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Remarks on the controllability of parabolic systems with
non-diagonalizable diffusion matrix

Michel Duprez∗ Manuel González-Burgos† Diego A. Souza‡

July 14, 2022

Abstract

The distributed null controllability for coupled parabolic systems with non-diagonalizable
diffusion matrices with a reduced number of controls has been studied in the case of constant
matrices. On the other hand, boundary controllability issues and distributed controllability with
non-constant coefficients for this kind of systems is not completely understood. In this paper, we
analyze the boundary controllability properties of a class of coupled parabolic systems with non-
diagonalizable diffusion matrices in the constant case and the distributed controllability of a 2×2
non-diagonalizable parabolic system with space-dependent coefficients. For the boundary con-
trollability problem, our strategy relies on the moment method. For the distributed controllability
problem, our findings provide positive and negative control results by using the Fattorini-Hautus
test and a fictitious control strategy.

1 Introduction and main results
Let T > 0 be a fixed time and ω := (a,b) be a non empty open subinterval of (0,π). Hereafter,
we shall use the notation QT := (0,T )× (0,π). We denote by M? the conjugate transpose of a
matrix M and by ei the i-th element of the canonical basis of Rn (n ∈N?, with n≥ 2, will be fixed
later). On the other hand, we also denote (·, ·)Rn (resp., (·, ·)Cn ) the scalar product in Rn (resp.,
the hermitian product in Cn) and | · | is the euclidean norm in Rn or Cn.

In this work, we consider the following controlled parabolic systems in which the diffusion
matrix is non-diagonalizable

yt −Dyxx +Ay = B1ω u in QT ,

y(·,0) = y(·,π) = 0 in (0,T ),

y(0, ·) = y0 in (0,π)
(1.1)

and 
zt −Dzxx +Az = 0 in QT ,

z(·,0) = Bv, z(·,π) = 0 in (0,T ),

z(0, ·) = z0 in (0,π),
(1.2)
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where y0 ∈ L2(0,π;Rn) and z0 ∈H−1(0,π;Rn) are the initial data, u∈ L2(QT ;Rm) (m∈N?) is the
distributed control, v ∈ L2(0,T ;Rm) is the boundary control, A ∈ L(Rn) is a zero order coupling
matrix, B ∈ L(Rm;Rn) is a matrix through which the controls act on the system and D ∈ L(Rn)
is a non-diagonalizable diffusion matrix satisfying an ellipticity condition given by

(Dξ ,ξ )Rn ≥ β |ξ |2, ∀ξ ∈ Rn,

with β > 0.
It is well-known that for any initial datum y0 ∈ L2(0,π;Rn) (resp., z0 ∈ H−1(0,π;Rn)) and

any control u ∈ L2(QT ;Rm) (resp., v ∈ L2(0,T ;Rm)), system (1.1) (resp., system (1.2)) admits a
unique weak solution y (resp., a unique solution by transposition z) with the regularity

y ∈ L2(0,T ;H1
0 (0,π;Rn))∩C0([0,T ];L2(0,π;Rn))

(resp. z ∈ L2(QT ;Rn)∩C0([0,T ];H−1(0,π;Rn))).

For more details, see [31, p. 102] and [21, Prop. 2.2].
Let us recall the different concepts of controllability for (1.1) and (1.2) that we study in the

present paper:

• system (1.1) (resp., system (1.2)) is approximately controllable at time T if for any y0 and
yT in L2(0,π;Rn) (resp., z0 and zT in H−1(0,π;Rn)) and any ε > 0, there exists a control
u ∈ L2(QT ;Rm) (resp., v ∈ L2(0,T ;Rm)) such that the associated solution y (resp., z) to
system (1.1) (resp., system (1.2)) satisfies

‖y(T, ·)− yT‖L2(0,π;Rn) ≤ ε, (resp., ‖z(T, ·)− zT‖H−1(0,π;Rn) ≤ ε).

