Luc Dartois
email: luc.dartois@lacl.fr

Paul Gastin
email: paul.gastin@lsv.fr

R Govind
email: govindr@cse.iitb.ac.in

Shankara Narayanan

Efficient Construction of Reversible Transducers from Regular Transducer Expressions

Keywords: 2012 ACM Subject Classification Theory of computation Ñ Transducers transducers, regular expressions, parser, evaluation

The class of regular transformations has several equivalent characterizations such as functional MSO transductions, deterministic two-way transducers, streaming string transducers, as well as regular transducer expressions (RTE).

For algorithmic applications, it is very common and useful to transform a specification, here, an RTE, to a machine, here, a transducer. In this paper, we give an efficient construction of a two-way reversible transducer (2RFT) equivalent to a given RTE. 2RFTs are a well behaved class of transducers which are deterministic and co-deterministic (hence allows evaluation in linear time w.r.t. the input word), and where composition has only polynomial complexity.

We show that, for full RTE, the constructed 2RFT has size doubly exponential in the size of the expression, while, if the RTE does not use Hadamard product or chained-star, the constructed 2RFT has size exponential in the size of the RTE.

Introduction

One of the most celebrated results in theoretical computer science is the robust characterization of languages using machines, expressions and logic. For regular languages, these three dimensions are given by finite state automata, regular expressions as well as monadic second-order logic, while for aperiodic languages, the respective three pillars are counterfree automata, star-free expressions and first-order logic. The Büchi-Elgot-Trakhtenbrot theorem was generalized by Engelfreit and Hoogeboom [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF], where regular transformations were defined using two-way transducers (2DFTs) as well as by the MSO transductions of Courcelle [START_REF] Courcelle | Monadic second-order definable graph transductions: A survey[END_REF]. The analogue of Kleene's theorem for transformations was proposed by [START_REF] Alur | Regular combinators for string transformations[END_REF] and [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], while [START_REF] Dartois | SD-regular transducer expressions for aperiodic transformations[END_REF] proved the analogue of Schützenberger's theorem [START_REF] Schützenberger | Sur certaines opérations de fermeture dans les langages rationnels[END_REF] for transformations. In another related work, [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF][START_REF] Baudru | From two-way transducers to regular function expressions[END_REF] proposes a translation from unambiguous two-way transducers to regular function expressions extending the Brzozowski and McCluskey algorithm. All these papers propose declarative languages which are expressive enough to capture all regular (respectively, aperiodic) transformations.

Our starting point in this paper is the combinator expressions presented in the declarative language RTE of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF][START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF]. Like classical regular expressions, these expressions provide a robust foundation for specifying transducer patterns in a declarative manner, and can be widely used in practical applications. An important question left open in [START_REF] Alur | Regular combinators for string transformations[END_REF], [START_REF] Dartois | SD-regular transducer expressions for aperiodic transformations[END_REF], [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] is the complexity of the procedure that builds the transducer from the combinator expressions. Providing efficient constructions of finite state transducers equivalent to expressions is a fundamental problem, and is often the first step of algorithmic applications, such as evaluation. In this paper, we focus on this problem. First, we recall the combinators from [START_REF] Alur | Regular combinators for string transformations[END_REF], [START_REF] Dartois | SD-regular transducer expressions for aperiodic transformations[END_REF] and [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] in order of increasing difficulty. It is known that the combinators of [START_REF] Alur | Regular combinators for string transformations[END_REF] and [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] are equivalent (they both characterize regular transformations), even though the notations differ slightly. Our notations are closer to [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF].

We begin presenting the combinators. (i) The base combinator is e Ź v which maps any w P Lpeq to the (constant) value v.

(ii) The sum combinator f `g where f or g is applied to the input w depending on whether w P dompf q or w P dompgq, (iii) The Cauchy product f ¨g splits the input into two parts and outputs the concatenation of the results obtained by applying f on the first part and g on the second part, and (iv) The star combinator f ‹ which splits the input into multiple parts and outputs the concatenation of evaluating f on the respective parts from left to right.

All these operators can be ambiguous and imply a relational semantics. We denote the fragment of RTE restricted to combinators (i´iv) as RTErRats; this fragment captures all rational transformations (those computed by a non-deterministic one way transducer, 1NFT). (v) The reverse concatenation combinator f ¨r g which works like f ¨g except that the output is now the concatenation of the result of applying g on the second part of the split of the input followed by f on the first part, (vi) The reverse star combinator f ‹ r , also like f ‹ , splits the input into multiple parts but outputs the concatenation of evaluating f on each of the parts from right to left.

The fragment of RTE with combinators (i´vi) is denoted RTErRat, . r , ‹ r s. Finally, we have the most involved combinators, namely (vii) The Hadamard product f d g, which outputs the concatenation of applying f on the input followed by applying g on the input, as long as the input is in the domain of both f and g. With d also, we have the fragment RTErRat, . r , ‹ r , ds. (viii) The chained k-star re, f s k‹ which factorizes an input w into u 1 u 2 ¨¨¨u n , each u i belonging to the language of e, and applies f on all contiguous k blocks u i`1 ¨¨¨u i`k , 0 ď i ď n ´k and finally concatenates the result. (ix) The reverse chained k-star re, f s k‹ r also factorizes an input w into u 1 u 2 ¨¨¨u n , each u i belonging to the language of e, and applies f on all contiguous k blocks from the right to the left, and the result is concatenated.

RTE is the full class consisting of all combinators (i´ix), and its unambiguous fragment is equivalent to regular transformations (those computed by a deterministic two-way transducer, 2DFT). Note that we consider chained k-star of [START_REF] Dartois | SD-regular transducer expressions for aperiodic transformations[END_REF] here, even though chained 2-star suffice for expressing all regular transformations, since the idea of our construction is general. will be produced. Our gu-semantics on the other hand, is more intuitive, and hence easier to use. Another important point to note is that the gu-semantics does not restrict the expressiveness of RTEs. Although [START_REF] Alur | Regular combinators for string transformations[END_REF], [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] proposed the lu-semantics and showed the equivalence between RTEs and SST/2DFT, it can be seen from their equivalence proofs that the RTE h constructed there from a SST/2DFT T satisfies udomphq " dompT q and rrhss U " rrT ss.

Efficient Construction of 2RFT.

The second contribution is the efficient construction of 2RFTs from RTE specifications. Given h P RTE, and a word w, we first "parse" w according to h using a 1NFT P h called the parser (see Page 12 for a discussion why P h is a one way machine). The parsing relation of h w.r.t. a word w, P h pwq, can be seen as a traversal of possible parse trees of w w.r.t. h. Examples are given in Sections 4 and 6. Each possible parsing in P h pwq introduces pairs of parentheses pi i q to bracket the factor of w matching subexpressions h i of h. To illustrate the need for such a parsing, consider the expression h " f 1 ¨pf 2 d f 3 q. To evaluate h on some input w, one must guess the position in w where the scope of dompf 1 q ends, and dompf 2 d f 3 q begins. Note that we must apply f 2 , f 3 on the same suffix of w, necessitating a two way behaviour. After applying f 2 on a suffix v of w " u ¨v, one must come back to the beginning of v to apply f 3 . It is unclear how one can do this without inserting some markers, especially if the decomposition is ambiguous. If w does not have an unambiguous parsing w.r.t. h, then P h will non-deterministically produce the parsings of w. For each α P rrP h sspwq, the projection of α to Σ is w. Next, we construct an evaluator which is a two-way reversible transducer (2RFT) T h which takes words in P h pwq as input, and produces words in rrhss R pwq, where rrhss R denotes the relational semantics of h. That is, rrhss R " rrT h ss ˝Ph .

2RFT for the globally unambiguous semantics. Note that the 1NFT P h does not check whether w P udomphq. To obtain the gu-semantics rrhss U , we have to restrict to words in udomphq. This is achieved by proving that udomphq coincides with words w P dompP h q such that |P h pwq| " 1. The unambiguity of the domain is checked by constructing an automaton that accepts the set of words having at most one parsing w.r.t. h. We construct a reversible automaton B 1 of size 2 Op P h 2 q to do this, where P h denotes the size of P h . Next, we uniformize P h to obtain a 2RFT P 1 h with the same domain as P h and such that rrP 1 h ss Ď rrP h ss R : when running on u P dompP h q, the 2RFT P 1 h produces some output v such that pu, vq P rrP h ss R . The size of P 1 h is 2 Op P h q . Then, we construct a machine P U h that first runs the automaton B 1 without producing anything and then runs P 1 h if B 1 has accepted. This transducer is reversible and computes the parsing relation on words belonging to udomphq. Its size is 2 Op P h 2 q . Finally, the composition of T h and P U h gives a 2RFT T U h which realizes rrhss U . Figure 1 shows all the components used in our construction, and their interconnection: the parser P h (a 1NFT), the uniformizer P 1 h of the parser P h (a 2RFT), the functionality checker of the parser (NFA B and RFA B 1) and the final transducer T h (a 2RFT).

We now discuss the sizes of the 2RFT obtained for various RTE fragments. RTErRats. In this case, the parser P h and the evaluator T h have sizes P h , T h ď |h|. Thus, the composed machine obtained from P U h and T h has size 2 Op|h| 2 q . Notice that a oneway deterministic automaton accepting the domain of h would already be of exponential size. Indeed we can use a standard construction producing a rational transducer from an expression h P RTErRats, but it would realize the relational semantics of h and not its unambiguous semantics. RTErRat, . r , ‹ r s. We have the same complexity here as for RTErRats. Uniformizer of P h Some parsing of w w

B 1 (2RFA) Complement of B B 1 " 2 Op P h q 2 w if in udomphq Y domphq P 1 h (2RFT) P 1 h " 2 Op P h q
Unambiguous parsing of w

P U h Figure 1
The topmost figure shows the parser 1NFT P h which, on an input w, produces a parsing in P h pwq. This is taken as input by the 2RFT T h , and producing a possible output γ in hpwq. This denotes the relational semantics of h, where hpwq is not unique. The second figure from the top shows the 2RFT P U h which works only on words w having a unique parsing, and produces this unique parsing P h pwq. This is then taken as input by the 2RFT T h , producing the output hpwq.

Here, w P udomphq, and T h produces the output hpwq. The third figure describes the automaton B used for checking the functionality of the 1NFT P h : B accepts all words w which are not in udomphq. Note that the complement of B, a reversible automaton B 1 is used in P U h . The fourth figure shows the uniformization of P h , given by the 2RFT P 1 h . This machine outputs some parsing of w. The last figure shows P U h . This first uses the reversible automaton B 1 to filter words not in udomphq. All words accepted by B 1 either lie in udomphq, or outside domphq. For words w P udomphq, there is a unique parsing, and P 1 h produces this unique parsing of w.

on to this fragment, the useful functions dup and rev which respectively duplicates and reverses the input, the complexity is still the same. RTErRat, . r , ‹ r , ds. Unlike the Rat, . r , ‹ r combinators, d requires to read the input twice. It is noteworthy that our parser P h is still a 1NFT. However, in this case, its size is P h ď |h| widthphq while T h ď 5|h|. The width of an RTE h is intuitively the maximal number of times a position in w needs to be read to produce the output. Even though our parser is still a 1NFT, its size is affected by the width. Notice that the domain of a Hadamard product h " f d g is the intersection of the domains of its arguments. Moreover, the parser P h may be used to recognize the domain of h. This gives an exponential lower bound on the size of any possible parser for expressions in RTErRat, ds (see Proposition 10).

For expressions h P RTErRat, . r , ‹ r , ds, the size of the final 2RFT T U h is 2 Op|h| 2¨widthphq q . Note that the fragments RTErRat, . r , ‹ r s, along with dup, rev have widthphq " 1. For full RTE, the parser P h is still a 1NFT and the bounds are the same as RTErRat, . r , ‹ r , ds, except now, we have T h ď 5|h|widthphq.

Related Work.

A paper which has looked at the evaluation of transducer expressions is [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF]. Here, the authors investigate the complexity of evaluation of a DReX program on a given input word. A DReX program is a combinator expression [START_REF] Alur | Regular combinators for string transformations[END_REF] and works with the lu-semantics. A major difference between [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF] and our paper is that [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF] does not construct a machine equivalent to a DReX program, citing complexity considerations and the difficulty in coming up with an automaton for the lu-semantics. Instead, [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF] directly solve the evaluation problem using dynamic programming.

To the best of our knowledge, our paper is the first one to efficiently construct a 2RFT from an RTE. This 2RFT may be used to solve algorithmic problems on transformations specified by transducer expressions. One such problem is indeed the evaluation of any number of input words w; we can simply run our constructed 2RFT on w in time linear in |w|. Note that [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF] also evaluates with the same linear bound, under what they call the "consistent" semantics, a restriction of the lu-semantics. The consistent semantics is also more restrictive than our gu-semantics. To mention an instance, the combinepf, gq combinator in [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF] is analogous to the Hadamard product f d g, with the added restriction that that dompf q " dompgq. Our gu-semantics for f d g only requires that the input is in dompf q X dompgq.

Structure of the paper. Section 2 introduces our models of automata and transducers while Section 3 defines the Regular Transducers Expressions, as well as the relational semantics and the unambiguous semantics considered throughout the paper. It also states our results. The following sections are devoted to the constructions of transducers and the proofs of our main results, in an incremental fashion: Section 4 treats the case of Rational relations, Section 5 handles some simple extensions, and Sections 6 and 7 treats the Hadamard product and k-star operators respectively. Finally, Section 8 shows how to compute a reversible transducer for the unambiguous semantics.

