph. Condition 1 is also

satisfied because the only optional attribute VIDEO_RES has an upper level discriminating attribute with value ‘video’.

Consider a summarization query Q = Agg∗
PROD_NEW_SALES

(𝑆𝑈𝑀 (AMOUNT) | 𝑋 ). Then SUM is still applicable to

the resulting attribute SUM(AMOUNT). If X = {CATEGORY, BRAND} then AMOUNT is summarizable with respect to SUM

and X because X only contains mandatory attributes. If X = {VIDEO_RES, BRAND} then, by summarizability condition 2b,

PROD_NEW_SALES must be first filtered with a filter: CATEGORY = ’Video’ before applying Q . Afterwards, AMOUNT

is summarizable with respect to SUM and X. Otherwise, because partitions with identifiers containing null values are

ignored, a second query taking the sum along VIDEO_RES would generate an incorrect value for Philips (58 instead of

103) and Samsung (90 instead of 95).

We now compare GMNFwith our work in the same context. Going back to Example 26, attribute AMOUNT is literally de-

termined by the minimal subset of dimension attributes {PROD_SKU}, which also determines all other dimension attributes

ofPROD_NEW_SALES. Since SUM is applicable to AMOUNT, by Definition 9 on Page 19, agg
AMOUNT

(SUM, 𝑍 ) holds
inPROD_NEW_SALES, where𝑍 is the set of all dimension attributes ofPROD_NEW_SALES. Consider the query

𝑄1 of Example 26. By Proposition 5, attribute AMOUNT is summarizable with respect toSUM andX = {CATEGORY, BRAND}
since X ⊂ 𝑍 and SUM is distributive. Now if X = {VIDEO_RES, BRAND}, since X ⊂ 𝑍 , attribute AMOUNT is also sum-

marizable with respect to SUM and X, without requiring any pre-filtering of PROD_NEW_SALES. The reason is

our usage of SQL aggregation operations that considers null values as regular values. Indeed, it is easy to see that the

summarizability condition is satisfied by looking at the result of Q , displayed in Table 34. To conclude the comparison,

observe that fact table STORE_SALES of Table 8d is not in GMNF since condition 1 is violated. The optional STATE



54 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

has a null value for different countries and it is not possible to create a single context dependency for attribute STATE

using either attribute COUNTRY or CONTINENT. Thus, in our work, by accepting partition identifiers with null values, we

handle cases of summarizability that are rejected by the conditions based on GMNF.

Table 34. Query result of𝑄2

VIDEO_RES BRAND AMOUNT

1920x1080 Epson 42

3840x2160 Philips 58

3840x2160 Samsung 90

- Philips 45

- Samsung 5

5.4 Reasoning over constraints on dimensions

In [20], the summarizability constraints on dimensions generalize the idea of context dependencies introduced in

[27, 28]. The multidimensional data model is restricted as follows. All dimension hierarchies have one top level attribute

called ALL and possibly multiple bottom level attributes. As in [27, 28, 40], a dimension attribute can have multiple

parent dimension attributes in the hierarchy (such dimensions are called "heterogeneous"), and there can be both,

mandatory and optional dimension attributes. Every child-parent attribute mapping should be functional (i.e., every

value only maps to one parent value). This is equivalent to the existence of an NFD dependency from any attribute A𝑖 to

attribute A𝑗 where A𝑖 ≼ 𝐴 𝑗 . As in [27, 28], fact tables are defined over dimensions at the finest level of detail, that is, the

schema of the fact table includes the bottom level attributes of the dimensions. Measure attributes are determined by all

the dimensions and can only be aggregated using distributive functions (defined as in Definition 11). Dimensions are

also supposed to be mutually independent in a fact table. Summarizability is defined as a property of dimensions and

any fact table built over summarizable dimensions has summarizable measures. Let 𝐷 be a dimension, X be a subset of

dimension attributes in 𝐷 , and B a dimension attribute in 𝐷 such that A𝑖 ≼ B for some attribute A𝑖 ∈ X. Attribute B is

summarizable from X in 𝐷 if and only if for every fact table 𝑇 defined over 𝐷 , every measure attribute M of 𝑇 , every set