• system (1.1) (resp., system (1.2)) is null controllable at time T if for any y0 ∈ L2(0,π;Rn)
(resp., z0 ∈ H−1(0,π;Rn)), there exists a control u ∈ L2(QT ;Rm) (resp., v ∈ L2(0,T ;Rm))
such that the associated solution y (resp., z) to system (1.1) (resp., system (1.2)) satisfies

y(T, ·) = 0 in (0,π), (resp., z(T, ·) = 0 in (0,π)).

Concerning the case of systems of ordinary differential equations under the form{
yt +Ay = Bu in (0,T ),

y(0) = y0,
(1.3)

where y0 ∈ Rn, A ∈ L(Rn) and B ∈ L(Rm;Rn), it is well-known that the exact controllability
for (1.3) is equivalent to the so-called Kalman rank condition

rank [A : B] = n, (1.4)

where [A : B] ∈ L(Rnm;Rn) is the matrix given by

[A : B] := [B |AB | · · · |An−1B].

This result was proved in [28].
Concerning systems of partial differential equations, precisely PDEs of parabolic type, the

first results about null controllability of the heat equation ((1.1) and (1.2) with n = 1), have been
established in the one-dimensional case through the moment method by H.O. Fattorini and D.L.
Russell, see [20]. The distributed null controllability of the heat equation in the multi-dimensional
case, has been established later, simultaneously, by G. Lebeau and L. Robbiano in [29], using local
elliptic Carlerman estimates, and by A. Fursikov and O. Yu. Imanuvilov in [23], using global
parabolic Carleman estimates. Using an extension method, it is possible to prove that the internal
null controllability and the boundary null controllability are equivalent for the heat equation and,
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in general, for scalar parabolic problems (see, for instance, [8]). It is interesting to point out that,
in the context of scalar parabolic partial differential equations, the controllability properties are
valid for any distributed or boundary control domain and for any time T > 0, i.e., there is no
minimal time for controllability and no geometric restrictions on the internal or boundary control
domains, contrarily to the wave equation and transport equation.

To the authors’ knowledge, there are not many works devoted to the controllability of coupled
parabolic systems. Unlike the scalar case, in [21], it was proved that the equivalence between
the controllability of the systems of parabolic equations (1.1) and (1.2) does not hold (details will
be provided below) and their controllability issues should be analyzed separably. Almost all the
papers in the literature are devoted to the controllability of parabolic systems with distributed
controls, acting on a small open region ω of the domain Ω ⊂ RN ; see, for example, [26, 5, 6,
22, 32]. About another kind of systems, for instance, some boundary controllability results for
a system of wave equations and distributed controllability results for hyperbolic systems of first-
order have been obtained in [3, 30, 1] and [4, 14], respectively.

Let us describe the state of the art in the case of parabolic systems with diagonalizable and
non-diagonalizable diffusion matrices.

Diagonalizable diffusion matrices: In [6], the authors have proved, in the case of diago-
nalizable diffusion matrices D, that system (1.1) (constant coefficients and distributed controls) is
null (resp., approximate) controllable at time T if and only if

rank [µkD+A : B] = n for all k ∈ N?, (1.5)

where µk are the eigenvalues of −∂xx in (0,π) with homogeneous Dirichlet boundary conditions.
When the matrix D is equal to the identity, conditions (1.4) and (1.5) are equivalent. It is surprising
to obtain the same condition as in finite dimension. We refer to [5] for a study in the case of time
dependent coupling matrices.

The case of coupling matrices depending on (t,x) is more intricate but in some particular
parabolic systems it is possible to prove a null controllability result (cascade systems, see [26]).
Let us describe the existing results for system (1.1) when n = 2, m = 1, D = diag(d1,d2) (d1,d2 >
0) and

A = A(t,x) ∈ L∞(QT ;L(R2)) and B =

[
0
1

]
,

i.e., for the 2×2 system:
∂ty1−d1∂xxy1 +a11y1 +a12y2 = 0 in QT ,

∂ty2−d2∂xxy2 +a21y1 +a22y2 = 1ω u in QT ,

y1(·,0) = y2(·,0) = y1(·,π) = y2(·,π) = 0 in (0,T ),

y1(0, ·) = y0
1, y2(0, ·) = y0

2 in (0,π),

(1.6)

where ai j ∈ L∞(QT ) are given functions (1 ≤ i, j ≤ 2), y0 = (y0
1,y

0
2)

? ∈ L2(0,π;R2) is the initial
datum and u ∈ L2(QT ) is the distributed control. Under the generic assumption

a12 ≥ a0 > 0 or −a12 ≥ a0 > 0 in (0,T )×ω0, ∀i : 2≤ i≤ m. (1.7)

for an open set ω0 ⊂ ω , in [26] the authors prove a null controllability result at time T for sys-
tem (1.6) which is independent of d1, d2, a11, a21 and a22.

