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Abstract—Integrating recent advancements in resilient algo-
rithms and techniques into existing codes is a singular challenge
in fault tolerance — in part due to the underlying complexity
of implementing resilience in the first place, but also due to
the difficulty introduced when integrating the functionality of
a standalone new strategy with the preexisting resilience layers
of an application. We propose that the answer is not to build
integrated solutions for users, but runtimes designed to integrate
into a larger comprehensive resilience system and thereby enable
the necessary jump to multi-layered recovery. Our work designs,
implements, and verifies one such comprehensive system of run-
times. Utilizing Fenix, a process resilience tool with integration
into preexisting resilience systems as a design priority, we update
Kokkos Resilience and the use pattern of VeloC to support
application-level integration of resilience runtimes. Our work
shows that designing integrable systems rather than integrated
systems allows for user-designed optimization and upgrading
of resilience techniques while maintaining the simplicity and
performance of all-in-one resilience solutions. More application-
specific choice in resilience strategies allows for better long-term
flexibility, performance, and — importantly — simplicity.

Index Terms—Fault Tolerance, Resilience, Checkpointing,
MPI-ULFM, Kokkos, Fenix, HPC.

I. INTRODUCTION

High Performance Computing is a critical part of research
and many industries, with demand for compute resources con-
tinually growing. Longer running applications and larger, more
complex clusters lead to higher rates of application failures.
These failures cause significant losses in time and energy: an
analysis of the Blue Waters system at the University of Illinois
found that ~ 9% of the system’s total production node hours
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were lost to system-software-induced failures alone, and node
failures happened every 4.2 hours [1]. Oftentimes, hardware
strategies to lower the ever-growing power consumption of
systems trade reliability for power [2], [3]. Therefore, software
resilience strategies are important for application robustness
without sacrificing power efficiency gains. In this work we
concern ourselves with the two primary layers of resilience
(data and process recovery), and control-flow recovery - an
often-overlooked third layer. Figure 1 displays these layers
and the sample strategies we will be using, which will be
discussed in Section V.

The most common data-level strategy is Checkpoint/Restart
(C/R), in which applications write their data to a resilient
storage space (typically disk). Process-level resilience is a
newer concept for HPC applications, which primarily use
MPI. The process level focuses on minimizing the disruption
to local data and the cost of MPI relaunch by recovering
without killing surviving processes after the failure of one
process. Finally, the control-flow layer manages what and
when to checkpoint/recover and how to resume execution after
a failure.

Many prior studies have shown that each of these layers
are necessary for comprehensive, performant resilience run-
times [4]-[6]. This is a problem when viewed in conjunction
with the current state of resilience runtimes, which often either
assume they are running alone, without any additional layers,
or leave it to the application to manage potential complex
integration of resilience layers. Runtimes which integrate
internally with other layers directly suffer from a lack of
versatility — as new hardware, data-recovery strategies, or
parallelism runtimes emerge these pre-integrated resilience
libraries are either rewritten to integrate with new runtimes
or are deprecated.
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Fig. 1. Visualization of the recovery layers and the placement of resilience frameworks within them.

Realizing the full benefits of resilience at an applica-
tion and systemic level relies on developing new algorithms
and strategies for the various layers, and reaping the full
benefits of these methods requires tailoring their integration
per-application. Delegating the current complexity of this to
users risks at best under-performing resilience and at worst
resilience which fails to recover consistently or subtly gives
incorrect results. The only way to enable comprehensive
runtimes which use algorithms that are most performant and
most hardware/software specific is by designing runtimes with
integration into a larger, application-specific resilience strategy
as a core design principle.

Our work with Fenix [7] as a process-layer resilience
runtime designed specifically for simplifying integration into
larger application-specific resilience systems demonstrates
simplifications in development that do not sacrifice perfor-
mance. We present a comprehensive resilience system runtime
which integrates process resilience, control-flow resilience,
and data resilience. Out implementation uses Fenix for the pro-
cess resilience component, Kokkos Resilience [8] for control-
flow resilience component, and VeloC [9] for data resilience.
The result of this is a highly performant, comprehensive re-
silience environment consisting of runtimes that offer support
for a wide array of state-of-the-art resilience strategies. More
than performant, our work is simple both to maintain and add
to applications; we show that implementing resilience with this
system is minimally code-invasive, and updates to customize
for specific application or platform features is simplified by
exposing the integration of these runtimes to the application.
These properties make for a comprehensive resilience system
that is simple, performant, and flexible.

