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Introduction

ASTM standard E1316 [START_REF]Standard terminology for nondestructive examinations, Standard[END_REF][START_REF]Guidance notes on structural monitoring using acoustic emissions[END_REF] defines Acoustic Emission (AE) as the detection of the subnanometric displacements of the surface of a material induced by the propagation of an elastic wave generated by a sudden and permanent change in the material integrity. This capability makes the AE technique particularly relevant to gain insights into the behavior of a material, a structure or an equipment under usage [START_REF] Scruby | An introduction to acoustic emission[END_REF][START_REF] Farrar | Structural Health Monitoring: A Machine Learning Perspective[END_REF][START_REF] Awerbuch | On the applicability of acoustic emission to identify modes of damage in full-scale composite fuselage structures[END_REF][START_REF] Bhuiyan | Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications[END_REF][START_REF] He | An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems[END_REF][START_REF] Alshorman | Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study[END_REF] and accounts for its wide use in applications related to material testing, Structural Health Monitoring (SHM) and process monitoring and control.

Original AE data take the form of a data stream recorded by sensors attached onto a structure (Figure 1). The sensors, converting the subnanometric displacements into voltage signals, have to be read continuously in order to catch all events originating from the material. The data stream is then segmented using a wave-picking algorithm with the aim to detect damage-related (non-noise) AE signals [START_REF] Kurz | Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete[END_REF][START_REF] Pomponi | Wavelet based approach to signal activity detection and phase picking: Application to acoustic emission[END_REF][START_REF] Bianchi | Wavelet packet transform for detection of single events in acoustic emission signals[END_REF][START_REF] Liao | Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring[END_REF][START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF][START_REF] Madarshahian | Acoustic emission bayesian source location: onset time challenge[END_REF]. In feature-based interpretation of AE signals, a feature extraction step is performed in which AE signals are represented in a common feature space. The set of feature vectors represents an AE data set for a given experiment and is generally stored in an N × d feature matrix X = [x 1 , . . . , x i , . . . ,

x N ] (1) 
where x i ∈ R d is the transposed feature vector computed from the i-th AE signal. The timestamps of AE signals are their instants of occurrence and are denoted as t i with

0 = t 0 < t 1 < • • • < t i < • • • < t N = T, (2) 
where T is the data stream duration. AE data have several special characteristics in terms of data processing [START_REF] Ramasso | Learning the representation of raw acoustic emission signals by direct generative modelling and its use in chronology-based clusters identification[END_REF]; in particular timestamps are continuous and unequally-spaced in time, i.e., we generally have t i -t i-1 t j -t j-1 = 1.

(

) 3 
For a given AE signal, the d features generally belong to a standard list of AE features, some of which are listed, for example, in [START_REF] Kattis | Noesis: Advanced data analysis, pattern recognition & neural networks software for acoustic emission applications[END_REF]. In the sequel, we suppose that the features have been extracted using the algorithm introduced in [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF], which implements in MATLAB ® common features available in the Mistras AEWin ® software. Unsupervised feature selection is not tackled in this paper. The reader interested in this topics can refer, for instance, to the aforementioned references and [START_REF] Manson | Visualisation and dimension reduction of acoustic emission data for damage detection[END_REF][START_REF] Li | Feature selection of acoustic emission signal for the slow-speed and heavy-load equipment[END_REF][START_REF] Doan | An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer-composite materials[END_REF][START_REF] Sause | Situ Monitoring of Fiber-Reinforced Composites: Theory, basic concepts, methods, and applications[END_REF]. Since a huge amount1 of AE signals can be detected in a data stream, it is difficult, except for specific configurations, to know the ground truth for a sufficient large amount of AE signals.

Lack of knowledge about the source of AE signals prevents us from using supervised learning methods for AE data interpretation, or even for anomaly detection when "normal" condition data are available [START_REF] Martin-Del-Campo | Online feature learning for condition monitoring of rotating machinery[END_REF][START_REF] Fuentes | Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling[END_REF]. Unsupervised learning, particularly based on clustering, is generally used to extract information from AE data. This is the main scope of the present work.

Clustering methods have been applied for decades to interpret AE data [START_REF] Wang | Tool wear evaluation under minimum quantity lubrication by clustering energy of acoustic emission burst signals[END_REF][START_REF] Chelliah | Optimization of acoustic emission parameters to discriminate failure modes in glass-epoxy composite laminates using pattern recognition[END_REF][START_REF] Zhou | Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites[END_REF]. The most commonly used methods are the K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Chai | Acoustic emission studies for characterization of fatigue crack growth in 316ln stainless steel and welds[END_REF], the fuzzy C-means (FCM) [START_REF] Dunn | A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[END_REF][START_REF] Omkar | Acoustic emission signal classification using fuzzy c-means clustering[END_REF], the Gustafson-Kessel (GK) algorithm [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF][START_REF] Ramasso | Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites[END_REF] and Gaussian Mixture Models (GMM) [START_REF] Mclachlan | Mixture models. Inference and applications to clustering[END_REF][START_REF] Sawan | Unsupervised learning for classification of acoustic emission events from tensile and bending experiments with open-hole carbon fiber composite samples[END_REF]. A clustering method computes membership degrees of feature vectors to clusters; a hard partition is then obtained by assigning each vector to its maximum-membership cluster. Based on this partition, data interpretation is generally necessary to determine the correspondence between clusters and damages. From a statistical point of view, the criteria used in classical clustering methods rely on the assumption that AE signals are independent and identically distributed (iid). Therefore, the partition, after applying one of those methods, does not depend on the ordering. From a physical point of view, this seems counterintuitive in most of AE-related applications since the progression of a damage type is known to depend on the preceding damage states and damage accumulation [START_REF] Kaminski | Fatigue damage modeling of composite structures: the onera viewpoint[END_REF][START_REF] Saxena | Accelerated aging experiments for prognostics of damage growth in composite materials[END_REF]. To cope with this problem, we need a clustering method taking the time distribution of AE signals into account. Note that "time" can be replaced by any monotonically increasing measure such as cumulative loading or cycles.

Clustering methods dedicated to time-series have been developed in the past [START_REF] Liao | Clustering of time series data -a survey[END_REF][START_REF] Fu | A review on time series data mining[END_REF] but only a few of them are able to manage continuous and uneven timestamps as shown in the recent review [START_REF] Belhadi | Space-time series clustering: Algorithms, taxonomy, and case study on urban smart cities[END_REF]. One of the first attempts to modify standard approaches (such as K-means, FCM or GMM) so as to accommodate temporal data with such timestamps was presented in [START_REF] Möller-Levet | Fuzzy clustering of short time-series and unevenly distributed sampling points[END_REF]. The authors modeled the time series as piece-wise linear functions and proposed a distance measure between slopes. Using this distance, they derived a modified version of the FCM method.

