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We investigate the steady motion of solid particles through successive jumps over a
horizontal, rigid, bumpy bed driven by the shearing of a viscous fluid in the absence
of turbulence, lubrication forces and collisions above the bed. We employ a discrete
element method for the particles coupled to a mean field continuum model for the fluid
to run quasi-2D simulations that we compare with the predictions of a simple model
which assumes that all the particles follow identical, periodic trajectories determined
by the intensity of the shearing and compatible with previously suggested laws relating
the particle velocities before and after the impact with the bed. We solve the periodic
model both numerically and analytically, and identify the solutions that are linearly
stable to small perturbations. We show that the stable solutions of the periodic model
are in qualitative and quantitative agreement with the discrete simulations, as long as
the number of moving particles in the system is not too large. The discrete simulations
further reveal that there are two distinct families of particle trajectories, and that the
simple periodic model is actually a good representation of the more energetic particles,
that spend most of their time in the upper flow layers where they can gain momentum
from the flow.

Key words:

1. Introduction

Among all the possible modalities of transport of solid particles in a carrier fluid, saltation
(Andreotti 2004), that is successions of particle jumps over a bed that can be either rigid
or erodible, is generally accepted as the most common when dealing with windblown
sand and of crucial importance in determining the morphology of dunes (Sauermann
et al. 2001; Charru et al. 2013). Hence, most of the works on saltation concerns grain-
to-fluid density ratio of order 2 · 103 and takes the fluid to be turbulent, as in Aeolian
trasport on Earth (e.g., Bagnold 1941; Owen 1964; Iversen & Rasmussen 1999; Creyssels
et al. 2009; Durán et al. 2011; Kok et al. 2012; Ho et al. 2014; Valance et al. 2015).
Saltation of solid particles in a turbulent fluid at grain-to-fluid density ratio of order

2, as in the aquatic environment on Earth (Fernandez Luque & Van Beek 1976; Abbott
& Francis 1977; van Rijn 1984; Niño & Garćıa 1998; Ancey et al. 2002), 40, as on Venus
(Greeley et al. 1984; Iversen & White 1982), 200, as on Saturn’s moon Titan (Burr et al.

† Email address for correspondence: jfm@damtp.cam.ac.uk
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2015), and 105, as on Mars (Iversen et al. 1976; Iversen & White 1982), have also been
experimentally investigated in water channels or wind tunnels.
Discrete numerical simulations of interacting solid particles subjected to forces trans-

mitted by the surrounding fluid (Tsuji et al. 1993) are a powerful tool to analyse the
physics of sediment transport and have been largely applied in the recent years to
systematically investigate the influence of the particle size and the density ratio on
particle saltation in turbulent fluids (Durán et al. 2012; Pähtz et al. 2015; Pähtz &
Durán 2020; Ralaiarisoa et al. 2020).
These numerical tools solve Newton’s laws of motion for the individual particles, while

treating the fluid as a continuum for which Reynolds-averaged balance equations are
phrased. The Discrete-Continuum (DC) numerical simulations provide a large amount of
data, some of which would be unattainable in experiments. Also, the required closures
for modelling the particle-particle and particle-fluid interactions and the fluid internal
stresses are transparent and can be easily turned on or off. Thus, DC simulations are
ideal to, e.g., test how much essential physics is captured by mathematical models of
saltation at a higher level of abstraction.
Countless continuum descriptions of saltation exist (see the extensive reviews from

Durán et al. 2011; Kok et al. 2012; Valance et al. 2015; Pähtz et al. 2020). Among
those, we recently proposed a simple toy model that combines the classic idea (Bagnold
1941; Owen 1964; Sauermann et al. 2001) of assuming that all particles follow the
same trajectory, despite the severe criticism of Andreotti (2004), with a description
of the rebound of particles shot onto rigid or erodible beds drawn from experiments
and numerical simulations (Beladjine et al. 2007; Crassous et al. 2007). If applied to
steady saltation, the resulting identical trajectories must be periodic. We solved this
Periodic Trajectory (PT) model both numerically and analytically and show qualitative
and quantitative agreement against experiments and DC simulations of steady saltation
in turbulent fluids (Jenkins & Valance 2014; Berzi et al. 2016, 2017).

Saltation of particle immersed in a viscous fluid in the absence of turbulence has
received much less attention (CHARRU & MOUILLERON-ARNOULD 2002; Ouriemi
et al. 2009; Aussillous et al. 2013; Seizilles et al. 2014), although it is one of the possible
modes of transport of sand in oil pipes (Leporini et al. 2019), in which sand depositions
would lead to a significant loss of the pipe transport capacity (Dall’Acqua et al. 2017).
From the scientific point of view, focusing on saltation in the absence of turbulence
would also permit to capture the essence of the physics of the particle motion without
the complexity and the somewhat arbitrariness that modelling turbulence necessarily
implies.
Here, we first formulate a PT model for the steady saltation of particles over an

horizontal, rigid, rough bed driven by the shearing flow of a viscous, non-turbulent fluid.
In doing this, for the sake of clarity, we neglect the role of lubrication forces in damping the
collisions of the particles with the bed and the possibility of particle-particle interactions
above the bed. The PT model reduces to a system of differential equations that we
solve both numerically and, with some further simplifying assumptions, analytically.
Linear stability analysis permits us to prove that some of the solutions obtained for
given strength of the shearing flow and amount of particles in the system are actually
unstable to small perturbations.

We also perform 2D DC simulations of steady saltation over horizontal, rigid, rough
beds in which we keep constant the intensity of the shearing flow, the particle-fluid
density ratio and the particle size and vary the amount of particles in the domain. In
the DC simulations, as in the PT model, we do not include lubrication forces when
the particles interact and turn off the possibility of collisions above the bed. These
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Figure 1: Sketch of saltation over a rigid, bumpy bed.

assumptions permit us to clearly identified the strengths and the weaknesses of the PT
model. Ignoring mid-fluid collisions is justified as long as the particle concentration is
small. In the context of turbulent saltation over an erodible bed, the transition between a
collision-free saltation regime and a saltation regime modified by mid-fluid collisions has
been evidenced numerically and experimentally (Ralaiarisoa et al. 2020). The authors
showed that there exists a regime of Shields parameters where the sand transport can
be described in a relevant manner by a collision-free saltation model. However, at high
Shields number, mid-air collisions start to play a substantial role and the collision-free
saltation model breaks down. We believe that this picture persists in viscous saltation
over a rigid bed.
The paper is organized as follows: in Section 2 we describe the PT model and the DC

numerical simulations; in Section 3, we report detailed comparisons in terms of global
and local quantities between the numerical and analytical solutions of the PT model and
the measurements in the DC simulations; Section 4 offers some concluding remarks and
hints at future works on the subject.

