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ABSTRACT

The objective in the present work is to consider a simple example of instability of a conducting self-similar micro jet in the external electric
field, which represents a prototype of some microfluidic instabilities. Salt from a point source is emitted into its own aquatic solution, which
is subject to an external uniform velocity field together with an electrostatic field, and is convected downstream and diffused. The flow is
considered in microscales so that, in contrast to the classical jets, the Reynolds numbers are practically zero, but the P�eclet numbers are large.
The parameters are found at which such a microjet is unstable. Along with the linear stability analysis, we have fulfilled the numerical simula-
tions of the full nonlinear system of equations. The numerical simulation qualitatively confirmed the results of the linear stability and showed
that this instability visually reminds classical instabilities of free jets and wakes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098652

I. INTRODUCTION

Problems of electrokinetics and micro- and nanofluidics have
recently attracted a great deal of attention due to rapid developments
in micro-, nano-, and biotechnology. Among the numerous modern
micro- and nanofluidic applications of electrokinetics are, in particu-
lar, micromixers and microreactors. The simplest type of such a mixer
or reactor is a T- or Y-shaped channel, at the entrance of which two
types of liquids are supplied, and they mix due to diffusion when
moving toward the outlet. There are also injection mixers, when the
second liquid is directly fed from a small nozzle into the microchannel
and carried away by the flow of the first liquid, also mixing with it due
to diffusion. For both types, mixing is slow because it is bound by
small diffusion coefficients. The process requires a long enough chan-
nel and time for complete mixing. The mixing time can be effectively
reduced with the help of electrohydrodynamic instabilities.

Microscale flows occur at almost zero Reynolds numbers, and
therefore, it is intuitively difficult to a priori expect a manifestation of
any type of the hydrodynamic instability. However, experimental and
theoretical studies have shown a very rich picture of instabilities and
subsequent bifurcations and transitions, ultimately leading to chaotic

dynamics.1 One kind of instability in microscale flows in an electrolyte
solution between ion-selective membranes under an electrical poten-
tial drop was theoretically predicted by Rubinstein and Zaltzman2,3

and subsequently investigated numerically.4–8 This kind of instability
was experimentally confirmed in the subsequent investigations.9–12 A
new type of instability, which prevails in long microchannels, was
recently addressed in our works13,14 and experimentally confirmed by
other researchers.15 It is connected with Joule heating effects in micro-
scales and correspond to applications in thermal engineering.16–19

Another kind of electrohydrodynamic instability, instability of
liquid flows with conductivity gradients, stems from the pioneer works
of Hoburg and Melcher,20 in turn based on classical leaky dielectric
models by Melcher and Taylor21 (see also the works of Melcher and
Saville22,23).

Hoburg and Melcher described20 the key mechanism of this
instability as caused by charge accumulation at a perturbed interface
and made qualitative comparisons of their theory to experiments.
Instead of the Nernst–Planck–Poisson system, they used a simplified
approach, neglecting the diffusion terms for instance. As a result, their
calculations were of a qualitative nature, in particular, the threshold of
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instability could not be predicted. This disadvantage was improved by
Baygents and Baldessari,24 which made the model more realistic.

Research with this sort of electrohydrodynamic instability was con-
tinued by Santiago’s team.25–30 The flow in a long, rectangular-cross sec-
tion microchannel with a conductivity gradient orthogonal to the main
flow direction and an external electric field was considered both experi-
mentally and theoretically.26 It was found experimentally that such a sys-
tem exhibits a critical electric field above which the flow is unstable. In
the theoretical part the authors generalized the previous model.24 The
relation for the Helmholtz–Smoluchowski electro-osmotic velocity was
used as an effective boundary condition (BC) for the bulk flow. The the-
ory predicts both qualitative trends and quantitative features that agree
very well with experimental data. Santiago’s team27–29 found that the
instability is governed by two key control parameters: the ratio of
dynamic to dissipative forces which governs the onset of instability and
the ratio of electro-viscous to electro-osmotic velocities which governs
the convective vs absolute nature of instability. It was shown that such
instability can be characterized by the electric Rayleigh number which is
the ratio of diffusive and electro-viscous time scales.

In the work by Posner, Perez, and Santiago,30 a numerical investi-
gation of chaotic dynamics of the above flow with gradient of electric
conductivity in a microchannel was presented. As the electric Rayleigh
number increases, a flow dynamics transition from a steady state to a
regular time-periodic state and, next, to a chaotic one was shown.
Further increase of the Rayleigh number leads to a transition back to
the regular state followed by a second transition to the chaotic dynam-
ics. The authors presented temporal power spectra and time-delay
phase maps of low-dimensional attractors and graphically depicted the
sequence between periodic and chaotic states.

In the experimental work by Dubey et al.,31 an investigation of
the instability with gradient of conductivity in microchannel flow was
fulfilled using time-resolved visualization of a passive fluorescent
scalar. The authors used dynamic mode decomposition of time-
resolved snapshots of instability to investigate its spatiotemporal
coherent structures for a wide range of the electric Rayleigh number.
The analysis yields spatial variation of modes of instability along with
their corresponding temporal frequencies; it was shown that the insta-
bility can be characterized by transverse and longitudinal coherent
structures which strongly depend on the electric Rayleigh number.