Clustering methods describe a data set through a set of parameters such as, for example, the cluster centers in the K-means algorithm or the means, covariance matrices and proportions in Gaussian Mixture Models. Parameters are identified from data by iteratively optimizing an objective function that is an explicit function of these parameters. Additionally, clustering methods also depend on hyperparameters such as, e.g. the number of clusters, which cannot be optimized in this way. For hyperparameters, we need to perform a grid search by varying them and evaluate their impact on the clustering result. We also need a selection criterion (for determining, e.g., the optimal number of clusters). For each set of hyperparameter values, the objective function is first optimized to estimate the parameters of the clustering method. Then, the best configuration is selected. The learning process may, thus, be time-consuming.

In AE, hyperparameters are determined, in the majority of cases, by computing a criterion such as Davies-Bouldin or Silhouette, which focus on the shape of clusters. As a consequence, to be selected, hyperparameters must lead to compact and well-separated clusters in the feature space [START_REF] Sawan | Unsupervised learning for classification of acoustic emission events from tensile and bending experiments with open-hole carbon fiber composite samples[END_REF][START_REF] Sause | Pattern recognition approach to identify natural clusters of acoustic emission signals[END_REF][START_REF] Godin | Acoustic emission and durability of composites materials[END_REF][START_REF] Monti | Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission[END_REF][START_REF] Shiraiwa | Acoustic emission analysis using bayesian model selection for damage characterization in ceramic matrix composites[END_REF]. This is the definition of natural clusters often used in AE, originally based on [START_REF] Carmichael | Finding natural clusters[END_REF]. An alternative is to find hyperparameters that lead to clusters characterized by onsets which are well distributed in time or load. This approach was developed recently because some authors found limitations in shape-based criteria for interpreting AE data [START_REF] Placet | Online segmentation of acoustic emission data streams for detection of damages in composites structures in unconstrained environments[END_REF][START_REF] Ramasso | Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites[END_REF][START_REF] Hohl | Computationally enabled 4d visualizations facilitate the detection of rock fracture patterns from acoustic emissions[END_REF][START_REF] Rastegaev | Using acoustic emission signal categorization for reconstruction of wear development timeline in tribosystems: Case studies and application examples[END_REF][START_REF] Li | Maximum likelihood parameter estimation for armax models based on stochastic gradient algorithm[END_REF][START_REF] Rastegaev | A time-frequency based approach for acoustic emission assessment of sliding wear[END_REF][START_REF] Ramasso | Learning the representation of raw acoustic emission signals by direct generative modelling and its use in chronology-based clusters identification[END_REF][START_REF] Chandarana | Combining passive and active methods for damage mode diagnosis in tubular composites[END_REF]. However, to the best of our knowledge, the onset times of clusters have not been considered in an objective function so far. Taking into account onset times for clustering AE data is the main objective of the present work. The proposed clustering method, called GMMSEQ, treats onsets as parameters that can be optimized together with the other cluster parameters directly from data, which was not possible before. GMMSEQ relies on a modification of the original GMM to account for the fact that AE signals are indexed by continuous timestamps. More specifically, the proportions in the mixture are assumed to vary in time according to a model of evolution based on sigmoid functions (Figure 1). Each sigmoid function allows us to represent:

• The level of activation of a given damage related to the cumulative number of signals generated by this damage;

• The growth rate of the damage driven by the slope of the sigmoid function at the origin and related to the kinetics of the damage;

• The instant of the damage onset.

Therefore, this new clustering method makes it possible to identify when a damage first occurs (onset), how it grows (kinetics) and how it accumulates (cluster progression). The method makes a step beyond the standard approach to AE analysis by characterizing damage progression through three parameters estimated from the data. The ability to represent onset times, kinetics and activation level makes this approach relevant for applications in which the chronology, sequence or timeline are of key importance. For example, Sawan et al. argued for an AE analysis approach that seeks to separate observations into the greatest number of clusters with distinct evolution behavior. For that, they used a GMM in its original form and represented their results by means of a cumulated number of hits per cluster. However, the analysis is subjective without a proper identification of parameters related to the evolution, which is a common problem in AE analysis based on damage progression. In a previous paper [START_REF] Ramasso | Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites[END_REF], a criterion was proposed to identify clusters with different proportions and the authors experimentally observed that the timeline suggested by the clusters (obtained by different methods) was improved compared to standard shape-based criteria.

Another advantage of GMMSEQ is that the compactness and separability of clusters in the feature space is still of primary importance because it is managed explicitly using a mixture model with the possibility to adapt the distribution to the data. While being developed to take AE data characteristics into account, this new clustering method can be applied to other temporal data for which onsets, growths and cumulative progression of clusters are relevant to the analysis. The proposed optimization procedure assumes that all data are available at once (offline analysis).

The model and the estimation algorithm are presented in Section 2. The method is then illustrated in Section 3 using simulated and real data sets. Data sets and codes are shared on Dataverse [START_REF] Verdin | Multisensor acoustic emission datasets reflecting supervised untightening of bolts in a jointed vibrating structure[END_REF] and Github2 .

Gaussian Mixture Model with sequentially appearing clusters (GMMSEQ)

The GMMSEQ method introduced in this paper is based on a GMM with time-varying proportions. The model is described in Section 2.1, and parameter estimation is addressed in Section 2.2.

Model

Gaussian mixture models. In a mixture model, the data are supposed to follow a probability distribution defined as a weighted sum of K distributions:

p(x i ; θ) = K k=1 π k g(x i ; θ), (4) 
where π k denotes the proportion of component k and g can be, for example, a Gaussian, Gamma or Student-t probability density function (pdf); the vector of all parameters is represented by θ. In AE data clustering, GMM's [START_REF] Mclachlan | Mixture models. Inference and applications to clustering[END_REF] have been widely used [START_REF] Sawan | Unsupervised learning for classification of acoustic emission events from tensile and bending experiments with open-hole carbon fiber composite samples[END_REF][START_REF] Frigieri | A mel-frequency cepstral coefficient-based approach for surface roughness diagnosis in hard turning using acoustic signals and gaussian mixture models[END_REF][START_REF] Prem | Acoustic emission monitoring of reinforced concrete beams subjected to four-pointbending[END_REF][START_REF] Sagar | A probabilistic analysis of acoustic emission events and associated energy release during formation of shear and tensile cracks in cementitious materials under uniaxial compression[END_REF][START_REF] Das | Machine learning based crack mode classification from unlabeled acoustic emission waveform features[END_REF][START_REF] Fuentes | Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling[END_REF] and are considered in the following developments. Each component in the mixture ( 4) is then a Gaussian pdf:

φ(x i ; µ k , Σ k ) = 1 (2π) d |Σ k | exp - 1 2 (x i -µ k ) T Σ k -1 (x i -µ k ) , (5) 
where µ k and Σ k are, respectively, the mean and covariance matrix of component k.

After observing a realization x 1 , . . . , x N from an iid sample, the likelihood function is

L(θ; x 1 , . . . , x N ) = N i=1 K k=1 π k φ(x i ; µ k , Σ k ), (6) 
where θ = (µ 1 , . . . , µ K , Σ 1 , . . . , Σ K , π 1 , . . . , π K-1 ). The maximum likelihood estimates (MLE's) 100 cannot be computed in closed form and are usually computed numerically using the Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF].

