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ABSTRACT
The advent of photonic integrated circuits (PICs) will allow the replacement of the large aperture of an optical
telescope by a dense array of small apertures combined interferometically. The light coming from aperture pairs
can be combined by a PIC in order to extract interferogram characteristics known as complex visibilities, from
which the observed object can then be reconstructed. In such a compact interferometric imager, the optical
components dedicated to image formation in a regular telescope are no longer necessary. In particular, such a
concept is relevant for space missions where weight and size are critical. To date, the proposed concepts are
made of one-dimensional arrays radially disposed in a circular instrument.

The way of combining the apertures defines the optical transfer function of the instrument, which is key to the
imaging performance. In this communication, our goal is to optimize the aperture configuration. Signal-to-noise
considerations suggest using each aperture once and only once in order to avoid splitting the flux received on
each aperture. Moreover, non-redundant configurations allow a broader spatial frequency coverage. We study
aperture configurations based on these two conditions.

We describe this problematic formally and we apply results from combinatorial theory to prove the existence
of solutions to some problems of aperture configuration optimization, and to exhibit some explicit solutions.

Firstly, we suggest new aperture configurations leading to a dense spatial frequency coverage. Secondly, we use
these results to propose an optimal frequency coverage for a SPIDER-like design. Then, by complementing the
latter instrument with a monolithic telescope, we propose a new aperture configuration that extends the spatial
frequency coverage. Lastly, additional strategies to further extend the cut-off spatial frequency are explored and
presented.
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1. INTRODUCTION

The innovative optical imaging system concept based on interferometry known as SPIDER could bring substantial
gains in size and weight compared to a conventional focal plane imager. This compact interferometric imager
uses both photonic integrated circuits and interferometric imaging technologies.

The so-called SPIDER demonstrator was initially presented by Lockheed Martin in 20131 and a couple
experimental demonstrations followed.2,3 Several aspects of such a concept have been studied since then.4–8 In
such a system, apertures are evenly disposed in one-dimensional arrays, called arms in the following. Each arm
is associated with a PIC which combines apertures, used at most once, by pairs. The arms are disposed in a
radial manner on a disc, as shown in Figure 2. The apertures within each arm collect light from a scene and
inject it into an optical guide on a PIC chip. The light travels through various optical devices in the PIC, as
represented in Figure 1.

The data measured by each detector pair, for a set of suitable values of the phase shifters, constitutes an
interferogram. The main characteristics of the interferogram are the contrast and position of the fringes, which
once grouped together form a physical quantity called the complex visibility.

Figure 1: a: Principle of an interferometer (long baseline, delay lines, fibered combination); b: Principle of
SPIDER (sub-aperture array, injection in a PIC that contains dispersing elements (AWGs), phase shifters,
couplers (MMIs) and detectors).9

For each aperture pair separated by a distance called baseline, the measured complex visibility allows one to
access one sample of the Fourier transform of the object using the Van Cittert-Zernike theorem. The sampled
frequency is directly linked to the baseline of the aperture pair. The object can then be estimated through an
image reconstruction, using the same methods as those developed in astronomical interferometry.10,11

In the following, we will refer to the set of measured spatial frequencies as the frequency coverage. It is a
key aspect in the design of the interferometer, and should be tailored to the type of source observed.12 In an
interferometer similar to the one represented in Figure 2, the spatial frequencies are sampled with a step of b/λ,



Figure 2: Schematic diagram of a compact interferometric imager.9

with b the distance between two consecutive apertures. In the following, for simplicity purposes, we will consider
normalized spatial frequencies in units of b/λ.

We focus on the interferometric observation of a very extended source such as the Earth, viewed from a
satellite. In this framework, Harvey and Rockwell13 introduced the "practical resolution limit" (PRL), defining
it as the maximum spatial frequency before which no zero occurs in the optical transfer function. Indeed, few
priors are available for a very extended source, making it necessary to have no gaps in the frequency coverage.
We qualify such a frequency coverage as compact.14,15

In the following, we will call an aperture configuration the list of combined aperture pairs in the instrument.
Lockheed Martin’s aperture configuration16 is presented in the top panel of Figure 3. The frequency coverage
associated to this aperture configuration is presented at the bottom, and each measured frequency is represented
by a blue dot. What is noticeable is that not all apertures are used (the unused ones are shown in red) and that
missing frequencies start from spatial frequency 7. Moreover, the higher the spatial frequencies, the more gaps
there are.
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Figure 3: Top panel: aperture configuration of an interferometric arm of the SPIDER-like instrument as described
in.16 The black lines represent aperture pairings. The unused apertures are colored in red. Bottom panel:
associated frequency coverage.