2. Flow configuration and methods

We focus on steady saltation of identical spheres (in 3D) or disks (in 2D) of diameter d
and mass density ρp over an horizontal, bumpy, rigid base driven by the laminar shearing
flow of a fluid of mass density ρf and molecular viscosity ηf in the presence of gravity (g
is the gravitational acceleration) and in the absence of turbulence. We take x and y to
be the horizontal and vertical directions (we neglect variation in the spanwise direction);
U is the horizontal component of the fluid velocity, while ξx and ξy are the horizontal
and vertical components of the particle velocity. We use superscripts ’+’ and ’−’ to refer
to quantities relative to the ascending and descending portion of the particle trajectory
(figure 1).
We make all quantities dimensionless using d, ρp and the reduced gravity

g (ρp − ρf ) /ρp, so that, e.g., the velocities are expressed in units of
√
gd (ρp − ρf ) /ρp,

the particle fall velocity. Then, the inverse of the dimensionless fluid viscosity is the fall
Stokes number St = ρp

√
g (ρp − ρf ) /ρpd

3/2/ηf , a measure of the relative magnitude of
the particle inertia to the fluid viscous forces.
The intensity of the shearing fluid is quantified by the distant fluid shear stress far from

the base, that, in dimensionless term, is the Shields parameter Sh (Jenkins & Hanes 1998).
The fluid exerts a linear drag on the single particle that we characterize through the drag
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coefficient CD = 18/St. Finally, we imagine to fix the mass hold-up in the system, M ,
that is the particle mass per unit basal area.

2.1. Periodic Trajectories model: differential equations and numerical solution

The system of differential equations governing the periodic particle trajectory and the
fluid velocity profile is almost identical to that derived for periodic saltation in turbulent
fluids (Jenkins & Valance 2014; Berzi et al. 2016) in which we distinguish two species
of particles, depending whether their motion is ascending or descending, and one fluid
carrier phase:

ξ±y
dξ±x
dy

= CD

(
U − ξ±x

)
; (2.1)

ξ±y
dξ±y
dy

= −1− CDξ
±
y ; (2.2)

ξ±y
dx±

dy
= ξ±x ; (2.3)(

1− c+ − c−
) dU
dy

= StS; (2.4)

dm

dy
= c+ + c−; (2.5)

d
(
c+ξ+y

)
dy

= 0. (2.6)

Note that, for numerical convenience, the Lagrangian equations 2.1-2.3 are phrased as
functions of y instead of time t. However, there is one-to-one correspondence between
y and t in the ascending and descending part of the trajectory, respectively. Equations
2.1-2.2 are the particle momentum balances in the horizontal and vertical directions.
Equations 2.3 govern the horizontal position of the particles, while equation 2.4 is the
constitutive expression for the fluid viscous shear stress S, different from what was
assumed in turbulent condition (Jenkins & Valance 2014). Equation 2.5 determines the
distribution of the partial mass hold-up, m =

∫ y

0
dy (c+ + c−), with c+ (resp. c−) the

particle volume concentration of ascending particles (resp. descending particles). Finally,
equation 2.6 indicates that, in steady condition, the mass flux of ascending particle must
be independent of the vertical position.
The fluid shear stress is determined from the fluid horizontal momentum balance as

S = Sh− s, (2.7)

where s is the particle shear stress:

s ≡ −
(
c+ξ+y ξ

+
x + c−ξ−y ξ

−
x

)
. (2.8)

The steady condition implies that the mass flux of ascending and descending particles
must balance,

c+ξ+y = −c−ξ−y , (2.9)

and be constant along y. The concentration c at a given height is simply given by the
sum of c+ and c−.
The distribution of the twelve unknowns x+, x−, ξ+x , ξ

−
x , ξ+y , ξ

−
y , U , m, S, s, c+,

and c− is determined by solving the nine differential equations 2.1-2.6 with the three
auxiliary relations 2.7-2.9 with the nine boundary conditions x+ (0) = 0, x− (0) = L,
x+ (H) = x− (H), ξ+x (H) = ξ−x (H), ξ+y (H) = ξ−y (H) = 0, U (0) = 0, m (0) = 0, and
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m (H) =M ; where H and L are the trajectory height and length, respectively. Note that
the total mass hold-up M represents the mass of particles per unit area of the bed and
is a control parameter of the system that has to be prescribed.

The determination of H and L requires two additional boundary conditions, relating
the velocities after and before the impact with the bumpy base (Beladjine et al. 2007;
Crassous et al. 2007; Oger et al. 2005):√

ξ+x (0)
2
+ ξ+y (0)

2
= e

√
ξ−x (0)

2
+ ξ−y (0)

2
, (2.10)

and

ξ+y (0) = −eyξ−y (0) , (2.11)

where the coefficients of restitution depend solely on the impact angle θ, the angle
between the incident trajectory and the horizontal, in the absence of lubrication forces.
Their expressions (Beladjine et al. 2007; Pähtz et al. 2020) are e ≡ a − b sin θ and
ey ≡ ay/

√
sin θ − by †. Only three of the four numerical coefficients a, b, ay and by are

actually independent, for, when θ = 90◦, e must equal ey and their values depend on the
particle and base material properties and geometry.

The numerical solution of the Periodic Trajectories model is obtained using the bvp4c
function in Matlab: the inputs of the model are the Stokes number, St, the Shields
parameter, Sh, the mass hold-up, M , and the numerical coefficients in the rebound laws
2.10 and 2.11. From the numerical solution we then determine the horizontal mass flux
per unit width of the bed as Q =

∫H

0
(c+ξ+x + c−ξ−x ) dy.

2.2. Periodic Trajectories model: approximate analytical solution

We obtain an approximate analytical solution of the PT model by following an approach
similar to that employed for periodic saltation in a turbulent fluid (Berzi et al. 2016,
2017).

With respect to the numerical solution of the PT model, we make the further assump-
tions that the fluid velocity profile is linear (this should be true only in the limit of
vanishing mass hold-up) and that the impact angle is small, so that θ ≈ sin θ ≈ tan θ.
The details of the derivation and the analytical formulas that describe the characteristics
of the periodic trajectories are reported in Appendix A.

For mathematical convenience only, we use the vertical rebound velocity, ξ+y (0), rather
than the mass hold-up, M , as an input parameter. However, M can be treated as the
independent variable when plotting the results, given that there is a one-to-one relation
with the vertical rebound velocity (see equation A25).

2.3. Discrete-Continuum simulations

We carry out two-phase numerical simulations based on a discrete element method
for particle dynamics coupled to a continuum Stokes description of hydrodynamics, as
developed by Durán et al. (2012).