The rest of the paper is organized as follows. Section III
discusses the runtimes that make up our system, and their
related works. Section IV explains the protocols for our
comprehensive resilience system. Section V details the work
done to support our algorithm and the practical details of
using in an application. Results on the code complexity and
performance of our combined runtimes resilience are presented
in Section VI. Finally, we offer the lessons learned in this
process and a roadmap for a resiliency community focused on
comprehensive and reliable resilience in Section VII.

II. RELATED WORKS

Work regarding data resilience is prolific and has been
for some time now. There are works such as VeloC [9],
DMTCP [10], CPPC [11], and SCR [12] which focus on
simplifying or automating performant checkpointing. Further,
there is much investigation into improving support for check-
pointing across heterogeneous devices: including FTI [13] and
CRUM [14]. These libraries each present a unique set of pros
and cons that make the ideal choice highly dependent on
application and environment details.

The control-flow resilience layer is a newer focus of re-
search. Kokkos Resilience [8], [15] and Resilient HCLIB [16]
both utilize existing parallel control libraries to manage
control-flow during recovery, which benefits from preex-
isting knowledge of the application’s default control-flow.
The two implement resilience methods in parallel-region and
asynchronous-many-task runtimes, respectively. In addition,
the CPPC data resilience system discussed above automates
control-flow recovery without relying on a specific method of
parallelism by using compiler-based tooling.

There are also several ongoing process resilience research
projects. User Level Fault Mitigation (ULFM) [17] proposes
a set of additional MPI functions to enable dynamic failure
recovery and management at the cost of being somewhat
complex. MPI-Reinit [18] is another MPI-based work that
focuses on a simplified restart process at the expense of being
less flexible in how recovery is handled. Fenix [7] attempts
to bridge the gap between the two by using ULFM and
automating application rollback and communicator recovery
but allowing for users to selectively tune portions of code with
lower-level controls. There are also a sampling of non-MPI
options — e.g. FMI [19] and ACR [5] — which can provide
enhanced and highly-automated process resilience at the cost
of requiring application rewrites to a new message-passing
library.

There are many works which integrate multiple runtimes
and resilience layers and demonstrate the performance bene-
fits of doing so. Automatic Checkpoint/Recovery (ACR) [5]
builds a runtime which handles process, control-flow, and data
resilience altogether. Checkpoint-Restart and Automatic Fault
Tolerance (CRAFT) combines their control-flow resilience
with ULFM process resilience and either their own C/R system
or the SCR runtime, and FTI similarly has recent work in
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Fig. 2. Visualization of the Fenix algorithm and typical control flow.

integrating with MPI-Reinit [20]. The Habanero C-Library
(HCLIB) [6] offers an extension that integrates with Fenix
for process resilience and VeloC for C/R. Prior work on inte-
grating ULFM with the Compiler for Portable Checkpointing
(CPPC) [21] uses a compiler-based instrumentation approach
to automate recovery using ULFM and the CPPC library for
data resilience. Even the Kokkos Resilience work we utilize
here integrates a custom control-flow recovery with VeloC for
data recovery.

These works form an important corpus on gauging the
resilience patterns of integrated layers, but lack the future-
proofing of simplifying the integration in the first place. They
represent the pre-integration that is inherently less future-
proofed and flexible than a resilience environment focused on
simplified application-level integration. Our work is distinct
from these in that it is designed to be used as a larger
resilience runtime scheme while maintaining the simplicity
and performance of resilience that prior work aims for.
This enables performance that continues to improve as new
runtimes, strategies, and technologies emerge; and tailoring
resilience precisely to applications and hardware. We enable
greater heterogeneity support by enabling the MPI+X model
directly, simplify implementing high-performing resilience in
both applications that have and lack preexisting resilience,
and leave enough control to developers to enable low-level
optimizations when desired.

III. BACKGROUND

Clearly, resilience in high performance computing is a well-
established field with a large number of preexisting libraries

for process recovery, control-flow management, and data re-
covery. We have chosen representative runtimes which are high
performing, novel, and contemporary.