X′ ⊂ X, and every distributive aggregate function F using G that is applicable to𝑀 , we have:

Agg∗𝑇 (𝐹 (𝑀) |B) = Agg∗𝑇 ′ (𝐺 (𝐹 (𝑀)) |B) where 𝑇 ′ = Agg∗𝑇 (F(M) |X
′ ∪ B) (5)

The above definition of summarizability relates to summarizability conditions as follows. In Definition 10, we

consider a fact table 𝑇 ′ = Agg∗
𝑇
(F(M) | X) resulting from a summarization query over a fact table 𝑇 , where F is a

distributive function using G. Then we consider that M is summarizable with respect to X and F when Agg∗
𝑇
(F(M) |Z) =

Agg∗
𝑇 ′ (G(F(M)) |Z) for any 𝑍 ⊂ 𝑋 . In this case, query Q = Agg∗

𝑇 ′ (G(F(𝑀) |Z) is considered to be correct by [20]. In

the above definition, Condition 5 must hold for any grouping set X′ ⊂ X in the query defining 𝑇 ′
, but Z is restricted

to B. Therefore, the condition to determine if query Q is correct, is to enforce that every attribute B of any dimension

𝐷 in Z is summarizable from X𝐷 , where X𝐷 is the set of dimension attributes of 𝐷 in X (Equation (5) must hold for all

attributes B of any dimension 𝐷 and any subset of attributes X′ ⊂ X𝐷 ).

[20] show that the summarizability Condition 5 can also be expressed independently of the fact tables which refer to

a given dimension: attribute B is summarizable from X in dimension 𝐷 if and only if for every bottom level attribute A⊥
of 𝐷 , the following equality holds, where 𝜋 denotes the relational duplicate elimination projection and ⊲⊳ denotes the



Controlling the Correctness of Analytic Queries 55

null-eliminating join:

𝜋𝐴⊥,𝐵 (𝐷) =
⋃
𝐴𝑖 ∈𝑋

(𝜋𝐴⊥,𝐴𝑖
(𝐷) ⊲⊳ 𝜋𝐴𝑖 ,𝐵 (𝐷)) (6)

Example 27. Consider the product dimension 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 in Table 35. Using Equation (6), we can show that attribute

CATEGORY is summarizable from X = {SUBCATEGORY} because 𝜋PROD_SKU,CATEGORY (𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 ) is equal to the join

𝜋PROD_SKU,SUBCATEGORY (𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 ) ⊲⊳ 𝜋SUBCATEGORY,CATEGORY (𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 ). However, attribute CATEGORY is

not summarizable from X = {VIDEO_RES} because the natural join between 𝜋PROD_SKU,VIDEO_RES (𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 ) and
𝜋VIDEO_RES,CATEGORY (𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 ) eliminates products ’p_03’ and ’p_04’.

Table 35. 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND

p_01 Video projector Video 1920x1080 Epson

p_02 TV Video 3840x2160 Philips

p_05 TV Video 3840x2160 Samsung

p_03 Radio Audio - Philips

p_04 CD-player Audio - Samsung

To efficiently check summarizability, [20] proposes to transform the summarizability problem into the problem

of verifying the satisfaction of a set of dimension constraints by some dimension 𝐷 . Let A𝑖 be a dimension attribute

of a dimension 𝐷 and ⟨A𝑖 , A𝑖+1, ..., A𝑖+𝑛⟩ denote a path in 𝐷 such that A𝑘 ≼ A𝑘+1, 𝑖 ≤ 𝑘 < 𝑖 + 𝑛. Then, the following
dimension constraints can be defined on A𝑘 and 𝐷 :

(1) 𝐷 |= ⟨A𝑖 , A𝑖+1, ..., A𝑗 ⟩ means that for every attribute value 𝑣 of A𝑖 , there exists a tuple 𝑡 in 𝐷 such that 𝑡 .A𝑖 = 𝑣

and 𝑡 .A𝑖+1, ..., 𝑡 .A𝑗 are non-null (all values of A𝑖 roll-up to a value A𝑗 through a value of A𝑖+1 ...). We shall say

that A𝑖 rolls up to A𝑗 .