Automata and Transducers

Automata. Let Σ be an alphabet, i.e., a finite set of letters. A word u over Σ is a possibly empty sequence of letters. The set of words is denoted Σ ˚, with ε denoting the empty word. Given an alphabet Σ, we denote by Σ $% the set Σ Z t$, %u, where $ and % are two fresh symbols called the left and right endmarkers. A two-way finite state automaton (2NFA) is a tuple A " pΣ, Q, q I , F, ∆q, where Σ is a finite alphabet, Q is a finite set of states partitioned into the set of forward states Q `and the set of backward states Q ´, q I P Q `is the initial state, F Ď Q `is the set of final states, ∆ Ď Q ˆΣ$% ˆQ is the state transition relation. By convention, q I and q F P F are the only forward states verifying pq I , $, qq P ∆ and pq, %, q F q P ∆ for some q P Q. However, for any backward state p ´P Q ´, ∆ might contain transitions pp ´, $, qq and pq, %, p ´q, for some q P Q.

Before defining the semantics of our two-way automata, let us remark that we choose one of several equivalently expressive semantics of two-way. The particularity of the one we chose, which is the one in [START_REF] Dartois | On reversible transducers[END_REF], is that p1q the reading head is put between positions rather than on, and p2q the set of states is divided into `states and ´states. The advantage of this semantics is that the sign of a state defines what position the head reads both before and after this state in a valid run. A `state (resp. ´state) reads the position to its right (resp. to its left) and the previous position read was on its left (resp. on its right). Intuitively, in a transition pp, a, qq both states move the reading head half a position, either to the right for `states or to the left for ´states. Hence if p and q are of different signs, the reading head does not move, but the position read will be different.

We now formally define the semantics. A configuration u.p.u 1 of A is composed of two words u, u 1 such that uu 1 P $Σ ˚% and a state p P Q. The configuration u.p.u 1 admits a set of successor configurations, defined as follows. If p P Q `, the input head currently reads the first letter of the suffix u 1 " a 1 v 1 . The successor of u.p.u 1 after a transition pp, a 1 , qq P ∆ is either ua 1 .q.v 1 if q P Q `, or u.q.u 1 if q P Q ´. Conversely, if p P Q ´, the input head currently reads the last letter of the prefix u " va. The successor of u.p.u 1 after pp, a, qq P ∆ is u.q.u 1 if q P Q `, or v.q.au 1 if q P Q ´. A run of A on a word u P $Σ ˚% is a sequence of successive configurations " u 0 .q 0 .u 1 0 , . . . , u m .q m .u 1 m such that for every 0 ď i ď m, u i u 1 i " u. The run is called initial if it starts in configuration q I .u, final if it ends in configuration u.q with q P F , accepting if it is both initial and final. The language L A recognized by A is the set of words u P Σ ˚such that $u% admits an accepting run. The automaton A is called a one-way finite state automaton (1NFA) if the set Q ´" ∅, deterministic (2DFA) if for all pp, aq P Q ˆΣ$% , there is at most one q P Q verifying pp, a, qq P ∆, co-deterministic if for all pq, aq P QˆΣ $% , there is at most one p P Q verifying pp, a, qq P ∆ and F " tq F u. reversible (2RFA) if it is both deterministic and co-deterministic.

q I 0 1 q F $ % a b a, b (a) A 1DFA A1 q I `´`qF $ % a $ b b a, b (b) A 2RFT A2
Example. Let us consider the language L a Ď ta, bu ˚composed of the words that contains at least one a symbol. This language is recognized by the deterministic one-way automaton A 1 and represented in Figure 2a, and by the reversible two-way automaton A 2 , represented in Figure 2b. Note that A 1 is not co-deterministic in state 1 reading an a. In fact, this language is not recognizable by a one-way reversible automaton because reading an a from state 1 cannot lead to state 0, and adding a new state simply moves the problem forward.

The reversible two-way transducer solves this problem by using the left endmarker.

Transducers.

A two-way finite state transducer (2NFT) is a tuple T " pΣ, Γ, Q, q I , F, ∆, µq, where Γ is a finite alphabet; A T " pΣ, Q, q I , F, ∆q is a 2NFA, called the underlying automaton of T ; and µ : ∆ Ñ Γ ˚is the output function. A run of T is a run of its underlying automaton, and the language L T recognized by T is the language L A T Ď Σ ˚recognized by its underlying automaton. Given a run of T , we set µp q P Γ ˚as the concatenation of the images by µ of the transitions of T occurring along . The transduction R T Ď Σ ˚ˆΓ ˚defined by T is the set of pairs pu, vq such that u P L T and µp q " v for an accepting run of A T on $u%. Two transducers are called equivalent if they define the same transduction. A transducer T is respectively called one-way (1NFT), deterministic (2DFT), co-deterministic or reversible (2RFT), if its underlying automaton has the corresponding property. Note that while a generic transducer defines a relation over words, a deterministic, codeterministic or a reversible one defines a (partial) function from the input words to the output words since any input word has at most one accepting run, and hence at most one image. Extracting a maximal function from a relation is called a uniformization of a relation. Formally, given a relation on words R Ď Σ ˚ˆΓ ˚, a uniformization of R is a function f such that:

dompf q " dompRq " tu P Σ ˚| Dv P Γ ˚, pu, vq P Ru @u P dompf q, pu, f puqq P R.

Intuitively, a uniformization chooses, for each left component of R, a unique right component.

If R is already a function, then it is its only possible uniformization. Reversible transducers can be composed easily, and the composition can be done with a single machine having a polynomial number of states. Hence, when dealing with two-way machines, it is always beneficial to handle reversible machines. To this end, we specialize results from [START_REF] Dartois | On reversible transducers[END_REF] and [START_REF] Kondacs | On the power of quantum finite state automata[END_REF] respectively. § Lemma 1. Let T be a 1NFT with n states. Then we can construct a reversible 2RFT T 1 such that rrT 1 ss is a uniformization of rrT ss and T 1 has at most 144n 2 2 2n states.

Proof. Let T be a 1NFT and n its number of states. We write T 1 as the composition D ˝C where C is a co-deterministic one-way transducer and D is a deterministic one. The co-deterministic transducer C is a classical powerset construction that computes and adds to the input the set of co-reachable states of T . Its number of states is at most 2 n . The set of states of the deterministic transducer D is the same as T , and at each step, if it is in a state q, it uses the information given by C to select a successor of q that is also co-reachable. It can be made deterministic by using an arbitrary global order on the set of states of T . Its number of states is then n.

We conclude on the size of T 1 using two theorems from [START_REF] Dartois | On reversible transducers[END_REF], stating that C can be made into a reversible two-way C 1 with 4m 2 states with m the number of states of C (Theorem 2) and that D can be made into a reversible D 1 with 36n 2 states (Theorem 3). Finally, T 1 is defined as the composition D 1 ˝C1 , whose number of states is at most 36n 2 ¨4p2 n q 2 " 144n 2 2 2n . đ

We will also need a more specific result for computing the complement of an automaton. We rely on Proposition 4 of [START_REF] Kondacs | On the power of quantum finite state automata[END_REF]. § Lemma 2. Let A be a 1NFT with n states. Then we can compute a 2RFT B such that LpBq is the complement of LpAq, and B has at most 2 n`1 `6 states.

Proof. The proof is straightforward. First, we transform A into a deterministic automaton C by doing a classical powerset construction. Then C has 2 n states. By inverting the accepting states, we obtain C 1 which is deterministic and recognizes the complement of LpCq " LpAq. We conclude by using Proposition 4 of [START_REF] Kondacs | On the power of quantum finite state automata[END_REF], which states that from a deterministic automaton C 1 , we can construct a 2RFT B by adding 3 states to C 1 and doubling its number of states. The resulting automaton B is then reversible and its number of states is 2p2 n `3q " 2 n`1 `6. đ

Transducer expressions and their semantics

In this section, we formally define RTE, and then propose the most natural relational semantics. Then we define the unambiguous domain of a relation, and propose our global unambiguous semantics (called unambiguous semantics from here on) as a restriction of the relational semantics to the unambiguous domain. As already mentioned in the introduction, this semantics refines the unambiguous semantics which has been proposed in earlier papers. Finally, we state the main results of the paper, and an overview of our results.

Regular transducer expressions (RTEs).

Let Σ be the input alphabet and Γ be the output alphabet. For the combinator expressions, we use the following syntax:

h ::" e Ź v | h `h | h ¨h | h ¨r h | h ‹ | h ‹ r | h d h | re, hs k‹ | re, hs k‹ r
where e is a regular expression over Σ, v P Γ ‹ and k ě 1.

The semantics of the basic expression e Ź v is the partial function with (constant) value v and domain Lpeq, the regular language denoted by e. For instance, the semantics of ∅ Ź v is the partial function with empty domain and the semantics of Σ ‹ Ź v is the total constant function with value v. We use K and v as macros to respectively denote ∅ Ź ε and Σ ˚Ź v.

Since our goal is to construct "small" transducers from RTEs, we have to define formally the size of expressions. We use the classical syntax for regular expressions over Σ:

e ::" ∅ | ε | a | e `e | e ¨e | e ‹
where a P Σ. We also define inductively the number of literals occurring in a regular expression e, denoted by nlpeq: nlpεq " nlp∅q " 0, nlpaq " 1 for a P Σ, nlpe 1 `e2 q " nlpe 1 ¨e2 q " nlpe 1 q `nlpe 2 q and nlpe ‹ 1 q " nlpe 1 q. Notice that we have nlpeq ď |e| for all regular expressions e, where |e| denotes the standard size of expressions. Actually, if e is not a single letter a P Σ, we even have 1 `nlpeq ď |e|. Now, we define the size |h| of a regular transducer expression h. For the base case, we define |e Ź v| " 1 `p1 `nlpeqq `maxp1, |v|q. Note that when v " ε it still contributes 1 to the size of e Ź ε since it appears as a symbol. Also, we have chosen that the regular expression e contributes to 1 `nlpeq in this size. This is because the number of states of the Glushkov automaton associated with e (which will be used in our construction) is 1 `nlpeq. As discussed above, unless e is a single letter from Σ, we have 1 `nlpeq ď |e| (and otherwise nlpeq " 1 " |e|). For the inductive cases, we let |f `g| " |f ¨g| " |f ¨r g| " |f dg| "

1`|f |`|g|, |f ‹ | " |f ‹ r | " 1 `|f |, and |re, f s k‹ | " |re, f s k‹ r | " 1 `nlpeq `|f | `k `1.

Relational semantics

In general, the semantics of a regular transducer expression h is a relation rrhss R Ď Σ ‹ ˆΓ‹ . This is due to the fact that input words may be parsed in several ways according to a given expression. For instance, when applying a Cauchy product h " f ¨g to an input word w P Σ ‹ , we split w " uv and we output the concatenation of f applied to u and g applied to v. There might be several decompositions w " uv with u P dompf q and v P dompgq, in which case, the parsing is ambiguous and h applied to w may result in several outputs. We define inductively for an RTE h, the domain domphq Ď Σ ‹ and the relational semantics rrhss R Ď Σ ‹ ˆΓ‹ . As usual, for u P Σ ‹ , we let rrhss R puq " tv P Γ ‹ | pu, vq P rrhss R u.

We also define simultaneously the unambiguous domain udomphq Ď domphq which is the set of words w P domphq such that parsing w according to h is unambiguous. This is used in the next subsection to define a functional semantics.

h " e Ź v: As already discussed, we set rre Ź vss R " tpu, vq | u P Lpequ and udomphq " domphq " Lpeq. h " f `g: We have dompf `gq " dompf q Y dompgq, rrf `gss R " rrf ss R Y rrgss R and udompf `gq " pudompf qzdompgqq Y pudompgqzdompf qq. h " f ¨g (Cauchy product): We have dompf ¨gq " dompf q ¨dompgq, for w P Σ ˚we let rrf ¨gss R pwq " Ť w"uv rrf ss R puq ¨rrgss R pvq and a word w is in the unambiguous domain of f ¨g if there is a unique factorization w " uv with u P dompf q and v P dompgq and moreover this factorization satisfies u P udompf q and v P udompgq: udompf ¨gq " pudompf q ¨udompgqqztuvw | v ‰ ε and u, uv P dompf q and vw, w P dompgqu. h " f ¨r g (reverse Cauchy product): We have dompf ¨r gq " dompf ¨gq, udompf ¨r gq " udompf ¨gq, and for w P Σ ˚we let rrf ¨r gss R pwq " Ť w"uv rrgss R pvq ¨rrf ss R puq. h " f ‹ (Kleene star): We have domphq " dompf q ‹ , and for w P Σ ˚we let rrhss R pwq " Ť w"u1¨¨¨un rrf ss R pu 1 q ¨¨¨rrf ss R pu n q. Notice that if rrf ss R is proper, i.e., if ε R dompf q, then we may restrict n to at most |w| in the union above. Otherwise, the union will have infinitely many nonempty terms and rrhss R pwq may be an infinite language. Finally, udomphq is the set of words w P Σ ‹ which have a unique factorization w " u 1 ¨¨¨u n with n ě 0 and u i P dompf q for all 1 ď i ď n, and moreover, for this factorization, we have u i P udompf q for all 1 ď i ď n. Notice that if ε P dompf q, then udomphq " ∅. h " f ‹ r (reverse Kleene star): We have dompf ‹ r q " dompf ‹ q, udompf ‹ r q " udompf ‹ q, and for w P Σ ˚we let rrf ‹ r ss R pwq " Ť w"u1¨¨¨un rrf ss R pu n q ¨¨¨rrf ss R pu 1 q. h " f d g (Hadamard product): We have dompf d gq " dompf q X dompgq, for w P Σ ˚we let rrf d gss R pwq " rrf ss R pwq ¨rrgss R pwq and udompf d gq " udompf q X udompgq. h " re, f s k‹ (k-star): The domain of h is the set of words w P Σ ‹ which have a factorization w " u 1 ¨¨¨u n satisfying (:) n ě 0, u i P Lpeq for 1 ď i ď n, and u i`1 ¨¨¨u i`k P dompf q for 0 ď i ď n ´k. For w P Σ ˚we let rrre, f s k‹ ss R pwq "

ď w"u1¨¨¨un u1,...,unPLpeq n´k ź i"0 rrf ss R pu i`1 ¨¨¨u i`k q .
Notice that a factorization w " u 1 ¨¨¨u n with n ă k and u i P Lpeq for all 1 ď i ď n, automatically satisfies (:). Hence, Ť năk Lpeq n Ď domphq. Moreover, when n ă k, the empty product in the definition above evaluates to tεu which is the unit for concatenation of languages. The unambiguous domain of h is the set of words w P domphq which have a unique factorization w " u 1 ¨¨¨u n satisfying (:) and moreover, for this factorization, we have u i`1 ¨¨¨u i`k P udompf q for all 0 ď i ď n ´k. h " re, f s k‹ r (reverse k-star): We have dompre, f s k‹ r q " dompre, f s k‹ q, udompre, f s k‹ r q " udompre, f s k‹ q, and for w P Σ ˚we let rrre, f s k‹ r ss R pwq "

ď w"u1¨¨¨un u 1,...,un PLpeq rrf ss R pu n´k`1 ¨¨¨u n q ¨¨¨rrf ss R pu 1 ¨¨¨u k q .
We show that the inductive definitions of domphq and udomphq indeed give the domain of the relation rrhss R and ensure functionality. The proof is an easy structural induction. § Lemma 3. Let h be an RTE and w P Σ ‹ . Then, 1. w P domphq if and only if rrhss R pwq ‰ ∅. 2. If w P udomphq, then rrhss R pwq is a singleton.