The situation strongly changes if Suppa12∩ω = /0 (see for instance [13], [10] and [11]) or the
coupling term a12y2 is changed by a first order coupling term (see [33, 18, 19]). In the first case,
system (1.6) could have a minimal controllability time T0 ∈ [0,+∞] such that if T < T0 the system
is not null controllable at time T and it is if T > T0 (see also [17]). Moreover, this minimal time
depends on the position of the open control set ω with respect to supp a12 (see [11]). In the second
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case, the null controllability result could depend on the coefficient a11 and also on the position of
ω (see [18] and [19]).

Concerning the boundary controllability of systems of parabolic equations when D is a posi-
tive multiple of the identity matrix, i.e., D = dIn, with d > 0, and m < n, the first results has been
obtained in [21] in the case n = 2 and m = 1. In this paper, the authors prove that system (1.2)
is approximately and null controllable at time T > 0 if and only if A and B satisfy the algebraic
Kalman condition (1.4) and

ν1−ν2 6= d(µ j−µk), ∀k, j ∈ N? with k 6= j,

where ν1,ν2 ∈ C2 are the eigenvalues of A and µk := k2 are the eigenvalues of the Dirichlet-
Laplace operator in (0,π). The above condition shows the different nature of the null control-
lability problem for systems (1.1) and (1.2). When D = dIn, with d > 0, the null controllability
of system (1.1) is equivalent to condition (1.5) (which, in fact, is equivalent to (1.4) when D is a
multiple of the identity matrix; see [6] or [5]).

The boundary null controllability of system (1.2) when D = dIn (d > 0) has been generalized
in [7] to the case n≥ 2 and m∈N?. The authors prove that system (1.2) is null (resp., approximate)
controllable at time T if and only if

rank [Lk : Bk] = nk for all k ∈ N?,

where

Bk :=

 B
...
B

 and Lk =


L1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Lk

 ,
with Lk := µkIn +A (see [7, Theorem 1.1]).

Remark 1.1. In particular, in [21] and [7], the following property is proved (D= dIn, with d > 0):
“Assume that condition (1.4) holds (or equivalently, assume system (1.1) is null controllable at
time T > 0). Then, there exists a closed subspace X0 ⊂ H−1(0,π;R2), with finite codimension,
which satisfies the following property: given y0 ∈H−1(0,π;R2), there exists a control v∈ L2(0,T )
such that the solution y of system (1.2) satisfies y(T, ·) = 0 in (0,π) if and only if y0 ∈ X0.”

Thus, we deduce that if system (1.1) is null controllable at time T > 0, then system (1.2) is
also null controllable at time T > 0, apart from a finite-dimensional space.

The case where D is a diagonal matrix different from a multiple of the identity or the case in
which the coupling matrices depend on the spatial variable are more delicate and new phenomena
in the parabolic setting arise. For instance, a minimal time for the null controllability can appear,
see [9], and [10].

Non-diagonalizable diffusion matrices: In the case of non-diagonalizable diffusion matri-
ces D, only partial results about controllability of systems (1.1) or (1.2) have been established. In
fact, in the distributed control setting, these results have been established in any spatial dimension
for uniform elliptic time-independent operators L. More precisely:

• In [22] and under the following condition

The dimensions of the Jordan blocks of the canonical form of D are ≤ 4, (1.8)

the authors prove that system (1.1) is null (resp., approximately) controllable at time T > 0
with distributed controls if and only if (1.5) holds. The technical condition (1.8) is a re-
striction due to the method used to provide the characterization (global Carleman estimates
for scalar parabolic operators; see [22, Remark 2.5 and Section 5]). In particular, under

4



condition (1.8), the authors prove a general result of approximate and null controllability at
time T > 0 for (1.1) and (1.2) if m≥ n and condition rankB = n holds. This general result is
also valid in the case of coupling matrices A = A(t,x) which depend on t and x or uniform
parabolic operators L = L(t) depending on t.