New model. We propose to modify (6) in order to incorporate a time-dependency of the data through the proportions:

p(x 1 , . . . , x N ; θ) = N i=1 K k=1 π ik φ(x i ; µ k , Σ k ), (7) 
where the bold subscript in π ik emphasizes the difference with (6), i.e., the proportion of each cluster k are now dependent on the timestamps t i through additional variables α ik :

π ik = α ik K =1 α i , k = 1, . . . , K, (8) 
where α i1 = 1 for i = 1, . . . , N and

α ik = β k 1 + exp[-γ k (t i -τ k )]
, k = 2, . . . , K, i = 1, . . . , N.

Parameters τ k , β k and γ k in the logistic (sigmoid) activation functions (9) must satisfy the following constraints:

0 ≤ τ k ≤ T, β k ≥ 0, γ k ≥ 0 ( 10 
)
for k = 2, . . . , K. As illustrated in Figure 1 (bottom-left), the degree of activation α ik of the k-th cluster depends on the real timestamps of AE signals through a sigmoid function delayed by τ k , with upper limit β k and slope γ k . The delay τ k represents the onset time of cluster k.

The proportions π ik in (8) are equal to the normalized activation degrees. An example of how proportions can vary in time is shown in Figure 5b.

The apparently simple modification of GMM brought about by making the proportions in (6) dependent on time allows us to tackle the problem mentioned in Section 2, concerning the inability of standard approaches to manage continuous and irregularly spaced-in-time timestamps. By associating a sigmoid function to each cluster, GMMSEQ is, to our knowledge, the first clustering method dedicated to AE data able to estimate, directly from data, parameters related onsets, growth and kinetics of clusters. Its performance will be studied in Section 3. Parameter estimation in this new model requires a specific, and more complex EM algorithm, described in the next section.

Parameter estimation

Maximum-likelihood parameter estimation in GMM's is usually carried out using the EM algorithm [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF], an approach that will also be used here. However, there is no closed-form expression to update parameters τ k , β k and γ k in the M-step, which makes it necessary to use a gradient algorithm. The algorithm is described in detail below.

Objective function. The first step is to write down the complete-data log-likelihood function for our model:

c (θ) = N i=1 K k=1 y ik log π ik + y ik log φ(x i ; µ k , Σ k ), (11) 
where

θ = ({µ k , Σ k } K k=1 , {τ k , β k , γ k } K k=2
) is the parameter vector, and the y ik 's are binary clustermembership indicator variables such that y ik = 1 if observation i belongs to k, and y ik = 0 otherwise. Here, variables y ik are missing. At each iteration q of the EM algorithm, we thus replace c by its conditional expectation given the observed data, which yields the so-called auxiliary function Q [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]:

Q(θ, θ (q) ) = N i=1 K k=1 y (q) ik log π ik Q 1 + N i=1 K k=1 y (q) ik log φ(x x x i ; µ k , Σ k ) Q 2 , ( 12 
)
with y

(q) ik = E θ (q) [Y ik | x x x i ].
We can observe that the term Q 2 on right-hand side of ( 12) is identical to that of the auxiliary function for a standard GMM (6) with fixed proportions, for which parameter updates that maximizes Q(θ, θ (q) ) are known (and recalled below). The difference between our EM procedure and the usual one for GMM's thus resides in the maximization of the first term Q 1 with respect to the parameters defining the proportions π ik . This procedure is detailed below.

E-step.

In the E-step, we compute the conditional expectations y (q) tk from the current parameter values as [START_REF] Mclachlan | Mixture models. Inference and applications to clustering[END_REF]: [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF] with φ given by ( 5).

y (q) ik = φ(x x x i ; µ (q) k , Σ (q) k )π (q) ik K l=1 φ(x x x i ; µ (q) l , Σ (q) l )π (q) il
M-step for µ k and Σ k . In the M-step, parameters µ k and Σ k are first updated by maximizing Q 2 . The update equations are [START_REF] Mclachlan | Mixture models. Inference and applications to clustering[END_REF]:

µ (q+1) k = 1 N k i y (q) ik x x x i , (14) 
with

N k = i y (q)
ik , and

Σ (q+1) k = 1 N k i y (q) ik (x x x i -µ (q+1) k )(x x x i -µ (q+1) k ) . (15) 
M-step for τ k , β k and γ k . Since no explicit update equations for parameters τ k , β k and γ k can be obtained, they need to be updated by an iterative optimization procedure. To enforce the constraints [START_REF] Pomponi | Wavelet based approach to signal activity detection and phase picking: Application to acoustic emission[END_REF], we first introduce the following auxiliary variables:

τ k = T 1 + exp(-ξ k ) , β k = b 2 k , γ k = g 2 k . ( 16 
)
The calculation of the derivatives of Q 1 with respect to ξ k , b k and g k is detailed in Appendix A.

Using the gradient, we can then use any unconstrained nonlinear optimization procedure. In the experiments reported in Section 3, we used a trust region algorithm implemented in the MATLAB 2020b Optimization toolbox. Several schemes were implemented and tested, included a Generalized EM [START_REF] Chatterjee | Analysis of a generalised expectation-maximisation algorithm for gaussian mixture models: a control systems perspective[END_REF] and various optimization algorithms. The trust region method globally provided the best results.

Regularisation of the τ k 's

In the considered application related to acoustic emission data clustering, physical knowledge can be available suggesting when, in the timeline of a test, some damages must have occurred. This information can be provided, for example, as prior values τ prior k for τ k (for some or all k depending on the application). In this case, the auxiliary function ( 12) can be replaced by a regularised version

Q r (θ, θ (q) ) = Q(θ, θ (q) ) -λ τ -τ prior 2 2 , ( 17 
)
where λ is a regularization coefficient, • is the L 2 norm and τ is the vector of τ k 's for which a prior value is available. In that case, the updating is modified for τ according to Equation A.8.

Experiments

The GMMSEQ method is first illustrated on a toy data set in Section 3.1. It is then applied to real experimental data from a mechanical system in Section 3.2.

Simulated data set

Model for data generation. A simulated data set was generated from the following model with K = 4 clusters:

µ 1 = 1 1 , µ 2 = 2 3 , µ 3 = 3 5 , µ 4 = 5 6 ,
and

Σ 1 = 0.3 0.2 0.2 0.2 , Σ 2 = 0.3 0.2 0.2 0.2 , Σ 3 = 0.2 0.1 0.1 0.3 , Σ 4 = 0.2 0.1 0.1 0.2 .
The numbers of observations in the four clusters were set to [1000, 1000, 3000, 1000] and the timestamps were generated randomly from a uniform distribution

t i = t i-1 + U [0,1] ,
starting from t 1 = 0. The value of T is thus max i t i and the length of the data is equal to 6000.

The parameters defining the time-varying proportions were set as follows: β = 2.72 10.1 30.2 , γ = 0.009 0.015 0.012 , and the τ k were initialized to the time stamps t i with i ∈ {488, 1990, 2472}.