The particle motion is described by a Lagrangian approach according to which the

† We used the modified expression of ey proposed by Pähtz et al. (2020) to get the correct
asymptotic behavior when θ vanishes.
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Normal spring stiffness kn (mg/d) 107

Normal restitution coefficient en 0.88

Normal damping coefficient γn (m
√

g/d) 181.8

Tangential damping coefficient γt (m
√

g/d) 181.8
Coulomb friction coefficient µ 0.5

Table 1: Parameters in the contact model in dimensionless form.

particle labelled p obeys the following dimensionless equations:

dξ⃗p

dt
= −e⃗y +

∑
q

f⃗p,qc + f⃗pdrag (2.12)

I
dω⃗p

dt
=

1

2

∑
q

n⃗p,q × f⃗p,qc (2.13)

where: ξ⃗p and ω⃗p are the translational and angular velocity vectors of particle p, respec-
tively; e⃗x and e⃗y are the horizontal and vertical unit vectors, respectively; f⃗p,qc is the

dimensionless contact force between particles p and q; f⃗pdrag = CD

[
(U − ξpx)e⃗x − ξpy e⃗y

]
is the dimensionless drag force exerted by the fluid on the p-particle; I = 1/10 is the
moment of inertia of a sphere; and n⃗p,q is the unit vector along the contact direction.
The contact force f⃗c has components normal, fc,n, and tangential, fc,t, to the plane

of contact. In the normal direction, the particles interact via a linear spring-dashpot,
so that fc,n = (knδ + γnvn), where kn is the spring stiffness, δ the overlap between the
compliant spheres, γn the viscous damping coefficient, and vn the normal component of
the relative translational grain velocities. The negative of the ratio between the normal
relative velocity before and after the collision is the coefficient of normal restitution
en. If the values of en and kn are prescribed, γn is deduced from the following relation:

γn = π
6

√
12kn/π

1+π2/ ln(en)2
. The tangential force fc,t is described via a Coulomb friction model

regularized through a viscous damping: fc,t = −min (µfc,n, γtvt) sign(vt), where µ is the
Coulomb friction coefficient, vt the relative slip velocity at contact and γt the tangential
viscous damping coefficient. The values chosen for the parameters kn, γn, γt and µ are
reported in table 1.
The fluid motion is solved by an Eulerian description based on Stokes equations. We

assume that the vertical component of the fluid velocity is zero, so that only the horizontal
momentum balance is required, and neglect the inertial terms:

dS

dy
= Fx (2.14)

where Fx = c⟨
∑

p∈[y;y+dy] CD (U − ξpx)⟩/⟨
∑

p∈[y;y+dy] 1⟩, with ⟨·⟩ denoting ensemble

averaging, represents the x-component of the average volume force exerted on the fluid
by the particles whose centers are located in the horizontal slice comprised between y
and y + dy. The volume of these particles divided by the volume of the horizontal slice
gives the local concentration c.
The integration of equation 2.14 reads

S = Sh−
∫ ∞

y

Fxdy, (2.15)
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where the infinite upper bound of the integral means that all moving grains located
above y must be accounted for. Once the distribution S(y) of the fluid shear stress is
determined, the distribution of the horizontal fluid velocity can then be obtained from
the integration of equation 2.4, with the no-slip boundary condition U = 0 at y = 0, as

U = St

∫ y

0

Sdy. (2.16)

The simulated system is quasi-2D with a stream-wise length equal to 5120 particle
diameters and a transversal length equal to one diameter. We have checked that a four-
fold increase in the stream-wise length of the domain has a negligible influence on the
outcomes. We use spherical particles with a polydispersity of ±10% and adjust their
number in the system to obtain the desired value of mass hold-up M .
Periodic boundary conditions are employed in the stream-wise direction. The domain

is not upper-bounded, while the lower boundary is composed of a layer of immobile
particles, characterized by the same parameters of table 1, in close contact (rigid, bumpy
bed). As mentioned, we suppress the possibility of particle-particle interactions above the

bed, that is we take f⃗c
p,q

= 0⃗ in equations 2.12 and 2.13, if neither of the two particles
p and q belong to the bed.
Operatively, at every time step, we integrate equations 2.12 and 2.13 for every particle

in the system and determine its new velocity (and therefore position). We, then, use
these information to update the profiles of fluid shear stress and horizontal velocity
through equations 2.15 and 2.16 and proceed with the next time step until we reach
a steady state, that is when the horizontal mass flux averaged over a window of 100
time steps is stationary. Initially, the fluid profile is taken to be linear and corresponds
to the unperturbed profile that one would have obtained in the absence of particles.
The particles are initially placed on a horizontal row located at a distance 2d from the
particle rigid bed, with a constant inter-particle distance equal to 2d and zero initial
velocity. Despite the fact that the initial position of the particles is close to the bed, the
rebounds with the rigid, bumpy base are able to make the particles reach large heights
(see next Section). We checked that the final state is independent of the initial conditions
as long as the amount of particles of the flow does not override the transport capacity of
the flow. If the mass hold-up surpasses the capacity of the flow, particles may deposit on
the bed and we enter the so-called deposition regime. In this regime, hysteretic effects
may be observed: the final state may be extremely sensitive to initial conditions. This
regime although interesting is beyond the scope of the article.

3. Results and comparisons

Given that the PT model requires the specification of the rebound laws, we first determine
the dependence of the coefficients of restitution e and ey on the impact angle θ for the
type of particles and the geometry of the rigid, bumpy bed adopted in the DC simulations.
To do that, we perform discrete element simulations in the absence of interstitial fluid
(Oger et al. 2005) in which we shoot soft spheres towards the rigid, bumpy bed described
in section 2.3 and measure the particle velocities before and after the impact. Changing
the angle between the incident sphere and the bed (several measurements are carried out
for every impact angle to obtain statistically robust averages) permits us to plot e and
ey as functions of θ (figure 2). The fit to the numerical data from the impact simulations
gives a = 0.86, b = 0.1, ay = 1.44 and by = 0.68. We also performed some simulations
with less dissipative particles and confirm that that would lead, as expected, to higher
values of e and ey for given θ.
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Figure 2: Coefficients of restitution characterizing the collision with the rigid, bumpy bed
as functions of the impact angle.

Given that the contact model is not velocity-dependent, we expect that the rebound
laws inferred from shooting a projectile onto a rigid bed in the absence of any fluid can
accurately describe the bed collision process of particles transported by a shearing viscous
fluid. The measurements of e and ey versus θ obtained from the impacts of the particles
with the bed in our DC simulations confirm, indeed, the validity of the rebound laws
(figure 2). The small differences between the impact and the saltation DC simulations
are due to the fact that the absence of shearing permits to achieve a better accuracy of
the measured velocity before and after the impact. It can be noticed that the range of
impact angles in the DC simulations is rather narrow with respect to that of the shooting
simulations.

We now employ the obtained dependence of the rebound coefficients of restitution on
the impact angle to solve the PT model for St = 100, roughly corresponding to sand
particles in water on Earth, Sh = 0.05 (sufficiently larger than the transport threshold
for having a significant range of steady solutions) and various mass hold-ups (numerical
solution) or various vertical rebound velocities (analytical solution). The DC simulations
were carried out at the same values of fall Stokes number and Shields parameter by
changing M .

Unlike the PT model, particles in the DC simulations are characterized by a statistical
distribution of trajectories. We first compare quantities averaged over all the trajectories
in the DC simulations in a time interval of at least 2000 time steps after the steady state
is attained with the predictions of the PT model. Then, we describe the characteristics
of the statistical distribution of the trajectories, in view of future improvements of the
PT model.
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Figure 3: Horizontal mass flux Q as a function of the mass hold-up M measured in the
DC simulations (squares) and obtained from the numerical (circles) and analytical (lines)
solution of the PT model, when St = 100 and Sh = 0.05.