• In [32], the authors provide a complete answer for the problem of controllability of sys-
tem (1.1) in the constant case without imposing any extra assumption on the Jordan blocks
of D. In fact, they prove that system (1.1) is null (resp., approximately) controllable at time
T > 0 if and only if the constant matrices D, A and B satisfy the Kalman condition (1.5)
(see [32] for more details). The approach followed in [32] (the Lebeau-Robbiano strategy
together with a precise study of the cost of controllability for linear ordinary differential
equations) cannot be applied to system (1.2). However, as a consequence of their con-
trollability results, it is not difficult to deduce that system (1.2) is approximately and null
controllable at any time T when m≥ n and condition rankB = n holds.

• Finally, in [25] the authors study the boundary null controllability of a one-dimensional
phase field system of Caginalp type which is a model describing the transition between
the solid and liquid phases in solidification/melting processes of a material occupying the
interval (0,π). To this end, the authors prove the boundary null controllability of a linear
2×2 parabolic system with a non-diagonalizable diffusion matrix and a scalar control.

The general goal of this paper is to study the controllability properties of coupled parabolic
systems with non-diagonalizable diffusion matrices. To this end, we shall consider two examples
of parabolic systems whose controllability properties cannot be obtained as a consequence of the
controllability results proved in [22] and [32].

First, we will consider system (1.2) when the matrices D, A ∈ L(Rn) and B ∈ Rn (n ≥ 2) are
given by the expressions

D =


d 1 0 · · · 0
0 d 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · d 1
0 0 · · · 0 d

 , A =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
α 0 · · · 0

 and B =


0
...
0
1

 , (1.9)

for constants d ≥ 1 and α ∈ R. Observe that since (1.2) is a boundary controllability problem,
its controllability properties cannot be deduced from [32]. On the other hand, when n ≥ 5, since
D does not satisfy condition (1.8) we cannot apply the results in [22], not even if m ≥ n and
rankB = n.

Remark 1.2. It is not difficult to see that, when d ≥ 1, the matrix D is positive definite. We can
conclude that systems (1.1) and (1.2) are well-posed when, resp., (y0,u) ∈ L2(0,π;Rn)×L2(QT )
and (z0,v) ∈ H−1(0,π;Rn)×L2(0,T ).

Secondly, we will consider problem (1.1) in the case in which A is a matrix depending on x.
To be precise, consider the following system

∂ty1−∂xxy1 +q(x)y1 = ∂xxy2 in QT ,

∂ty2−∂xxy2 = 1ω u in QT ,

y1(·,0) = y2(·,0) = y1(·,π) = y2(·,π) = 0 in (0,T ),

y1(0, ·) = y0
1, y2(0, ·) = y0

2 in (0,π),

(1.10)

where q ∈ C∞([0,π]) is a given function, y0 = (y0
1,y

0
2)

? ∈ L2(0,π;R2) is the initial datum and
u ∈ L2(QT ) is a scalar control. Observe that system (1.10) has the same structure as system (1.1)
with a coupling matrix A depending on x. To be precise, n = 2, m = 1, D given in (1.9), with
d = 1, and A = q(x)A0 with

A0 =

[
1 0
0 0

]
and B =

[
0
1

]
. (1.11)
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Again, D is a definite positive matrix and, therefore, for any y0
1,y

0
2 ∈ L2(0,π) and u ∈ L2(QT ),

system (1.10) has a unique solution y ∈ L2(0,T ;H1
0 (0,π;R2))∩ C0([0,T ];L2(0,π;R2)) which

depends continuously on the data.

Remark 1.3. When n = 2 and q is a constant function, i.e., q(x) = q0 for any x∈ (0,π), with q0 ∈
R, conditions (1.5) and (1.8) hold with A = q0A0. In fact, the controllability matrix [µkD+A : B]
does not depend on q0. Thus, we can apply the results in [22] and [32] and deduce that sys-
tem (1.10) is approximately and null controllable at any time T > 0. Nevertheless, these results
in [22] and [32] cannot be applied when A depends on x. To our knowledge, the controllability
properties of system (1.1) with coupling matrices depending on x are completely open.