Because the proportions in this model vary with time, the mixture density also depends on time. Contours of the mixture density are depicted in Figure 2 at four different time steps showing the gradual emergence of the four clusters. Figure 3 shows a contour plot of the likelihood function (assuming the correct number of clusters) as a function of β 4 and γ 4 , with the other parameters fixed at their maximum likelihood estimates.

Model selection. In practice, we need a criterion allowing us to select the number of clusters automatically. For mixture models, common choices are the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the Integrated Completed Likelihood (ICL) [START_REF] Biernacki | Choosing models in model-based clustering and discriminant analysis[END_REF][START_REF] Baudry | Combining mixture components for clustering[END_REF]. We used these three criteria to select the best GMMSEQ model for the simulated data. For each run, the model was initialized by: 1. A standard GMM (with a Matlab 2020b implementation provided in the Statistics and Machine Learning Toolbox); 2. The K-means algorithm (provided in the same toolbox as for GMM); 3. A segmentation of the data into K blocks of the same size and a Gaussian distribution fitted to each block.

For the three types of initialization, 10 runs were performed for a number of clusters varying from 2 to 10. After convergence, for each number of clusters, the best run was selected according to the value of likelihood computed by [START_REF] He | An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems[END_REF]. The values of AIC, BIC and ICL were finally computed for each model. The criteria are plotted against the number K of clusters in Figure 4. AIC shows an evolution presenting an "elbow" from which the number of clusters can be chosen, while BIC and ICL have a minimum for the correct number of clusters (K = 4). For ICL, depending on the runs, the evolution can show several local minima as in the figure or a single one, but the global minimum is always located at the correct value. For different runs, BIC and AIC showed a consistent elbow-shaped behavior with a minimum that can be more or less pronounced for the correct number of clusters. This study with simulated data suggests that the three criteria have the ability to provide the correct number of clusters. Onset estimation. In the introduction, we motivated this work by the need to process data with continuous timestamps and we proposed a model including an estimation of the onsets of clusters. The time-varying proportions (π ik ) are represented in Figure 5 using the true values of parameters, the estimated ones, and the values used in the initialization of GMMSEQ. We can observe that the estimated proportions (β), kinetics parameter (γ) and onsets (τ ) are very close to the true ones, validating the identification procedure in GMMSEQ.

Real data

Data set description. The benchmark data set ORION-AE [START_REF] Verdin | Multisensor acoustic emission datasets reflecting supervised untightening of bolts in a jointed vibrating structure[END_REF][START_REF] Ramasso | Monitoring a bolted vibrating structure using multiple acoustic emission sensors: A benchmark[END_REF] is used in this section to demonstrate the performance of the GMMSEQ method. The experiments were designed to reproduce the loosening phenomenon observed in aeronautics, automotive or civil engineering structures where parts are assembled together by means of bolted joints (Figure 6). The bolts can, indeed, be subject to self-loosening under vibrations. Consequently, it is of paramount importance to develop sensing strategies and algorithms for early loosening estimation [START_REF] Zhang | Continuous monitoring of tightening condition of single-lap bolted composite joints using intrinsic mode functions of acoustic emission signals: a proof-of-concept study[END_REF].

The ORION-AE data set is composed of five parts collected during five measurement campaigns denoted as B, C, D, E and F in the sequel. ORION is a simple jointed structure made of two plates manufactured in a 2024 aluminium alloy, linked together by three bolts. The contact between the plates is done through machined overlays. The contact patches have an area of 12 × 12 mm 2 and are 2 mm thick. The structure was submitted to a 100 Hz harmonic excitation force. The load was applied using a Tyra electromagnetic shaker, which can deliver a 200 N force. The force was measured using a PCB piezoelectric load cell and the vibration level was determined next to the end of the specimen using a Polytec laser vibrometer.

Seven tightening levels were applied on the upper bolt. The tightening was first set to 60 cNm with a torque screwdriver. After a 10 seconds vibration test, the shaker was stopped and this vibration test was repeated after a torque modification at 50 cNm. Torque modifications at 40, 30, 20, 10 and 5 cNm were then applied. Note that, for campaign C, the level 20 cNm is missing. All dimensions are detailed in Figure 6 to enable readers to reproduce the test. For each campaign, four sensors were used: a laser vibrometer and three different AE sensors (micro-200-HF, micro-80 and the F50A from Euro-Physical Acoustics) with various frequency bands were attached onto the lower plate. All data were sampled at 5 MHz. The velocimeter was used to control the amplitude of the displacement of the top of the upper beam so that it remains constant for all tightening levels. During vibrations, stick-slip transitions or shocks in the interface generate small AE events which are dependent on bolt tightening. These sources of AE signals have to be detected and identified from the data stream, which constitutes the challenge. AE data sets are generally unlabeled because it is not possible to identify the AE source with certainty for all AE signals. However, the ORION-AE data set contains raw data for which the tightening levels are known. Therefore, it represents a good case study for performance benchmarking of clustering methods like GMMSEQ or existing methods like GMM, K-means, hierarchical clustering (HC) and Gustafson-Kessel (GK) algorithms. The data set is presented in a companion paper [START_REF] Ramasso | Monitoring a bolted vibrating structure using multiple acoustic emission sensors: A benchmark[END_REF] with illustrations of raw data and signal processing for different campaigns. Figure 7 depicts the data in campaign F where the green curve represents the raw AE data (as used in this study). The stairstep curve in blue represents the tightening levels. The red curve corresponds to the vibrometer data (reflecting harmonic vibration at 100 Hz with displacement control).

Signal processing. When using a feature-based clustering algorithm like GMMSEQ, the raw AE data must be first preprocessed by a hit detection procedure. This procedure is common to most AE data analyses and therefore, it is not often described in publications because commercial softwares are often used. In this work, the method used was described in [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF]. It is summarized in Appendix B and some illustrations of this method applied to the ORION-AE data can also be found in [START_REF] Ramasso | Monitoring a bolted vibrating structure using multiple acoustic emission sensors: A benchmark[END_REF]. The method provides the following features, which are commonly used in AE literature [START_REF] Holdings | Pci-2 based ae system user's manual[END_REF][START_REF] Sause | Pattern recognition approach to identify natural clusters of acoustic emission signals[END_REF][START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF][START_REF] Kattis | Noesis: Advanced data analysis, pattern recognition & neural networks software for acoustic emission applications[END_REF]:

Rise time, counts, PAC-energy, duration, amplitude, average frequency, RMS, average signal level, counts to peak, reverberation frequency, initiation frequency, signal strength, absolute energy, partial power in the intervals [0, 20, 100, 200, 300, 400, 500, 600, 800, 1000] kHz, frequency centroid, peak frequency, weighted peak frequency. To this set of features were added the following ones: the Renyi number calculated from the scalogram as in [START_REF] Gonzalez Andino | Measuring the complexity of time series: an application to neurophysiological signals[END_REF] using a Morlet wavelet, as well as the frequency of the maximum of energy in the scalogram 3 . The set of feature vectors obtained in each campaign were then postfiltered using a 31-sample moving median applied to each dimension of the resulting feature matrix in order to ensure temporal coherence. Principal Components Analysis (PCA) was then used to extract the n first components explaining 99% of the variance. The value of n varies for the different campaigns as shown in Table 1, where sensor micro-200-HF was used.