Functional semantics

Our goal is now to define functions with regular transducer expressions h. This can be achieved by a restriction of the relational semantics rrhss R to a suitable subset of the domain domphq.

The first natural idea is to restrict to the set of input words w on which h is functional. Formally, let fdomphq " tw P domphq | |rrhss R pwq| " 1u be the functional domain of h. A functional semantics is obtained by restricting the relational semantics rrhss R to the functional domain fdomphq. The unacceptable problem with this approach is that fdomphq need not be regular. For instance, consider h " f `g where f " pa Ź c `b Ź εq ‹ and g " pa Ź ε `b Ź cq ‹ . We have domphq " dompf q " dompgq " ta, bu ‹ . Both f and g are functional: for w P ta, bu ‹ we have rrf ss R pwq " tc |w|a u and rrgss R pwq " tc |w| b u. We deduce that fdomphq is the set of words with same number of a's and b's, which is not a regular set.

We adopt the next natural idea, which is to restrict the relational semantics rrhss R to its unambiguous domain udomphq which ensures functionality by Lemma 3. It is not hard to check by structural induction that both domphq and udomphq are regular languages over Σ.

We define the unambiguous semantics as the restriction of the relational semantics rrhss R to the unambiguous domain udomphq. Formally, this is a partial function rrhss U : Σ ‹ Ñ Γ ‹ defined for w P udomphq by the equation rrhss R pwq " trrhss U pwqu.

Comparing the unambiguous semantics of [2], [8] with ours

1. L{v of [START_REF] Alur | Regular combinators for string transformations[END_REF], L ? v : K of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], our e Ź v.

The base function L{v in [START_REF] Alur | Regular combinators for string transformations[END_REF] corresponds to our simple expression e Ź v when Lpeq " L. This can be written as a if-then-else L ? v : K of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF]. The semantics of if-then-else K ? f : g checks if w is in the regular language K or not, and appropriately produces f pwq or gpwq. 2. f Ź g of [START_REF] Alur | Regular combinators for string transformations[END_REF], dompf q ? f : g of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], our f `g.

The conditional choice combinator f Ź g of [START_REF] Alur | Regular combinators for string transformations[END_REF] maps an input w to f pwq if it is in dompf q, and otherwise it maps it to gpwq. This can again be written as the dompf q ? f : g of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF].

Our analogue of this is f `g. Note that when dompf qXdompgq " ∅, all these combinators coincide.

3. f ' g of [2], f g of [8], our h " f ¨g.
The split-sum combinator f ' g of [START_REF] Alur | Regular combinators for string transformations[END_REF] is the Cauchy product f g of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF]. The semantics of f g, when applied on w P Σ ˚produces f puq ¨gpvq if there is a unique factorization w " u ¨v with u P dompf q and v P dompgq. Our analogue is h " f ¨g. As mentioned in the introduction, f ' g and f g are different from our Cauchy product h " f ¨g which works on udomphq. While our definition preserves associativity f ¨pg ¨hq " pf ¨gq ¨h, the notions ', from [START_REF] Alur | Regular combinators for string transformations[END_REF], [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] do not.

4. Σf of [2], f ' of [8], our f ‹ .
The iterated sum Σf of [START_REF] Alur | Regular combinators for string transformations[END_REF] is the Kleene-plus f ' of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] which, when applied to w P Σ produces f pu 1 q ¨¨¨f pu n q if w " u 1 ¨¨¨u n is an unambiguous factorization of w, with each u i P dompf q. This has the same problems as the Cauchy product compared to our f ‹ . 5. f `g of [START_REF] Alur | Regular combinators for string transformations[END_REF], f d g of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], our f d g.

The sum f `g of two functions in [START_REF] Alur | Regular combinators for string transformations[END_REF] is the Hadamard product f d g of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], which when applied to w produces f pwq ¨gpwq, provided w P dompf q X dompgq. This agrees with our notion of Hadamard product. 6. Σpf, Lq of [START_REF] Alur | Regular combinators for string transformations[END_REF], rL, f s 2' of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], our rL, f s 2‹ .

Finally, the chained sum Σpf, Lq of [START_REF] Alur | Regular combinators for string transformations[END_REF] is the two-chained Kleene-plus rL, f s 2' of [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], which, when applied to w having a unique factorization w " u 1 ¨u2 ¨¨¨u n with n ě 1 and u i P L for all 1 ď i ď n produces rL, f s 2' pwq " f pu 1 u 2 q ¨f pu 2 u 3 q ¨¨¨f pu n´1 u n q. We consider rL, f s k‹ instead of rL, f s 2‹ in this paper, and we additionally check if the blocks u i`1 ¨¨¨u i`k P udompf q for all 0 ď i ď n ´k.

To summarize, our notion of unambiguity is a global one, compared to the notion in [START_REF] Alur | Regular combinators for string transformations[END_REF], [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], which checks it only at a local level, thereby leading to the undesirable properties as pointed out already for the Cauchy, Kleene-star operators.

Main results

The goal of the paper is to construct efficiently, a two-way reversible transducer equivalent to a given RTE under the unambiguous semantics. Consider an RTE h and some word w P domphq. We first parse w by adding some marker symbols p f , q f inside w, signifying the scope of the subexpressions f in h. If w R udomphq, then there can be many ways of parsing w. We build a non-deterministic one-way transducer P h which produces all possible parsings of w. Figure 1 helps to get an overview of the construction. We check if w has at most one parsing using a 2RFA B 1 ; and if so, apply the uniformized parser transducer P 1 h on w to obtain the unique parsing of w. P U h represents the sequential composition of B 1 and P 1 h . Finally, the parsing of w, P U h pwq is taken as input by a 2RFT, the evaluator transducer T h , and produces the output of w according to h, making use of the markers.

Why not a 2-way machine for the parser?. A natural question to ask is whether we can have a two-way transducer for P h or even directly construct a two-way machine that evaluates h. We discuss some difficulties in this direction. Consider for instance h " f ¨g. We could have a non-deterministic two-way transducer (2NFT) which guesses the point where the scope of dompf q ends in the input w and where dompgq begins; if w R udomphq, it is unclear if in the backward sweep, the machine can go back to this correct point so as to apply f, g. On another note, if we design a 2NFT which first inserts a marker where the scope of dompf q ends and dompgq begins, and a second 2NFT which processes this, we will require the composition of these two machines. It is unclear how we can go about composition of two 2NFTs. Irrespective of these difficulties, a 1NFT is easier to use anytime than a 2NFT, if one can construct one, justifying our choice.

In Section 4, we define the parsing relation and construct the corresponding parser and evaluator for RTErRats, and then extend to RTErRat, . r , ‹ r s in Section 5. For these fragments, both the parser and the evaluator have size linear in the given expression. In Section 6, we extend the constructions to handle Hadamard product. There, we show that the size of the parser for h is at most exponential in a new parameter, called the width of h. Section 7 concludes by showing how to handle the k-star operators.

We define the width of an RTE h, denoted widthphq, intuitively as the maximum number of times a position in w needs to be read to output hpwq: widthpe Ź vq " 1, widthpf `gq " widthpf ¨gq " widthpf ¨r gq " maxpwidthpf q, widthpgqq, widthpf ‹ q " widthpf ‹ r q " widthpf q, widthpf d gq " widthpf q `widthpgq and widthpre, f s k‹ q " widthpre, f s k‹ r q " 2 `k ˆwidthpf q. Note that, for k-star and reverse k-star, we define the width as 2 `k ˆwidthpf q instead of 1 `k ˆwidthpf q simply to get a uniform expression for the complexity bounds.

We are ready to state our main theorems, which are proven for each fragment in the corresponding sections. § Theorem 4. Let h be a regular transducer expression. We can define a parsing relation P h , and construct an evaluator T h and a parser P h such that 1. We have dompP h q " domphq and udomphq " fdompP h q.

Moreover, for each w P domphq and α P P h pwq, the projection of α on Σ is π Σ pαq " w.

The evaluator T h is a 2RFT and, when composed with the parsing relation P h , it computes

the relational semantics of h: rrhss R " rrT h ss ˝Ph . Moreover, the number of states of the evaluator is T h ď 5|h|widthphq. If h does not use k-star or reverse k-star, then T h ď 5|h|.

The parser P h is a 1NFT which computes the parsing relation rrP

h ss R " P h .
The number of states of the parser is P h ď |h| widthphq . If h does not use Hadamard product or k-star or reverse k-star then P h ď |h|. § Theorem 5. Let h be a regular transducer expression. We can construct a 2RFT T U h which computes the unambiguous semantics of h: rrhss U " rrT U h ss. The number of states of T U h is T U h ď 2 Op|h| 2¨widthphq q . Moreover, if h does not use Hadamard product, k-star or reverse k-star, the number of states of T U h is 2 Op|h| 2 q . Theorem 4 is proved in the following sections. The statements for rational functions are proved in Lemma 6. Section 5 shows that the result still hold when the rational functions are enriched with reverse products. Lemmas 7, 8 and 9 respectively show that items 1,2 and 3 still hold when the Hadamard product is present, and finally Lemmas 12, 13 and 14 extend this to the full RTEs. Theorem 5 is proved in Section 8.

Rational functions

In this section, we deal with rational transducer expressions which consist of the fragment of regular transducer expressions defined by the syntax:

h ::" e Ź v | h `h | h ¨h | h ‹
where e is a regular expression over the input alphabet Σ and v P Γ ‹ . The semantics rrhss R and rrhss U are inherited from RTEs (Section 3).

Our goal is to parse an input word w P Σ ‹ according to a given rational transducer expression h and to insert markers resulting in parsed words α P P h pwq. From these marked words, it will be easier to compute the value defined by the expression, especially in the forthcoming sections where we also deal with Hadamard product, reverse Cauchy product, reverse Kleene star, and (reverse) k-star.

We construct a 1-way non-deterministic transducer (1NFT) P h which computes the parsing relation P h . We also construct a 2-way reversible transducer (2RFT) T h , called the evaluator, such that rrhss R " rrT h ss ˝Ph .

In this section, for a rational transducer expression h, both P h and T h will have a number of states linear in the size of h. We denote by T the number of states of a transducer T , sometimes also called the size of T . The evaluator T h will actually be 1-way, i.e., it is a 1RFT.

Parsing and Evaluation

The parser of an expression h will not try to check that a given input word w can be unambiguously parsed according to h. Instead, it will compute the set P h pwq of all possible ways to parse w w.r.t. h. Hence, we define a parsing relation P h . We start with an example on a classical regular expression e " a ‹ ¨b `a ¨b‹ . For each occurrence of a subexpression e i , we introduce a pair of parentheses pi i q which is used to bracket the factor of the input word matching e i . The above expression e has 9 occurrences of subexpressions: e 1 " a, e 2 " e ‹ 1 , e 3 " b, e 4 " e 2 ¨e3 , e 5 " a, e 6 " b, e 7 " e ‹ 6 , e 8 " e 5 ¨e7 and e 9 " e 4 `e8 " e. Hence, we use 9 pairs of parentheses pi i q for 1 ď i ď 9. The input word aab can be unambiguously parsed according to e, whereas the input word ab admits two parsings: P e paabq " tp9 p4 p2 p1 a 1 qp1 a 1 q 2 qp3 b 3 q 4 q 9 qu P e pabq " tp9 p4 p2 p1 a 1 q 2 qp3 b 3 q 4 q 9 q , p9 p8 p5 a 5 qp7 p6 b 6 q 7 q 8 q 9 qu Observe that the parsing of a word w.r.t. an expression e can be viewed as the traversal of the parse tree of w w.r.t. e. For instance, in Figure 3 we depict the unique parse tree of the word aab w.r.t. e given above. We also give the two parse trees of the word ab w.r.t. e.