(2) 𝐷 |= ⟨A𝑖 , ..., A𝑗 = 𝑘⟩ means that for every attribute value 𝑣 of A𝑖 , there exists a tuple 𝑡 in 𝐷 such that 𝑡 .A𝑖 = 𝑣 and

𝑡 .A𝑗 is not null if and only if 𝑡 .A𝑗 = 𝑘 .

Constraints can then be composed using the usual Boolean logical connectives. Now, assume that a set of constraints

are specified on the schema of 𝐷 . To determine if an attribute B is summarizable from X = {𝐴1, ..., 𝐴𝑛} in 𝐷 , one must

determine if, for each bottom level attribute A⊥ of 𝐷 , the following constraint is satisfied :

𝐷 |= ⟨𝐴⊥, ..., 𝐵⟩ =⇒ (⟨𝐴⊥, ..., 𝐴1, ..., 𝐵⟩ ⊕ ... ⊕ (⟨𝐴⊥, ..., 𝐴𝑛, ..., 𝐵⟩) (7)

where ⊕ denotes an exclusive disjunction (XOR). Intuitively, if all values of A⊥ roll-up to a value of B then all these

values either roll-up through values of A1 or (exclusive) through values of A2 ... or through values of A𝑛 . We use the

following examples to illustrate the use of constraints to determine summarizability.

Example 28. Suppose that in dimension 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊 , VIDEO_RES has now SUBCATEGORY as parent in the hierarchy

type (Figure 13a). Then the two constraints (a) and (b) shown in Figure 13b are expressed on 𝑃𝑅𝑂𝐷 . Note that the

disjunction constraint (a) is more expressive than the context dependency of [27, 28] because it is not restricted to a

single value.



56 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

(a) Hierarchy type of 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊

Rules

(a) ⟨PROD_SKU, VIDEO_RES, SUBCATEGORY = ’TV’ ⟩ ⊕
⟨PROD_SKU, VIDEO_RES, SUBCATEGORY = ’Video projector’ ⟩

(b) ⟨A𝑖 , A𝑗 ⟩, for all other edges (A𝑖 , A𝑗 )

Semantics

(a) A value of PROD_SKU rolls up to VIDEO_RES and SUBCATEGORY

only for the ’Video Projector’ and ’TV’ values of

SUBCATEGORY

(b) All other attributes directly roll up to their parent attribute

(b) Constraints on 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊

Fig. 13. The dimension schema of 𝑃𝑅𝑂𝐷_𝑁𝐸𝑊

The attribute CATEGORY is summarizable from X = {SUBCATEGORY} because the following constraint is satisfied (all

products roll up to a category through some subcategory):

𝑃𝑅𝑂𝐷 |= ⟨PROD_SKU, . . . , CATEGORY⟩ ⇒ ⟨PROD_SKU, SUBCATEGORY, CATEGORY⟩ (8)

Using the constraints in (b), we can compose ⟨PROD_SKU, SUBCATEGORY⟩ and ⟨SUBCATEGORY, CATEGORY⟩ to

yield the final constraint. Thus, if the table PROD_NEW_SALES is first aggregated with a grouping set

{SUBCATEGORY CATEGORY}, then a query that further aggregates this result with a grouping set {CATEGORY} is cor-

rect.

However, attribute SUBCATEGORY is not summarizable fromX = {VIDEO_RES} because the following constraint cannot
be satisfied:

𝑃𝑅𝑂𝐷 |= ⟨PROD_SKU, SUBCATEGORY⟩ ⇒ ⟨PROD_SKU, VIDEO_RES, SUBCATEGORY⟩ (9)

Thus, if table PROD_NEW_SALES is first aggregated with a grouping set {SUBCATEGORY, VIDEO_RES, CATEGORY},
then a query Q that further aggregates this result with a grouping set {SUBCATEGORY, CATEGORY} is incorrect. If the
tuples of PROD_NEW_SALES with SUBCATEGORY attribute values ’TV’ or ’Video projector’ are filtered out then the

summarizability constraint can be satisfied and previous query Q will be correct.