Figure 8 displays the first two components for campaign E and sensor micro-200-HF, where the colors are related to the level of loosening.

Results

We ran the algorithm 10 times for each of the same three initialization methods mentioned in Section 3.1. The number of clusters was varied from 4 to 14. For each number of clusters, the parameter estimates corresponding to the highest likelihood were selected.

In Section 1, we discussed the importance of the onsets in the analysis of AE data set (represented by τ k in GMMSEQ). These values were stacked for each campaign, independently of the type of initialization or the number of clusters. Figure 9 shows how to interpret, in terms ot timeline, Figures 10 to 14 representing, in blue, the normalised histograms of onsets estimated by GMMSEQ for each campaign. The dashed lines represent the instant when the tightening level was changed. These lines are separated by about 10 s (duration of each period) for each level; therefore, the horizontal axis, which represents time, can also be related to the tightening level: 0 s to 10 s corresponding to 60 cNm, 10 s to 20 s corresponding to 50 cNm, and so on until 60 to 70 s for 5 cNm (see Figure 9). The red bars represent the histograms when a prior on onsets is integrated through [START_REF] Manson | Visualisation and dimension reduction of acoustic emission data for damage detection[END_REF] for K=7 clusters. In Figures 10 to 14, a peak in the histogram means that several models provided similar values for τ k . Note that there are, for the blue bars, 14 k=4 k = 99 estimates of the τ k values, whereas there are K = 7 values of τ k for the red bars. In the latter case, we can observe that the prior on onsets allows us to obtain values of τ k approximately equal to the ground truth (dashed lines) for all data sets and all tightening levels. The red bars depict a uniform distribution since the τ k values are all different.

For the purely unsupervised setting (in blue), we can observe that the values of τ k with the highest probability generally correspond to the instants when a change was made on the tightening level. This observation shows that GMMSEQ is able to discover the levels of tightening from the features. For each campaign we can make the following comments, remembering that the levels were approximately equal to 60 (cluster 1), 50 (cluster 2), 40 (cluster 3), 30 (cluster 4), 20 (cluster 5), 10 (cluster 6) and 5 cNm (cluster 7):

• Campaign B (Figure 10): Levels 60, 40, 30, 20 are precisely detected with a clear peak centered at the correct place. Levels 50, 10 and 5 shows less noticeable peaks but the bins in the histogram show modes that are well positioned around the expected positions.

• Campaign C (Figure 11): For this campaign, a level is missing, which explains why there is no peak around 5 cNm (right-hand side); the levels were indeed shifted by one level in the figure due to one missing level. Figure 11 shows clear peaks at the correct positions. There are also two additional peaks at 25s (30 cNm) and (5 cNm), which may be due to a change in the level during vibration tests.

• Campaigns D (Figure 12) and E (Figure 13): All levels are precisely detected with a clear peak centered at the correct location.

• Campaign F (Figure 14): Levels 60, 50, 40, 20, 10, 5 are precisely detected with a clear peak (or two close peaks) centered at the correct location. For level 30 the peak is less noticeable.

Some additional peaks appear around 5 s (middle of the period of 60 cNm) and 43 s (20 cNm), which may be due to a change in the level during vibration tests. From these figures, it can also be observed that GMMSEQ generated onsets with quite similar probability (except for campaign B). The bars in the histogram generally exhibit quite similar values for all tightening levels, which means that the number of AE signals for each tightening level are quite similar. Since the vibration has a fixed frequency independent of the tightening, the sources of AE signals seem to be activated in each cycle. The evaluation of onsets was made by four criteria, each presenting a different view of the performance, namely precision, recall, entropy and ARI, detailed below. Each estimated onset was compared with the ground truth: If it remains within only ±0.5 second around a true value then it is considered as a correct estimation and qualified as a true positive (TP). If the onset is outside the interval, it is counted as a false positive (FP). If no onset is found in a given interval, a false negative (FN) is counted. TP, FN and FP are counted for all onsets. Then the accuracy is given by P r = T P T P + F P , which means that if a method has no false positive, the accuracy is 1. A low accuracy corresponds to many FP. Therefore, a complementary criteria, called recall, is also used: Rec = T P T P + F N which means that if a method does not miss any onset, the recall is 1. A method with many FP can have a high recall if all expected onsets are found.

We also expect the methods to find onsets at similar locations when the number of clusters is changed (as explained in the analysis of histograms discussed above). For that purpose, the normalized entropy of the cumulated onsets is computed as

Ent = - 6 or 7 k=1 p(k) log 2 p(k) log 2 K ,
where the sum is over the number of levels (6 for campaign C and 7 for the others) and with p(k) = number of estimated onsets falling in ± 0.5 s around the truth total number of onsets estimated by the method which means that if a method provides n onsets and there are n/7 onsets per level correctly located (or n/6 for campaign C), then the entropy is 1. An example of cumulated onsets with perfect location (leading to an entropy of 1) is given with the red bars in Figures 10 to 14. The fourth criterion is the Adjusted Rand Index (ARI) [START_REF] Vinh | Information theoretic measures for clusterings comparison: Is a correction for chance necessary?[END_REF]. ARI is a corrected-for-chance (and, thus, more severe) version of the Rand Index used for clustering evaluation in the presence of a ground truth (in the present case, it corresponds to the tightening levels). The ARI is 1.00 for perfect clustering and 0 in case of random assignment of clusters or totally wrong clustering. The results are summarized in Tables 3,4, 5, 6 and 7 for all campaigns (B to F respectively), all criteria (precision, recall, entropy and ARI) and several clustering methods (results will be described below).

For comparison purposes, four standard clustering methods were applied: K-means, a standard GMM, a hierarchical clustering (HC) using the Ward method and the Gustafson-Kessel (GK) algorithm (implementations are available in the MATLAB Statistics and Machine Learning (SML) toolbox and on MATLAB Central). The same matrix of features was used for all methods, including GMMSEQ. The K-means algorithm was run 10 times and the model with the smallest sum of squared-distance was selected. GMM was run 10 times with full covariance matrices for each cluster and the model with the highest likelihood was selected. A GMM was used to initialize the Gustafson-Kessel algorithm with fuzziness degree set to 1.5 as proposed in [START_REF] Ramasso | Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites[END_REF]. For these three methods, the onsets are defined by the time of the first occurrence of every cluster. For GMMSEQ, onsets were given by τ values. Figures 15 to 19 depict the ARI for all methods and all campaigns with respect to the number of clusters. In each figure, the curves with diamond markers represent the ARI for GMMSEQ. For this method, it can be observed that the maximum is generally observed for 6 to 9 clusters which is consistent with the expected number of tightening levels. These figures show that GMMSEQ globally outperforms K-means, GK, HC and GMM clustering methods. A more detailed analysis is provided in Tables 3 to 7 using the four aforementioned criteria. The ARI is the average over 6 to 9 clusters (and 5-8 for campaign C). In the tables, the "bold" font is used for the best overall for a given criterion, while an "underlining" is used when comparing only GMMSEQ and the original GMM. Therefore, if one of these two methods is both underlined and bold then it represents the best of all methods for a given criterion. The tables show that:

• For all campaigns and all methods, the precision is very low meaning that no method is able to detect all onsets at ±0.5 second around the true value.