Below, we define inductively the parsing relation P h for a rational transducer expression h. As in the examples above, when α P P h pwq with w P Σ ˚, then the projection of α on Σ ‹ is w. We simultaneously define the 1NFT parser P h which implements P h and the 2RFT evaluator T h . The Parser P h is a 1NFT satisfying the following invariants: 1. P h has a unique initial state q h 0 , which has no incoming transitions, 2. P h has a unique final state q h F , which has no outgoing transitions, 3. a transition of P h either reads a visible letter a ‰ ε and outputs a, or it reads ε and outputs pf or fq, where f is some subexpression of h. The Evaluator T h is a reversible transducer that computes h when composed with P h pwq. It will be of the form given in Figure 4, where ph h q is the pair of parentheses associated with (this occurrence of the transducer expression) h. It always starts on the left of its input, and ends on the right. This is trivial in this section as T h is one-way, but is a useful invariant in the following sections. Note that an output denoted ´on a transition stands for any word v P Γ ‹ . In all our figures, we will often use P f and T f for f a subexpression of h. Everytime, we separate the initial and final states of these machines from the main part which will be represented by a rectangle. This choice allows us to highlight the particular role of these states which are the unique entry and exit points. Nevertheless, they are still states of P f and T f when counting the number of states. Let h " e Ź v be a basic expression. The parsing relation is defined by P h pwq " tph w h q | w P Lpequ. Here, P h is actually functional and we have dompP h q " Lpeq " fdompP h q. Notice that Lpeq " domphq " udomphq.

```p h | ε h q | Th
Let A e be the non-deterministic Glushkov automaton that recognizes Lpeq. Recall that A e has a unique initial state q e 0 with no incoming transitions. Also, the number of states of A e is 1 `nlpeq where nlpeq is the number of literals in the regular expression e which denotes the language Lpeq, [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. Then, let A 1 e be the transducer with A e as the underlying input automaton and such that each transition simply copies the input letter to the output. The 1NFT A 1 e realizes the identity function restricted to the domain Lpeq. The parser P h is then A 1 e enriched with an initial and a final states q h 0 and q h F , and transitions q h 0 ε|ph Ý Ý Ñ q e 0 and q ε|hq Ý Ý Ñ q h F for q P F A 1 e , as given on Figure 5. The number of states in P h is P h " nlpeq `3 ď |h|. Notice that P h is possibly non-deterministic due to the Glushkov automaton A e . But it is functional and realizes the parsing relation: rrP h ss R " P h . The evaluator T h for h " e Ź v, as given in Figure 6, simply reads ph Σ ˚hq and outputs v while reading h q, satisfying the format described in Figure 4.

q h 0 q e 0 ε | ph b | b a | a a | a q h F ε | hq ε | hq ε | hq A 1 e Figure 5
Parser for h " e Ź v. The doubly circled states on the right are the accepting states of Ae. Note that, if the initial state of Ae is also an accepting state, then there is a transition

q e 0 ε|hq Ý Ý Ñ q h F in P h .
Remark that in this case the evaluator T h is independent of e, since the filtering on the domain Lpeq is done by the parser P h and not the evaluator T h . We have T h " 3 ď |h|. Also, for all w P Lpeq we have P h pwq " tph w h qu and rrT h sspph w h qq " v. Therefore, rrhss " rrT h ss ˝Ph .

``p h | ε a P Σ | ε h q | v Figure 6 Evaluator for h " e Ź v.
Let h " f `g and let ph h q be the associated pair of parentheses. Then, for all w P Σ ˚, P h pwq " tph α h q | α P P f pwq Y P g pwqu. We have dompP h q " dompP f q Y dompP g q " dompf q Y dompgq " domphq. Notice that here the parsing relation is not functional when dompf q X dompgq ‰ ∅.

The parser P h is as depicted in Figure 7 where the three pink states are merged and similarly the three blue states are merged so that the number of states of P h is P h " P f ` P g ď |f | `|g| ă |h|. Clearly, rrP h ss R " P h .

q h 0 ε | ph q h F ε | h q q f 0 q f F P f q g 0 q g F P g Figure 7 Parser for h " f `g.
The evaluator T h for h " f `g is as given in Figure 8. The initial states of T f and T g have been merged in the pink state, similarly the final states of T f and T g have been merged in the blue state. T h first reads ph and goes to a common initial state of T f and T g , then goes to the corresponding evaluator depending on whether it reads pf or pg. When reading fq or gq it goes to a common state instead of their final one, where it go to the unique final state by h q and producing ε. We have

T h " T f ` T g ď |f | `|g| ă |h|.
Let h " f ¨g and let ph h q be the associated pair of parentheses. Then, for all w P Σ ˚, P h pwq " tph α β h q | w " uv, α P P f puq, β P P g pvqu. We have dompP h q " dompP f q ¨ ```p

h | ε h q | ε T f T g pf | ε pg | ε `fq | ǵq | Figure 8 Evaluator for h " f `g.
dompP g q " dompf q ¨dompgq " domphq. Notice again that if the product of languages dompf q ¨dompgq is ambiguous, then P h is not functional. The parser P h is given in Figure 9 where the two pink states are merged so that the number of states of P h is P h " 1 ` P f ` P g ď 1 `|f | `|g| " |h|. We have, rrP h ss R " P h .

P f q f 0 q f F q h 0 ε | ph P g q g 0 q g F q h F ε | h q Figure 9 Parser for h " f ¨g.
The evaluator T h for h " f ¨g is as given in Figure 10. The final state of T f is merged with the initial state of T g . We have

T h " 1 ` T f ` T g ď 1 `|f | `|g| " |h|. `ph | ε pf | ε `fq | ´pg | ε `gq | ´hq | ε T f T g

Figure 10

Evaluator for h " f ¨g.

Let h " f ‹ and let ph h q be the associated pair of parentheses. Then, for all w P Σ ˚, P h pwq " tph α 1 ¨¨¨α n h q | w " u 1 ¨¨¨u n and α i P P f pu i q for all 1 ď i ď nu. We have dompP h q " dompP f q ‹ " dompf q ‹ " domphq. As above, if the Kleene star of the language dompf q is ambiguous, then P h is not functional.

The parser P h is as given in Figure 11 where the three pink states are merged so that the number of states of P h is P h " 1 ` P f ď 1 `|f | " |h|. It is easy to see that rrP h ss R " P h . The evaluator T h for h " f ‹ is as given in Figure 12 where the three pink states are merged so that the number of states of

T h is T h " 1 ` T f ď 1 `|f | " |h|. § Lemma 6.
Theorem 4 holds for any rational transducer expression h. Moreover, in this case we have T h ď |h|.

Proof. We have already argued during the construction that dompP h q " domphq, rrP h ss R " P h , P h ď |h| and T h ď |h|. It is also easy to see that the projection on Σ of a parsed word α P P h pwq is w itself. The remaining claims are proved by structural induction.

For the base case h " e Ź v we have already seen that P h is functional with domain Lpeq " udomphq and that rrhss R pwq " tvu " rrT h sspP h pwqq for all w P Lpeq.

For the induction, we prove in details the case of Cauchy product. The other cases of sum and Kleene star can be proved similarly. Let h " f ¨g. We first show that rrhss R " rrT h ss ˝Ph . Let w P domphq.

q h 0 q h F ε | ph ε | h q P f q f 0 q f F Figure 11 Parser for h " f ‹ . ``p h | ε h q | ε T f `pf | ε fq | Figure 12 Evaluator for h " f ‹ .
Let w 1 P rrhss R pwq. There is a factorization w " uv and u 1 P rrf ss R puq, v 1 P rrgss R pvq with w 1 " u 1 v 1 . By induction, rrf ss R " rrT f ss ˝Pf so we find α P P f puq with u 1 " rrT f sspαq. Similarly, we find β P P g pvq with v 1 " rrT g sspβq. Let γ " ph α β h q P P h pwq. We have rrT h sspγq " rrT f sspαqrrT g sspβq " u 1 v 1 " w 1 . Hence, w 1 P prrT h ss ˝Ph qpwq.

Conversely, let w 1 P prrT h ss˝P h qpwq and consider γ P P h pwq such that w 1 " rrT h sspγq. There is a factorization w " uv and α P P f puq, β P P g pvq with γ " ph α β h q. From the definition of the evaluator T h , using the form of parsed words α " pf α 1 fq and β " pg β 1 gq, we deduce that rrT h sspγq " rrT f sspαqrrT g sspβq P prrT f ss ˝Pf qpuq ¨prrT g ss ˝Pg qpvq " rrf ss R puq ¨rrgss R pvq Ď rrhss R pwq.

It remains to prove that udomphq " fdompP h q. Recall that udomphq " pudompf q ¨udompgqqztuvw | v ‰ ε and u, uv P dompf q and vw, w P dompgqu .

Let w P udomphq. Then, there is a unique factorization w " uv with u P dompf q and v P dompgq, i.e., such that P f puq ‰ ∅ and P g pvq ‰ ∅. We deduce that P h pwq " tph α β h q | α P P f puq, β P P g pvqu. But we also have u P udompf q " fdompP f q and v P udompgq " fdompP g q.

We deduce that P h pwq is a singleton. Conversely, let w P fdompP h q. Assume that w " uv " u 1 v 1 with u, u 1 P dompf q and v, v 1 P dompgq. Let γ " ph pf α fqp g β gq h q with pf α fq P P f puq and pg β gq P P g pvq. Similarly, let γ 1 " ph pf α 1 fqp g β 1 gq h q with pf α 1 fq P P f pu 1 q and pg β 1 gq P P g pv 1 q. We have γ, γ 1 P P h pwq, hence γ " γ 1 . Therefore also α " α 1 . The projection on Σ of α (resp. α 1 ) is u (resp. u 1 ) and we deduce that u " u 1 and v " v 1 . Therefore, w has a unique factorization w " uv with u P dompf q and v P dompgq. It follows that P h pwq " tph α β h q | α P P f puq, β P P g pvqu. Since P h pwq is a singleton, we deduce that both P f puq and P g pvq are singletons. By induction, we get u P udompf q and v P udompgq. Finally, we have proved w P udomphq. đ

Consider rational transducer expressions where basic expressions are simply of the form a Ź v with a P Σ and v P Γ ˚(instead of the more general e Ź v). We can directly construct from such an expresion h, a transducer A h which realizes the relational semantics of h. This folklore and rather simple construction gives a 1NFT of size linear in |h|. Notice also that the unambiguous domain of the expression h coincide with the unambiguous domain of the 1NFT A h . Therefore, we can even restrict to udomphq and implement the unambiguous semantics by techniques similar to the constructions in Section 8.

But, since the output semiring p2 Γ ‹ , Y, ¨, ∅, tεuq is not commutative, we cannot extend this approach and construct a 1NFT for the relational semantics of regular transducer expressions using Hadamard product, reverse Cauchy product, reverse Kleene star, k-star or reverse k-star. Therefore, we decided to use in Section 4 an approach which can be extended to the two-way operators as explained in the remaining sections.

Rational Functions with Reverse Products

Before turning to the Hadamard product and the (reverse) k-star operators, we first focus on a set of operators which, despite expressing non-rational functions, still enjoy the linear complexity of the previous section. Intuitively, it is the set of operators that only require to process the input once. It consists of the reverse Cauchy product and the reverse Kleene star. We see at the end of this section that we may also add duplicate and reverse functions without changing the linear complexity. For each of these expressions h, we define inductively the parsing relation P h , the parser P h and the evaluator T h . We will show that P h ď |h| and that T h ď 5|h|.

Reverse Cauchy product

For h " f ¨r g, the parsing P h is exactly the same as that for the expression h " f ¨g. As a consequence, the parser P h for h " f ¨r g is as given in Figure 9. Recall that the number of states of

P h is P h " P f ` P g `1 ď |f | `|g| `1 ď |h|.
The evaluator T h for h " f ¨r g is as given in Figure 13. Notice that T h is a 2RFT and its number of states is

T h " T f ` T g `3 ď 5|f | `5|g| `3 ď 5|h|. `ὰ | ε ph | ε pg | ε `gq | ε β | ε hq | ´ph | ´pf | ε `γ | ε fq | ´hq | ε T g T f

Figure 13

Evaluator for h " f ¨r g, with α any letter different from ph, pg, β any letter different from ph , h q, and γ any letter different from fq, h q.

Reverse Kleene star

For h " f ‹ r , the parsing P h is exactly the same as that for the expression h " f ‹ . Therefore, the parser P h for h " f ‹ r is as given in Figure 11. Recall that the number of states of P h ,

P h " P f `1 ď |f | `1 " |h|.
The evaluator T h is depicted in Figure 14. Note that T h is a 2RFT and its number of states is T h " T f `5 ď 5|f | `5 " 5|h|.

Duplicate and reverse

The function rev simply reverses its input: for w " a 1 ¨¨¨a n with a i P Σ we have rrrevsspwq " a n ¨¨¨a 1 . We can express it with a reverse Kleene star: rev " pcopyq ‹ r where copy " ř aPΣ aŹa simply copies an input letter. Using constructions above, we obtain a parser and an evaluator of size Op|Σ|q. We construct below even simpler parser and evaluator for rev.

The duplicate function dup # is parametrized by a separator symbol #, its semantics is given for w P Σ ˚by rrdup # sspwq " w#w. The function dup # has to read its input twice and cannot be expressed with the combinator considered so far. It may be expressed with the

``´`p h | ε α | ε h q | ε ph | ε α | ε h q | ε β | ε ´β | ε T f pf | ε `fq | ε fq | ε pf | ε Figure 14
Evaluator for h " f ‹ r , with α any letter different from ph , h q, and β any letter different from pf , fq.

Hadamard product as follows: dup # " pcopy ¨pε Ź #qq d copy. But in general, when we allow Hadamard products, the size of the one-way parser is no more linear in the size of the given expression. Hence, we give below direct constructions with better complexity.