A different aperture configuration was suggested in6,7, 17 for the same SPIDER-like design with a frequency
coverage producing only every other spatial frequency, and is presented at the top of Figure 4. In this case, all
the apertures are used, but gaps are still observed as every other frequency is missing.

In the presented SPIDER-like designs, each arm has the same aperture configuration and consequently the
same frequency coverage. Moreover, each measured frequency is unique. Finally, in both cases, there are gaps
between frequencies. In order to reconstruct the missing frequencies in a satisfactory manner, strong priors on
the object are required such as the knowledge that it has a reduced support on a dark background, as would be
the case if observing various astronomical objects. Therefore, none of these aperture configurations are suitable
for the observation of an extended source.

Apart from these designs, two other non radial architectures have been suggested in the literature. The first
is a hexagonal array of apertures with a spiral pattern18 providing a compact structure and a different frequency
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Figure 4: Top panel: aperture configuration of an interferometric arm of the SPIDER-like instrument as described
in.6,7, 17 Bottom panel: associated frequency coverage.

coverage. This architecture necessitates in-development 2D PICs, thus excluding it from the scope of our study
as we aim at using existing linear PICs. The second architecture involves a T-shape array of apertures and
produces non simultaneous measurements.19 In the following, as we consider snapshot instruments, this design
is not appropriate.

2. OPTIMIZATION OF THE FREQUENCY COVERAGE OF DENSE 1D ARRAYS

In this communication, we aim at optimizing the frequency coverage of such a SPIDER-like interferometer
replacing a traditional telescope.

The SPIDER-like instrument keeps the same:

• radially disposed interferometric arms as shown in Figure 2,

• aperture configuration shared between each arm,

• single use of each aperture,

• uniqueness of each measured spatial frequency (to avoid spatial frequency redundancy).

In contrast, we wish to use all apertures available in order to broaden the spatial frequency coverage, thus to
maximise the PRL. Note that the novelty in our study is that the optimization is carried out among all the
possible configurations, unlike previous authors,7,17 without a costly systematic search.

The number of aperture configurations scales exponentially with the number of apertures, making it im-
possible to carry out a systematic exploration. For instance, for 40 apertures, there are 12521965697 different
frequency coverages.20 In this paper, we present an original approach based on combinatorial theory results
obtained by several authors,20–24 to solve the problem no matter the number of apertures, as well as to provide
an explicit aperture configuration solution. Finally, this approach is applied to optimize such an instrument.

Considering each aperture used a single time and connected by pairs, the total number of apertures Np is
necessarily even. Moreover, the number of measured spatial frequencies is consequently Np/2 and the measured
frequencies have values in the range [1, Np − 1]. We define a buildable frequency coverage as one that has an
aperture configuration leading to it. It should be noted that not all frequency coverages are buildable. For the
sake of the example, let us consider a frequency coverage of the form {. . . , Np − 2, Np − 1} that is trivially not
buildable. Indeed, the two outer apertures have to be connected in order to measure the Np−1 spatial frequency,
leaving a next maximal measurable spatial frequency of Np − 3.

Here, we focus on finding buildable frequency coverages that have a compact structure, i.e. that are composed
of consecutive spatial frequencies {1, 2, . . . , Np/2}. This problem has been formulated and solved in the framework
of combinatorial theory by Skolem,21 and such a frequency coverage is called a Skolem set and its associated
aperture configuration a Skolem sequence.



More generally, we wish to build frequency coverages in the form {nmin, nmin +1, . . . , nmin +Np/2− 1}, where
nmin is the first measured spatial frequency. This problem has been introduced by Langford,25 and such a
frequency coverage is called a Langford set and its associated aperture configuration a Langford sequence. The
existence of buildable compact frequency coverages was solved for nmin = 1 by Skolem in 1958, for nmin = 2 by
Davies22 in 1959, then partially generalized by Bermond23 in 1978 and finally completed by Simpson24 in 1983.