There is another example of instabilities in the microscale electro-
hydrodynamics. The flux near the ion-selective microgranule due to
its curved membrane-like surface and the tangential ion flux is prone
to several kinds of instabilities.32–34 In particular, a salt jet is formed in
the region of outgoing ions, see Fig. 1. With the increasing of the exter-
nal field E1, this jet becomes narrow and unstable.34

The objective of the present work is to study the behavior of a jet
of salt emitted by a thin point source in an external electric field. Salt
from the source is emitted into its own aquatic solution, which is sub-
ject to an external uniform velocity field and an electrostatic field,
where it is convected downstream and diffused. This flow is consid-
ered in microscales, so that, in contrast to the classical jets, the
Reynolds numbers are practically zero, but the P�eclet numbers can be
large. Such a combination is possible due to the very small ratio of
the diffusion coefficient to the kinematic viscosity coefficient. This
statement mimicks electrokinetic processes in applications, so we can
treat the instability of such a jet as a simplest prototype of instabilities
described in the above-mentioned works.20–34 Consequently, its

investigation will allow predicting instabilities in other electrohydrody-
namic flows with concentration gradients.

II. MATHEMATICAL FORMULATION

Let us consider a source of salt immersed into a background
aquatic solution of the same salt in external uniform velocity and elec-
trostatic fields, see Fig. 2. Notations with a tilde are used for the dimen-
sional variables, as opposed to their dimensionless counterparts
without the tilde. The salt source is situated along the straight line of
length ~b, perpendicular to the ~x–~y plane. The salt is carried away by
advection and spreads to the sides by diffusion, eventually forming a
jet flow, as it is shown in Fig. 2.

The problem is posed for a symmetric binary electrolyte. The
external electric field breaks the electrical neutrality of the jet, and the
molar concentrations of anions ð~c�Þ and cations ð~cþÞ along the jet
become different, ~cþ 6¼ ~c�. The whole problem is described by the

FIG. 1. Schematics for an ion-selective sphere with a single surface but different
regions of the outgoing and the incoming ion fluxes. The small red arrows show the
ion flux. Depleted and enriched salt areas are depicted with white and blue,
respectively.

FIG. 2. Sketch of the base configuration for the well-developed jet emitted from a
point source.
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Nernst–Planck equations for the transport of ions, the Poisson equa-
tion for the electric potential, and the Navier–Stokes equations with
the volume Coulomb force. The diffusion coefficients for the cations
and anions are assumed to be equal, ~D

þ ¼ ~D
� ¼ ~D.

If we assume that the normalized difference ce ¼ ð~cþ �~c�Þ=ð~cþ
þ~c�Þ is small, the system of equations can be simplified to the Ohmic
model. The Nernst–Planck equations in the leading-order approxima-
tion with respect to ce are electroneutral and can be combined to yield
(see Ref. 35)

@ ~K

@~t
þ ~U � r~K ¼ ~Dr2 ~K þ ~q;

r � ~Kr~Uð Þ ¼ 0:

8><
>: (1)

The first equation is the convection–diffusion equation for the molar
salt concentration ~K ¼ ~cþ þ ~c�, and the second equation is the equa-
tion for the Ohmic current density ~Kr~U, where ~U is the electric
potential and ~K is proportional to the electric conductivity.
Convection and diffusion currents disappear under our assumptions.
For the electroneutral electrolyte, ~cþ ¼ ~c� ¼ ~c, which gives ~K ¼ 2~c. ~q
is the salt flux from the source, which can be expressed via the molar
concentration flow rate of salt ~Q in the following form in the
Cartesian coordinate system ~x–~y :

~q ¼ ~Q
dð~xÞ dð~yÞ

~b~L
2
0

; (2)

where d is the Dirac delta function (see, for example, Courant and
Hilbert36).

In the leading order with respect to ce, the Navier–Stokes equa-
tions with the Coulomb force can be written as follows:

@ ~U

@~t
þ ~U � r~Uð Þ þ 1

~q
r ~P � ~l

~q
r2 ~U ¼ ~e

~q
r2 ~Ur~U;

r~U ¼ 0:

8><
>: (3)

The Ohmic model was adopted in the study of the electro-diffusion
process of electrolytes in many different physical regimes (the details of
derivation can be found elsewhere27). This model is accurate because
the difference in cationic and anionic concentrations is very small com-
pared to the background concentration of electrolytes, but this differ-
ence is strong enough to promote instability via electric body forces.

Far from the origin, the velocity and electric fields tend to their
unperturbed values and the salt concentration tends to its background
value

~x2 þ ~y2 !1 : ~U ! ~U1; ~V ! 0; ~K ! 2~c1;

@ ~U
@~x
! �~E1;

(4)

where ~U ¼ ð~U ; ~V Þ and ~U is directed along the ~x-axis and ~V is
directed along ~y-axis.