For h " dup # or h " rev, let ph h q be the associated pair of parentheses. Since they are basic total functions, the parsing is defined as P h pwq " tphwhq | w P Σ ‹ u, and the parser P h is as given in Figure 15. We have P h " 3. We define the size |dup # | " 3 " |rev| in order to get P h ď |h| for these basic functions as well. The evaluator T h is given in Figure 16 when h " dup # and in Figure 17 when h " rev. In both cases, we have T h " 5 ď 3|h|.

ε | ph a | a ε | h q Figure 15
Parser for duplicate and reverse functions, with a P Σ.

``´`p

h | ε a | a h q | # a | ε ph | ε a | a h q | ε Figure 16 Evaluator for h " dup # , with a P Σ. ``´`p h | ε a | ε h q | ε a | a ph | ε a | ε h q | ε Figure 17 Evaluator for h " rev
To conclude this section, let us remark that, having rational functions, duplicate, reverse as well as the composition operator gives the expressive power of the full RTEs.

Hadamard product

In Section 4 and Section 5, we consider rational functions with sum, Cauchy product and Kleene star as well as rational-reverse functions. In this section, we extend this fragment with the Hadamard product. Just as for the rational functions, we first motivate the parsing of a word w.r.t. a Hadamard product expression e as the traversal of the parse dag of w w.r.t. e. As an example, consider e " pa ‹ ¨bq d pa ¨b‹ q. For each occurrence of a subexpression e i , we introduce a pair of parentheses pi i q which is used to bracket the factor of the input word matching e i . The above expression e has 9 occurrences of subexpressions: e 1 " a, e 2 " e ‹ 1 , e 3 " b, e 4 " e 2 ¨e3 , e 5 " a, e 6 " b, e 7 " e ‹ 6 , e 8 " e 5 ¨e7 and e 9 " e 4 d e 8 " e. Hence, we use 9 pairs of parentheses pi i q for 1 ď i ď 9. The input word ab can be unambiguously parsed according to e as follows P e pabq " tp9p4p2p1p8p5a1q2qp35qp7p6b3q4q6q7q8q9qu .

In Figure 18 we depict the unique parse dag of the word ab w.r.t. e given above. Consider a traversal of this parse dag with two heads. The first head carries out the traversal according to the parse tree of e 4 given in blue, while the second head carries out the traversal according to the parse tree of e 8 given in red. We also fix an ordering on the movement of the two heads as follows. Between the points of the traversal which reach a leaf, the first head carries out its traversal, and then the second head carries out its traversal. This means that from the root, the first head moves first, and continues its traversal until it reaches a leaf of the parse tree, after which the second head starts its traversal and continues until it reaches the same leaf. Then, the first head continues its traversal until the next leaf is reached, and then the second head continues its traversal until seeing the same leaf, and so on. Then, the parsing of w w.r.t. e can be viewed as such a traversal of the parse tree of w w.r.t. e.

Parsing relation for h " f d g.

For w P Σ ˚we let P h pwq be the set of words ph α h q such that 1. π -g pαq P P f pwq and π -f pαq P P g pwq. Here, π -g pαq denotes the projection which erases parentheses which are indexed by subexpressions of g. π -f pαq is defined similarly. 2. α does not contain a parenthesis indexed by a subexpression of g immediately followed by a parenthesis indexed by a subexpression of f . Observe that there are several ways to satisfy the first condition above, even when we fix the projections π -g pαq and π -f pαq. This is because parentheses indexed with subexpressions of f can be shuffled arbitrarily with parentheses indexed with subexpressions of g. This would break the equality udomphq " fdompP h q. Hence, we fix a specific order by giving priority to parentheses w.r.t. first argument. § Lemma 7. Let h be an RTE not using k-star or reverse k-star. We have dompP h q " domphq and fdompP h q " udomphq.

Proof. The proof is by structural induction. The only new case is when h " f d g is an Hadamard product. Using the induction hypothesis and the definitions, it is sufficient to prove that dompP h q " dompP f q X dompP g q and fdompP h q " fdompP f q X fdompP g q.

Let w P dompP f q X dompP g q. We find α 1 P P f pwq and α 2 P P g pwq. Let α be the (unique) word satisfying π -g pαq " α 1 , π -f pαq " α 2 and condition 2 on the order of parentheses in P h . We get ph α h q P P h pwq ‰ ∅, hence we have w P dompP h q. The converse inclusion dompP h q Ď dompP f q X dompP g q is even easier to show.

Let w P fdompP f q X fdompP g q. It is easy to see that there is a unique α satisfying conditions 1 and 2 of the definition of P h pwq. Therefore, w P fdompP h q. Conversely, let w P fdompP h q and assume that w R fdompP f q X fdompP g q. For instance, we have w P pdompP f qzfdompP f qq X dompP g q. Then, we find α 1 , α 1 1 P P f pwq with α 1 ‰ α 1 1 and α 2 P P g pwq. There is a unique α (resp. α 1 ) with π -g pαq " α 1 (resp. π -g pα 1 q " α 1 1 ), π -f pαq " α 2 and condition 2 on the order of parentheses in P h . We get α ‰ α 1 and ph α h q, ph α 1 h q P P h pwq, which contradicts w P fdompP h q. đ

Evaluator for h " f d g

Let h " f d g and let ph h q be the associated pair of parentheses. Then, recall that for all w P Σ ˚, P h pwq Ď tph α h q | π -g pαq P P f pwq and π -f pαq P P g pwqu. From the 2RFT T f , we construct the 2RFT T `g f by adding self-loops to all states labelled with all parentheses associated with subexpressions of g, the output of these new transitions is ε. When π -g pαq P P f pwq then the 2RFT T `g f behaves on α as T f would on π -g pαq. Similarly, we construct T `f g from T g . Finally, the evaluator T h is depicted in Figure 19. Recall the generic form of an evaluator given in Figure 4 where we decided to draw the initial state and the final state outside the box to underline the fact that there are no transitions going to the initial state and no transitions starting from the final state. The number of states of T h is therefore T h " T f ` T g `3.

`ph | ε x | ε x | ε pf | ε T `g f x | ε x | ε fq | ´hq | ε y | ε ph | ε z | ε z | ε pg | ε T `f g z | ε z | ε gq | ´hq | ε

Figure 19

Evaluator for h " f d g where x (resp. z) is any parenthesis from a subexpression of g (resp. f ) and y is any letter different from ph , h q. § Lemma 8. Let h be an RTE not using k-star or reverse k-star. The translator T h composed with the parsing relation P h implements the relational semantics: rrhss R " rrT h ss˝P h . Moreover, the number of states of the translator is T h ď 5|h|.

Proof. The proof is by structural induction. We have already seen that the statements hold when h does not use a Hadamard product. The only new case is when h " f d g is a Hadamard product. We have T h " T f ` T g `3 ď 5p|f | `|g| `1q " 5|h|. We turn to the proof of rrhss R " rrT h ss ˝Ph . Let w P domphq " dompf q X dompgq.

Let w 1 P rrhss R pwq " rrf ss R pwq ¨rrgss R pwq. We write w 1 " w 1 w 2 with w 1 P rrf ss R pwq and w 2 P rrgss R pwq. Since rrf ss R " rrT f ss ˝Pf , we find α 1 P P f pwq such that rrT f sspα 1 q " w 1 . Similarly, we find α 2 P P g pwq such that rrT g sspα 2 q " w 2 . Let α be the unique word satisfying π -g pαq " α 1 , π -f pαq " α 2 and condition 2 on the order of parentheses in P h . We have ph α h q P P h pwq. It is easy to check that rrT h sspph α h qq " rrT `g f sspαq ¨rrT `f g sspαq " rrT f sspα 1 q ¨rrT g sspα 2 q " w 1 w 2 " w .

Conversely, let ph α h q P P h pwq. We have rrT h sspph α h qq " rrT `g f sspαq ¨rrT `f g sspαq " rrT f sspπ -g pαqq ¨rrT g sspπ -f pαqq P prrT f ss ˝Pf qpwq ¨prrT g ss ˝Pg qpwq " rrf ss R pwq ¨rrgss R pwq " rrhss R pwq . đ

One-way parser for h " f d g

For the Hadamard product h " f d g, we carry out the parsing of f and g in parallel by shuffling the parentheses, giving priority to the left argument. The 1-way parser P h is depicted in Figure 20 where P f b P g is a product defined below of the parsers for expressions f and g. The number of states of P h is given by P h " 2 `2 ˆ P f ˆ P g .

Let P f " pQ f , Σ, B, q f I , q f F , ∆ f , µ f q and P g " pQ g , Σ, C, q g I , q g F , ∆ g , µ g q be the 1-way parsers for expressions f and g, respectively.

The set of states of P f b P g is Q f ˆQg ˆt0, 1u. The input alphabet is Σ and the output alphabet is B Y C. The initial state is pq f I , q g I , 0q and the accepting state is pq f F , q g F , 1q. The transition function of P f b P g is defined as follows, with ps, tq P Q f ˆQg and ν P t0, 1u: Proof. We first prove that rrP h ss R " P h by structural induction. The only new case is when h " f d g is a Hadamard product. Let w P Σ ‹ .

if s ε|x Ý Ý Ñ s 1 in P f , then ps, t, 0q ε|x Ý Ý Ñ ps 1 , t, 0q in P f b P g , if t ε|x Ý Ý Ñ t 1 in P g , then ps, t, νq ε|x Ý Ý Ñ ps, t 1 , 1q in P f b P g , if s a|a Ý Ý Ñ s 1 in P f and t a|a Ý Ý Ñ t 1 in P g , then ps, t, νq a|a Ý Ý Ñ ps 1 , t 1 , 0q in P f b P g . ε | ph ε | h q P f b P g
We first show that P h pwq Ď rrP h ss R pwq. Let ph α h q P P h pwq. We have to show that α is accepted by P f b P g . Consider an accepting run f of P f (resp. g of P g ) reading the input word w and producing the projection π -g pαq P P f pwq (resp. π -f pαq P P g pwq). We construct an accepting run of P f b P g reading w and producing α by shuffling f and g . The transitions reading an input letter a P Σ are synchronized and between two such synchronized transitions we execute first the epsilon moves of P f (the extra bit of the state being 0) and then the epsilon moves of P g (extra bit being 1). Notice that α starts with pf hence starts from the initial state pq f I , q g I , 0q and α ends with gq so ends in the final state pq f F , q g F , 1q. Conversely, we show that rrP h ss R pwq Ď P h pwq. Let ph α h q P rrP h ss R pwq. There is an accepting run of P f b P g reading w and producing α. Let f be the projection on the first component of the run after removing transitions of the form ps, t, νq ε|x Ý Ý Ñ ps, t 1 , 1q coming from transitions of P g . It is easy to see that f is an accepting run of P f reading w and producing the projection π -g pαq. Therefore, π -g pαq P P f pwq. Similarly, the projection on the second component of after removing transitions of the form ps, t, 0q ε|x Ý Ý Ñ ps 1 , t, 0q is an accepting run g of P g reading w and producing the projection π -f pαq. We get π -f pαq P P g pwq. Finally, the definition of P f b P g ensures that α does not contain a parenthesis indexed by a 0 1

Σ ăi Σ ăi i Σ ąi 0 1 2 Σ ăn Σ ăn n n
Figure 21 On the left, the automaton Ai, for i ă n. On the right, the automaton An.

subexpression of g (produced by a transition of the form ps, t, νq ε|x Ý Ý Ñ ps, t 1 , 1q) immediately followed by a parenthesis indexed by a subexpression of f (produced by a transition of the form ps, t, 0q ε|x Ý Ý Ñ ps 1 , t, 0q).

We prove now that P h ď |h| widthphq . Again, the proof is by structural induction on the expression h. We have already seen that, when h does not use Hadamard products (in particular for the base cases), we have P h ď |h| " |h| widthphq .

Consider the Hadamard product h " f d g. We know that P h " 2 ˆ P f ˆ P g `2. We also know that |h| " |f | `|g| `1 and widthphq " widthpf q `widthpgqq ě 2. By induction hypothesis, we have P f ď |f | widthpf q and P g ď |g| widthpgq . Then, we get

P h " 2 ˆ P f ˆ P g `2 ď 2 ˆ|f | widthpf q ˆ|g| widthpgq `2 ď p|f | `|g|q widthpf q`widthpgq ď |h| widthphq .
The other cases are easy. When h " f `g or h " f ¨g or h " f ¨r g, then we have

P h ď 1 ` P f ` P g ď 1 `|f | widthpf q `|g| widthpgq ď 1 `|f | widthphq `|g| widthphq ď |h| widthphq . When h is f ‹ or f ‹ r then P h " 1 ` P f ď 1 `|f | widthpf q " 1 `|f | widthphq ď |h| widthphq . đ
Finally, the next proposition shows that this exponential blow-up in the width of the expression is unavoidable. § Proposition 10. For all n ą 0, there exists an RTE C n of size Opnq such that widthpC n q " n and any parser of C n is of size Ωp2 n q.

Proof. The key argument is that any parser of an RTE has to at least recognize its domain.

As the Hadamard product restrict the domain to the intersection of its subexpressions, we can construct an RTE C n which is the Hadamard product of n subexpressions of fixed size, and whose intersection is a single word of size 2 n . Consequently, any parser of C n is of size at least 2 n . Let Σ " t1, . . . , nu, Σ ăi " t1, . . . , i ´1u and Σ ąi " ti `1, . . . , nu for all i. For n ą i ě 1, we define L i " pΣ ăi iΣ ăi Σ ąi q ˚and L n " Σ ăn nΣ ăn n . Moreover, let us define recursively the sequence of words pu i q 1ďiďn P Σ ˚as follows: u 1 " 1, u i " u i´1 iu i´1 for 2 ď i ă n and u n " u n´1 nu n´1 n. By construction, we have |u n | " 2 n . Also, each L i can be recognized by an automaton of size 2 as described in Figure 21, and tu n u "

Ş n i"1 L i . Finally, let us define C n "
Ä n i"1 pL i Ź εq whose size is Opnq and width is n. Its domain dompC n q is the singleton tu n u whose size is exponential in n, and thus any parser of C n has to be of size at least exponential in n.

Note that our definition of languages L i depends on an alphabet of size n. Equivalently, we can use unary encodings of each integer i to define languages of size linear instead of constant, but with an alphabet of constant size.