To sum up the results derived by these authors: a frequency coverage of the form {nmin, nmin + 1, . . . , nmin +
Np/2− 1} is buildable if and only if :

4nmin ≤ Np + 2 (1)

yielding a condition on the highest minimum spatial frequency for nmin:

nmin ≤
⌊
Np + 2

4

⌋
=∆ nmax

min (2)

and any of:

• Np ≡ 0 (mod 8),

• Np ≡ 2 (mod 8) and nmin odd,

• Np ≡ 6 (mod 8) and nmin even.

In other words, condition 1 translates into having a maximal first spatial frequency of Np+2
4 and consequently the

highest spatial frequency of 3Np−2
4 . A single explicit aperture configuration is provided in21–24 given the values

of Np and nmin defining the frequency coverage, as follows:

• nmin = 1:

– Np ≡ 0 (mod 8): see 1st part of proof of theorem 221

– Np ≡ 2 (mod 8): see 2nd part of proof of theorem 221

– Np ≡ 4 (mod 8): no solution21

– Np ≡ 6 (mod 8): no solution21

• nmin = 2:

– Np ≡ 0 (mod 8): see 1st part of proof of theorem 222

– Np ≡ 2 (mod 8): no solution22

– Np ≡ 4 (mod 8): no solution22

– Np ≡ 6 (mod 8): see 2nd part of proof of theorem 222

• nmin > 2:

– Np ≡ 0 (mod 8):
∗ nmin ≡ 0 (mod 4): see 1st table of24

∗ nmin ≡ 1 (mod 4): see 4th table of24

∗ nmin ≡ 2 (mod 4): see 2nd table of24

∗ nmin ≡ 3 (mod 4): see 3rd table of24

– Np ≡ 2 (mod 8):
∗ nmin ≡ 0 (mod 2): no solution (as mentioned before)23

∗ nmin ≡ 1 (mod 2): see 2nd table under theorem 223

– Np ≡ 4 (mod 8): no solution (as mentioned before)23

– Np ≡ 6 (mod 8):
∗ nmin ≡ 0 (mod 2): see 1st table under theorem 223

∗ nmin ≡ 1 (mod 2): no solution (as mentioned before)23



3. APPLICATION TO A SPIDER-LIKE INTERFEROMETER
In the Skolem configuration for the SPIDER-like interferometer, i.e. nmin = 1, the measured spatial frequencies
are {1, 2, . . . , Np/2} and thus the frequency coverage is buildable if and only if Np ≡ 0 or 2 (mod 8).

In this paragraph and applying the Skolem results, we propose a rewiring of the SPIDER-like instrument
considered in order to increase the PRL. As Np = 30 does not satisfy the congruity condition given above, we
consider the closest working case Np = 32. Using the constructive solution from the first half of the proof of
theorem 2 in,21 we provide an illustrative aperture configuration in Figure 5. In this configuration, the measured
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Figure 5: Top panel: example of a Skolem aperture configuration with 32 apertures. Bottom panel: the associated
normalized frequency coverage ranging from 1 up to 16.

frequencies are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.
In a nutshell, this aperture configuration achieves a compact frequency coverage in contrast to SPIDER, and

improves the PRL as it is no longer equal to 6, but 16.

4. SUGGESTION OF A HYBRID ARCHITECTURE
4.1 Application case using Langford configurations
The second step of this paper consists in further optimizing the PRL obtained for the SPIDER-like design.
To this aim, the design of a hybrid instrument constituted of the interferometer complemented with a small
monolithic telescope measuring short spatial frequencies is considered.

To be more specific, we no longer wish to consider frequency coverages starting at the spatial frequency 1
but rather as high as possible considering the low spatial frequencies are measured by the monolithic telescope,
to improve the resolution of the device. Note that if buildable, the Skolem configuration reaches a maximum
spatial frequency of Np/2 by definition whereas the Langford configuration reaches a maximum spatial frequency
of (3Np−2)/4 as shown in Equation (2). Because the maximum spatial frequency measured increases from Np/2
to (3Np − 2)/4, the resolution of this hybrid interferometer is therefore improved by about 50% with respect to
the interferometer with the Skolem configuration.