• For the recall criterion, GMMSEQ provides a value of 1.0 for four campaigns, while providing a value of 0.85 (against 0.714 only for GMM) for campaign D. It globally outperforms all methods. The recall of the original GMM is never better than the recall of GMMSEQ.

• According to the entropy, GMMSEQ provides the best performance for four campaigns, and is only outperformed by HC for campaign D (0.852 against 0.921). The entropy of the original GMM is never better than the entropy of GMMSEQ.

• Finally, GMMSEQ provides the best ARI for all campaigns. Compared to the GMM, we have +13.3%, +13.3%, +19%, +1.3% and +10.3% for, respectively, campaign B, C, D, E and F.
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The ARI of the original GMM is thus never better than the ARI of GMMSEQ.

These tables show that there is no best method for all campaigns and according to all criteria. However, from a quantitative point of view, GMMSEQ globally outperforms the GMM which shows the significance of the proposed model. The previous results and analyses demonstrated the usefulness of considering onsets, τ , as parameters to be identified from AE data together with clusters parameters. The simulated data also allowed us to show that our model was able to perfectly recover not only the onsets but also the levels of activation, β, and kinetics, γ for four clusters with different behavior. In order to conclude this study, we propose an analysis of these parameters, at the core of GMMSEQ, on the real data.

Figures 20 to 24 illustrate the degrees of activation, π tk , in each campaign computed from the GMMSEQ model with the highest ARI. The value π tk is obtained from τ , β and γ using Eq. 8. Onsets, kinetics and levels of activation are well illustrated on these figures. It is expected that the levels of activation (the height of curves) should be similar for all tightening levels since we have about the same number of cycles per tightening level. This is well illustrated on the figures.

Ideally, level 1 should tend to 1 due to the normalization (Eq. 8), which is the case for campaigns C (Fig. 21, D (Fig. 22) and F (Fig. 24). For campaign B and E, three or more clusters coexist at the start of the test (60 cNm) but the highest probability is still assigned to the correct cluster.

Another expectation is that the kinetics should be similar between levels and the slope of the changes in the values π tk should be quite steep because the tightening levels are modified abruptly according to [START_REF] Ramasso | Monitoring a bolted vibrating structure using multiple acoustic emission sensors: A benchmark[END_REF]. This is also well illustrated on the figures where the slopes are globally similar and steep for each new onset detected. It is worth noting that gradual onsets are obtained for campaign E characterized by lower γ values (estimated as [0, 3.8587, 2.9722, 1.2202, 2.4498, 3.4912, 1.9343] seconds so an average of 0.719 ± 0.652 s at one standard deviation) than for the other campaigns (with average of 1.298 ± 1.31 s for B, 2.77 ± 1.46 s for C, 2.07 ± 1.17 s for D and 2.28 ± 1.35 s for F). As seen on Figure 21, the slopes for C are the steepest ones and the γ values are also the largest as expected. The differences between values are sufficiently important to strongly modify the slopes through the exponential in the sigmoid function (Eq. 9).

The onsets are not always sufficient to characterize the performance. Indeed, despite two confusions illustrated for campaign E (levels 1/2 and 6/7), the clustering is close to be perfect with an ARI around 0.975. It means that the mixture parameters (means and covariances of GMMSEQ) also play a key role in the performance (as expected since these parameters pave the feature space).

Despite high ARI values compared to Tables 34567(in these tables, the best model was selected based on maximum likelihood, not based on the ARI), the location of the sigmoids is not perfect: For example, for campaign D, we can observe that the second level (50 cNm) is not detected properly with a confusion with level 1 (60 cNm). Level 2 is detected but its probability is around 0.2 against 0.8 for level 1. With these curves, the end-user is thus able to visually identify some confusions which is not possible with other methods. A similar behavior can be observed for campaign B. For this campaign, the best ARI is obtained with 11 clusters with several of them concentrated around levels 1 and 2. These confusions partly explain the result of 0.762 (resp. 355 0.722) for the ARI of campaign D in Table 5 (resp. campaign B in Table 3). It is worth noting that, in both cases, the main confusion arises between two consecutive levels (60 cNm and 50 cNm) which is more understandable than if the confusion were between very distinct levels. 

Conclusion

GMMSEQ is a new clustering method introduced to manage continuous timestamps attached to AE signals. Timestamps are exploited during the clustering process allowing one to gain new insights into the AE data streams. In addition, cluster onsets, growth rates and levels of activation through time are estimated together with the parameters of their distributions in the feature space. Therefore, this new clustering method has unique characteristics that stand out from existing methods for AE data interpretation.

GMMSEQ represents the first clustering method specifically developed for AE data, and it is the only method that allows AE users to estimate, directly from data, parameters related onsets, growth and kinetics. To our knowledge, there is no method with similar features in the literature.

The performance of the method has been demonstrated on simulated and real data sets. Close to perfect results were obtained on simulated data with noise. On real data, we demonstrated the relevance of the clusters during loosening of bolted joints. The comparison with four standard clustering methods and according to different performance criteria shows that GMMSEQ not only provides useful qualitative indications about the timeline of clusters, but also has better performance in terms of cluster characterization.

This work opens up several perspectives. First, the approach can be extended to other mixture models considering non-Gaussian distributions. Our shared code includes, for example, an extension to a mixture of multivariate Student-t distributions, which is not described in this paper.

The possibility to include prior information about the cluster onsets was addressed in the paper using a regularization of the objective function. Prior information about some other parameters such as the cluster centers could be exploited too, which could potentially improve the convergence of the algorithm to "better" estimates with a clear physical interpretation. The possibility of incorporating physical knowledge in the objective function could also be investigated.

Another direction to explore concerns the optimization procedure. In this paper, we have assumed that all data are available at once (offline or batch analysis). The extension to online clustering with evolving parameters is a promising perspective for application, for example, to structural health monitoring or statistical process control.

Finally, while being developed with the goal to process AE data, this clustering method can be applied to other data sets containing data streams with gradually emerging clusters. The gradients of the auxiliary function Q with respect to the variables of interest are given below. We first start by expressing the derivatives with respect to the instrumental variables, namely g k , b k , ξ k for each component in the mixture:

∂Q ∂g k = ∂Q ∂γ k ∂γ k ∂g k = 2g k ∂Q ∂γ k , k = 2, . . . , K (A.1a) ∂Q ∂b k = ∂Q ∂β k ∂β k ∂b k = 2b k ∂Q ∂β k , k = 2, . . . , K (A.1b) ∂Q ∂ξ k = ∂Q ∂τ k ∂τ k ∂ξ k = ∂Q ∂τ k τ k 1 - τ k T , k = 2, . . . , K, (A.1c)
where (A.1c) uses the following property of the logistic function Λ 

(u) = 1/(1 -exp(-u)): Λ (u) = Λ(u)[1 -Λ(u)].
=              K q=1 α iq -α il K q=1 α iq 2 if k = l -α il K q=1 α iq 2 if k = l (A.4)
for all k and l in {1, . . . , K}.