đ k-star operator and its reverse

In this section, we extend the set of RTEs discussed in Sections 4, 5 and 6 with the k-star and the reverse k-star operators.

7.1 Parsing relation for h " re, f s k‹ and h " re, f s k‹ r

We will first describe, with the help of an example, the parsing set P h pwq that we want to compute given a word w in the domain of h " re, f s k‹ and h " re, f s k‹ r . The parsing relation P h is exactly the same for both h " re, f s k‹ and h " re, f s k‹ r . Let L " Lpeq. To motivate the parsing relation, we will also give a brief overview of the working of the evaluator T h that computes hpwq from a parsing in P h pwq of the word w.

Recall that for a word w to be in the domain of h, w should have a factorization w " u 1 ¨¨¨u n satisfying (:), i.e., n ě 0, u i P L " Lpeq for 1 ď i ď n, and u i`1 ¨¨¨u i`k P dompf q for 0 ď i ď n ´k. Given a word w and one such factorization w " u 1 u 2 ¨¨¨u n , we will refer to the factor u i`1 u i`2 ¨¨¨u i`k as the ith block of w. While evaluating the expression h " re, f s k‹ on w, f is first applied on the 0th block of w, then the 1st block and so on, until the pn ´kqth block of w. For h " re, f s k‹ r , the order of evaluation is reversed, i.e., f is first applied on the pn ´kqth block of w, then the pn ´k ´1qth block and so on, until the 0th block of w.

The parsing of w w.r.t. h should contain the information required for this evaluation. In other words, we need to add the parentheses w.r.t. f on the 0th block, the 1st block and so on, until the pn ´kqth block of w. Since we want to construct a parser that is one-way, we need to shuffle the parentheses that arise from the application of f on different blocks. Consequently, we need some way to distinguish the parentheses that arise due to the application of f on a block from the parentheses that arise due to the application of f on other blocks. To this end, we will use parentheses indexed by t1, 2, ¨¨¨, ku. In Figure 22, we illustrate a parsing in P h pwq when h " re, f s 3‹ on a word w " u 1 u 2 u 3 u 4 u 5 u 6 with each u i P Lpeq. As depicted in the figure, while processing the ith block u i`1 u i`2 ¨¨¨u i`k , T h considers only the parentheses indexed by i `1 mod k, and ignores all other parentheses. After reading the kth L-factor of the ith block, T h checks if there are any more blocks to be read. If not, then T h is done with its computation. Otherwise, T h goes back, and repeats the same process on block pi `1q, but this time considering only parentheses indexed by i `2 mod k.

To summarise, an h-parsing of w w.r.t. a factorization w " u 1 u 2 ¨¨¨u n satisfying (:) and n ě k is a word of the form ph α 1 # e α 2 ¨¨¨# e α n h q such that:

It starts with an opening parenthesis ph and ends with a closing parenthesis h q, and the projection of α i on Σ is u i . Each block u i`1 u i`2 ¨¨¨u i`k is decorated with a parenthesisation corresponding to P f pu i`1 u i`2 ¨¨¨u i`k q, such that each of these parentheses is indexed by i `1 mod k.

Between any two consecutive L-factors u i and u i`1 , there is a # e . In particular, immediately after each fq and immediately before each pf, there is a # e .

Between any two letters of the ith L-factor u i of w, the parentheses appear in nondecreasing order of their indices w.r.t. order ď i (described in detail in the formal parsing). Note that there are several ways to satisfy just the first three conditions given above, as the parentheses indexed i could be shuffled arbitrarily with parentheses indexed by j ‰ i. Since this would violate the requirement udomphq " fdompP h q that we crucially depend on, we have the final condition that fixes a specific order of parenthesisation. § Remark 11. Note that in a factorization of u 1 ¨¨¨u n of w, it is possible that u i " ε. This could lead to problems that violate the requirement udomphq " fdompP h q. To address this, we have additional conditions (rule 5) in the formal definition of the parsing.

Consider a parsing ph α 1 # e α 2 # e α 3 # e α 4 # e α 5 # e α 6 h q for h and w from Figure 22. Here, α 1 has only parentheses indexed by 1, α 2 has only parentheses indexed by 1 and 2, α 3 and α 4 have parentheses indexed by 1, 2 and 3, α 5 has only parentheses indexed by 1 and 3, and α 6 has only parentheses indexed by 1. In particular, α 3 for instance can be of the form pf 3 a 1 p 1 q 2 p 2 p 3 a 2 p 2 q 3 ¨¨¨q 2 p 3 a l q

3 fq 1
, where a i P Σ.

Formal definition of the parsing relation for h " re, f s k‹ and h " re, f s k‹ r First let B be the set of parentheses appearing in the parsing of f . We define B i , for 1 ď i ď k, to be the set B indexed by i. We write | i for either p i or q i . Additionally, for ease of notations k mod k is set to k instead of 0 as commonly defined. Let L " Lpeq and w be an input word of h. The parsing set P h pwq is the set of words ph α 1 # e α 2 # e . . . # e α n h q such that there is a factorization w " u 1 . . . u n where for all i ď n, u i P L and π Σ pα i q " u i and either n ă k and α i " u i , hence the parsing is ph u 1 # e u 2 # e . . . # e u n h q, or n ě k and:

1. for all 0 ď i ď n´k, π i`1 mod k pα i`1 . . . α i`k q P P f pu i`1 . . . u i`k q where π j is the function projecting away all parentheses | for ‰ j and erasing the exponent j, 2. for all 1 ď i ă j ď k, α i does not contain any parenthesis | j , 3. for all n ´k `1 ď j ă i ď n, α i does not contain any parenthesis | j mod k , 4. α i ends with fq i`1 mod k if i ě k, 5. α i starts with pf i mod k if i ď n ´k `1, and if n ´k `1 ă i, then either α i starts with a letter of Σ or

α i " fq i`1 mod k or α i " ε (if also i ă k),
6. for all α i and for all j, j 1 , if

| j | j 1 appears in α i and | j 1 ‰ fq i`1 mod k , then j ď i j 1
, where

ď i is defined as i `1 mod k ď i i `2 mod k ď i ¨¨¨ď i i. § Lemma 12.
Let h be an RTE. We have dompP h q " domphq and fdompP h q " udomphq.

Proof. As with the previous cases, the proof is by structural induction. Using Lemma 9, the only cases left are the k-star operator and its reverse. We only prove the result for k-star. As the reverse k-star parses the input in the same way, the proof will hold for both operators. Let then h " re, f s k‹ and w be an input word of h. If w P domphq, then there exists a factorization w " u 1 ¨¨¨u n satisfying that for all i ď n, u i P Lpeq and either n ă k, in which case ph u 1 # e u 2 # e ¨¨¨# e u n h q P P h pwq and hence w P dompP h q, or n ě k and u j`1 ¨¨¨u j`k belongs to dompf q for all 0 ď j ď n ´k. We construct a parsing ph α 1 # e ¨¨¨# e α n h q for this factorization w " u 1 ¨¨¨u n . Using the induction hypothesis, for all 0 ď j ď n ´k, there exists a word β j such that pu j`1 ¨¨¨u j`k , β j q P P f . Then by definition, π Σ pβ j q " u j`1 ¨¨¨u j`k . Let γ j be β j where all parentheses are indexed by m " j `1 mod k. There is a unique factorization γ j " γ 1 j ¨¨¨γ k j such that π Σ pγ j q " u j` for 1 ď k, and γ j starts with a letter from Σ or γ j " ε for 1 ă ă k, and γ k j starts with a letter from Σ or γ k j " fq m . Notice that γ 1 j starts with pf m and γ k j ends with fq m . Then α i is defined by merging all words γ j for j ` " i, shuffling parentheses and synchronizing on letters from Σ. Notice that is comprised between 1 and k, and thus we shuffle at most k such γ j , with indices j between maxp0, i ´kq and minpi ´1, n ´kq. This shuffling can be uniquely defined as follows:

(i) if i ď n ´k `1 we take all parentheses of γ 1 i´1 up to the first letter of Σ if any, in this case, α i starts with pf i mod k , (ii) if k ď i, then γ k i´k ends with fq i`1 mod k which we put at the end of α i .

Then, we proceed from left to right, iterating the two steps below until exhaustion of all γ j . (iii) we take the next letter of Σ, if any, which occurs in each γ j as they all project onto u i , (iv) we take the following parentheses on each γ j , with increasing indexes according to the order ď i , until the next letter from Σ, if any. By construction, as α i contains all γ j for j ` " i, we have

π i`1 mod k pα i`1 . . . α i`k q " π i`1 mod k pγ 1 i . . . γ k i q " β i P P f pu i`1 . . . u i`k q, hence condition of the parsing relation (1) is satisfied. Next, if 1 ď i ă j ď k,
then there is no γ j´1 with j ´1 ` " i, hence α i satisfies condition [START_REF] Alur | Regular combinators for string transformations[END_REF] . Similarly, we can check that it satisfies condition [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF]. By Step (ii) (resp. (i)) we see that α i satisfies condition (4) (resp. the first part of condition ( 5)). To prove the second part of condition (5), we first note that if n ´k `1 ă i ď n and j ` " i, then ą 1. Then, either all γ j with j ` " i start with the same letter from Σ or α i " fq i`1 mod k or

α i " ε (if i ă k).
Finally, step (iv) above ensures that we satisfy point (6) of the parsing relation. As a result, the word ph α i # e . . . # e α n h q is a parsing of w, and thus w P dompP h q.

Conversely, let h P dompP h q. Then there exists a parsing word ph α i # e . . . # e α n h q of w. As such, let u i " π Σ pα i q. By definition, w " u 1 . . . u n and for all i, u i P Lpeq. If n ă k, then w P domphq by definition. Assume now n ě k. Then for the words α i we have in particular for all 0 ď i ď n ´k, π i`1 mod k pα i`1 . . . α i`k q P P f pu i`1 . . . u i`k q. Thus by induction hypothesis u i`1 . . . u i`k belongs to the domain of f and consequently w P domphq.

We now turn to the equality fdompP h q " udomphq. We prove that dompP h qzfdompP h q " domphqzudomphq. Together with the previous equality this gives the result. Let w be in domphqzudomphq. This means that either paq there exists two different factorizations w " u 1 . . . u n satisfying condition (:) on page 10, i.e., such that either n ă k or (n ě k and for all 0 ď i ď n´k, u i`1 . . . u i`k belongs to dompf q), or pbq there exists one such factorization with k ď n and at least one i such that u i`1 . . . u i`k belongs to dompf qzudompf q.

If paq holds, there exists two such factorizations, and the parsings corresponding to the two different factorization constructed by the procedure above will have the # e symbols at different positions of the parsings, and hence we have two parsings of w and w R fdompP h q. If pbq holds, then there is one factorization with an integer i such that u i`1 . . . u i`k belongs to dompf qzudompf q. By induction hypothesis there are two different parsings of u i`1 . . . u i`k for f . Using the procedure above, we then get two different γ i and γ 1 i , which means that we can construct two different α i`1 . . . α i`k and α 1 i`1 . . . α 1 i`k . In the end, we get two different parsings for w, and hence w R fdompP h q.

Conversely, let w be in dompP h qzfdompP h q. Then there exist two different parsings ph α 1 # e . . . # e α n h q and ph β 1 # e . . . # e β m h q of w. If π Σ pα i q ‰ π Σ pβ i q for some i, then there exist two valid and different factorizations of w satisfying (:), and thus w does not belong to udomphq. Otherwise, it means there is an integer 0 ď i ď n ´k such that π i`1 mod k pα i`1 . . . α i`k q and π i`1 mod k pβ i`1 . . . β i`k q are valid but different f -parsings of u i`1 . . . u i`k . It follows that u i`1 . . . u i`k does not belong to udompf q and thus w does not belong to udomphq. đ

Evaluators

Here, we propose the evaluators for the k-star and the reverse k-star operators, and give an upper bound on their size.

ὰ | ε ph | ε ṕf 1 | ε ph | ε T 1 f x1 | ε x1 | ε pf 1 | ε fq 1 | ´hq | ε ´#e | ε ´fq 1 | ε y 1 | ε T 2 f x2 | ε x2 | ε pf 2 | ε fq 2 | ´hq | ε ´#e | ε ´fq 2 | ε y 2 | ε ýk´1 | ε T k f xk | ε xk | ε pf k | ε fq k | ´hq | ε ´#e | ε ´fq k | ε y k | ε ṕf 1 | ε β | ε `hq | ε fq 1 | ε fq 2 | ε fq k | ε hq | ε α | ε Figure 23 Evaluator for h " re, f s k‹ . Here, xi P t| j | j ‰ iu Y t#eu, yi ‰ fq i , pf i`1 mod k , α P Σ Y t#eu, and β ‰ ph.
Evaluator for k-star. We start with h " re, f s k‹ for which the evaluator T h is depicted in Figure 23. It is a 2RFT that takes as input a parsing in P h pwq for a word w, and computes the output hpwq. More precisely, let T f be the transducer that computes f pwq given a parsing in

P f pwq. The 2RFT T h has k copies of T f , namely T 1 f , T 2 f , ¨¨¨, T k f .
The idea is that the copy T i f should consider only parentheses indexed by i and ignore all other parentheses. We construct T i f from T f as follows: to all states of T f , we add self-loops labelled with all parentheses indexed by j where j ‰ i, and # e , and the output of these new transitions is ε. Also, a transition of T f reading a parenthesis |g for g a subexpression of f is relabelled with

| i g . If T f is a 2RFT, then so is T i f for 1 ď i ď k.
Let w " u 1 u 2 ¨¨¨u n be a factorisation of w with each u i P L. If n ă k then the parsing of w w.r.t. h is defined as ph u 1 # e u 2 # e . . . # e u n h q. If k ď n, then the corresponding parsing is ph α 1 # e α 2 ¨¨¨# e α n h q satisfying conditions (1-6) on page 25. In particular, for 0 ď i ď n ´k and m " i `1 mod k, the block α i`1 ¨¨¨α i`k starts with pf m and ends with fq m .