Our chosen data-level runtime is VeloC, a recovery runtime
whose use involves a data C/R server application launched
on each node. VeloC has users register checkpoint regions,
then uses the co-located server thread to asynchronously
manage migrating data to available resilient storage spaces
based on dynamic information on space and performance of
the spaces. VeloC can manage distributed parallelism for the
user, but this functionality does not accommodate changes in
the distributed thread-space. This makes integration with even
simpler process-layer runtimes more complex for the user.

The control-flow runtime we use is Kokkos Resilience, a
project built on top of Kokkos [22], a parallel C++ program-
ming model designed to simplify performance portability for
parallel applications. Kokkos Resilience uses Kokkos’s model
of data storage and functor- and lambda-based parallelism to
automatically detect the data to be checkpointed and safe
locations to checkpoint/recover. Kokkos Resilience can au-
tomatically detect data being used deep in nested function
calls, so users cover large recovery regions with just top-
level code adjustments. Kokkos Resilience is designed to
pass its knowledge to various C/R backends, simplifying pre-
integration with other runtimes but not necessarily enabling
simplified user-space integration.

Our process-level runtime Fenix is built to simplify compre-
hensive resilience using ULFM [17]. The ULFM specification
adds a small number of versatile functions which allow
for reporting, recovering, and propagating failures in MPI



applications. Failures can be reported at any MPI function
call, which makes integration with control-flow layer runtimes
which assume fail-restart semantics difficult. Further, recovery
after failures principally hinges on shrinking communicators to
exclude failed ranks. This complicates integrating with typical
C/R libraries like VeloC, as it does not preserve rank IDs and
changes the required data distribution.

IV. PROTOCOL OF OUR INTEGRATED RESILIENCE SYSTEM

To better understand of the design of our framework, we
first discuss the typical control-flow of process resilience with
Fenix. The purpose of Fenix is to simplify MPI process
resilience by providing two primary benefits: (1) maintaining
a resilient communicator which appears to have a consistent
process pool even after process failures; and (2) reducing
the number of failure states by making a single control-flow
exit point for failures. The facade of a consistent resilient
communicator is managed by holding some ranks out of the
resilient communicator until after a failure, at which point they
replace failed ranks. From an application perspective, these
spare ranks block at the Fenix initialization call. A single
control-flow exit is formed by attaching an error handler to the
resilient communicator which performs a long-jump back to
the Fenix initialization location whenever failures are detected.

Figure 2 visualizes the typical layout and failure-response
of a Fenix-enabled application, and aligns closely with the
benchmark application we use (discussed in Section VI).
Typically, users initialize Fenix shortly after MPI and be-
fore performing any rank-dependent setup or communication.
Principally, this initialization takes an input communicator
(typically MPI_COMM_WORLD) and returns a new ’resilient
communicator” which excludes the user-specified number of
spare ranks from the input communicator. Fenix specification
does not require that it is initialized before any MPI communi-
cations, but care must be taken to account for spare ranks that
will not progress past the initialization call. After initialization,
users proceed as normal using the resilient communicator in
place of the input communicator. Users eventually call the
Fenix finalization function, typically immediately followed by
finalizing MPL

When failure on the resilient communicator is reported by
ULFM, a Fenix recovery callback is called which handles
several important actions. First, Fenix ensures that the failure
information is propagated to all the other ranks, including
the spares, thus the error is propagated not only in the re-
silient communicator but in the input communicator (possibly
MPI_COMM_WORLD). Then, Fenix “repairs” the resilient com-
municator by replacing it with a communicator of the same
size, but where all failed ranks have been replaced in-place
with spare ranks. Finally, Fenix performs a long-jump back to
the Fenix initialization call and runs any application callbacks
before returning control to the application. At this point, it
becomes important to monitor the “Fenix role” which is also
returned by the initialization function; these take the form of
the rank states shown in Figure 2 and give the application

the ability to reason about the current state of a rank for C/R
purposes.