It is clear that the data model and constraints proposed by [20] subsume the data model with context dependencies

of [27, 28]. We already showed that our summarizability conditions are more expressive than context dependencies

by considering 𝑛𝑢𝑙𝑙 values as regular values for aggregation. The same arguments apply to dimension constraints. In

addition, [20] has the following limitations with respect to our work. First, any non-null value of a mandatory attribute

must map to a single parent value in the hierarchy. This discards the use of dimension tables like 𝑆𝐴𝐿𝐸𝑆𝑂𝑅𝐺 in Table 8b.

Second, measure attributes cannot depend on a subset of the dimensions of a fact table. This discards the use of fact

tables resulting from interactive user queries like the result of the left-merge of T2 with DEM′
in Table 6b, presented

in the Introduction section. Finally, unlike other works, the notion of applicability of an aggregation function to an

attribute is not covered.

6 CONCLUSIONS

In this article, we introduce a new framework for controlling the correctness of aggregation operations during sessions of

interactive analytic queries. Our framework adopts an attribute-centric view, whereby aggregable properties of attributes



Controlling the Correctness of Analytic Queries 57

are used to describe and control the interaction between measures, dimensions and aggregation functions. As a first

advantage, aggregable properties enable the designers of analytic tables to describe the wide variety of semantic

properties of measure attributes with respect to their dimensions defined in previous work [19, 26, 30, 36, 40, 50].

Another advantage of aggregable properties is their ability to guarantee that aggregate queries over some attributes

can only be expressed if these attributes are summarizable. We provide two definitions of summarizable attributes.

Our first definition covers the case when an aggregate query is defined over the result of another aggregate query; it

subsumes the definitions of previous work on summarizability [20, 27, 28, 30, 40]. Our second definition introduces the

new notion of G-summarizability which applies in the case of an aggregate query defined over the result of an arbitrary

analytic queries. The two definitions are complementary. Our main technical results are the definition of propagation

rules that automatically compute the aggregable properties of attributes in the result of an analytic query knowing the

aggregable properties of the attributes in the operand tables of the query. We progressively refine our propagation rules

to handle the semantic properties of measures, and the summarizability and G-summarizability properties of attributes.

There is a number of perspectives for future work. First, aggregable properties could be extended to handle other

correctness issues of aggregate queries. Currently, we rely on literal functional dependencies (LFD) for analyzing the

summarizability properties of query results. Simpson’s paradox [55] is an example of incorrect causal interpretation of

aggregated attribute values where a statistical observation like ratio or bias on the measures from several partitions

might disappear or be inverted on the aggregated measures over these partitions. Aggregable properties could be

extended to guard against this kind of statistical errors by exploiting existing causal dependencies between table

attributes [38] (representing features) in addition to LFD.

Another direction of research is the "explainability" of aggregated values in an analytic table resulting from an

interactive data analysis session. Aggregable properties provide explanations for the decision to forbid an incorrect

aggregate query on a table. They also help the user to backtrack in her session to find an intermediate result over

which a desired aggregation can be expressed. However, as shown in Example 23, a priori non-summarizable aggregate

queries could be accepted provided that adequate annotations are added to the result table so that aggregated values

can be properly interpreted. Generating such minimal annotations and propagating them is still open.

Finally, although a large part of our data model has already been prototyped in SAP HANA [44], a significant effort

is needed to integrate our framework into self-service data preparation tools and analytic database systems.

Another possible direction is the implementation of our framework as an independent software component, e.g.

Python library, which could be part of data preparation pipelines for Deep Learning applications (Python notebooks).

REFERENCES
[1] Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick Marcel, and Stefano Rizzi. 2015. A collaborative filtering approach for recommending

OLAP sessions. Decision Support Systems 69 (2015), 20–30.
[2] Paolo Atzeni and Nicola M. Morfuni. 1984. Functional Dependencies in Relations with Null Values. Inf. Process. Lett. 18, 4 (1984), 233–238.

https://doi.org/10.1016/0020-0190(84)90117-0

[3] Antonio Badia and Daniel Lemire. 2014. Functional dependencies with null markers. Comput. J. 58, 5 (2014), 1160–1168.
[4] Jens Bleiholder and Felix Naumann. 2009. Data Fusion. ACM Comput. Surv. 41, 1, Article 1 (Jan. 2009), 41 pages. https://doi.org/10.1145/1456650.