Let us now present our first main result concerning system (1.2):

Theorem 1.1. Let us consider the matrices D,A ∈ L(Rn) and B ∈ Rn given by (1.9), with d ≥ 1
and α ∈ R. When α > 0 we assume, in addition, that n is odd. Then,

1. If α 6= 0, system (1.2) is null (resp., approximately) controllable at time T if and only if the
family of eigenvalues of the operator L? := −D?∂xx +A? has geometric multiplicity equal
to 1 and √

|α|
dn/2 6∈ N?, (1.12)

if n is odd and α < 0.

2. When α = 0, system (1.2) is approximately and null controllable at time T > 0.

Remark 1.4. Let us point out some consequences of Theorem 1.1:

• Unlike system (1.2), system (1.1) is approximately and null controllable at time T > 0 (even
in the N-dimensional case) when D, A and B are given by (1.9). Indeed, it is easy to see that
[µkD+A : B] is a squared matrix and

|det [µkD+A : B]|= µkµ
2
k . . .µ

n−1
k 6= 0, ∀k ≥ 1,

(µk = k2, k ≥ 1, are the eigenvalues of the Dirichlet-Laplace operator in (0,π)). Thus,
condition (1.5) holds and system (1.1) is approximately and null controllable at time T .
Again, this shows the important differences between the null controllability properties of
systems (1.1) and (1.2).

• We will see that, under the assumptions of Theorem 1.1, the spectrum of the operator L? :=
−D?∂xx +A? is simple, apart from a finite number of eigenvalues (see Proposition 2.2).
Therefore, Theorem 1.1 implies that system (1.2) is always null controllable at any time
T > 0 apart from a finite dimensional space of H−1(0,π;Cn) (in particular, this is the case
when n is odd).

• Condition (1.12) is related to the Fattorini-Hautus test for the operator L? and is necessary
in order to obtain the approximate controllability of system (1.2) when n is odd and the co-
efficient α of the matrix A (see (1.9)) is negative. Therefore, this condition is also necessary
for the null controllability of (1.2). No additional condition on α and d is needed when n is
odd and α > 0.

• We will also see that, under assumptions of Theorem 1.1, we can obtain a positive result on
null controllability at any time T > 0 for system

yt −Dyxx +Ay = Bδx0u in QT ,

y(·,0) = y(·,π) = 0 in (0,T ),

y(0, ·) = y0 in (0,π),
(1.13)

where u ∈ L2(0,T ), choosing very carefully the point x0 ∈ (0,π) where the control acts (δx0
is the Dirac distribution at point x0). See Theorems 3.2 and 3.3.
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• Observe that Theorem 1.1 does not provide any controllability result for system (1.2) when
n = 2p, p ∈ N?, and α > 0. In this case, the operator L? := −D?∂xx f +A? has, for any
k ≥ 1, exactly two real eigenvalues, given by

λ0,k = dk2 +α
1/nk2−1/p and λp,k = dk2−α

1/nk2−1/p,

and n− 2 complex eigenvalues (see Proposition 2.1). In this case, the real eigenvalues of
L? could concentrate. As a consequence, the controllability problem for system (1.2) could
have a minimal time T0 ∈ [0,+∞] of null controllability which is related to the condensation
index of the sequence

{
λ0,k,λp,k

}
k≥1 (see [9] and Remark 2.3). In any case, condition (1.12)

is also a necessary condition for the null controllability at time T for system (1.2) when
α > 0 and n is even (see (3.33)). The case n = 2 is simpler and will be completely analyzed
in Theorem 1.2.