Using the equality α ik = β k Λ(γ k (t i -τ k )), we have

∂α ik ∂β k = Λ(γ k (t i -τ k )) = α ik β k , (A.5) ∂α ik ∂γ k = β k (t i -τ k )Λ (γ k (t i -τ k )) (A.6a) = α ik (t i -τ k )[1 -Λ(γ k (t i -τ k )] (A.6b) = α ik (t i -τ k ) 1 - α ik β k , (A.6c)
and

∂α ik ∂τ k = -γ k β k Λ (γ k (t i -τ k ))] (A.7a) = -γ k α ik [1 -Λ(γ k (t i -τ k ))] (A.7b) = -γ k α ik 1 - α ik β k . (A.7c)
Remark 1. To impose the constraint γ 1 = . . . = γ K , we simply sum the derivatives w.r.t. γ k :

∂Q r ∂γ = K k=1 ∂Q ∂γ k ,
where ∂Q ∂γ k is computed using (A.2b).

When considering a prior on onsets, the derivatives w.r. The AE signals were detected from the raw data stream using a method developed in [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF]. This method is made of three steps: It starts by filtering the data stream, then applying a standard hit detection procedure, and finally feature extraction. The data were initially prefiltered using a high-pass filter of order 5 with a band-pass frequency set to 10 kHz and a band-pass ripple equal to 0.2 dB in order to remove the DC component of the data stream.

Step 1. The wavelet filtering step relies on wavelet denoising applied by frames of 250000 samples, practically shown in [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF] to be a good compromise between computation time and quality of denoising with a better adaptation to noise and signals with varying properties. As advised in [START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF], the wavelet was set to a Daubechies "dB45" made of 90 coefficients, together with 14 levels of decomposition in order to detect the onset of AE signals. The soft Donoho-Johnstone universal threshold was applied on wavelet coefficients with a rescaling using a level-dependent estimation of level noise. A compensation of the group delay induced by the filtering was also performed. Step 2. After filtering, a hit detection is applied. The goal is to find the start and end samples for each AE signal remaining after filtering. For that, samples are treated gradually. When one sample becomes above a threshold on amplitude (in our case 1.2 mV), samples are stored until one sample falls below the threshold. In this case, a counter is run. If the samples remain below the threshold during "HDT" microseconds (set to 1100 µs), then the end of the signal is found. If not, the counter is reinitialised to 0. When HDT is reached, a second counter, "HLT" (set to 80 µs), is run during which the detector is blind. It means that if the signal becomes above the threshold, it is not taken into account. This procedure is applied after filtering. However, the start and end are used to extract the AE signal in the raw data stream, not the filtered one (because the filtering alters the signals). This is one of the characteristics of the method.

Step 3. The features are finally extracted on each AE signal detected. Common features are described in [START_REF] Holdings | Pci-2 based ae system user's manual[END_REF][START_REF] Sause | Pattern recognition approach to identify natural clusters of acoustic emission signals[END_REF][START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF][START_REF] Kattis | Noesis: Advanced data analysis, pattern recognition & neural networks software for acoustic emission applications[END_REF]: Rise time, counts, PAC-energy, duration, amplitude, average frequency, RMS, average signal level, counts to peak, reverberation frequency, initiation frequency, signal strength, absolute energy, partial power in the intervals [0, 20, 100, 200, 300, 400, 500, 600, 800, 1000] kHz, frequency centroid, peak frequency, weighted peak frequency. To this set of features were added the following ones: the Renyi number calculated from the scalogram [START_REF] Gonzalez Andino | Measuring the complexity of time series: an application to neurophysiological signals[END_REF] using a Morlet wavelet, as well as the frequency of the maximum of energy in the scalogram. For example features calculated in the frequency domain are well described in [START_REF] Holdings | Pci-2 based ae system user's manual[END_REF][START_REF] Sause | Pattern recognition approach to identify natural clusters of acoustic emission signals[END_REF]. Time-based features are described in [START_REF] Holdings | Pci-2 based ae system user's manual[END_REF][START_REF] Kharrat | A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites[END_REF][START_REF] Kattis | Noesis: Advanced data analysis, pattern recognition & neural networks software for acoustic emission applications[END_REF].

Illustration. After AE hit detection, the start time of each AE signal is superimposed onto vibrometer data for measurement B for a few cycles in Figure B.25. We can observe that about 1-2 signals per cycle are found in this sample of about 1 s. This is confirmed in Table 1 that summarized the average over all campaigns and all files. We can also observe that the onsets are generally positioned on a similar displacement level (measured by the vibrometer) which means that the hit detection procedure finds signals mostly located at similar levels of displacement. This result demonstrates the reproducibility of the tests as well as the relevance of the hit detection. 

Figure 1 :

 1 Figure 1: Proposed methodology and illustration on a real data stream extracted from one of the campaigns.

Figure 2 :

 2 Figure 2: Contours of the mixture density at four successive time steps. The corresponding proportions π ik correspond to the locations of the square markers in Figure 5.

Figure 3 :

 3 Figure 3: Contours of the log-likelihood in the plane (β4, γ4), the other parameters being fixed to their maximum likelihood estimates.

Figure 4 :

 4 Figure 4: AIC, BIC and ICL of GMMSEQ models with different numbers of clusters for the simulated data.

Figure 5 :Figure 6 :

 56 Figure 5: Evolution of the proportions π ik as a function of time (in arbitrary units and was generated randomly as explained in the text). Squared-shape markers represent the values used in Figure 2.

Figure 7 :

 7 Figure7: Tightening levels, acoustic emission and laser vibrometer data superimposed for measurements "F" and sensor micro-200-HF. The x-axis is here represented using the time of test (about 70 s), starting from 60 cNm from the left (around between t ∈ [0, 10] s) to 5 cNm on the right (from t > 60 s).

Figure 8 :

 8 Figure 8: First two principal components of campaign E data.

Figure 9 :

 9 Figure 9: Timeline of tightening levels to interpret the next figures.

Figure 10 :

 10 Figure 10: Campaign B: (blue) Histogram of τ k estimates for the three initialization methods and K ranging from 4 to 14, and (red) histogram with prior on onsets with regularization.

Figure 11 :

 11 Figure 11: Campaign C: (blue) Histogram of τ k estimates for the three initialization methods and K ranging from 4 to 14, and (red) histogram with prior on onsets with regularization.

Figure 12 :

 12 Figure 12: Campaign D: (blue) Histogram of τ k estimates for the three initialization methods and K ranging from 4 to 14, and (red) histogram with prior on onsets with regularization.

Figure 13 :

 13 Figure 13: Campaign E: (blue) Histogram of τ k estimates for the three initialization methods and K ranging from 4 to 14, and (red) histogram with prior on onsets with regularization.

Figure 14 :

 14 Figure 14: Campaign F: (blue) Histogram of τ k estimates for the three initialization methods and K ranging from 4 to 14, and (red) histogram with prior on onsets with regularization.