3.1. Averaged variables

Figure 3 depicts the horizontal mass flux as a function of the mass hold-up. We imme-
diately notice that the PT model predicts a non-monotonic relation between Q and M ,
characterized by a maximum value for the mass hold-up below which solutions exist. This
maximum divides the Q-M curve into an upper and a lower branch. Interestingly, the
measurements in the DC simulations only appear to follow the upper branch. The lack
of measurements from the DC simulations near the lower branch hints at the possibility
that these solutions of the PT model are actually unstable. The maximum mass flux
in the DC simulations corresponds to a critical value of the mass hold-up above which
particles start to deposit over the rigid bed. This transition from saltation over rigid beds
to saltation over erodible beds is beyond the scope of the present work and cannot be
captured by the PT model, given the adopted boundary conditions.
The numerical and analytical solution of the PT model described in the previous

section permit to formulate a relation between the rebound velocities at the beginning of
two consecutive particle jumps, say the n-th and (n+ 1)-th jump. This relation formally

reads ξ⃗+n+1 (0) = F⃗
(
ξ⃗+n (0)

)
. The fixed point of this two-dimensional map corresponds to

the rebound velocity of the periodic trajectory. The stability of the periodic trajectory
can, then, be determined by computing the eigenvalues of the Jacobian matrix of the
2D map at the fixed point. The periodic trajectory is stable if the absolute values of the
eigenvalues are smaller than one. More details about the linear stability analysis and the
Jacobian matrix obtained from the analytical solution of the PT model are reported in
Appendix B. The linear stability analysis confirms that the lower branch of the Q–M
curve of the PT model pertains to unstable periodic trajectories.
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If we focus on the stable trajectories, we notice that, for small mass hold-ups, both the
PT model and the DC simulations show a linear relation between Q and M and are in a
good quantitative agreement. Using the analytical solution of the PT model, we obtain
that, for vanishing mass hold-up, Q ∝ St4Sh3/2M (see the details in Appendix C). This
scaling, checked against the DC simulations (Appendix C), points to the intuitive and
general observation that the horizontal mass flux at a given mass hold-up increases if
either the intensity of the shearing (the Shields number) increases or the fluid viscosity
(the inverse of the Stokes number) decreases: indeed, these are the quantities that govern
the capability of the particles to gain momentum from the fluid through the drag force.
It is interesting to notice that a linear relation between the horizontal mass flux and
the mass hold-up was obtained also in the case of periodic trajectories of sand particles
saltating in the turbulent atmosphere (Jenkins & Valance 2014), although in that case

Q ∝ Sh1/2M .
As the mass hold-up increases, that is, as more particles are moving, the horizontal

mass flux in the DC simulations tends to saturate and the agreements between the
numerical and the analytical solution of the PT model and between the PT model and the
DC simulations deteriorate (figure 3). However, the qualitative trend is still well captured
by the PT model. The horizontal mass flux measured in DC simulations performed with
less dissipative particles (not shown here for brevity) is larger for given mass hold-up, as
expected.
Figure 4 confirms the quantitative agreement between the PT model and the DC

simulations at small values of M in terms of average impact angle θ and absolute value
of the impact velocity ξ−. Interestingly, at vanishingM , the stable branches of the curves
exhibit a minimum and a maximum for the impact angle and velocity, respectively. The
PT model reproduces the qualitative behaviour of the simulations even if the amount of
saltating particles increases.
The average height and length of the trajectories in the DC simulations are roughly

half of what is predicted by the PT model at small mass hold-ups (figure 5) and decrease
as M increases; while the average particle concentration and the particle shear stress at
the bed are extremely well predicted (figure 6a and b) and linearly increases with M for
small mass hold-ups.

3.2. Vertical profiles

The PT model is very simple and permits the understanding of what are the physical
mechanisms in play and their relative importance in determining the average behaviour of
the saltating particles. In this regard, fair comparisons between the DC simulations and
the predictions of the PT model should be carried out only in terms of global quantities,
such as Q and M . Nonetheless, we have shown that the PT model has some capabilities
of reproducing also some local average quantities measured at the bed (figures 4 and
6). However, it would be pretentious to expect quantitative agreement between the PT
model and the DC simulations in terms of distributions of local average quantities along
y.
Figure 7 depicts the average vertical profiles of fluid and particle horizontal velocity

obtained from the DC simulations at four different values of the mass hold-up. As the
presence of particles in the system increases, the nonlinearity of the velocity profiles
become more pronounced. This explains why the quantitative agreement between the
DC simulations and the analytical solution of the PT model, which assumes a linear
distribution of U with y, deteriorates at large M . The numerical solution of the PT
model is in excellent agreement with the DC simulations in terms of fluid horizontal
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Figure 4: Average (a) impact angle and b) impact velocity as functions of the mass hold-
up, when St = 100 and Sh = 0.05. Same legend as in figure 3.
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Figure 5: Average trajectory (a) height and b) length as functions of the mass hold-up,
when St = 100 and Sh = 0.05. Same legend as in figure 3.
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Figure 6: Average particle (a) concentration and (b) shear stress at the bed as functions
of the mass hold-up, when St = 100 and Sh = 0.05. Same legend as in figure 3.

velocity (figure 7a). Also the particle slip velocity at the bed and the concavity of the
profile of particle horizontal velocity is well predicted by the PT model, although the
latter fails in reproducing the linearity of ξx(y) at small M (figure 7b). We notice that
the particle slip velocity predicted by the PT model and measured in the DC simulations
is roughly independent of the mass hold-up, when the latter is small.
The requirement that, under steady conditions, the mass flux of ascending and de-

scending particles must be independent of y implies, in the framework of the PT model,
that the particle concentration must become infinite when the vertical particle velocity
vanishes, i.e., at the peak of the periodic trajectory. This is clearly unphysical and,
indeed, the predictions of the PT model in terms of distribution of the average particle
concentration along y fails spectacularly when compared to the measurements in the
DC simulations (figure 8a). On the other hand, at least the qualitative behaviour of the
average particle shear stress with the vertical coordinate is well captured by the PT
model, with even quantitative agreement with the DC simulations for both the shear
stress at the bed and the maximum value of the shear stress above it (figure 8b).