• The main advantage of the moment method, used in the present paper, is that it seems to
be the best method to treat boundary null controllability problems with a reduced number
of controls. Indeed, Theorem 1.1 is the first result dealing with the boundary controllability
of non-diagonalizable systems of parabolic equations when n ≥ 3 (see also [25] where a
similar problem is considered when n = 2). �

Theorem 1.1 provides sufficient conditions on n and on the matrices D,A ∈ L(Rn), given
by (1.9), which guarantee the approximate and null controllability of system (1.2) at time T > 0.
As we already mentioned in the previous remark, this theorem does not cover the case n= 2p, with
p ∈N?, and α > 0. In order to complete the study of the controllability problem for system (1.2),
let us see the case n = 2 and α > 0. One has:

Theorem 1.2. Assume that n = 2 and let us consider the matrices D,A∈L(R2) and B∈R2 given
by (1.9), with d ≥ 1 and α > 0. Then, system (1.2) is null (resp., approximately) controllable in
H−1(0,π;R2) at time T > 0 if and only if

√
α

d
6∈ N?.

Moreover, if
√

α/d ∈ N?, there exists a closed subspace X ⊂ H−1(0,π;R2), with infinite codi-
mension, which satisfies the following property: given y0 ∈ H−1(0,π;R2), there exists a control
v ∈ L2(0,T ) such that the solution y of system (1.2) satisfies y(T, ·) = 0 in (0,π) if and only if
y0 ∈ X.

Remark 1.5. Even in the simplest case n = 2, Theorem 1.2 shows an important difference with
respect to the results on boundary controllability proved in [21] and [7]: When D = dIn, if sys-
tem (1.1) is null controllable at a time T0 > 0, then system (1.2) is also null controllable at any
time T > 0, apart from a finite-dimensional space (see Remark 1.1). This property fails when D
is not diagonalizable (even if D is equal to a unique Jordan block).

In order to obtain Theorems 1.1 and 1.2 we have used that the zero order coupling matrix
A in system (1.2) is constant. Something similar occurs in [22] and [32]: the authors use in a
fundamental way that the zero order coupling matrix A is constant. Let us now see that, if A
depends on x, the controllability properties of system (1.1) can be strongly affected.

Our third and last result is related to the controllability properties of system (1.10). It reads as
follows:

Theorem 1.3. There exists a coefficient q ∈ C∞([0,π]) such that:

a) There exists an open interval ω ⊂⊂ (0,π) such that system (1.10) is never approximately
controllable (then not null controllable) for any time T > 0.

b) There exists an open interval ω ⊂⊂ (0,π) such that system (1.10) is null controllable (then
approximately controllable) at any time T > 0;
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Remark 1.6. We can see system (1.10) as a cascade system (see system (1.6)) where the coupling
term a12y2 has been changed by the second order term a12∂xxy2 and the coefficients are given by

d1 = d2 = 1, a11 = q, a12 =−1, and a21 = a22 = 0.

Observe that this choice of coefficients implies condition (1.7) and the null controllability of sys-
tem (1.6) at any time T > 0 and for any control open set ω ⊂ (0,π). Comparing the controllability
result for system (1.6) and system (1.10), Theorem 1.3 shows that the controllability results for
coupled parabolic systems with non-diagonalizable diffusion matrices may be very different and
the location of the control domain plays a key role. A similar result to Theorem 1.3 has been
proved in [19] when the coupling term in system (1.10) is given by ∂xy2.

Remark 1.7. The proof of the Theorem 1.3 relies on the construction of a non constant coefficient
q in C∞([0,π]) which is constant in the interval (5π/12,7π/12). With this coefficient, we prove
that system (1.10) is not approximately controllable at any time T > 0 when ω = (5π/12,7π/12)
and it is null controllable when we take ω ⊂ suppqx (i.e. q is not constant in ω). As stated in
Remark 1.3, system (1.10) is null controllable at any time T > 0 when q is a constant function.

Remark 1.8. System (1.10) is null controllable at time T > 0 for any open interval ω ⊂ (0,π)
and q ∈ L∞(0,π) if two independent distributed controls are exerted, one on the right-hand side of
the first equation and one on the right-hand side of the second equation, see [22].

The rest of the paper is organized as follows. In Section 2, we study the spectrum and eigen-
vectors associated to systems (1.1) and (1.2) and provide some properties needed to formulate
the moment problem. In Section 3 we provide the proofs of Theorems 1.1 and 1.2. Finally, in
Section 4 we prove Theorem 1.3.