With this process-layer protocol in mind, we can discuss
the comprehensive resilience framework. Figure 3 gives an
overview of how the three resilience layers interact. All data
resilience is handled by VeloC, which is primarily used as a
standalone tool without much feedback to and from the other
layers. Kokkos Resilience manages the control-flow resilience,
and as a middle layer has much more interaction with the
others. As part of handling the control-flow changes necessary
for failure recovery, it fully integrates VeloC internally and
manages making all calls to VeloC for C/R. This means it must
pass down any information VeloC needs from MPI - and in
this case Fenix. Using Kokkos Resilience, applications simply
wrap checkpoint regions (such as the inside of a for-loop) in
a lambda passed to a checkpoint management function. This
function automatically gathers metadata on the data regions
to checkpoint, passes that information to VeloC, and handles
checkpointing at user-configured intervals or recovering when
capable/necessary.

Fenix handles detecting failures, repairing the commu-
nicator state, and reporting the failure after returning the
application to its initialization. This reported information is
used to inform Kokkos Resilience of failures, which requires
replacing the old communicator, clearing and re-fetching its
checkpoint metadata (as a checkpoint finished locally may not
have finished globally), and managing recovery of data based
on this information. It must also update cached information in
itself and VeloC on the current rank ID, in the case that an
application is capable of continuing execution with a shrunk
communicator after running out of spare ranks.

V. IMPLEMENTATION

Ideally, using these libraries would enable us to merge their
runtimes into our protocol with only application-level code,
and adding each layer into the algorithm would require little
change to how we use the others. In fact, the process required
changing the way we use VeloC and modifications to the
internals of the Kokkos Resilience library.

We start with VeloC. The typical initialization call takes
an MPI Communicator as input and does not include the
functionality to replace this communicator. VeloC also allows
a non-collective implementation, though this prevents it from
automatically finding the best globally-available checkpoint.
Using Fenix process recovery with VeloC requires using
the non-collective mode of VeloC and manually performing
a reduction operation to obtain a globally-best checkpoint.
Fortunately, this changes only a few locations in a typical
application.

The Kokkos Resilience interface does not provide the re-
quired functionality to operate simultaneously with both Fenix
and VeloC. The VeloC backend in the library does not allow
initializing VeloC in single mode, and contains state-based
information which cannot be reset after a process failure.
As part of this work, we have developed support for these
issues into the Kokkos Resilience library. Our changes add
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an alternative new configuration option which launches VeloC
in non-collective mode and handles performing the requisite
communication to find the best available checkpoint. Further,
we extend the Kokkos Resilience context reset function to
also accept a new communicator and update its internal MPI
information.

With these changes to support process-level resilience, our
algorithm can be implemented in Kokkos-based application
code with very little code modification and minimal knowledge
of the inner details of the application. Figure 4 shows the
typical use pattern.

A. Alternative implementations

We have created implementations which explore other com-
binations of the methods for each layer presented in Figure 1.
First as references we have configurations which use: VeloC
alone; Kokkos Resilience without Fenix; and Fenix with VeloC
but without Kokkos Resilience.

As demonstrations of the possible types of recovery en-
abled by process-level resiliency we have two more unique
implementations. First, we utilize one of Fenix’s built-in
In Memory Redundancy (IMR) data resiliency policies. The
IMR policies benefit from process-level resiliency by storing
checkpoint data in the memory of other ranks, similar to buddy
checkpointing approaches. In this work we use the buddy
rank policy, in which ranks form pairs and store each other’s

checkpointed data. Local copies of checkpoints are also kept,
increasing memory use in exchange for quick, local recovery
on surviving ranks.

Second, we extend VeloC’s Heatdis benchmark to benefit
from the progress surviving ranks have made since the last
checkpoint. Since our process resiliency layer leaves survivor
ranks rather than destroying them all and relaunching, work
done since the most recent checkpoint on the survivors may
still be sitting in the application’s data copy. Some applica-
tions, such as many iterative solvers which converge on a
solution, can tolerate the error induced by the partial consis-
tency of having failed ranks use an older iteration’s data. We
present a demonstration of this partial rollback method which
skips checkpoint recovery on surviving ranks but computes
until the difference between iterations is below a threshold.
We use Fenix and Kokkos Resilience to manage the resilience
of this extension, which required further modifying Kokkos
Resilience to enable restoring at just one rank with VeloC.