1456651

[5] Cristiana Bolchini, Elisa Quintarelli, and Letizia Tanca. 2012. Context Support for Designing Analytical Queries. In Methodologies and Technologies
for Networked Enterprises - ArtDeco: Adaptive Infrastructures for Decentralised Organisations. Springer, 277–289.

[6] Robert Brunel, Jan Finis, Gerald Franz, Norman May, Alfons Kemper, Thomas Neumann, and Franz Faerber. 2015. Supporting hierarchical data in

SAP HANA. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE, 1280–1291.
[7] Robert Brunel, Norman May, and Alfons Kemper. 2016. Index-assisted hierarchical computations in main-memory RDBMS. Proceedings of the VLDB

Endowment 9, 12 (2016), 1065–1076. https://doi.org/10.14778/2994509.2994524

https://doi.org/10.1016/0020-0190(84)90117-0
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.14778/2994509.2994524


58 Eric Simon, Bernd Amann, Rutian Liu, and Stéphane Gançarski

[8] Mónica Caniupán, Loreto Bravo, and Carlos A. Hurtado. 2012. Repairing inconsistent dimensions in data warehouses. Data & Knowledge Engineering
79-80 (2012), 17–39. https://doi.org/10.1016/j.datak.2012.04.002

[9] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. 2009. Query recommendations for interactive database exploration. In International
Conference on Scientific and Statistical Database Management (SSDBM). Springer, 3–18.

[10] Marco Console, Paolo Guagliardo, and Leonid Libkin. 2020. Fragments of bag relational algebra: Expressiveness and certain answers. Information
Systems (2020), 101604.

[11] datadog [n.d.]. Datadog: Cloud Monitoring as a Web Service Software. https://www.datadoghq.com/.

[12] Marina Drosou and Evaggelia Pitoura. 2013. YmalDB: exploring relational databases via result-driven recommendations. VLDB J. 22, 6 (2013),
849–874. https://doi.org/10.1007/s00778-013-0311-4

[13] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh. 2014. Querie: Collaborative database exploration. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 26, 7 (2014), 1778–1790.

[14] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database Systems: The Complete Book (2 ed.). Prentice Hall Press, USA.

[15] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. 1996. Data cube: a relational aggregation operator generalizing GROUP-BY, CROSS-TAB, and

SUB-TOTALS. In Proceedings of the Twelfth International Conference on Data Engineering (New Orleans, LA, USA). IEEE Comput. Soc. Press, 152–159.

https://doi.org/10.1109/ICDE.1996.492099

[16] Paolo Guagliardo and Leonid Libkin. 2017. A formal semantics of SQL queries, its validation, and applications. Proceedings of the VLDB Endowment
11, 1 (Sept. 2017), 27–39. https://doi.org/10.14778/3151113.3151116

[17] F Binti Hamzah, C Lau, Hafeez Nazri, Dominic Vincent Ligot, Guanhua Lee, Cheng Liang Tan, MKBM Shaib, Ummi Hasanah Binti Zaidon, Adina Binti

Abdullah, Ming Hong Chung, et al. 2020. CoronaTracker: worldwide COVID-19 outbreak data analysis and prediction. Bull World Health Organ 1,

32 (2020).

[18] John Horner and Il-Yeol Song. 2005. A Taxonomy of Inaccurate Summaries and Their Management in OLAP Systems. In International Conference on
Conceptual Modeling. Vol. 3716. Springer, 433–448.

[19] John Horner, Il-Yeol Song, and Peter P. Chen. 2004. An analysis of additivity in OLAP systems. In Proceedings of the 7th ACM international workshop
on Data warehousing and OLAP. ACM, 83–91.

[20] Carlos A. Hurtado, Claudio Gutierrez, and Alberto O. Mendelzon. 2005. Capturing summarizability with integrity constraints in OLAP. ACM
Transactions on Database Systems 30, 3 (2005), 854–886.