At the initial time, all the fields are unperturbed

~K ¼ 2~c1; ~U ¼ ~U1; ~V ¼ 0; ~U ¼ �~E1~x: (5)

Spatial nonuniformity of the salt concentration causes the
nonuniformity of the electric conductivity and, therefore, induces the
volume Coulomb forces appearing in the momentum balance

equations. Originally uniform, the electric, the velocity, and the con-
centration fields are becoming deformed, and these deformations may
lead to the electrohydrodynamic instability. The main objective of the
present work is to study and explain this instability.

The characteristic quantities to make the system dimensionless
are as follows:

• ~U 0 ¼ ~U1 is the characteristic velocity, the unperturbed velocity
at the infinity;

• ~L0 ¼ ~D=~U1 is the characteristic length;
• ~U0 ¼ ~E1~L0 ¼ ~E1 ~D=~U1 is the characteristic potential;
• ~c0 ¼ ~c1 ¼ ~K1=2 is the characteristic ion concentration, the
background neutral ion concentration.

It is convenient to take the dimensionless salt concentration in the
following form:

K ¼
~K

~c1
� 2 (6)

so that K ! 0 far from the origin.
Equations (1)–(3) are expanded as follows:1

@K
@t
þ U

@K
@x
þ V

@K
@y
¼ @

2K
@x2
þ @

2K
@y2
þ Q dðxÞ dðyÞ; (7)

@

@x
ðK þ 2Þ @U

@x

� �
þ @

@y
ðK þ 2Þ @U

@y

� �
¼ 0;

Re
@U
@t
þ U

@U
@x
þ V

@U
@y

� �
þ @P
@x
� @

2U
@x2
� @

2U
@y2

¼ K
@2U
@x2
þ @

2U
@y2

 !
@U
@x

;

(8)

Re
@V
@t
þ U

@V
@x
þ V

@V
@y

� �
þ @P
@y
� @

2V
@x2
� @

2V
@y2

¼ K
@2U
@x2
þ @

2U
@y2

 !
@U
@y

; (9)

@U
@x
þ @V
@y
¼ 0: (10)

The boundary conditions (BCs) (4) in the dimensionless form are as
follows:

x2 þ y2 !1 : U ! 1; V ! 0; K ! 0;
@U
@x
! �1: (11)

In the dimensionless equations above, Re ¼ ~q ~U1~L0
~l ¼ ~q ~D

~l is the
Reynolds number. For the aqueous NaCl solutions, Re �10�3. It is
kept constant during our calculations. Thus, the problem is character-
ized by two dimensionless parameters

K ¼ ~e ~D~E
2
1

~l ~U
2
1

(12)

and

Q ¼
~Q

~b~c1 ~D
: (13)
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K characterizes the strength of the electric field; Q is the dimensionless
molar salt concentration flow rate.

The typical bulk concentration of the aqueous electrolytes varies
in the range ~c1 ¼ 1� 103 mol=m3; the electric field is about
~E1 ¼ 0:5� 10 kV=m; the diffusivity is ~D ¼ 10�9m2=s; the dynamic
viscosity is ~l ¼ 1:1� 10�3 kg=ðmsÞ; the electric permittivity for
water is ~e ¼ 7:0� 10�10 C2 s2=ðkgm3Þ; the characteristic velocity in
microfluidic devices ~U1 is of the order of 10�2cm=s. These ranges
give us K ¼ 0:015� 5:0.

III. OVERVIEW OF THE JET INSTABILITY THROUGH
SOME NUMERICAL EXPERIMENTS

The system (7)–(10) was solved by direct numerical simulation
(DNS) using the method developed in works;4,5 therefore, we omit all
the details of the method in the present work. During the calculations,
the salt flux from the source was disturbed by imposing a small-
amplitude broadband random noise, QðtÞ ¼ hQi þ Q̂ðtÞ, which was
convected downstream. Any disturbances to other quantities are
caused by the small noise Q̂, and they share its spectrum until nonlin-
ear effects are strong enough. For the sake of simplicity, we will further
use the symbol Q for the time-average flux hQi in the discussion of

DNS results. The goal is to study the stability of the jet flow through its
spectrum downstream.

The calculations in Fig. 3 are presented for the typical unstable
parameters, K ¼ 0:1, and three values of Q, Q¼ 2000, 2500, and 2700
(see the explanation in the next paragraph and in the linear stability
analysis). The snapshots of the concentration K(x, y) are given for dif-
ferent time instants t. The first case does not fully show the instability
features, and the last two are strongly unstable. At the initial time, the
electrostatic field and the hydrodynamic flow are uniform for the
whole space, Uþ x ¼ 0 andU � 1 ¼ 0. The salt concentration every-
where is equal to the background concentration, K¼ 0 (in the dimen-
sional form ~K ¼ 2~c1). The source in the origin x ¼ y ¼ 0 emits
additional salt to the liquid with the rate Q; this salt is convected to the
right and diffuses at the same time. At small time, t¼ 32, all the addi-
tional salt is concentrated near the origin as a spot elongated in the
x-direction. At larger time, t¼ 232, the advection prevails over the
diffusion and the spot stretches significantly in the x-direction. At
t¼ 800, we get a well-developed jet of concentration. The distortion of
the velocity field by the Coulomb force is small and, thus, cannot be
seen in the figure at this time (the explanation of this fact will be given
later, in the study of the self-similar solution). At t¼ 858, we can notice
a weak manifestation of instability in all three cases. This instability is