VI. EMPIRICAL EVALUATIONS

A. Applications

We use two sample applications to demonstrate our work.
First, the VeloC heat distribution benchmark (Heatdis), mod-
ified to use Kokkos for parallelism control. The application
is a 2D stencil that runs for a static number of iterations
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and checkpoints by iteration count. To demonstrate a partial-
consistency based strategy, we have further modified a version
of Heatdis to run until data convergence. Heatdis has a
configurable per-node application data size, which impacts the
amount of processing as well as the amount of checkpointed
data. All tests with Heatdis perform 6 checkpoints, which are
each half the size of the application’s data.

Second, we use the mini-app version of Sandia’s Molecular
Dynamics software, MiniMD [23]. MiniMD gives a more
real-world sized example of implementing resilience, and is
used to demonstrate the ease with which developers can
use these combined strategies for performant resilience. We
have gathered data on how our systems manage resilience
with minimal development work; our goal is to explain the
complexities in its communication and data movement patterns
and examine how well these are handled.

B. Platform

All tests performed for this work were conducted on a 100-
node Cray XC40 system. Our tests were run on 2-socket Intel
Haswell CPU nodes with 32 cores/node, and use disk-based
checkpointing stores to the Lustre distributed file system.

C. Testing Details

Since part of the recovery cost of relaunch-based resilience
is the time required for shutdown and restart on all of the
nodes, timing data cannot be exclusively gathered within
applications. To supplement, we measure the time of the
mpirun command using the time bash utility. Each tested
application is run four times, twice with failure and twice
without. The times are averaged in the reported overheads.

Failures are simulated through a rank exiting early, approxi-
mately 95% of the way between two checkpoints. This ensures
that the asynchronous VeloC checkpoints have completed prior

to the failure, which is a more typical failure pattern for full-
sized applications which use checkpointing.

VeloC is configured to use a filesystem folder mapped to
local memory for scratch checkpoint storage, which means the
synchronous portion of the VeloC checkpoint is just a memory
copy of the application’s data.

In Figure 5 we present the data gathered by checkpointing
and recovering the Heatdis benchmark with varied data sizes
and across a variable number of nodes (one rank per node,
weak scaling data size). We separate the time spent in the
application’s local compute and time spent waiting on MPI
function calls as “App compute” and “App MPI”, respectively.
The difference in in-app measurements and the bash-reported
times are shown in Figure 5 as “Other”, which covers data
initialization, MPI job startup/teardown, and finalization time.

Similarly, in Figure 6 we present weak scaling performance
data for the MiniMD application made resilient with our new
framework. Here, we use MiniMDs existing profiling struc-
tures and report the application’s execution time according to
sections of compute type. “Force Compute” is a section of the
application that is almost entirely compute-bound, with very
little communication between ranks. “Neighboring” has more
communication, but is still primarily local-compute-bound.
However, “Communicator” represents the bulk of the com-
munication in the app and is almost entirely communication-
bound. As before, “Other” is the unaccounted-for time re-
ported by the bash system and encompasses the same sources
of overhead.

D. Performance

As expected, Figure 5 shows no or negligible overhead
is introduced by using Kokkos Resilience as a manager for
VeloC checkpointing. This holds true when integrated with
Fenix, as well. Of note, we see from Figure 5 that even
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a naive implementation of Fenix improves performance of
failure recovery with no or negligible additional overhead
compared to a VeloC/Kokkos Resilience. The savings for using
Fenix are primarily expressed through the “other” category,
which points to the savings coming from avoiding the full
tear-down and restart of all processes in the job.

1) Checkpointing: The total costs and the way they present
vary between the two methods of resilient data storage. We
see in Figure 5 that when using VeloC, the direct cost on
calling the checkpoint function is quite low, just the amount of

time it takes to make an in-memory copy of the data. Instead,
the costs present primarily in slowing down the application
by placing more of a burden on the network system. This
congestion is more costly than IMR at low data sizes since
the checkpointing is bottlenecked by the performance of the
distributed filesystem — a large number of nodes are all at once
writing data through a much smaller number of filesystem
management nodes. During the time that the VeloC servers
are congesting the network with their asynchronous writes to
persistent storage, application MPI calls are delayed. However,
we notice that the costs maintain very good scaling against
the size of the data for these test cases. This is because while
the maximum throughput of the filesystem extends the time
required to write the checkpoints, it also places an upper bound
on the amount of congestion that can be generated by the
process of moving checkpoints to persistent storage.