3.3. Statistical distributions

Our DC simulations exhibit a variety of particle trajectories, thus allowing for a statistical
characterization of the saltating process.
Figure 9a shows the Probability Density Function (PDF) for the impact and rebound

velocities determined using the data from the DC simulation performed atM = 1.2·10−2.
Interestingly, there are two peaks in the PDF of the impact velocity, indicating the
presence of two different families of saltating particles, one much more energetic than
the other. We have checked that this is not a consequence of the regular geometry of



Particle saltation over rigid beds in viscous shearing flows 13

0 200 400 600 800

U

0

20

40

60

80

100

120

140

160

180

200
y

(a)

0 200 400 600 800

x

0

20

40

60

80

100

120

140

160

180

200

y

(b)

Figure 7: Measurements in the DC simulations (circles) and numerical solutions of the
PT model (lines) for (a) fluid and (b) particle average horizontal velocity profiles when
St = 100 and Sh = 0.05 at: M = 1.9 · 10−4 (in blue); M = 1.6 · 10−3 (in orange);
M = 1.2 · 10−2 (in yellow); M = 3.1 · 10−2 (in purple).

the rigid bed, given that we have obtained similar, bi-modal PDFs in DC simulations
(not shown here for brevity) carried out with bumpiness provided by a bottom layer of
immobile particles in close contact, but with a random size distribution.
Although the existence of different species of moving particles has been previously pro-

posed and confirmed in the case of Aeolian sand transport over erodible beds (Andreotti
2004; Durán et al. 2011; Pähtz et al. 2012), it is the first time, to our knowledge, that it
is observed in the case of particle saltation over rigid beds. Figure 9b indicates that the
bi-modal nature of the saltation persists in the rebound velocity, after the impact with
the rigid bed.
We identify the two families based upon the value of the horizontal particle velocity

at the peak of the trajectory. When the trajectory height is lower (higher) than 15
diameters, in the case of M = 1.2 · 10−2, the particle horizontal velocity at the peak
of the trajectory is larger (lower) than the fluid horizontal velocity there. Thus, the
horizontal drag force on the less energetic particles mostly acts against the motion, so
that the horizontal velocities at the end of the trajectory are greatly reduced (confront
the yellow bars in figures 9a and b). The more energetic particles, on the other hand,
experience a horizontal drag force that favors the motion for a significant portion of their
trajectory, thus accelerating before the impact (confront the two large peaks in the blue
bars of figures 9a and b).
Figures 9a and b also indicate that the impact with the bed leads to a substantial

mixing of the members of the two families, that have roughly the same distribution
of rebound velocity. In Figure 9a, the low energy family (yellow bars) has experienced
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Figure 8: Measurements in the DC simulations (circles) and numerical solutions of the
PT model (lines) for particle average (a) concentration and (b) shear stress profiles when
St = 100 and Sh = 0.05 at: M = 1.9 · 10−4 (in blue); M = 1.6 · 10−3 (in orange);
M = 1.2 · 10−2 (in yellow); M = 3.1 · 10−2 (in purple).

short and low trajectories before the impact while the high energy family (blue bars)
has experienced long and high trajectories. After the impact, the low energetic particles
have a small rebound velocity, while the high energetic particles have a large one, as
the restitution coefficient e is close to 1. However, the rebound velocity is not the right
indicator to tell whether the particle will experience a low or high trajectory for the next
jump. The relevant feature is the vertical velocity after the rebound. As a matter of fact,
the low energetic particles which have a large vertical rebound velocity will be promoted
to the high energy family for the next jump, gaining energy from the fluid. And vice-
versa, the high energetic particles with a small vertical rebound velocity will enter the low
energy family for the next jump. In figure 9b, representing the distribution of the norm
of the rebound velocity, we have indicated with yellow bars (resp. blue bar) the particles
which will have for the next jump a low (resp. high) trajectory. Those particles come
both to the low and high energy family determined from the previous jump. This means
that the low and high energy populations are re-mixed at each impact. This explain how
steady conditions can be maintained, despite the fact that the less energetic particles
lose momentum to the fluid during their jumps. The mixing of the two families due to
the impact with the bed cannot be captured through the rebound laws of figure 2 that
only describe average outcomes. All in all, the negligible contribution of the less energetic
saltating particles to the total transport explains why the simple PT model works.
As mentioned, there is a maximum impact velocity corresponding to the case of

vanishing mass hold-up, as shown in figure 4b. Impact velocities, and, therefore, rebound
velocities, larger than the maximum are not allowed, leading to the skewed distributions
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Figure 9: Probability Density Function of (a) impact and (b) rebound velocities from
the DC simulations when M = 1.2 · 10−2 for particles with trajectory height larger (blue
bars) and smaller (yellow bars) than 15 diameters. Also shown are the means of the PDF
(black lines) and the numerical solutions of the PT model (red lines).

of figure 9. Similarly, the asymmetry in the distribution of the impact angles (figure 10a)
is due to the minimum θ at vanishing M (figure 4a).
The intrinsic randomness of the position of the impact point on the surface of the

bumpy bed is what causes the large scattering (figure 10b) of the angles of rebound,
ψ = tan−1

[
ξ+y (0) /ξ+x (0)

]
, despite the fact that the impact angle θ is, instead, narrowly

distributed. The presence of two peaks corresponding to low and high energetic saltating
particles is evident also in the PDFs of impact and rebound angles, once the particles
are distinguished according to the height of the trajectory (figure 10). It is interesting
to notice that, for low energetic saltating particles, the impact and rebound angles
corresponding to the peaks in the distributions are roughly equal.
The distribution of the trajectory heights (figure 11a) confirms the presence of the less

energetic family of saltating particles. The less energetic species moves through small hops
whose height distribution peaks at about 4 diameters; unlike for the impact velocity,
however, the more energetic particles have a broader and rather uniform distribution
of the maximum distance from the bed that they can reach (say between 50 and 150
diameters). The nonlinear relation between the impact velocity and the trajectory height,
made explicit in the analytical solution of the PT model (Appendix A), explains why
their distributions have different shapes. Once again, values of H larger than that at
vanishing M in figure 5a are not allowed.
The PDF of trajectory lengths for the less energetic particles (figure 11b) has one clear

peak at about 300 diameters. The distribution of trajectory lengths for the more energetic
particles, instead, peaks at about 2000 diameters and then roughly linearly decreases as
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Figure 10: Probability Density Function of (a) impact and (b) rebound angles from the
DC simulations when M = 1.2 · 10−2 for particles with trajectory height larger (blue
bars) and smaller (yellow bars) then 15 diameters. Also shown are the means of the PDF
(black lines) and the numerical solutions of the PT model (red lines).

L increases. As expected, the maximum L at vanishing M in figure 5b constrains the
permitted values in the statistical distribution of trajectory lengths.

4. Conclusion

We have investigated the steady, saltating motion of identical particles over an horizontal,
rigid, bumpy bed driven by the shearing flow of a viscous fluid in the absence of
turbulence.
We have performed 2D Discrete-Continuum simulations in which the particles interact

with the bumpy bed via linear spring-dashpots and with the carrier fluid, whose motion
is determined using a mean field approach, via viscous drag and buoyancy. In the DC
simulations, we have ignored lubrication forces, the possibility of collisions among the
particles above the bed, the fluid inertia in the fluid momentum balance and the fluid
vertical velocity.

We have compared the results of the DC simulations, against the predictions of a simple
model in which we assumed that all particles follow the same, Periodic Trajectories,
selected by the intensity of the shearing flow and through deterministic rebound laws
relating velocities before and after the impact with the bed. We have checked through
discrete simulations that the presence or absence of the shearing flow has no influence
on the rebound laws.