FIG. 3. Fields of Kðx; y; tÞ for K ¼ 0:1: (a) Q¼ 2000, (b) Q¼ 2500 and (c) Q¼ 2700 at different time instants. (a) is an intermediate regime, (b) and (c) are unstable ones.
The dashed lines at t¼ 800 (b) show the cross sections described later. 1: x¼ 100; 2: x¼ 200; 3: x¼ 300; 4: x¼ 500.
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getting stronger, and at longer times, it becomes well-pronounced. This
instability is of a convective nature,37–40 the perturbations are carried to
the right at approximately the speed of the external flow. The snapshots
of the concentration with a pronounced instability are shown in Fig. 4
(Multimedia view).

There were certain difficulties to specify the exact threshold of
instability. For a fixed K, there are two characteristic critical values of
Q. For the higher one, the flow is always strongly unstable, but for the
lower value of Q, the flow, sometimes, manifests a weak instability,
and sometimes, it is stable: the outcome depends on the realization of
the random initial conditions at the source. We will refer to such
regimes as to “intermediate” ones.

IV. QUASI-ONE-DIMENSIONAL SOLUTIONS
AND THEIR LINEAR STABILITY

In order to understand the physical nature of the above-
mentioned instability, we fulfill a simplified analytical analysis of the
problem. Let us first assume that the jet is steady, well-developed, and
the electric potential and velocities are perturbed weakly with respect
to their background values: ~U ¼ �~E1~x þ ~u; ~U ¼ ~U1 þ ~u; ~V ¼ ~v;
maxð~u;~vÞ � ~U1. Next, we assume that the longitudinal changes are
slower than the transverse ones, @=@~x � @=@~y . We also consider the
Stokes approximation of the creeping flow. The validation of these
assumptions will be given a posteriori. In order to understand the
orders of physical quantities and their relationships, the equations will
be taken here in the dimensional form and will be gradually trans-
formed to a convenient dimensionless form. Equation (1) along with
BCs (4) turn into the following:

~U1
@ ~K
@~x
¼ ~D

@2 ~K

@~y2
; ~K ~y!61 � 2~c1 ! 0:

�� (14)

In the case of the classical free jet flow, a reference velocity is
defined through the jet momentum.41 Our case is different: the refer-
ence salt flux must be employed. If we define the salt flux in the ~x-
direction for the line source of length ~b as

~Q ¼ ~b
ðþ1
�1

~K � 2~c1
� �

~U1 d~y; (15)

it will coincide with the one determined by relation (2), i.e.,
~Q ¼ ~b

Ð Ð
~q d~xd~y , thus ~Q plays the same role as the classical jet

momentum. This relation also selects a single solution from the family
of solutions to the boundary-value problem (14).

Integrating (14) with respect to y yields

~U1
@

@~x

ðþ1
�1

~K � 2~c1
� �

d~y ¼ ~D
@ ~K � 2~c1
� �

@~y

����
þ1

�1
¼ 0;

i.e., ~Q does not depend on ~x . In Eq. (15), ~b is the characteristic size in
the ~z-direction (in a 2D calculation, it can be taken as unity or as the
real size for comparison with experiments), see Fig. 2. Formally,
Eq. (15) is easy to get by integration of Eq. (14) from ~y ¼ �1 toþ1.

Equation (15) yields

~Q ¼ ~b ~c1 ~U1

ðþ1
�1

Kd~y withK ¼ ~K=~c1 � 2: (16)

In order to solve Eq. (14), we introduce the classical self-similar variable:

g ¼ ~y
~d
¼ ~y

ffiffiffiffiffiffiffiffi
~U1
~D~x

s
¼ yffiffiffi

x
p with x ¼ ~x

~L0
; y ¼ ~y

~L0
; ~L0 ¼

~D
~U1

; (17)

where ~d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D~x=~U1

q
is the electric boundary layer thickness. Then,

Eq. (16) turns into the following one:

~Q ¼ ~b ~c1 ~D
ffiffiffi
x
p ðþ1

�1
Kdg: (18)

In order for ~Q to remain constant with respect to x, we must assume
that K is inversely proportional to

ffiffiffi
x
p

:

K ¼ Q
2
ffiffiffiffiffi
px
p kðgÞ; (19)

where Q is determined by Eq. (13) and kðgÞ is the solution of the
transformed boundary-value problem (14):

k00 þ 1
2

gkð Þ0¼ 0; k0jg¼0 ¼ 0; kjg!61 ! 0: (20)

The solution to (20) is k ¼ exp ð�g2=4Þ, so

FIG. 4. Fields of Kðx; y; tÞ for K ¼ 0:1 and Q¼ 2700 at different time instants. (a) t¼ 1283, (b) t¼ 1294, and (c) t¼ 1318. Multimedia view: https://doi.org/10.1063/
5.0098652.1.
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K ¼ Q
2
ffiffiffiffiffi
px
p e�

g2

4 ¼ Q
2
ffiffiffiffiffi
px
p exp � y2

4x

� �
;

~K ¼ 2~c1
Q

4
ffiffiffiffiffi
px
p e

�y2
4x þ 1

� �
:

(21)

The advection and diffusion of the concentration ~K disturb the
initial concentration, and thus, they also disturb the electric conductiv-
ity ~r, which is linearly proportional to the concentration:

~r ¼
~F
2 ~D

~R~T
~K

(see Ref. 35). Here, ~F is the Faraday constant, ~R is the universal gas
constant, and ~T is the absolute temperature. In turn, according to the
second part of Eq. (1), the perturbation of the conductivity causes the
distortion of the electric field:

@

@~y
~K
@ ~U
@~y

 !
¼ � @

@~x
~K
@ ~U
@~x

� �
� ~E1

@ ~K
@~x
¼

~D~E1
~U1

@2 ~K

@~y2
: (22)

Here, we have substituted the right-hand side of Eq. (14) and have
kept only the leading-order terms. We can treat (22) as a second-order
ordinary differential equation (ODE) on U:

d
d~y

~K
d~U
d~y

 !
¼

~D~E1
~U1

d2 ~K

d~y2

and solve it by two successive integrations with respect to y. Since
d~U=d~y ! 0; d~K=d~y ! 0 as ~y ! 61, we can write the solution for
~U as follows:

~U ¼ �~E1 ~x þ
~D~E1
~U1

ln
Q

4
ffiffiffiffiffi
px
p exp � y2

4x

� �
þ 1

" #
: (23)

Here, we set the zero-potential level at ~x ¼ 0; ~y !1. By taking the
characteristic potential as ~U0 ¼ ~E1 ~D=~U1 ¼ ~E1~L0, the correspond-
ing dimensionless form can be written as

U ¼ �x þ ln
Q

4
ffiffiffiffiffi
px
p exp � y2

4x

� �
þ 1

" #
;

@U
@x
¼ �1þ

ðy2 � 2xÞQ exp � y2

4x

� �

4x2 Q exp � y2

4x

� �
þ 4

ffiffiffiffiffi
px
p

� � :
(24)

We assume that the inertial terms for microfluidic flows are neg-
ligibly small and, as it was mentioned earlier, @=@~x � @=@~y . Then,
Eq. (3) leads to

@ ~P
@~x
þ ~l

@2 ~U

@~y2
¼ ~e

@2 ~U

@~y2
~E1;

@ ~P
@~y
¼ ~e

@2 ~U

@~y2
@ ~U
@~y

: (25)

Direct integration of the second equation of (25) yields
~P ¼ ~e

2 ð@ ~U=@~yÞ2 þ ~f ð~xÞ, where the unknown function ~f ð~xÞ is deter-
mined from the condition that the pressure ~P is the same everywhere
in the flow field outside of the boundary layer. Our boundary condi-
tions lead to ~f 	 0. Thus, (25) turns into the following equation:

~l
@2 ~U

@~y2
¼ ~e

@2 ~U

@~y2
~E1 � ~e

@2 ~U
@~x@~y

@ ~U
@~y

: (26)

The second term in the right-hand side of Eq. (26) has order of
Oð1=x4Þ as x 
 1, which is small in comparison with the first term,
Oð1=x3=2Þ, so the former one can be neglected. Knowing that
@ ~U=@~y ! 0; @ ~U=@~y ! 0 and ~U ! ~U1 at ~y ! 61, the solution
of simplified Eq. (26) can be found by double integration with respect
to ~y and using the corresponding BCs:

~U ¼ ~U1 þ
~e ~D~E

2
1

~l ~U1
ln

Q
4
ffiffiffiffiffi
px
p exp � y2

4x

� �
þ 1

" #
(27)

or in the dimensionless form

U ¼ 1þ K ln
Q

4
ffiffiffiffiffi
px
p exp � y2

4x

� �
þ 1

" #
; (28)

where K is defined by Eq. (12).
For the classical 2D jet, the boundary layer thickness is propor-

tional to x2=3,41 while in the present case, it is proportional to x1=2. For
the classical free jet, U � 1=x1=3,41 and for this jet, the dependence of
U on x is more tricky. Our case also reminds a wake behind bodies,
where g ¼ y=

ffiffiffi
x
p

.
Our analytical solution has some restrictions. In order to get this

solution, we have assumed the following.

(a) The self-similar solution (21) for the salt concentration is valid
if we are far enough from the source. The difference between
the exact numerical solution and the self-similar one decreases
with increasing of x as Oð1=xÞ. This evaluation is easily done
by calculating the skipped terms in Eq. (14).

(b) The difference between the electric field disturbed by the jet
and the main field ~E1 is of the order of 1=

ffiffiffi
x
p

, see Eq. (24).
(c) According to Eq. (28), the velocity field differs from the undis-

turbed one proportionally to K; thus, at K� 1, the analytical
analysis provides a good approximation.

(d) The Navier–Stokes system is taken in the Stokes approximation,
and therefore, the properly defined Reynolds number must be

small, ~d~q ~U1=~l � 1. Substituting ~d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D~x=~U1

q
and using

dimensionless x result in Red ¼ ð~q ~D=~lÞ
ffiffiffi
x
p
¼

ffiffiffi
x
p

=Sc. Here,
Sc ¼ ~l

~q ~D
is the Schmidt number, which, in our case, is about 1100,

and hence, xmust be of the order much less than about 106.
(e) For a jet of salt extended in the x-direction to be formed, it is

necessary for the P�eclet number Ped ¼ ~d ~U1=~D based on ~d to
be large. This condition provides Ped ¼

ffiffiffi
x
p

 1.