Maintaining the SPIDER-like interferometer aperture complexity, i.e. Np = 30 as presented in Figure 3,
we apply these results and we aim at finding a compact frequency coverage with the highest minimum spatial
frequency, nmax

min , as defined in Equation (2). A consequence of the latter is that nmax
min = 8 for Np = 30. Using the

first table under theorem 2 in,23 we provide an illustration of this Langford aperture configuration in Figure 6.
The represented aperture configuration produces a compact frequency coverage ranging from spatial frequencies
8 to 22, improving the frequency coverage provided by a Skolem configuration, i.e. by considerably stretching
the highest spatial frequency.

4.2 Dimensioning of the monolithic telescope
For the hybrid design, using the interferometric arms to measure the frequency coverage {nmax

min , . . . , n
max
min +Np/2−

1}, the monolithic telescope, of diameter Dm, needs to measure the continuous spectrum [0, nmax
min ]. This condition

translates into Dm = nmax
min b.

However, we need to verify whether or not such a monolithic telescope fits in the empty space of diameter
Din at the center of the instrument, i.e. if Dm ≤ Din. To compute this inner diameter, we make additional
assumptions about the arms:
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Figure 6: Top panel: example of a Langford configuration with 30 apertures. Bottom panel: the associated
frequency coverage ranging from spatial frequency 8 up to 22.

1. the diameter of the apertures d, is equal to the distance between apertures b,

2. the arms of the interferometer are positioned in such a way that the apertures of the first ring are joint.

Considering these assumptions, the perimeter of the circle going through the center of each aperture P =
π(Din + d) is larger than the perimeter of the regular polygon whose vertices are the centers of each aperture
P ′ = Nad, with Na the number of interferometric arms. The inequality P > P ′ translates into:

Din > d(Na/π − 1). (3)

It is possible to rewrite this inequality into a condition on Na, using the expression of the highest minimal
spatial frequency of a Langford configuration nmax

min = ⌊(Np + 2)/4⌋:

Na ≥ π⌊(Np + 6)/4⌋. (4)

In the particular case of the SPIDER-like design with Na = 37 and Np = 30, we have Din > 10 and nmax
min = 8.

As a consequence, the condition allowing the monolithic telescope completing the missing low spatial frequen-
cies of the Langford frequency coverage is verified. In contrast to SPIDER’s frequency coverage presented in
Figure 7a, all frequencies from 0 to 22 are measured whereas SPIDER has 11 missing frequencies in the range:
{7, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21}. This way, we have achieved a compact frequency coverage up to the spatial
frequency 22 and in other words an improved PRL with respect to the SPIDER configuration.

In addition, Equation (4) suggests that we could maintain the same amount of apertures per arm while
reducing the number of arms to 28 and still be able to achieve the same one-dimensional frequency coverage.
This operation would reduce the total diameter of the instrument by reducing the inner space diameter. However
it would be at the cost of having a less dense 2D frequency coverage.

Finally, in Figure 7b, we have represented the two-dimensional optical transfer function following the merging
of the frequency coverages from the monolithic telescope and the SPIDER-like interferometer.

5. FURTHER INCREASE OF THE CUT-OFF FREQUENCY THROUGH
ADDITIONAL ARMS

Previously, we have presented in Section 3, an optimization of the SPIDER-like design reaching a maximum
frequency of Np/2, using Skolem configurations. Then, in Section 4.2, we proposed a hybrid design reaching a
maximum frequency of (3Np−2)/4, using Langford configurations complemented by a monolithic telescope. This
section aims at proposing a new strategy to outperform both these frequency coverages and obtain a maximum
measured frequency closer to Np − 1, while maintaining the same diameter of the instrument. In order to do so,
we plan on using the empty space between the interferometric arms visible in Figure 2.
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Figure 7: a) Optical transfer function of the SPIDER-like instrument with radially disposed arms. Each inter-
ferometric arm measures the discrete spatial frequencies {1, 2, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29} (black). b) Optical
transfer function of the suggested hybrid instrument with a monolithic telescope complemented by a SPIDER-
like instrument with radially disposed arms. The monolithic measures the continuous spatial frequencies [1, 8]
(red) and the interferometer the discrete spatial frequencies {8, . . . , 22} (black).) from Section 4.2.

