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Brain—computer interfaces allow interactions based on brain activities detected in electroencephalography.
Despite important improvements in the last decade, some subjects still achieve poor performances without
any identified cause. On the one hand, State-of-the-art methods for online decoding are based on covariance
matrices seen as elements of a Riemann manifold. On the other hand, functional connectivity is a powerful
method to characterize the brain activity. The proposed software combines functional connectivity and

covariance within a Riemannian framework to increase the robustness of brain-computer interfaces.
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1. Introduction

Brain—computer interfaces allow to communicate without requir-
ing any muscular capabilities and is therefore widely investigated for
assisting people with motor deficiencies. The electroencephalography
(EEG), as a low-cost and light-weight technology, is a very common
choice for recording the electric potential generated by brain activ-
ities [1]. Despite the large range of clinical applications, BCI fails
in being used outside the laboratory. One of the main challenges to
overcome is the high inter-subject variability, referred in the literature
as the “BCI inefficiency” phenomenon, associated with a non-negligible
percentage of the users who cannot control the BCI device even after
several training sessions. Among the promising approaches to tackle
this issue is the improvement of the neural decoders [2]. For this
purpose, studies have elicited new features that relied on covariance
matrices, like Cov = %X XT for an EEG signal X of T signal
samples, and on adjacency matrices. Those adjacency matrices are
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based on specific functional connectivity estimators, in particular the
imaginary coherence and the instantaneous coherence. They result
frorr; the coherency defined for a given frequency bin f as, Coh;;(f) =
i ()
/S DNS; )
auto-spectral density. The imaginary coherence (ImCoh) corresponds to
the imaginary part of the coherency [3]. The instantaneous coherence
(Instantaneous) corresponds to the real part of the coherency [4].
The software described hereafter proposes an original solution that
takes advantage of complementary features to improve the decoder’s
performance.

where S; ;(f) is the cross-spectral density and S;;(f) the

2. A Riemannian take on functional connectivity for brain-
computer interfaces

Riemannian geometry-based methods are now the gold standard in
motor imagery-based BCI [5]. They have been applied to covariance
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Fig. 1. (A) Overview of the proposed approach. Cov stands for covariance, Instantaneous stands for instantaneous coherence and ImCoh stands for imaginary coherence, and EN
stands for Elastic-net. (B) Replicability assessments and comparison with state-of-the-art pipelines. Analysis performed with 2-class datasets. lhrh stands for left- vs right-hand.

matrices that are symmetric and positive-definite matrices (SPD) and
obtained from EEG signals. Here, in order to take into account the
user’s specificity and more particularly the interconnected nature of
brain functioning, we considered, in addition to covariance matrices,
connectivity information extracted from functional connectivity estima-
tors [6]. Our solution tackle the inter-subject variability by combining
multiple feature space to extract robust representation (see Fig. 1-A).

We follow the FAIR principles to ensure the reproducibility of your
work, grounding the open science inside our software production. We
develop a Python code, hosted and versioned on GitHub, that follow
the scikit-learn API [7] for designing machine learning pipelines. Our
approach is built upon existing open source libraries, such as PyRie-
mann' for Riemannian geometry tools, MNE [8] for handling EEG files
and MOABB? to conduct the benchmark.

In this software, we introduce three novel developments: (i) new
functional connectivity estimators, (ii) new projection method on Rie-
mannian manifold and (iii) new evaluation for benchmarks. For (i),
MNE already propose connectivity estimators, but they are suited to
offline analysis and not online decoding. We adapt these existing
estimators to handle trial-based estimation. The connectivity matrices
yield by these estimators are positive semi-definite, meaning that they
are not necessarily full rank, and thus could fail to be SPD. We compute
the projection on the manifold of SPD matrices of the instantaneous
coherence (Instantaneous) and the imaginary coherence (ImCoh) to
ensure that consistency of our processing steps. With (ii), we develop
a projection method on the manifold of SPD matrices to ensure that
we could apply Riemannian approaches on these matrices. At last, we
develop in (iii) a new benchmark method based on MOABB classes for
facilitating the selection of model parameters (see Fig. 1-B).

3. Impact overview

The developed software has already been used in several stud-
ies. In [9], the diversity of the classifiers based on connectivity and

1 https://pyriemann.readthedocs.io
2 https://neurotechx.github.io/moabb/

covariance is highlighted, indicating that it is a good candidate for
ensemble learning. This approach won a competition on clinical BCI
data [10] and its application to another dataset is shown in [11]. A
thorough analysis of connectivity estimators, preprocessing step and
ensemble learning method developed in [11] along with a complete
evaluation on multiple datasets and different experimental
conditions.

There are several research questions that can be pursued as a result
of our software. First, we introduce new features in BCI, by demon-
strating that it is possible to apply Riemannian classifiers on functional
connectivity matrices. There are several estimators, like non-linear or
robust ones, that could be evaluated. Next, we rely on an ensemble
method to combine multiple classifiers for improving the robustness
of our decoding. It is possible to improve this ensemble method by
incorporating domain-specific knowledge. Last, dimensionality reduc-
tion methods could be applied to project connectivity and covariance
in lower dimensional manifold.

It should be noted that our software development is a work in
progress. We want to improve the replicability of our approach by
contributing to the libraries that help to build our software. We will
contribute to pyRiemann® and MOABB* to integrate the development
made in our work. Brain—-computer interfaces is a multidisciplinary
topic that requires advanced signal processing techniques, state-of-the-
art machine learning classifiers and good knowledge in neuroscience.
This requires joint efforts to ensure a high software quality and open
contributions to allows for replicable studies.
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