The dependencies of Reynolds and P�eclet numbers on x are given
in Table I. The instability manifests itself at the distances from x¼ 50
to x¼ 1000 (see typical results in Fig. 3), where all the requirements
are met.

The comparison between these analytical self-similar solutions
and the results of DNS is presented in Fig. 5. The numerical results are
depicted, on the one hand, at the time when the jet is well-developed,
but, on the other hand, at the time when the manifestation of instabil-
ity is negligible. We found Q¼ 2500 and t¼ 800 suitable for this
purpose. The snapshots 1, 2, 3, and 4 correspond to the respective
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cross sections shown in Fig. 3(b). The profiles of (a) concentration, (b)
electric potential, and (c) the x-component of velocity are plotted for
these cross sections. In the cross sections 1, 2, and 3, all analytical pro-
files match our DNS very well. Cross section 4 is located near the mov-
ing front of the jet, so the assumptions for the self-similar solution are
no longer satisfied. Therefore, it is not surprising that, in the last cross
section, there is no coincidence of the analytical solution with the
numerical one.

V. LINEAR STABILITY OF SELF-SIMILAR SOLUTIONS

The study of linear stability of self-similar flows is an important
part of our analysis and a good addition to the direct numerical simu-
lation since it allows not only to confirm or refine the results of the
DNS but also to clarify some important details that cannot be obtained

from the DNS. The usual procedure for the theory of hydrodynamic
instability is to look for a solution in the form

f ¼ f0ðyÞ þ f̂ ðyÞeh; h ¼ iðax � xtÞ ¼ iðax � actÞ; (29)

where f0ðyÞ is the one-dimensional solution describing the unper-
turbed flow, and the perturbation is taken in the form of the elemen-
tary sinusoidal solution. The subscript 0 is related to the mean
solution, the hat, to the perturbations. Here, f̂ ðyÞ is the eigenfunction,
a is the wavenumber of the perturbation, x ¼ ac is the frequency, and
c is the phase velocity of the wave.

The self-similar solution (21), unlike f0 in (29), is slowly changing
in the x-direction. Such non-parallel flows are not exceptional in the
theory of stability; rather, strictly parallel flows, such as Poiseuille or
Couette flow, are the exceptions to the rule.42,43 The flow in a Blasius
boundary layer, flows in free jets, wakes behind a body and many

FIG. 5. The profiles of (a) concentration K, (b) electric potential Uþ x and (c) velocity U–1 for the cross sections 1, 2, 3, and 4 in Fig. 3(b). Solid line stands for the analytical
solution, markers •, for the DNS. Q¼ 2500, K ¼ 0:1 and t¼ 800.

TABLE I. Typical values of Reynolds and P�eclet numbers based on the boundary layer thickness at different dimensionless distances.

x 5 10 50 100 200 300 500 1000

Red (must be� 1) 0.002 0.003 0.006 0.009 0.013 0.015 0.020 0.029
Ped (must be
 1) 2.24 3.2 7.1 10.0 14.1 17.3 22.4 31.6
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others are not parallel flows; however, the study of their linear stability
under the assumption that they are locally parallel usually leads to
fairly good results. Thus, we seek a solution to the stability problem in
the form similar to (29) for all the unknowns, f ¼ fK;U;P;Ug,
assuming that the variation in the longitudinal direction is much
slower than in the normal one. In the linear stability analysis, we
neglect the inertial terms, assuming Re¼ 0.

Upon substitution of (29) for all the unknowns into Eqs. (7)–(10)
and BCs (11), linearization of the equations with respect to the pertur-
bations, and omitting the subscript 0 in the mean solution, we get the
system of equations

�ixK̂ þ iaUK̂ þ VK̂
0 þ K 0V̂ ¼ K̂

00 � a2K̂ ; (30)

ðKþ 2ÞÛ00 þK 0Û
0 þU00K̂ þU0K̂

0 þ iaA1K̂ � a2ðKþ 2ÞÛ ¼ 0; (31)

�iaP̂ þ Û
00 � a2Û ¼ K �iaU00Û � A1 Û

00 � a2Û
� �h i

; (32)

�P̂
0 þ V̂

00 � a2V̂ ¼ �K U00Û
0 þ U0 Û

00 � a2Û
� �h i

; (33)

iaÛ þ V̂
0 ¼ 0; (34)

where the prime means the derivative with respect to y. Here

A1 ¼ �1þ
Q exp � y2

4x

� �
y2 � 2x
� �

4x2 Q exp � y2

4x

� �
þ 4

ffiffiffiffiffi
px
p

� � ; V ¼ �
ðy
0

@U
@x

dy:

The BCs far from the jet are as follows:

y ! 61 : Û ! 0; V̂ ! 0; K̂ ! 0; Û ! 0: (35)

In the center of the jet, A1 þ 1 ¼ Oð1=xÞ, and far from the center,
A1 þ 1 is exponentially small with respect to x.