We have solved the PT model both numerically and analytically, the latter with the
additional assumption that the horizontal fluid velocity profile is linearly distributed
with the distance from the rigid bed. We have shown that the PT model is capable
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Figure 11: Probability Density Function of trajectory (a) heights and (b) lengths from
the DC simulations when M = 1.2 · 10−2 for particles with trajectory height larger (blue
bars) and smaller (yellow bars) then 15 diameters. Also shown are the means of the PDF
(black lines) and the numerical solutions of the PT model (red lines).

of qualitatively and quantitatively, at least for moderate values of the mass hold-up,
reproduce the measurements in the DC simulations in terms of particle mass flux, mean
trajectory height and length, impact and rebound velocity, concentration and shear stress
at the bed. At given intensity of the shearing flow, the PT model predicts non-monotonic
relations between the aforementioned quantities and the mass hold-up, in contrast with
the DC simulations. However, the simplicity of the PT model has allowed us to perform
a linear stability analysis and determine that the predictions of the PT model not seen
in the DC simulations were actually unstable to small perturbations.
The PT model also provides profiles of fluid and particle velocity and particle shear

stress that are in qualitative agreement with the DC simulations, even beyond what
one might reasonably expect from such a simple approach. As expected, the PT model
fails only in reproducing the concentration profile at a sufficient distance from the bed,
given that the concentration must become infinite at the top of the periodic trajectory
to ensure mass flux balance.
Indeed, and unlike what is assumed in the PT model, the DC simulations confirm

that there is a statistical distribution of particle trajectories. The PDFs of various
quantities associated with the particle trajectories are asymmetric, due to constraints
that we have identified as the characteristics of the trajectories in the limit of vanishing
mass hold-up. They also present two peaks, hinting at the presence of two families of
trajectories associated with less and more energetic saltating particles. The PT model
actually reproduces the behaviour of the more energetic particles, that are accelerated
in the horizontal direction by the fluid drag and obey the rebound laws, with an impact
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coefficient of restitution less than one. The less energetic particles, instead, jump in a
region of the flow close to the bed where the drag force is either mainly against the
motion or equally favor and disfavor it. As a result, the ascending and descending parts
of their trajectories are more symmetric, and the impact coefficient of restitution is close
to one. The contribution of the less energetic particles to the transport is, however, small,
thus explaining the success of the PT model.

Incorporating a more realistic statistical distribution of the particle trajectories into
the PT model will consent to improve its accuracy and will be the subject of future
works. Further steps will regard elucidating the roles played by lubrication forces and
mid-fluid collisions on particle saltation, as well as the statistical characterization of
particle trajectories in turbulent shearing flows. Also, the determination of the critical
mass hold-up at which particles start to deposit is a important issue to be addressed in
the near future given its relation with the maximum transport capacity of the flow.

Finally, the PT model could be in principle extended to unsteady (non-uniform)
flows under the condition that the flow varies over a characteristic time (length) scale
which is much less than the mean time of flight (saltation length) of the saltating particles.
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Appendix A. Analytical solution of the PT model

Integrating the vertical momentum balance of the single particle for an observer at rest,

dξy
dt

+ CDξy + 1 = 0, (A 1)

with the boundary condition ξy = ξ+x (0) when t = 0, gives

ξy =
CDξ

+
y (0) + 1− exp (CDt)

CD exp (CDt)
. (A 2)

ξ+y (0) is the vertical rebound velocity, that is the vertical velocity after the impact with
the bed. It is mathematically convenient to parametrize the analytical solution of the PT
model in terms of this variable, rather than in terms of the mass hold-up, as instead is
the case in the numerical solution of the PT model and the DC simulations.

The vertical position of the particle as a function of time is obtained by integrating
equation A2 with the boundary condition y (0) = 0,

y =

[
CDξ

+
y (0) + 1

]
[1− exp (−CDt)]− CDt

C2
D

. (A 3)

The time tM at which the particle reaches the peak in the trajectory is obtained from
equation A2 with ξy = 0:

tM =
ln
[
CDξ

+
y (0) + 1

]
CD

. (A 4)
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We determine the trajectory height, H, from equation A3 with t = tM (equation A4):

H =
CDξ

+
y (0)− ln

[
CDξ

+
y (0) + 1

]
C2

D

. (A 5)

The time of flight during one jump can be determined by numerically solving the
following implicit equation,

tf =

[
CDξ

+
y (0) + 1

]
[1− exp (−CDtf )]

CD
, (A 6)

obtained from equation A3 with y = 0.
Then, the vertical impact velocity reads

ξ−y (0) = ξ+y (0)− tf , (A 7)

from equation A2, with t = tf (where tf is the total flight time), and equation A6.
The vertical coefficient of restitution at the rebound can now be expressed as

ey =
ξ+y (0)

tf − ξ+y (0)
, (A 8)

from equations 2.11 and A7. Then, the impact angle follows from the definition of ey as

θ = sin−1

[(
ay

ey + by

)2
]
. (A 9)

If θ is small, then sin θ ≈ tan θ = −ξ−y (0) /ξ−x (0) and the horizontal impact velocity
results

ξ−x (0) = −ξ−y (0)

(
ey + by
ay

)2

. (A 10)

The absolute value of the impact velocity is, therefore, with equations A 7 and A10,

ξ− (0) =

[(
ey + by
ay

)4

+ 1

]1/2 [
tf − ξ+y (0)

]
. (A 11)

From the definition of the rebound coefficient of restitution e and equation A9, we
obtain

e = a− b

(
ay

ey + by

)2

, (A 12)

so that the absolute value of the rebound velocity, ξ+ (0) = eξ− (0), reads, with equation
A12:

ξ+ (0) =

[
a− b

(
ay

ey + by

)2
][(

ey + by
ay

)4

+ 1

]1/2 [
tf − ξ+y (0)

]
. (A 13)

The horizontal rebound velocity can now be determined as

ξ+x (0) =
[
ξ+ (0)

2 − ξ+y (0)
2
]1/2

. (A 14)

Equations A 2-A 3 provide exact analytical solutions of the vertical motion in the
framework of the PT model. They allows to derive explicit expressions for ξ−(0), ξ+(0),
ξ+x and H as a function of the vertical rebound velocity ξ+y (0) and the time flight tf ,
which is itself a function of ξ+y (0) (cf Eq.A 6).
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However, to proceed, we now must introduce the Lagrangian, horizontal momentum
balance of the single particle,

dξx
dt

= CD (U − ξx) , (A 15)

which can be solved analytically only if we assume a tractable form of the fluid velocity
profile U (y). In the case of periodic saltation in a turbulent fluid (Berzi et al. 2016), the
fluid velocity profile was taken to be uniform. Here, instead, we assume a linear velocity
profile of the form U (y) = U (H) y/H, that suits better the results of both the numerical
solution of the PT model and the DC simulations. With this and equation A3, equation
A15 becomes

dξx
dt

=
U (H)

H

[
CDξ

+
y (0) + 1

]
[1− exp (−CDt)]− CDt

CD
− CDξx, (A 16)

that can be integrated, with the boundary condition ξx = ξ+x (0) when t = 0, to obtain

ξx =
U (H)

H

CDξ
+
y (0) + 1

C2
D

[1− CDt exp (−CDt)− exp (−CDt)]

−U (H)

H

CDt− 1 + exp (−CDt)

C2
D

+ ξ+x (0) exp (−CDt) . (A 17)

The horizontal fluid velocity at y = H can be determined from equation A17, with
ξx = ξ−x (0) when t = tf :

U (H) =
C2

DH [ξ−x (0)− ξ+x (0) exp (−CDtf )][
CDξ

+
y (0) + 1

]
[1− CDtf exp (−CDtf )− exp (−CDtf )] + 1− exp (−CDtf )

.