5.1 Optimizing the inter-arm empty space: dimensioning the additional arms
The empty space between the set of interferometric arms, called primary arms, can allow the installation of
another set of shorter arms, called secondary arms, as presented in Figure 8. This section aims at determining
their size.

Knowing the diameter d of the apertures and the small angle α = 2π/Na separating two arms, we can compute
the distance R allowing to install the first aperture of the secondary arm as:

R =
d/2

tan (α/2)
≈ dNa

2π
(5)

Let Np be the number of apertures in the primary arm. Using Equation (5), the number of apertures of the
secondary arm, N s

p, writes:

N s
p = Np −

⌈
Na

2π

⌉
(6)

Thus, the secondary arms are
⌈
Na

2π

⌉
apertures smaller than the primary arms and can also be disposed in a radial

manner as shown in Figure 8b. Please note that since the number of primary arms is odd, each secondary arm is
parallel to a primary arm on the opposite side of the instrument. The configurations we present in this section
consider each pair of parallel primary and secondary arms.

Similarly to the analysis carried out in Section 2, we can focus on the one-dimensional optimization of the
primary and secondary arms wiring, and replicate the same aperture configuration on each radially disposed pair
of parallel primary and secondary arms.
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Figure 8: a) Schematic of the primary arms and the empty space allowing the installation of secondary arms.
d is the diameter of an aperture, α the angle between two adjacent primary arms, and R the distance between
the tangency point of the first aperture of two adjacent primary arms and the first aperture of the secondary
arm that can be placed between them. b) Schematic of the hybrid instrument with the primary (in blue) and
secondary arms (in red) complemented by the monolithic telescope (in gray) from Section 4.2.

5.2 Trivial baseline matching method the primary and secondary arms
The simplest approach to wiring both the primary and secondary arms is to measure all odd baselines within the
secondary arm, and all even baselines within the primary arm. The wiring corresponding to measuring all odd
spatial frequencies has already been presented in Figure 4, and the one corresponding to measuring all even spatial
frequencies is identical, with an unused aperture in the middle, incrementing all measured spatial frequencies by



a unity. More specifically, using the described method, and assuming Np and N s
p to be even, it is possible for

the primary arm to measure {2, 4, . . . , Np − 2}, and for the secondary arm to measure {1, 3, . . . , N s
p − 1}. This

trivial configuration is dense up to N s
p, as N s

p + 1 is the first missing baseline.

5.3 An iterative baseline matching method for wiring primary and secondary arms
In this subsection, we aim at presenting a method to wire the apertures of two types of primary and secondary
arms in order to reach the highest maximum frequency possible. The method is composed of an iterative step
that is applied alternatively to the primary and secondary arms. We will consider the general case:

Np = N s
p +∆p, (7)

with an odd difference between the primary and secondary arms ∆p = 2k + 1.

Here we aim at explicitly showing how to wire any consecutive N ≥ 2∆p apertures, in a way to measure the
∆p consecutive baselines {N − 3k − 1, N − 3k, . . . , N − k − 1}, and leaving N − 2∆p = N − 4k − 2 consecutive
unused apertures (in the center of Figure 9). A figure representing the associated baseline pairing is presented
in Figure 9.

. . . . . . . . . . . .. . .

k + 1 k + 1

k k

N − 4k − 2

Figure 9: Baseline pairing of a single iterative step for N apertures: the k + 1 pairings connected on the upper
part of the figure are {N − 3k − 1, N − 3k + 1, . . . , N − k − 1} and the k pairings connected on the lower part
of the figure are {N − 3k,N − 3k + 2, . . . , N − k − 2}. The union of these sequences is the compact frequency
coverage {N − 3k − 1, N − 3k, . . . , N − k − 1}.

Applying this step alternatively on the primary and secondary arms yields:

1. wiring to primary arm with N = Np: measures {Np−3k−1, Np−3k, . . . , Np−k−1}, leaving Np−2∆p

consecutive unused apertures on the primary arm,

2. wiring to secondary arm with N = N s
p = Np−∆p: measures {Np−5k−2, Np−5k−1, . . . , Np−3k−2},

leaving Np − 3∆p consecutive unused apertures on the secondary arm,

3. wiring to primary arm with N = Np − 2∆p: measures {Np − 7k − 3, Np − 7k − 2, . . . , Np − 5k − 3},
leaving Np − 4∆p consecutive unused apertures on the primary arm,

4. etc.