[21] Christian S Jensen, Torben Bach Pedersen, and Christian Thomsen. 2010. Multidimensional databases and data warehousing. Synthesis Lectures on
Data Management 2, 1 (2010), 1–111.

[22] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. 2011. A Survey of Distributed Data Aggregation Algorithms. CoRR abs/1110.0725 (2011).

arXiv:1110.0725 http://arxiv.org/abs/1110.0725

[23] Manas Joglekar, Hector Garcia-Molina, and Aditya G. Parameswaran. 2019. Interactive Data Exploration with Smart Drill-Down. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 31, 1 (2019), 46–60.

[24] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu. 2010. SnipSuggest: Context-Aware Autocompletion for SQL. Proc.
VLDB Endow. 4, 1 (2010), 22–33. https://doi.org/10.14778/1880172.1880175

[25] kibana [n.d.]. Kibana: Your window into the Elastic Stack Software. https://www.elastic.co/kibana.

[26] Ralph Kimball and Margy Ross. 2013. The Data Warehouse Toolkit. John Wiley & Sons.

[27] Jens Lechtenbörger and Gottfried Vossen. 2003. Multidimensional normal forms for data warehouse design. Information Systems 28, 5 (2003),
415–434.

[28] Wolfgang Lehner, Jens Albrecht, and Hartmut Wedekind. 1998. Normal forms for multidimensional databases. In Scientific and Statistical Database
Management, 1998. Proceedings. Tenth International Conference on. IEEE, 63–72.

[29] Hans-Joachim Lenz and Bernhard Thalheim. 2009. A Formal Framework of Aggregation for the OLAP-OLTP Model. J. UCS 15, 1 (2009), 273–303.
https://doi.org/10.3217/jucs-015-01-0273

[30] H.-J. Lenz and Arie Shoshani. 1997. Summarizability in OLAP and statistical data bases. In Proceedings of the Ninth International Conference on
Scientific and Statistical Database Management (SSDBM ’97). 132–143.

[31] H.-J. Lenz and Bernhard Thalheim. 2001. OLAP databases and aggregation functions. In Scientific and Statistical Database Management, 2001. SSDBM
2001. Proceedings. Thirteenth International Conference on. IEEE, 91–100.

[32] Rutian Liu, Eric Simon, Bernd Amann, and Stéphane Gançarski. 2020. Discovering and merging related analytic datasets. Information Systems 91
(2020), 101495.

[33] Patrick Marcel and Elsa Negre. 2011. A survey of query recommendation techniques for data warehouse exploration.. In Journées Francophones sur
les Entrepôts de Données et l’Analyse en ligne (EDA). 119–134.

[34] Jose-Norberto Mazón, Jens Lechtenbörger, and Juan Trujillo. 2009. A survey on summarizability issues in multidimensional modeling. Data &
Knowledge Engineering 68, 12 (2009), 1452–1469.

[35] Microsoft. [n.d.]. Azure Blob storage: Massively scalable and secure object storage for cloud-native workloads, archives, data lakes, high-performance

computing, and machine learning Software. https://azure.microsoft.com/en-us/services/storage/blobs/.

[36] Tapio Niemi, Marko Niinimäki, Peter Thanisch, and Jyrki Nummenmaa. 2014. Detecting summarizability in OLAP. Data & Knowledge Engineering
89 (2014), 1–20.

https://doi.org/10.1016/j.datak.2012.04.002
https://doi.org/10.1007/s00778-013-0311-4
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.14778/3151113.3151116
https://arxiv.org/abs/1110.0725
http://arxiv.org/abs/1110.0725
https://doi.org/10.14778/1880172.1880175
https://doi.org/10.3217/jucs-015-01-0273


Controlling the Correctness of Analytic Queries 59

[37] paxata [n.d.]. Paxata | Self-Service Data Preparation for Data Analytics. https://www.paxata.com/.

[38] Judea Pearl, Madelyn Gleamour, and Nicholas Jewell. 2016. Causal Inferences in Statistics. Wiley.

[39] Torben Bach Pedersen, Christian S. Jensen, and Curtis E. Dyreson. 1999. Extending Practical Pre-Aggregation in On-Line Analytical Processing. In

Proceedings of the 25th International Conference on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

663–674.