Figure 15 :

 15 Figure 15: Campaign B: Comparison between standard clustering methods and GMMSEQ.

Figure 16 :

 16 Figure 16: Campaign C: Comparison between standard clustering methods and GMMSEQ.

Figure 17 :

 17 Figure 17: Campaign D: Comparison between standard clustering methods and GMMSEQ.

Figure 18 :

 18 Figure 18: Campaign E: Comparison between standard clustering methods and GMMSEQ.

Figure 19 :

 19 Figure 19: Campaign F: Comparison between standard clustering methods and GMMSEQ.

Figure 20 :

 20 Figure 20: Campaign B: π tk values provided by GMMSEQ.

Figure 21 :

 21 Figure 21: Campaign C: π tk values provided by GMMSEQ.

Figure 22 :

 22 Figure 22: Campaign D: π tk values provided by GMMSEQ.

Figure 23 :

 23 Figure 23: Campaign E: π tk values provided by GMMSEQ.

Figure 24 :

 24 Figure 24: Campaign F: π tk values provided by GMMSEQ.

  fHr7flvvOO?usp=sharing. Appendix A. Gradient of Q with respect to g k , b k and ξ k

  t. τ k (A.2c) become: k -2λ τ k -τ prior k , k = 2, . . . , K, i = 1, . . . , N. (A.8) Algorithm 1 summarises the different steps of the gradient computation. Appendix B. Summary of the hit detection and feature extraction steps

Figure B. 25 :

 25 Figure B.25: Position of onset of acoustic emission signals onto vibrometer data (for measurements B, 60 cNm, first file of the data set, using micro-200-HF sensor). The horizontal axis represents the sample index.

Table 1 :

 1 Some statistics about the feature extraction step (sensor µ200HF ).

	Campaign	B	C	D	E	F
	# of tightening levels	7	6	7	7	7
	# features before PCA	32	32	32	32	32
	# features after PCA	16	17	16	23	25
	Total # of signals	10, 866 9, 461 9, 285 15, 628 17, 810
	Average # of signals per period	1.55	1.57	1.33	2.23	2.54

Table 2 :

 2 Performance of GMMSEQ with and without ("w/o") prior on onsets, according to four measures of performance. Each measure is bounded in [0, 1] (the higher the better).

	Campaign	Precision	Recall	Entropy	ARI
		with w/o with w/o with w/o	with	w/o
	B	1.00 0.123 1.00 1.00 1.00 0.944 0.708 0.731
	C	1.00 0.146 1.00 1.00 1.00 0.992 0.974 0.966
	D	1.00 0.098 1.00 0.857 1.00 0.852 0.733 0.842
	E	1.00 0.156 1.00 1.00 1.00 0.955 0.772 0.774
	F	1.00 0.143 1.00 1.00 1.00 0.961 0.899 0.847

Table 3 :

 3 Campaign B: Performance

	Algo/perf	precision recall entropy ARI
	Kmeans	0.066	0.571 0.597	0.601
	GMM	0.100	0.857 0.805	0.589
	HC	0.067	0.571 0.712	0.652
	GK	0.081	0.714 0.706	0.620
	GMMSEQ 0.123	1.00 0.944	0.722

Table 4 :

 4 Campaign C: Performance

	Algo/perf	precision recall entropy ARI
	Kmeans	0.188	1.00 0.853	0.810
	GMM	0.200	1.00 0.931	0.814
	HC	0.118	0.667 0.739	0.877
	GK	0.177	1.00 0.963	0.732
	GMMSEQ 0.146	1.00 0.992	0.947

Table 5 :

 5 Campaign D: Performance

	Algo/perf	precision recall entropy ARI
	Kmeans	0.152	1.00 0.799	0.480
	GMM	0.086	0.714 0.791	0.572
	HC	0.212	1.00 0.921	0.493
	GK	0.098	0.714 0.801	0.511
	GMMSEQ 0.097	0.857 0.852	0.762

Table 6 :

 6 Campaign E: Performance

	Algo/perf	precision recall entropy ARI
	Kmeans	0.065	0.429 0.561	0.529
	GMM	0.146	1.00 0.891	0.786
	HC	0.069	0.571 0.600	0.651
	GK	0.058	0.429 0.547	0.665
	GMMSEQ 0.156	1.00 0.956	0.799

Table 7 :

 7 Campaign F: Performance

	Algo/perf	precision recall entropy ARI
	Kmeans	0.062	0.571 0.646	0.515
	GMM	0.146	1.00 0.896	0.729
	HC	0.078	0.714 0.774	0.565
	GK	0.100	0.714 0.728	0.431
	GMMSEQ 0.143	1.00 0.961	0.832

  The derivatives with respect to β k , γ k and τ k are given by

	∂Q ∂β k	=	K l=1	N i=1	∂Q ∂π il	∂π il ∂α ik	∂α ik ∂β k	, k = 2, . . . , K, i = 1, . . . , N	(A.2a)
	∂Q ∂γ k	=	K l=1	N i=1	∂Q ∂π il	∂π il ∂α ik	∂α ik ∂γ k	, k = 2, . . . , K, i = 1, . . . , N	(A.2b)
	∂Q ∂τ k	=	K l=1	N i=1	∂Q ∂π il	∂π il ∂α ik	∂α ik ∂τ k	, k = 2, . . . , K, i = 1, . . . , N.	(A.2c)
	We have				∂Q ∂π il	=	(q) il y π il	, l = 1, . . . , K	(A.3)
	and								
				∂π il				
				∂α ik				

  Algorithm 1 Gradient computation. Require:β k , γ k , τ k , k = 2, . . . , K for i = 1 to N do for k = 2 to K doCompute ∂α ik ∂β k using (A.5) Compute ∂α ik ∂γ k using (A.6) Compute ∂α ik ∂τ k using (A.7) for l = 1 to K do Compute ∂π il ∂α ik using (A.4)

	end for	
	end for	
	end for	
	for k = 2 to K do	
	Compute ∂Q ∂β k using (A.2a)	
	Compute ∂Q ∂γ k using (A.2b)	
	Compute ∂Q ik ∂τ k using (A.2c) or (A.8) Compute ∂Q ∂b k using (A.1b) Compute ∂Q ∂g k using (A.1a)
	Compute ∂Q ∂ξ k using (A.1c) end for Ensure: Gradient ∂Q ∂ω = ∂Q ∂b k , ∂Q ∂g k , ∂Q ∂ξ k	K k=2

The number of AE signals depends on the materials and the type of loading. For example, hundreds of thousands of signals were detected for composite materials during quasi-static tests reported in[START_REF] Ramasso | Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites[END_REF].

The project is publicly available at https://github.com/emmanuelramasso/MIXMOD_SEQUENTIAL.

The feature matrices for all campaigns are available at https://drive.google.com/drive/folders/ 1H413RxYu4ya7YMEgF_lTh_fHr7flvvOO?usp=sharing.
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Codes and data

Codes to reproduce all results on clustering are available on Github at https://github. com/emmanuelramasso/MIXMOD_SEQUENTIAL. Data are also available in their raw format at