Equations (30)–(35) constitute an eigenvalue problem, but the
final formulation of this problem allows two possibilities. Let us first
decompose a and x into real and imaginary parts:

h¼ i ðarþ iaiÞx�ðxrþ ixiÞtð Þ¼ ð�aixþxitÞþ iðarx�xrtÞ: (36)

Similarly, c ¼ cr þ ici. In a temporal stability analysis, we constrain a
to be a real number, a ¼ ar ; ai ¼ 0. This means that we consider only
waves that do not grow in the streamwise direction. They can grow or
decay in time, depending on the sign of xi ¼ aci. At aci > 0, the per-
turbations grow in time, and at aci < 0, they decay. In this case, a is a
given real number andx is a complex eigenvalue.

In a spatial stability analysis, we constrain x to be a real number
instead, xi ¼ 0. This means that we force sinusoidality at a particular
point in space and see whether the perturbations grow (ai < 0) or
decay (ai > 0) downstream. This possibility assumes that the fre-
quency x is a given real number and a is a complex eigenvalue.

Technically, the solution of the temporal stability eigenvalue prob-
lem is much easier than the solution of the spatial problem. On the
other hand, in our open flow problem, the disturbances grow down-
stream and it would be correct to use the spatial stability formulation.
Fortunately, at small and moderate growth rates, we can perform the
calculations for the temporal problem and then recalculate the results
to the spatial formulation using the famous Gaster’s theorem.44 When
solving the temporal stability problem, we obtain the real part of x,
xr ¼ acr , and the temporal growth rate xi ¼ aci. Hence, we

determine the phase velocity, cr ¼ xr=a; ci ¼ xi=a, and their group
velocity, vg ¼ @xr=@a. We can, thus, rewrite (36) as follows:

h ¼ ð�ai þ iarÞx � ixr t ¼ �ai þ i
xr

cr

� �
x � ixr t:

According to Ref. 44, the spatial problem is connected to the temporal
one through the following relation:

vg ’ �
xi

ai
; (37)

where vg can be taken from any problem statement. In our case, ai for
the spatial problem can be calculated from the values of xi and vg
from the temporal problem. Then, the spatial stability problem can be
expressed with the following simple relation:

h ¼ xi

vg
þ i

xr

cr

� �
x � ixr t;

where all the quantities are taken from the temporal formulation.
We, thus, consider Eqs. (30)–(35) to be an eigenvalue problem

for the complex x with a fixed a. Upon solving this problem, we
obtain triplets (a, cr, ci). Having these, we are able to compute xr and
xi and, eventually, recalculate the results to the spatial evolution
according to the Gaster’s transformation Eq. (37). If ai > 0 for all fre-
quencies xr, the self-similar jet solution is stable; if ai < 0 for any fre-
quency, it is unstable.

The discretization was realized by expanding the unknown func-
tions in the Hermite series. The eigenvalues were calculated by the
QR-algorithm. Only the most dangerous eigenvalue (with the largest
growth rate) was taken from the discrete spectrum. The eigenvalue
problem was solved for as many values of a as needed to provide a
smooth enough grid with respect to xr. The solutions now depend on
three parameters: Q, K, and, additionally, x0. The latter parameter
means a cross section in x where the mean solution is taken.

The fact that our jet flows lose their stability at zero Reynolds
numbers is already a peculiar feature. The physical mechanism of the
stability loss in the classical free jets and wakes behind bodies is associ-
ated with the inertial forces and can only occur at large Reynolds num-
bers. A necessary condition for such instability for the infinitely large
Reynolds numbers is the presence of an inflection point on the velocity
profile (the well-known Rayleigh theorem42). On the contrary, our
instability occurs at the infinitely small Reynolds numbers, and we do
not have such a simple and elegant physical explanation for it.

In Fig. 6(a), the dependence of the spatial growth rate ai on the
frequency xr, which is determined by Eq. (37) and characterizes
downstream instability, is presented for the different cross sections x0
and fixed K and Q. With increasing the distance from the source x0,
the flow becomes more stable, so the most unstable cross section is
located just near the source x0 ¼ 0. Such feature is rather unusual for
the classical free jets and wakes,41–43 which remain unstable for far-
away cross sections x0. The phase velocity of the perturbation as a
function of the frequency xr is presented in Fig. 6(b), and it shows
that there is practically no wave dispersion. The disturbances can
propagate a bit faster than the main flow or a bit slower, but, in any
way, the difference does not exceed 5% of the main velocity.

To emphasize, there is a spatial interval 0 < x0 < x�0 , where the
flow is unstable. For x0 > x�0 , any perturbation decays. A typical
dependence of x�0 on the molar salt concentration flow rate at fixed K
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is shown in Fig. 7: the unstable interval 0 < x0 < x�0 expands with
increasing of Q. The calculations were also performed for larger values
of K, up to 0.1. With an increase in any of the parameters, K or Q, the
unstable spatial interval expands.