[40] Torben Bach Pedersen, Christian S. Jensen, and Curtis E. Dyreson. 2001. A foundation for capturing and querying complex multidimensional data.

Information Systems 26, 5 (2001), 383–423. https://doi.org/10.1016/S0306-4379(01)00023-0

[41] powerbi [n.d.]. Power BI | Interactive Data Visualization BI Tools. https://powerbi.microsoft.com/en-us/.

[42] qlik [n.d.]. Data Analytics for Modern Business Intelligence | Qlik. https://www.qlik.com/us.

[43] Maurizio Rafanelli and Arie Shoshani. 1990. Storm: A statistical object representation model. In International Conference on Scientific and Statistical
Database Management. Vol. 420. Springer, 14–29. https://doi.org/10.1007/3-540-52342-1_18

[44] Liu Rutian. 2020. Semantic Services for Assisting Users to Augment Data in the Context of Analytic Data Sources. PhD Thesis. Sorbonne Université.

[45] s3 [n.d.]. Amazon S3 Object storage built to store and retrieve any amount of data from anywhere Software. https://aws.amazon.com/s3.

[46] sapdata [n.d.]. SAP Agile Data Preparation and Transformation Solution. https://www.sap.com/products/data-preparation.html.

[47] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven exploration of OLAP data cubes. In International Conference on
Extending Database Technology (EDBT). 168–182.

[48] Manish Singh, Michael J Cafarella, and HV Jagadish. 2016. DBExplorer: Exploratory Search in Databases.. In International Conference on Extending
Database Technology (EDBT). 89–100.

[49] splunk [n.d.]. Splunk: The Data-to-Everything
™
Platform Software. https://www.splunk.com/.

[50] Stanley Smith Stevens. 1946. On the theory of scales of measurement. Science 103, 2684 (1946), 677–680.
[51] tableau [n.d.]. Tableau: Business Intelligence and Analytics Software. https://www.tableau.com/.

[52] Peter Thanisch, Tapio Niemi, Jyrki Nummenmaa, and Marko Niinimäki. 2019. Detecting measurement issues in SQL arithmetic expressions and

aggregations. Data & Knowledge Engineering 122 (2019), 116–129. https://doi.org/10.1016/j.datak.2019.06.001

[53] Trifacta. [n.d.]. Data Wrangling Tools & Software | Trifacta. https://www.trifacta.com/.

[54] SQL tutorial. [n.d.]. The SQL Rollup operator. https://www.sqltutorial.org/sql-rollup/.

[55] Clifford H Wagner. 1982. Simpson’s paradox in real life. The American Statistician 36, 1 (1982), 46–48.

[56] Wikipedia. [n.d.]. Olap Cube. https://en.wikipedia.org/wiki/OLAP_cube.

[57] Alice Zheng and Amanda Casari. 2018. Feature Engineering for Machine Learning. (2018), 217.

https://doi.org/10.1016/S0306-4379(01)00023-0
https://doi.org/10.1007/3-540-52342-1_18
https://doi.org/10.1016/j.datak.2019.06.001

	Abstract
	1 Introduction
	1.1 Problem statement and motivations
	1.2 Limitations of previous related work
	1.3 Research contributions

	2 Multi-dimensional Data Model and Analytic Queries
	2.1 Dimension and fact tables
	2.2 Literal functional dependencies and attribute graphs
	2.3 Analytic queries

	3 Aggregability of Attributes in Analytic Tables
	3.1 Aggregable properties of attributes
	3.2 Default rules for aggregable properties
	3.3 Propagating aggregable properties

	4 Summarizability of aggregable attributes
	4.1 Summarizable attributes and distributive functions
	4.2 Controlling attribute summarizability using aggregable properties
	4.3 Generalized attribute summarizability
	4.4 Controlling G-summarizability using aggregable properties
	4.5 Wrapping up results on summarizability

	5 Related Work
	5.1 Summarizability of a query over a statistical object
	5.2 Summarizability of attributes in fact tables
	5.3 Multidimensional normal forms
	5.4 Reasoning over constraints on dimensions

	6 Conclusions
	References