The working of the transducer T h is based on the above observations. It starts by reading the opening parenthesis ph that indicates that domain of h is about to be read. If the next character read is an opening parenthesis pf 1 , then it means that the parsing of w contains n ě k L-factors. Otherwise, it indicates that the parsing of w contains n ă k L-factors.

In the case where the parsing w contains less than k L-factors, T h remains in this state, where it reads letters from Σ Y t# e u, while producing nothing until a closing parenthesis h q is read. When it reads h q at the end of w, it goes to the accepting state.

Otherwise, it reads an opening parenthesis pf 1 that denotes the beginning of the first block of w. On reading pf 1 , T h moves to the initial state of T 1 f . We know from the construction that T 1 f ignores all parsing symbols that are not indexed by 1. The run of T 1 f goes on until we see a closing parenthesis fq 1 , which means that T h has finished processing the first block.

Then, T h should go back and read the next block, if it exists. In general, the block α i`1 ¨¨¨α i`k is processed by T i`1 mod k f . The decision whether to go back or not (in other words, whether the block just read is the last one) is taken depending on whether we see h q or # e next. If the closing parenthesis h q is the next letter read, then T h knows that the domain of h has been read completely, and therefore exits. Otherwise, if a # e is the next letter read, then T h knows that there are more L-factors to the right of the current position, which implies that this was not the last block. So, T h will go back on the parsed word until it reads pf i`1 mod k , which signals the beginning of the next block. Then, it repeats the above process on the next block by going to the initial sate of T i`1 mod k f . In Figure 24, we illustrate the run of T h on an example, where k " 3 and n " 6.

Figure 24 Run of the transducer T h on P h pwq, where w " u1u2u3u4u5u6, when k " 3. The blue zig-zag arrows ignores all paratheses not indexed by 1, and represents the run of T 1 f , likewise, the green zig-zag arrows ignores all paratheses not indexed by 2, and represents the run of T 2 f , the magenta zig-zag arrows ignores all paratheses not indexed by 3. The black arrow represents the backward movement of T h from q i f looking for p i`1 f mod k.

Evaluator for reverse k-star. We turn to the description of the evaluator T h for h " re, f s k‹ r . The 2RFT T h is depicted in Figure 25. We use the same k copies T 1 f , T 2 f , . . . , T k f (described above) of the evaluator T f for the RTE f . Recall that the parsing relation is the same for re, f s k‹ or re, f s k‹ r . Hence, we use the observations made above for a parsing ph α 1 # e α 2 ¨¨¨# e α n h q P P h pwq.

T h starts by reading the opening parenthesis ph that indicates that domain of h starts. It moves to a `state, where it scans the parsed word without producing anything, until a closing parenthesis h q is reached. On reading an h q, T h knows that the domain of h has been read completely and goes to a ´state. T h then looks at the letter on the left. If the letter is from Σ Y t# e u, it means that the parsing of w contains strictly less than k L-factors. In this case, T h reads the closing parenthesis h q and exits. Otherwise the letter is a parenthesis fq i , which means that the parsing of w has n ě k L-factors. Moreover, we know that the last block α n´k`1 ¨¨¨α n starts with pf i . So, T h moves to the left until it sees pf i . When T h sees the pf i , it is at the beginning of the last block, and on reading pf i , it moves to the initial state of T i f , which processes the block (ignoring all parsing symbols that are not indexed by i). The run goes on until we see a closing parenthesis fq i which means that T i f has finished reading the block. Now, T h should go back and read the block on the left, if it exists. It first goes back until it sees pf i . The decision whether there is another block on the left (in other words, whether the block just read is not the leftmost one) is taken depending on whether we see on the left # e or ph. If the opening parenthesis ph is seen, then it means that the block just read is the first (leftmost) block. In this case, T h knows that it has finished processing the domain of h, and therefore does a rightward run until it sees a closing parenthesis h q, upon seeing which T h exits. In this case, T h goes on a rightward run until it sees the closing parenthesis h q, and exits. Otherwise, T h sees # e and realises that there is at least one more block on the left to be processed. It moves to the beginning of this block and repeats the above process by going to the initial sate of T i´1 mod k f . § Lemma 13. For all RTEs h, the number of states of the evaluator for h is T h ď 5|h| ¨widthphq.

Proof. The proof is by structural induction on the expression h. We have already seen that, when h does not use k-star or reverse k-star, then T h ď 5|h|.

We will now consider the case where h is a k-chained Kleene-star expression (h " re, f s k‹ ) or a reverse k-chained Kleene-star expression (h " re, f s k‹ r ). For both cases, we easily see that T h " k T f `3k `8. By induction hypothesis, we have T f ď 5|f | ¨widthpf q. We get T h ď 5k|f | ¨widthpf q `3k `8 ď 5p|f | `k `2qpk ¨widthpf q `1q. Therefore, we get T h ď 5|h| ¨widthphq. đ

Parser for k-star and reverse k-star

In this section, we propose the parser P h for h " re, f s k‹ . The idea we use to construct P h pwq is that on the input word, whenever we finish reading an L-factor u i , we mark this by adding a # e indicating the end of an L-factor, and we start an instance of the transducer P f in which whenever a parenthesis is output, it will be indexed by i `1 mod k. Reading an L-factor can be detected by running in parallel, the automaton A e for e obtained via the Glushkov algorithm. We also employ a counter that keeps track of how many factors of L we have seen so far in the current factorization of w being considered -the counter stores i mod k when we are reading the ith L-factor in the factorization of w. Then, whenever we reach an accepting state of A e with counter value i, the parser guesses whether or not there are at least k L-factors left in the factorization of w. If the parser guesses yes, an instance of the transducer P f which adds the index i `1 mod k to its parentheses is initialized and

Efficient Construction of Reversible Transducers from Regular Transducer Expressions

ὰ | ε ph | ε hq | ε fq k | ε y k | ε fq k´1 | ε y k´1 | ε fq 1 | ε y1 | ε ýk´2 | ε T k f xk | ε xk | ε pf k | ε fq k | ´zk | ε ´pf k | ε `#e | ε pf k | ε ph | ε T k´1 f xk´1 | ε xk´1 | ε pf k´1 | ε fq k´1 | ´zk´1 | ε ´pf k´1 | ε `#e | ε pf k´1 | ε ph | ε T 1 f x1 | ε x1 | ε pf 1 | ε fq 1 | ´z1 | ε ´pf 1 | ε `#e | ε pf 1 | ε ph | ε ´ὰ | ε ph | ε pf k | ε pf k´1 | ε pf 1 | ε ´hq | ε | | ε hq | ε a P Σ Y t#eu | ε

Figure 25

Evaluator for h " re, f s k‹ r . Here, xi P t| j | j ‰ iu Y t#eu, yi ‰ pf i , fq i , pf i`1 mod k , zi ‰ fq i , pf i , and α ‰ ph, h q. Note that | denotes any parenthesis.

run on the next k L-factors of w. If the parser guesses that only fewer than k L-factors are remaining, then no new instance of the transducer P f is initialized. We will show that k copies of P f suffice to implement the above idea. Further, we employ a variable that ensures the order of parenthesisation required by the definition of the parsing relation.

We turn to the formal definition of the parsing transducer P h . Let A e " pQ, Σ, q I , F, ∆q be the Glushkov automaton constructed from the regular expression e. The parser P h has two main components that we define separately. The first and the more involved one P 1 h is used in the generic case for decomposition of words having at least k factors in Lpeq. The second one P 2 h , defined afterwards, handles the decompositions having less than k Lpeq-factors. Let P f " pQ f , Σ, B, q f I , q f F , ∆ f , µ f q be the 1-way transducer that produces the parsing w.r.t. expression f . We define the 1NFT P

1 h " pQ h , Σ, B h , q h I , F h , ∆ h , µ h q by Q h " t1, 2, ¨¨¨, ku ˆQ ˆpQ f Y tq K uq k ˆt1, 2, ¨¨¨, ku
The input alphabet is Σ, the same as that of P f and A e .

The output alphabet B

h " B 1 Y B 2 Y ¨¨¨B k Y t# e u
, where B i is the output alphabet B of P f where each parenthesis is indexed by i. Note that Σ is contained in each B i .

The initial state is q h I " p1, q I , q f I , q K , ¨¨¨, q K , 1q. The set of final states is F h " tpi, q, q 1 , . . . , q k , jq | q P F, q i`1 mod k " q f F , and q " q K for ‰ i `1 mod ku. The transition relation ∆ h of P 1 h is defined below. Let pi, q, q 1 , . . . , q k , jq be a state of P 1 h and let m " i `1 mod k. 1. if q a Ý Ñ q 1 in A e and for 1 ď ď k either q a|a Ý Ý Ñ q 1 in P f or q " q K " q 1 , then pi, q, q 1 , . . . , q k , jq a|a Ý Ý Ñ pi, q 1 , q 1 1 , . . . , q 1 k , mq in P 1 h . Note that the last component is reset to m " i `1 mod k which is the least element w.r.t. ď i .

2.

if there is an ε-transition q ε||g Ý Ý Ñ q 1 ‰ q f F in P f , and j ď i and q m ‰ q f F , then we have pi, q, q 1 , . . . , q k , jq ε|| g Ý Ý Ñ pi, q, q 1 , . . . , q 1 , . . . , q k , q in P 1 h . Note that the last component is set to which prevents executing next an ε-transition (case 2) in a component 1 ă i since this would produce a parenthesis indexed followed by a parenthesis indexed 1 in the wrong order.

3. if q P F is an accepting state of A e and q i ‰ q f I and q m ε|fq Ý Ý Ñ q 1 m " q f F is a transition in P f , then pi, q, q 1 , . . . , q k , jq ε|fq m Ý ÝÝ Ñ pi, q, q 1 , . . . , q 1 m " q f F , . . . , q k , jq in P 1 h . Notice that a transition of case 2 cannot be applied after a transition of case 3 since the state of the component m is now q f F . 4. if q P F and q i ‰ q f I and q m P tq f F , q K u and pi, q, q 1 , . . . , q k , jq R F h , then we have pi, q, q 1 , . . . , q k , jq ε|#e Ý ÝÝ Ñ pm, q I , q 1 , . . . , q 1 m , . . . , q k , mq in P 1 h where q 1 m " q K if q i " q K and q 1 m P tq K , q f I u otherwise. Note that the last component is set to m which is the maximal element w.r.t. ď m . Hence, only component m may perform ε-transitions producing parentheses indexed by m (case 2) until a letter a P Σ is read (case 1) or until we use again a switching transition of case 3 or case 4, which is only possible if the initial state q I of A e is also accepting (q I P F ), i.e., when ε P Lpeq. Note that, even if all three conditions of case 3 are satisfied, P 1 h may choose not to execute the corresponding transition; it may still execute transitions from cases 1 or 2. Also, a transition from case 3 is either the last one in the run or it must be followed by a transition of case 4.

We will now define a transducer P 2 h that takes care of words in Ť năk Lpeq n . Recall that the automaton A e " pQ, Σ, q I , F, ∆q recognizes Lpeq. P 2 h is defined as the 

Ý Ý Ñ pq 1 , iq if q a Ý Ñ q 1 in ∆, pq, iq ε|#e
Ý ÝÝ Ñ pq I , i `1q if q P F and i `1 ă k. P 2 h just counts the number of Lpeq-factors read upto k ´1 and adds the corresponding separators between them. If w P Lpeq n with n ă k, then P 2 h has a run from the initial state pq I , 1q to a final state pq, nq where q P F . The output function of P 2 h is then the identity with # e symbols inserted.

The 1-way transducer for h " re, f s k‹ is P h given in Figure 26. § Lemma 14. Let h be an RTE. The parser P h computes the parsing relation P h . The number of states of the parser is P h ď |h| widthphq .

Proof. As before, the proof is by structural induction and the only new case is when

ε | ph ε | ph ε | hq ε | hq ε | hq ε | hq P 1 h P 2 h Figure 26 Parser for h " re, f s k‹ h " re, f s k‹ . We first show that rrP h ss R Ď P h .
It is easy to see that the relation defined by P 2 h is the set of pairs pw, αq where w " u 1 u 2 ¨¨¨u n with n ă k and u i P Lpeq, and α " u 1 # e u 2 ¨¨¨# e u n . We get ph α h q P P h pwq.

Let be an accepting run of P 1 h reading an input word w P Σ ‹ . We factorize the run as " 1 δ 1 2 ¨¨¨δ n´1 n where δ i are the transitions of case 4, i.e., labelled ε | # e . Let u i and α i be respectively the input read by i and the output produced by i . We have w " u 1 ¨¨¨u n and the output produced by is α " α 1 # e α 2 ¨¨¨# e α n . We will show that ph α h q P P h pwq.

The counter modulo k which is the first component of states of P 1 h is incremented only by transitions of case 4. Hence, during i the counter is constantly i mod k and the transition δ i increments it to i `1 mod k. From the condition q P F in case 4 or by definition of F h , we deduce that the projection of i on the second component is an accepting run of A e for the input word u i . Hence u i P Lpeq. It is also easy to see that π Σ pα i q " u i . Before can reach an accepting state of F h , its third component which started initially with q f I has to reach q f F which is possible only by a transition of case 3 when the first component which counts modulo k has the value k. We deduce that n ě k.