The existence of the critical value x�0 is due to the fact that the
intensity of the salt concentration decreases downstream and the electri-
cal forces are not strong enough to overcome the dissipation and cause
the instability. According to the theory of linear stability, for x > x�0 ,
the perturbations should decay rapidly, but when x�0 is reached, the
amplitude of the perturbations is already large enough so that they obey
nonlinear laws. Numerical modeling shows that the formed nonlinear
structures will only slowly diffuse further, practically without changing
the amplitude.

It is instructive to compare the results of the linear analysis with
the DNS, especially taking into account the fact that the linear stability
analysis has an additional parameter, x0. The length x0 must be large
enough to allow small random noise to evolve toward coherent struc-
tures of a finite amplitude.

First, we compare the frequencies of maximum spatial growth
rate from the linear stability analysis, x�r , with the characteristic fre-
quencies of the DNS at the beginning of the instability (selected from
the initial noise Q̂), Fig. 8. There is a good fit between these two
approaches, except for small K, where x�r could not be determined
exactly because the resulting period exceeded the simulation time.

After a transition period, the jet flow is established in the whole
spatial interval (in our case, it is 0 < x < 1000). The detailed spectrum

FIG. 6. (a) Spatial growth rate determined by Eq. (37) and (b) the phase velocity of perturbations vs the frequency xr for K ¼ 10�2, Q¼ 1000 and different x0: 1: x0 ¼ 50, 2:
x0 ¼ 100, 3: x0 ¼ 150.

FIG. 7. The dependencies of the critical x�0 on Q: 1—K ¼ 0:01, 2—K ¼ 0:02.
The fractions of the curves from x�0 ¼ 0 till x�0 ¼ 50 violate our assumptions (see
Table I) and are shown by dashed lines.

FIG. 8. The dependencies of the critical
frequency x�r on K. Solid line corre-
sponds to the linear stability analysis and
stands for x0 ¼ 250, and the triangles cor-
respond to the DNS-obtained frequency of
the most dangerous modes.
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distribution at different stations downstream is presented in Fig. 9. To
mimic a broadband white noise, the amplitudes of the spectrum were
taken equal, but their phases were set by a random number generator
in the interval of their periodicity. Thus, the initial spectrum is a con-
stant with a given amplitude, which characterizes the level of the white
noise Q̂, Fig. 9(a). (The snapshots are taken with a small delay in t in
order to see the effect of Q̂ on K.) For small distances from the source,
all the amplitudes grow according to the linear stability theory and the
linear filtering mechanism singles out a narrow band of frequencies
near the most dangerous one, x� � 0:05, see Fig. 9(b). For larger
times, the perturbations show typical nonlinear features: one can
clearly see the overtones 2x�; 3x�, and subharmonic effects at small
x, Fig. 9(c). At the last station, shown in Fig. 9(d), the primary fre-
quency x� decays practically to zero, but the overtones are visible.
Thus, the typical size of the coherent structure in x-direction decreases
by half. This effect can be clearly seen in Fig. 3(b), t¼ 872.

VI. CONCLUSIONS

We theoretically investigated a salt emitted from the point source
into its background aquatic solution under the external electrostatic
field. The electrohydrodynamic instability of this flow is a prototype for

more complex microfluidic instabilities.20–34 The solution is governed
by two dimensionless parameters, the source flow rateQ and the electric
field strength K. Unlike classical macrojets, this flow was considered in
microscales and, therefore, at low Reynolds numbers, but at high P�eclet
numbers so that the salt advection prevails over the diffusion.

Numerical simulation of the complete nonlinear system of equa-
tions was carried out for various values of the parameters. The simula-
tion showed that a salt spot of enhanced concentration appears at the
initial moment of time near the source. This spot is convected down-
stream and spreads to the sides by diffusion, becoming more elongated
and eventually forming a microjet. At sufficiently large times, the jet
flow establishes over the entire computational domain. The spatial
inhomogeneity of the salt concentration causes the inhomogeneity of
the electrical conductivity and leads to the appearance of the Coulomb
forces and, eventually, the electrohydrodynamic instability. The critical
parameters were found when the flow becomes unstable. For the
unstable case, a small-amplitude broadband random noise turns into a
narrow band of frequencies by the linear instability filtering mecha-
nism. This instability is of a convective nature, the unstable perturba-
tions propagate downstream at approximately the speed of the
external flow and turn into nonlinear coherent structures of larger fre-
quencies. It was found that a twofold increase of K can enlarge the
instability area by as much as 50% for moderate source flow rate
(Q¼ 700, Fig. 7). At large flow rates (Q¼ 1000), a 10% increase can be
achieved.

Along with the DNS, an analytical self-similar solution of a well-
developed steady microjet was obtained. The boundary layer thickness
is expanding downstream as

ffiffiffi
x
p

. The profiles of salt concentration,
electric potential, and velocity for the self-similar solution and for the
DNS are in rather good correspondence. The obtained analytical solu-
tion was assumed to be locally parallel and was investigated for linear
stability in the temporal formulation. Using Gaster’s theorem, the
results were recalculated into the spatial formulation. The critical val-
ues of parameters—the frequency x�r and the maximum spatial
growth rate frequencies—were in good quantitative agreement with
the DNS: the mean error is about 8% (Fig. 8).
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