On the other hand, IMR based checkpointing is much more
direct in the scaling and presentation of its costs. We see
that the checkpoint function costs scale directly with the size
of the checkpoint, and that it scales worse against data size
than VeloC-based checkpointing. However, at lower values
it significantly outperforms disk-based storage since it better
utilizes the available network bandwidth by distributing the
data destinations rather than bottlenecking on the number
of filesystem management nodes. We also see better scaling
against the number of ranks being run across, since each rank
adds both a producer and a consumer of the checkpoint data.
This allows us to scale very well until hitting the overall
network bandwidth limits, and effective network interconnects
can help this scaling continue working on higher node counts.

The nature of this comparison depends heavily on the
application’s compute and communication patterns. Since
communication is delayed, if it overlaps compute efficiently
or is the primary cost for portions of the application we
will see the impact of asynchronous writes to the filesystem
vary significantly. This can be seen in Figure 6 by how
checkpointing impacts the cost of the different portions of the
application. The mostly compute-bound “Force Compute” and
“Neighboring” portions of the application have relatively little
overhead compared to the much more significantly relative
cost to the communication-bound “Communicator” sections.

In fact, we can see that as node counts rise, the overhead of
asynchronous checkpointing that presents in the force comput-
ing section of Figure 6 lowers. This is due to the higher perfor-
mance variability across larger node counts, which naturally
delays MPI communications based on the last rank to enter
the MPI portion of the code and can hide some amount of the
increased latency introduced by the asynchronous checkpoint
process. As an artifact of performance variability (in compute
and in network communications), a type of system noise in
essence, this effect is itself highly subject to noise.

2) Recovery: Well optimized recovery behavior in both
VeloC and IMR checkpointing limits the data-recovering cost
of a restart significantly. Both methods only require network
communication to restore the state of the failed rank(s); other
ranks are able to restore using locally-available checkpoint
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Fig. 7. Statistics on the relative sizes of the data regions of MiniMD and
how they are checkpointed or ignored.

files. This means the cost of data recovery is similar between
the two, and in these tests scales directly with the size of the
data being recovered. Given the asymmetrical recovery cost,
the ability of quickly-recovering ranks to make progress past
the slowly-recovering ranks will determine the effective cost
of data recovery.

Another cost of recovery is in resetting the application
process’ states. For the non-Fenix implementations, resetting
the states requires relaunching MPI entirely and redoing all
initialization (commonly including reading configuration files,
allocating large memory regions, etc.). We can see that the
higher initialization cost associated with MiniMD leads to
greater savings in Figure 6 by the significantly smaller “Other”
category in the failure costs for the Fenix-enabled resilience.

However, the bulk of the cost of recovery is in recomputing
the data lost since the last checkpoint. In Figure 5 this recom-
pute cost is explicitly separated; in Figure 6 it can be seen as
the extra time spent in the application’s three compute phases
in the failure costs. Here we see much larger benefits to the use
of Fenix — it enables surviving ranks to keep their in-progress
data. For applications which can handle an inconsistent state
across ranks (either because it is resilient to data errors or
because one rank using older data simply does not introduce
any error), this means the amount of recomputation may be
lowered significantly. In our example of the heat distribution
application iteratively lowering the error, we see a nearly 2x
speedup of recovery from just keeping the in-progress data on
surviving ranks — a very easy and very effective optimization
when it is applicable.

E. Complexity of Use

After converting the MiniMD mini application to support
Kokkos Resilience and Fenix, we have gathered some quanti-
tative figures in an attempt to convey the ease of use of this
resilience system and how effective it is with what amount
and type of code we have written. To begin, Figure 7 shows
how memory regions are broken up within the mini app and

which ones are checkpointed. Alias views are views which
the user has manually specified to contain the same data as
their alias, and so should not be checkpointed. Skipped views
are duplicate copies of a view which are copied into the
checkpoint region.