We show below that conditions (1-6) on page 25 defining the parsing relation are satisfied. We deduce that ph α h q P P h pwq as desired. 1. Let 0 ď i ď n ´k and m " i `1 mod k. We consider the projection 1 on the component 2 `m of the subrun i`1 ¨¨¨ i`k reading u i`1 ¨¨¨u i`k and producing α i`1 # e ¨¨¨# e α i`k . We can check that 1 is an accepting run of P f reading u i`1 ¨¨¨u i`k and producing the projection of α i`1 ¨¨¨α i`k on Σ Y B m . We deduce that π m pα i`1 ¨¨¨α i`k q P P f pu i`1 ¨¨¨u i`k q and condition (1) holds. 2. Let 1 ď i ă j ď k. During the run i , the component 2 `j of the states is constantly q K and we deduce that α i does not contain a parenthesis | j . 3. Similarly, if n ´k `1 ď i ă j ď n, then during the run i , the component 2 `pj mod kq of the states is constantly q K and we deduce that α i does not contain a parenthesis | j mod k . 4. Let i ě k and m " i `1 mod k. As above, consider the projection 1 on the component 2 `m of the subrun i´k`1 ¨¨¨ i reading u i´k`1 ¨¨¨u i and producing α i´k`1 # e ¨¨¨# e α i .

Since 1 is an accepting run of P f , it ends with some q 2`m ε|fq m Ý ÝÝ Ñ q f F , which must be the projection of a transition of case 3. Now, a transition of case 3 may only be followed by a transition of case 4. Hence, this is the last transition of i and we deduce that α i ends with fq m .

5.

Let i ď n ´k `1 and m " i mod k. We can see that i starts from some state pm, q I , q 1 , . . . , q k , mq with q m " q f I . We have a transition q m " q f I ε|pf Ý Ý Ñ q 1 m in P f . Hence the first transition of i must be with case 2 and since m is the maximal element w.r.t.

the order ď m it must be induced by the transition q m " q f I ε|pf Ý Ý Ñ q 1 m of P f . We deduce that it is labelled ε | pf m and that α i starts with pf m . Let i ą n ´k `1 and m " i mod k. We can see that i starts from some state pm, q I , q 1 , . . . , q k , mq with q m " q K . Since m is the maximal element w.r.t. the order ď m , the first transition of 2 cannot be from case 2. Either it is from case 1 and α i starts with a letter from Σ, or it is from case 3 and α i " fq i`1 mod k , or it is from case 4 and α i " ε.

6.

Assume that α i has two consecutive parentheses | j | with | ‰ fq i`1 mod k . The two parentheses have been produced by consecutive transitions of case 2. We get j ď i .

Conversely, we prove that P h Ď rrP h ss R . Let ph α h q P P h pwq. We write w " u 1 u 2 ¨¨¨u n with n ě 0, u i P Lpeq for 1 ď i ď n, and α " α 1 # e α 2 ¨¨¨# e α n such that either n ă k and α i " u i , or n ě k and conditions (1-6) on page 25 defining the parsing relation are satisfied. In the first case, it is clear that pw, αq is in rrP 2 h ss R . So we assume that n ě k and we will show that pw, αq is in rrP 1 h ss R . For each 0 ď i ď n ´k, with m " i `1 mod k, condition (1) implies that we have π m pα i`1 ¨¨¨α i`k q P P f pu i`1 ¨¨¨u i`k q. We choose a corresponding accepting run σ i of P f . We write σ i " σ 1 i ¨¨¨σ k i where σ i reads u i` and produces π m pα i` q (this factorization is unique since each transition of P f produces a single symbol). Now, let 1 ď j ď n, and consider an accepting run 1 j for u j in A e . The output word α j determines a unique way to order transitions of 1 j and transitions of the runs σ i with i ` " j, synchronizing transitions reading letters from Σ and interleaving transitions reading ε and producing parentheses. Using conditions [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF][START_REF] Courcelle | Monadic second-order definable graph transductions: A survey[END_REF][START_REF] Dartois | On reversible transducers[END_REF] on α j , we can check that following the above order we obtain the run j using transitions of types [START_REF] Alur | DReX: A declarative language for efficiently evaluating regular string transformations[END_REF][START_REF] Alur | Regular combinators for string transformations[END_REF][START_REF] Baudru | From two-way transducers to regular function expressions[END_REF] and such that the projection of j on the second component (resp. on component 2 `pj ´ `1 mod kq) is 1 j (resp. σ j´ ). Notice that, during the run j , the first component is constantly j and the last component starts with j and is then deterministically determined by each transition.

We conclude the proof by showing the upper bound on the number of states of P h . By Lemma 9 we already know that the upper bound is valid when the expression does not use k-star or reverse k-star. So, again, the only new cases to consider in the induction is when h " re, f s k‹ or h " re, f s k‹ r . In both cases, the parser is the same and its number of states is P h " k 2 pnlpeq `1qp P f `1q k `pk ´1qpnlpeq `1q `2 .

Recall that, in both cases, |h| " 1 `nlpeq `|f | `k `1 and widthphq " k ˆwidthpf q `2.

Using induction hypothesis P f ď |f | widthpf q and the fact pa b `1q ď pa `1q b when a, b ą 0, we get P h " k 2 pnlpeq `1qp P f `1q k `pnlpeq `1qpk ´1q `2 ď k 2 pnlpeq `1qp|f | widthpf q `1q k `pnlpeq `1qpk ´1q `2 ď k 2 pnlpeq `1qp|f | `1q k¨widthpf q `pnlpeq `1qpk ´1q `2 .

On the other hand, considering only three terms of the binomial expansion for the first inequality, we have |h| widthphq " pk `pnlpeq `1q `p|f | `1qq k¨widthpf q`2 ě pk ¨widthpf q `2q ¨k ¨pnlpeq `1q ¨p|f | `1q k¨widthpf q `1 `1 ě k 2 pnlpeq `1qp|f | widthpf q `1q k `pnlpeq `1qpk ´1q `2 .

We deduce that P h ď |h| widthphq . đ Reversible transducer for the unambiguous semantics of RTEs

In this section, we will discuss how to check if a word is in the unambiguous domain of an RTE. As already discussed in Section 3.2, the unambiguous domain udomphq of an RTE h is defined as the set of words w P domphq such that parsing w according to h is unambiguous. Further, from Theorem 4, we know that udomphq coincides with fdompP h q, which is the set of words w such that rrP h ss R pwq is a singleton. Making use of this observation, we will check if a word w is in the unambiguous domain of h by checking whether P h is functional on w.

Let h be an RTE. Let T o h denote the automaton obtained from the parser P h by erasing the inputs on transitions and reading the output instead. Recall that from Theorem 4, for each parsing α of w w.r.t. h, the projection of α on Σ is w. Now, we claim that in order to check for functionality of P h on a word w, it is sufficient to check whether T o h accepts two words α ‰ β having the same projection w on Σ. In the rest of this section, we will give a construction that checks this and show its correctness. Specifically, we will compute an automaton B h from T o h , such that B h accepts the language domphqzudomphq " dompP h qzfdompP h q. Let P h " pQ h , Σ, A, q h I , q h F , ∆ h , µ h q be the 1-way transducer that produces the parsing w.r.t. the expression h. Then, B " pQ, Σ, q I , F, ∆q where Q " Q h ˆQh ˆt0, 1u, q I " pq h I , q h I , 0q. A state pp, q, νq is accepting, i.e., pp, q, νq P F , if we find two runs p ε|x Ý Ý Ñ `qh F and q ε|y Ý Ý Ñ `qh F in P h with Π Σ pxq " Π Σ pyq " ε, and in addition, x ‰ y if ν " 0. The transition relation ∆ is given by the following rules, where p a|xa Ý ÝÝ Ñ `p1 in the premises denotes that there is a sequence of transitions in P h that reads a and produces xa. x ‰ y Π Σ pxq " Π Σ pyq " ε [START_REF] Alur | Regular combinators for string transformations[END_REF] pp, q, 0q a Ý Ñ pp 1 , q 1 , 1q

p a|xa Ý ÝÝ Ñ `p1 q a|ya Ý ÝÝ Ñ `q1 Π Σ pxq " Π Σ pyq " ε (3)
pp, q, 1q a Ý Ñ pp 1 , q 1 , 1q

We will now show that B accepts precisely the set of words that have multiple parsings in P h . § Lemma 15. w P domphqzudomphq iff B has an accepting run on w.

Proof. Suppose that B has an accepting run on w. Then, by our construction, T o h has two accepting runs α and β, such that α ‰ β and Π Σ pαq " Π Σ pβq " w. This in turn means that P h has two runs reading w and producing α and β respectively. Therefore, α, β P P h pwq and we get w P dompP h qzfdompP h q " domphqzudomphq.

Conversely, suppose that w P domphqzudomphq " dompP h qzfdompP h q. Let α, β P P h pwq with α ‰ β. Then, P h has two runs reading w and producing α and β respectively. By Theorem 4 we have Π Σ pαq " Π Σ pβq " w. Hence, we can write w " a 1 a 2 ¨¨¨a n , α " u 0 a 1 u 1 ¨¨¨a n u n , and β " v 0 a 1 v 1 ¨¨¨a n v n , where Π Σ pu i q " Π Σ pv i q " ε, for 0 ď i ď n. Further, let i be the least index such that u i ‰ v i . From the construction, we know that after reading a 1 ¨¨¨a i , the automaton B reaches a state pp, q, 0q (by using rule (1) repeatedly). If i " n, then pp, q, 0q P F and B accepts w. If i ă n, then B uses the rule (2) to go to a state pp 1 , q 1 , 1q when reading a i`1 . Then, we can use repeatedly rule (3) to read a i`2 ¨¨¨a n and reach a state in F . In both cases, B has an accepting run on w. đ

Note that the number of states of B is 2 P h 2 , where P h denotes the number of states of P h . From Theorem 4, we know that P h ď |h| widthphq for general RTEs and P h ď |h| when h does not use Hadamard product, k-star or reverse k-star. Thus, the number of states of B is at most 2|h| 2¨widthphq in general, and 2|h| 2 when h does not use Hadamard product, k-star or reverse k-star. Moreover, the construction takes time polyp P h q, which is polyp|h| widthphq q for general RTEs and polyp|h|q when h does not use Hadamard product, k-star or reverse k-star.

Using Lemma 2 on B, we obtain a reversible automaton B 1 with number of states 2 ¨2|h| 2¨widthphq q `6 that accepts the complement of LpBq, i.e., B 1 accepts the set of words having at most one parsing w.r.t. h. Using Lemma 1 on P h , we obtain a uniformizing 2RFT P 1 h of size 2 Op|h| widthphq q . Let P U h be defined as the 2RFT that first runs the automaton B 1 without producing anything, then runs P 1 h if B 1 has accepted. This transducer is reversible since it is the sequential composition of reversible transducers, and computes the parsing relation on words belonging to the intersection of the domain of the two machines, i.e., udomphq the set of words having exactly one parsing. Its number of states is the sum of the number of states of the two machines (`1 dummy state making the transition), hence P U h " 2 Op|h| 2¨widthphq q . Thanks to Theorem 4, for any given RTE h, we have the evaluator 2RFT T h which, when composed with the parsing relation P h , computes the relational semantics of h: rrhss R " rrT h ss ˝Ph . Let T U h be the 2RFT obtained by the composition of T h and P U h (which restricts the parser to the unambiguous domain of h), i.e., T U h " T h ˝PU h . Then, T U h computes the unambiguous semantics of h: rrhss U " rrT U h ss. Recall that the number of states of the evaluator is T h " Op|h| ¨widthphqq. Then, as the composition of 2RFTs can be done with polynomial blowup, we get T U h whose number of states is 2 Op|h| 2¨widthphq q . Note that, if h does not use Hadamard, k-star or reverse k-star, then both P h and T h are linear in |h|. As a consequence, for an RTE h belonging to this fragment, we get T U h whose number of states is 2 Op|h| 2 q .

Conclusion

We conclude with some interesting avenues for future work. An immediate future work is to adapt our parser-evaluator construction to work for SDRTE. We believe that this can be done with some effort, preserving our complexity bounds. Note that in this paper, we have already done the work to handle re, f s k‹ even though 2-star was sufficient for RTE; it remains to ensure the aperiodicity of the parser-evaluator, preserving our complexity bounds, to make our construction work for SDRTE. Another interesting question is to see if our approach and construction can be made amenable for extended RTE, which also allows function composition as an operator of the RTE syntax. Note that this does not increase expressiveness, but is a useful shorthand. Already in this paper, we have considered some useful functions like duplicate and reverse along with the fragment RTE [Rat, . r , ‹ r ]; allowing function composition makes the use of these shorthands meaningful. As we construct reversible machines, composing them is effective and hence having composition as the topmost operator is straight-forward. However, using composition as an operator would require the parsing of intermediate outputs which we leave as an open problem.

Figure 2

 2 Figure 2 Two automata recognizing the same language Σ ˚aΣ ˚.

Figure 3

 3 Figure 3 Parse trees for aab and ab w.r.t. e " a ‹ ¨b `a ¨b‹

Figure 4

 4 Figure 4 Format of the evaluator transducer

Figure 18

 18 Figure 18Parse dag for ab w.r.t. the Hadamard product f d g, where dompf q " a ˚b and dompgq " ab ˚.

Figure 20

 20 Figure 20 Parser for h " f d g

Figure 22 P

 22 Figure 22 P h pwq for h " re, f s 3‹ on a word w in Lpeq 6 .

  Even if we add w

		Parser P h (1NFT) P h ď |h| widthphq	Parsings of w	Evaluator T h (2RFT) T h ď 5|h| ¨widthphq	γ P rrhss R pwq
	w	Parser P U h (2RFT) P U h " 2 Op|h| 2¨widthphq q	Unambiguous parsing of w	Evaluator T h (2RFT) T h ď 5|h| ¨widthphq	rrhss U pwq
		w	B (1NFA) Non-functionality checker for P h 2 B " 2 ¨ P h	Yes No	w P domphqzudomphq w P udomphq Y domphq
		w	P 1 h (2RFT) P 1	

h " 2 Op P h q