(A 18)
With this, equation A17 provides the value of the horizontal particle velocity at every
instant.
Equation A17 can then be integrated to provide the particle position along the x-axis

at every time t:

x =
U (H)

H

CDξ
+
y (0) + 1

C2
D

[
exp (−CDt)

(
2

CD
+ t

)
+ t− 2

CD

]
−U (H)

HC2
D

[
CD

2
t2 − t− exp (−CDt)

CD
+

1

CD

]
− ξ+x (0)

CD
[exp (−CDt)− 1] . (A 19)

Note that the solutions x(t) and y(t) are parametrized by a single parameter, that is
ξ+y (0). Figure 12a shows y/H and x/L as functions of t/tf when ξ+y (0) = 100. The shape
of the corresponding periodic trajectory is reported in Figure 12b. All the quantities
appearing in Eq. A 19, such as H, U(H), ξ+x (0) and tf , are functions of ξ+y (0). So we
have a family of solutions that depends solely on the vertical rebound velocity.
Substituting t = tf in equation A19 gives the length of the periodic trajectory:

L =
U (H)

H

CDξ
+
y (0) + 1

C2
D

[
exp (−CDtf )

(
2

CD
+ tf

)
+ tf − 2

CD

]
−U (H)

HC2
D

[
CD

2
t2f − tf − exp (−CDtf )

CD
+

1

CD

]
−ξ

+
x (0)

CD
[exp (−CDtf )− 1] . (A 20)

The assumption of a linear velocity profile for the fluid permits also the evaluation of



Particle saltation over rigid beds in viscous shearing flows 21

the fluid shear stress at the rigid, bumpy bed as

S (0) =
U (H)

StH
, (A 21)

where we have assumed 1 − c (0) ≈ 1 (as shown later, the maximum value of the
concentration at the bed is of order 10−2). Figure 13a depicts the fluid shear stress
at the bed as a function of the vertical rebound velocity at different values of the Stokes
number. Notice that the fluid shear stress at the bed is characterized by a minimum,
as was also the case for particle saltation in a turbulent fluid (Berzi et al. 2016). This
has important physical implications, given that the Shields parameter Sh determines,
through equation 2.4, the particle shear stress at the bed as

s (0) = Sh− S (0) . (A 22)

Equation A22 indicates that, for steady and fully developed saltation to exist, the fluid
shear stress at the bed must always be less than the Shields number. Hence, each
minimum in the curves of figure 13a represents the critical Shields number, Shc, i.e.,
the minimum value of Sh at which steady and fully developed saltation can be sustained.
Figure 13b shows the critical Shields number as a function of the Stokes number. From
equations 2.8 and 2.9, the concentration at the bed of the ascending particles is:

c+ (0) =
s (0)

ξ+y (0)
[
ξ−x (0)− ξ+x (0)

] . (A 23)

With this, both the horizontal mass flux per unit width of the bed,

Q =

∫ H

0

cξxdy =

∫ L

0

c+ (0) ξ+y (0) dx = c+ (0) ξ+y (0)L, (A 24)

and the mass hold-up,

M =

∫ H

0

cdy =

∫ H

0

(
c+ + c−

)
dy =

∫ tM

0

c+ξ+y dt+

∫ tf

tM

c−ξ−y dt

= c+ (0) ξ+y (0)

∫ tf

0

dt = c+ (0) ξ+y (0) tf , (A 25)

can, then, be evaluated. The mass hold-up M and the particle shear stress at the bed
are thus both dependent on the vertical rebound velocity and Shields number.

Summarizing the analytical resolution of the problem, the prescription of the vertical
rebound velocity ξ+y (0) determines uniquely the particle trajectory, independently of the
Shields number Sh, while the particle shear stress at the bed and the mass hold-up
depend both on Sh and ξ+y (0). This means that a given solution of the particle trajectory
can be obtained for different sets of the two variables (Sh,M).

Appendix B. Linear stability of the PT model - analytical solution

We use the method of fixed point to determine the stability to small perturbations of the
analytical solution of the PT model. We focus on the trajectory followed by a particle
during the n-th jump and determine the components of the rebound velocity at the
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Figure 12: (a) normalized vertical (solid line) and horizontal (dashed line) position of
the particle as function of the normalized time and (b) shape of the periodic trajectory
when ξ+y (0) = 100.

beginning of the (n+ 1)-th jump from the rebound laws (equations 2.10 and 2.11) as

ξ+x,n+1 (0) =

{[
a+ b

ξ−y,n (0)

ξ−x,n (0)

]2 [
ξ−x,n (0)

2
+ ξ−y,n (0)

2
]

−
[
ay

(
−ξ−x,n (0) ξ−y,n (0)

]1/2
+ byξ

−
y,n (0)

)2
}1/2

,

ξ+y,n+1 (0) = ay
[
−ξ−x,n (0) ξ−y,n (0)

]1/2
+ byξ

−
y,n (0) , (B 1)

where we take sin θ ≈ tan θ = −ξ−y,n (0) /ξ−x,n (0) in the expressions of e and ey.

The components of the impact velocity at the end of the n-th jump are determined
from the components of the rebound velocity at the beginning of the same jump with
equations A 17, with t = tf , and A7 as

ξ−x,n (0) =
U (H)

H

CDξ
+
y,n (0) + 1

C2
D

[1− CDtf exp (−CDtf )− exp (−CDtf )]

−U (H)

H

CDtf − 1 + exp (−CDtf )

C2
D

+ ξ+x,n (0) exp (−CDtf ) ,

ξ−y,n (0) = ξ+y,n (0)− tf . (B 2)
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Figure 13: (a) Fluid shear stress at the bed as a function of the vertical rebound velocity
for different Stokes numbers (20, 30, 40, 50, 60 and 100) according to the analytical
solution of the PT model. (b) Critical Shields number as a function of the Stokes number.