This way, we can see that by construction, our iterative pairing method forms a compact frequency coverage
with a maximum measured frequency of Np − (∆p − 1)/2− 1 ≃ Np − 1−Na/(2π). In the particular case where
Np ≡ 0 (mod ∆p), the frequency coverage is dense from k+1 to Np − k− 1. Please note that for this method to
yield a compact frequency coverage, it is key for the number of apertures paired at each step to be identical to
the differences between primary and secondary arms. This kind of setup, combined with the use of a monolithic
telescope measuring the low frequencies as presented in Section 4.2, outperforms the trivial frequency coverage
presented in Section 5.2 in the sense that it achieves a higher compact frequency coverage. More specifically, in
the favorable setup for the trivial baseline pairing method i.e. with N s

p even, the cut-off spatial frequency is of N s
p

whereas in the presented method, we reach a cut-off spatial frequency of Np−k−1 = Np− (2k+1)+k = N s
p+k.



5.4 Application to the studied SPIDER-like design
As shown in Section 5.1, the number of arms considered enforces a certain difference in the number of apertures
between the primary and secondary arms. In the case where Np = 30, d = 1 and Na = 37, using Equation (6),
this difference is of 6. This number being incompatible with the general method we presented in Section 5.3, it
is however possible to adapt our general method to this application, simply by having a different initial wiring
for the primary arm: as presented in Figure 10, it is possible to wire any consecutive N ≥ 13 apertures, in a
way to measure the 6 consecutive baselines {N − 9, N − 8, . . . , N − 4}, and leaving N − 13 consecutive unused
apertures as well as a non-contiguous unused aperture. By initially applying this baseline matching method to

. . .

N − 8

N − 6

N − 4

N − 5

N − 7

N − 9

N − 13

Figure 10: Diagram representing the initial pairing method for the primary arm. The first 6 consecutive baselines
measured are {N − 9, N − 8, . . . , N − 4}. The unused aperture is represented in red. The remaining N − 13
unused consecutive apertures are represented by the dots in the middle.

the primary arm with N = Np leaves us with Np − 13 consecutive unused apertures on the primary arm, and
N s

p = Np − 6 on the secondary arm. It is now possible to apply alternatively the general method presented in
Section 5.3 with ∆p = 7.

An illustrative application of the step-by-step of the baseline matching of the interferometric arms is presented
in Figure 11. Once the condition N ≥ 2∆p is not met, we manually wire the remaining unused apertures (bottom
two panels).

To sum up, we have showed how to measure all frequencies, {1, 2, . . . , 26} without gaps from two arms
containing respectively 30 and 24 apertures. This maximal value 26 is larger than the solution by Skolem
and Langford and does not even necessitate the use of a monolithic telescope to measure the low frequencies.
With this new method, we achieve a radial frequency coverage of almost 90% (vs. 50% and 75% achieved by
respectively the Skolem and Langford configurations), without modifying the size of the instrument.

6. CONCLUSION
In summary, we have proposed an original method allowing one to determine whether or not a compact frequency
coverage is buildable, given the number of apertures and the lowest sought spatial frequency. The solution is
constructive and does not require a computationally costly systematic exploration, making our approach fit
to interferometric arms with a large number of apertures. This tool allowed us firstly to propose a rewiring
of the SPIDER architecture, achieving a compact frequency coverage. We then used it to suggest a hybrid
architecture combining a small monolithic telescope, for low spatial frequency measurements, placed at the center
of a SPIDER-like instrument that measures higher spatial frequencies and still achieves a compact frequency
coverage. These results were recently accepted for publication in a peer-reviewed journal.12 Finally, a new
method has been proposed allowing one to further increase the cut-off frequency, and can be applied whatever
the number of apertures. A current limitation of the frequency coverage work presented here is that it only
considers radial frequencies. A perspective of this work is thus to consider the 2D frequency coverage and fill in
the gaps azimuthally.
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Figure 11: Diagram representing the aperture configurations and associated frequency coverages for the initial
and general pairing methods with both the primary and secondary arms. Unused apertures are represented in
red and the frequency coverages at each step are cumulative. The frequencies measured by the primary arm are
represented in red and those measured by the secondary arm are represented in blue.
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