We can first note that a single view contains the majority
of the data for the application, with only a handful making
up nearly all of the checkpointed data. This means that while
there are a total of 39 views checkpointed, manually inspecting
only a small sample of 67 is sufficient to minimize checkpoint
size to a large degree. We have also observed that three views
are marked as aliases of another, accommodating a temporary
swap space for the application. Thus, developers can simply
list the two view labels as being aliases for each other to
indicate these swap-space views should not be checkpointed.

Further, we can see the large memory size of the 19
skipped views. These views are already checkpointed but
stored a second time in additional objects that are copied
into the checkpoint lambda by the compiler; they represent
views which are used across multiple sources and which
developers would need to carefully register once and only once
with a checkpoint library like VeloC. These are automatically
detected by Kokkos Resilience so as not to be checkpointed
multiple times.

In addition to the 61 view objects in the application, over
the 20+ source files 15 of them collectively contain over
148 locations with MPI code. With a typical ULFM error
handling approach, each of these would need to be adapted
to support error handling, and the number of error states is
very large. Using Fenix we can simply swap references to
MPI_COMM_WORLD to the resilient communicator used by
Fenix and then add in fewer than 20 lines of simple code to
a single file. Adding calls to Kokkos Resilience is similarly
simple.

F. Lessons Learned

We have discussed the implementation and performance
of our integrated resilience runtime framework with specific
software components and configurations. Design and imple-
mentation of the whole framework involved a significant
amount of work to modify the individual components and their
couplings. We now discuss some key lessons learned towards
scalable and reusable resilience runtime software for future
HPC systems.

1) Flexibility is key: Optimal resilience strategies depend
heavily on the application and environment details. Even
within a single application, variations in node count and ap-
plication data size quickly change which of our checkpointing
methods performs best. Supporting the flexibility required
by application developers ought to be a major priority of
resilience libraries.

2) Automate, but design for exceptions: A common thread
between Kokkos Resilience and Fenix is that the standard
use-case is highly automated. Implementing either with the
expected patterns takes little effort and little code knowledge,
and it achieves reasonably good performance from the start.



However, flexibility remains key — as demonstrated by Fig-
ure 7, allowing users to investigate and manually manage
resilience piecemeal can greatly lower the total amount of
effort by letting developers target their efforts on high-impact
regions of code.

3) Layering is ideal: The default Heatdis application is
not especially suited to online process recovery — it requires
synchronous recovery, performs global operations often, and
demands all data be rolled back to maintain a consistent data
state between ranks. Even so, it benefits from using a process
resilience layer: this demonstrates the widespread utility in
simplifying the use of every layer of recovery.

VII. CONCLUSION

With small changes to the structure and type of APIs
resiliency programs provide, user-level code modifications can
be significantly lowered for complex applications while still
gaining nearly the same levels of performance and resilience
as resilience hand-tuned with lower level tools. Our approach
of sharing information between the resilience layers without
requiring tightly coupled libraries in a single tool means users
can tailor the specifics of the executions to their individ-
ual applications and environments. Enabling resilience that
combines simplicity and flexibility through communication
between resiliency layers can be a larger focus of resilient
libraries going forward as the number of libraries and specific
functionalities expand. Otherwise we contribute to a growing
burden on developers who are already reticent to include more
than the most basic of resilience in their applications. In
short, resilience — and specifically layering resilience — 1is
hard, and simplifying it is both necessary and feasible through
communication between the layers.

A. Future Work

Further integration of Fenix and Kokkos Resilience in the
form of a data-resiliency backend is a great goal. Further,
adding a new backend tier to Kokkos Resilience for process
resiliency libraries would enable even more simplification
and open the door for more process resilience strategies.
This would remove the need for two resilience initialization
steps, and further lower the amount of control-flow modifica-
tions needed for implementing the combination of Fenix and
Kokkos Resilience. So long as simple integration with other
layers from the outside continues to be maintained, closer
integrations can serve as a convenience without forcing users
into specific resilience combinations. Testing and designing
our system for heterogeneous systems is another clear step
which could simplify managing resilience.

More significantly, improvements to integrations with the
process recovery layer can enable more complex recovery
patterns without burdening the user. This includes techniques
like shrinking and growing the total number of ranks dynam-
ically throughout execution and migrating processes for post-
failure load balancing. These strategies exist in some of the
related works discussed, but enabling them without requiring

developers to switch to new communication libraries would
be a great step in both simplifying and improving flexibility.
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