Here, tf and U (H) /H are, from equations A 6, A 21-A 23 and A25,

tf =

[
CDξ

+
y,n (0) + 1

]
[1− exp (CDtf )]

CD
,

U (H)

H
= St

{
Sh− M

tf

[
ξ−x,n (0)− ξ+x,n (0)

]}
. (B 3)

We now introduce perturbations (indicated with a tilde) around the periodic solution,
and keep only the linear terms, so that, from equations B 1-B 3:[

ξ̃+x,n+1 (0)

ξ̃+y,n+1 (0)

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
ξ̃−x,n (0)

ξ̃−y,n (0)

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
B11 B12

0 B22

]
︸ ︷︷ ︸

B

[
ξ̃+x,n (0)

ξ̃+y,n (0)

]
, (B 4)

where:

A11 =
1

2

{[
a+ b

ξ−y (0)

ξ−x (0)

]2 [
ξ−x (0)

2
+ ξ−y (0)

2
]
−

[
ay

(
−ξ−x (0) ξ−y (0)

)1/2
+ byξ

−
y (0)

]2 }−1/2

×{
− 2b

ξ−y (0)

ξ−x (0)
2

[
a+ b

ξ−y (0)

ξ−x (0)

] [
ξ−x (0)

2
+ ξ−y (0)

2
]
+ 2ξ−x (0)

[
a+ b

ξ−y (0)

ξ−x (0)

]2

+
[
ay

(
−ξ−x (0) ξ−y (0)

)1/2
+ byξ

−
y (0)

]
ay

(
−ξ−x (0) ξ−y (0)

)−1/2
ξ−y (0)

}
;
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A12 =
1

2

{[
a+ b

ξ−y (0)

ξ−x (0)

]2 [
ξ−x (0)

2
+ ξ−y (0)

2
]
−

[
ay

(
−ξ−x (0) ξ−y (0)

)1/2
+ byξ

−
y (0)

]2 }−1/2

×{
2b

1

ξ−x (0)

[
a+ b

ξ−y (0)

ξ−x (0)

] [
ξ−x (0)

2
+ ξ−y (0)

2
]
+ 2ξ−y (0)

[
a+ b

ξ−y (0)

ξ−x (0)

]2

−2
[
ay

(
−ξ−x (0) ξ−y (0)

)1/2
+ byξ

−
y (0)

] [
−ay

2

(
−ξ−x (0) ξ−y (0)

)−1/2
ξ−x (0) + by

]}
;

A21 = −ay
2

[
−ξ−x (0) ξ−y (0)

]−1/2
ξ−y (0) ;

A22 = −ay
2

[
−ξ−x (0) ξ−y (0)

]−1/2
ξ−x (0) + by;

B11 =

{
1− St

M

tf

CDtf − 1 + exp (−CDtf )

C2
D

+ St
M

tf

CDξ
+
y (0) + 1

C2
D

×

[1− CDtf exp (−CDtf )− exp (−CDtf )]

}−1

×{
exp (−CDtf )− St

M

tf

CDtf − 1 + exp (−CDtf )

C2
D

+ St
M

tf

CDξ
+
y (0) + 1

C2
D

×

[1− CDtf exp (−CDtf )− exp (−CDtf )]

}

B12 =

{
1− St

M

tf

CDtf − 1 + exp (−CDtf )

C2
D

+ St
M

tf

CDξ
+
y (0) + 1

C2
D

×

[1− CDtf exp (−CDtf )− exp (−CDtf )]

}−1

×{
St [Sh− s (0)]

CDtf − 1 + exp (−CDtf )

CD
+

1− exp (−CDtf )

1−
[
CDξ

+
y (0) + 1

]
exp (−CDtf )

×[
St (Sh− s (0))

(
CDξ

+
y (0) + 1

)
tf exp (−CDtf )− St (Sh− s (0))

1− exp (−CDtf )

CD

−CDξ
+
x (0) exp (−CDtf ) + St

s (0)

tf

CDξ
+
y (0) + 1

C2
D

(1− CDtf exp (−CDtf )− exp (−CDtf ))

−St
s (0)

tf

CDtf − 1 + exp (−CDtf )

C2
D

]}
;

B22 = 1− 1− exp (−CDtf )

1−
[
CDξ

+
y (0) + 1

]
exp (−CDtf )

.

The elements of the matrices A and B are evaluated using the analytical solution
of the periodic trajectory described in section 2.2 (fixed point). The periodic solution
is unstable if the maximum eigenvalue of the product AB (the Jacobian matrix of the
system) is larger than one.
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Appendix C. PT model - Derivation of the relationship between Q
and M

In the case where the mass hold-up is small, it is possible to derive a approximate
expression of the mass flux Q as function of the mass hold-up M .
According to Eqs A 24 and A25, the ratio Q/M simply reads

Q

M
=
L

tf
, (C 1)

where L and tf are the trajectory length and time of flight, respectively.
In the following, we derive an approximate expression of L and tf . We set for conve-

nience β = CDξ
+
y (0). In the case where β is larger than 1, the equation A6 for the time

flight simplifies and yields:

tf ≈ 1 + β . (C 2)

The equations A 2 and A17 for the vertical and horizontal particle velocity, ξy and ξx
respectively, evaluated at t = tf , give, in the limit of large β,

ξ−y (0) = − 1

CD
, (C 3)

ξ−x (0) =
U(H)

C2
DH

. (C 4)

As we are dealing with small mass-holdsM , we assume that the presence of the particles
does not modify the fluid flow such that U(H)/H = StSh. Note that this implies that
the horizontal particle velocity at the bed linearly increase with the Shields number, as
previously observed in experiments carried out on a single particle moving over a rigid
bed in a viscous shearing flow (Charru et al. 2007).
Now, if we employ equation A10, which relates the horizontal and vertical components

of the impact velocity together with C 4, we get a close equation for β which yields:

β ≈ aySt
√
Sh/18− by . (C 5)

Note that we take CD = 18/St and ey ≈ β for β greater than unity (see equation A8).
We recall that ay and by are the coefficients which characterize the rebound law in the
vertical direction.
Equation A20 for the trajectory length L in the limit of large β simplifies into:

L ≈ StSh

2C3
D

(1 + β) (β − 1) . (C 6)

Finally, combining Eq. C 1 with Eqs C 2, C 5 and C6, we get:

Q

M
≈ St3Sh

648

(
aySt

√
Sh/18− by − 1

)
. (C 7)

For β ≫ 1, the relationship between Q and M further simplifies into:

Q

M
≈ ay

648
√
18
St4Sh3/2 . (C 8)

Figure 14 depicts the horizontal mass flux as function of the mass hold-up obtained
from the numerical solution of the PT model (stable branch) and the DC simulations, for
different values of St and Sh. Also shown are the analytical predictions of equation C 7.
As predicted, Q increases with both Sh and St.
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Figure 14: Horizontal mass flux Q versus mass hold-up M for various Shields and Stokes
number: St = 100 and Sh = 0.075 (squares); St = 100 and Sh = 0.05 (circles); St = 60
and Sh = 0.05 (triangles). Open symbols correspond to the stable branch of the numerical
solutions of the PT model, while the filled symbols are the measurements from the DC
simulations. The dashed lines are the predictions of equation C7, valid in the limit of
small mass hold-ups.
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Pähtz, Thomas & Durán, Orencio 2020 Unification of Aeolian and Fluvial Sediment
Transport Rate from Granular Physics. Physical Review Letters 124, 168001, arXiv:
1911.11335.
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