2 Preliminaries

2.1 Spectral analysis
In the sequel, let us consider the following linear operator:

L : D(L)⊂ L2(0,π;Cn) −→ L2(0,π;Cn)

f 7→ L f :=−D∂xx f +A f

and its adjoint

L? : D(L?)⊂ L2(0,π;Cn) −→ L2(0,π;Cn)

f 7→ L? f :=−D?∂xx f +A? f ,

where D(L) = D(L?) := H2(0,π;Cn)∩H1
0 (0,π;Cn) and D,A ∈ L(Rn) are given by (1.9), with

n≥ 2, d ≥ 1 and α ∈ R.
It is well known that the operator −∂xx : H2(0,π;C)∩H1

0 (0,π;C) −→ L2(0,π;C) admits a
sequence of positive eigenvalues and a sequence of normalized eigenfunctions {wk}k≥1, which is
a Hilbert basis of L2(0,π), given by

µk := k2 and wk(x) :=

√
2
π

sin(kx), x ∈ (0,π), k ≥ 1.

Concerning the operator L?, we have the following description of its spectrum:

Proposition 2.1. Let us consider the matrices D,A ∈L(Rn) given by (1.9), with n≥ 2, d ≥ 1 and
α ∈ R. Then, the following assertions hold:

8



a) If α 6= 0 then the spectrum of L? is given by σ(L?) =
{

λ j,k := dk2 +α1/nk2− 2
n e

2π j
n i : k ∈ N?, j ∈ {0, ...,n−1}

}
, if α > 0,

σ(L?) =
{

λ j,k := dk2 + |α|1/nk2− 2
n e

(2 j+1)π
n i : k ∈ N?, j ∈ {0, ...,n−1}

}
, if α < 0.

Moreover, for all k ∈ N? and j ∈ {0, . . . ,n− 1}, an eigenvector of L?, associated to the
eigenvalue λ j,k, is given by

Φ j,k(x) :=Vj,kwk(x),

where

Vj,k :=

(
cl

j,k

)
1≤l≤n∣∣∣∣(cl

j,k

)
1≤l≤n

∣∣∣∣ with cl
j,k =


[
α−

1
n k

2
n e
−2π j

n i
]l−1

if α > 0,[
|α|− 1

n k
2
n e−

(2 j+1)π
n i

]l−1
if α < 0.

(2.14)

b) If α = 0 then the spectrum of L? is given by

σ(L?) =
{

λk := dk2 : k ∈ N?
}
.

Moreover, for all k ∈ N?, Φ0,k(x) := enwk is an eigenvector of L? associated to the eigen-
value λk and Φ1,k(x) := en−1wk, . . . , Φn−1,k(x) := e1wk are generalized eigenvectors of L?

associated to λk.

Proof. Case α 6= 0: The goal is to solve the following eigenvalue problem:

L?
Ψ = λΨ, λ ∈ C, Ψ ∈ H2(0,π;Cn)∩H1

0 (0,π;Cn).

Considering Ψ = (ψ1, . . . ,ψn), the previous eigenvalue problem is equivalent to
−d∂xxψ1 +αψn = λψ1

−∂xxψ1−d∂xxψ2 = λψ2

...

−∂xxψn−1−d∂xxψn = λψn.

It can be rewritten as an algebraic eigenvalue problem
dk2c1

k +αcn
k = λc1

k

k2c1
k +dk2c2

k = λc2
k

...

k2cn−1
k +dk2cn

k = λcn
k ,

for all k ≥ 1. From the previous expression, we obtain{
(λ −dk2)c1

k = αcn
k ,(

λ −dk2
)

cl
k = k2cl−1

k , ∀l = 2, . . . ,n.

After some computations, we also get

cl
k = k2(l−1) (

λ −dk2)−(l−1)
c1

k , ∀l = 1,2, . . . ,n. (2.15)

Due to the identity for l = n, we necessarily have to impose the following condition

αk2(n−1) = (λ −dk2)n,
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determining all the eigenvalues for the eigenvalue problem at the beginning of the proof. Taking
into account that α 6= 0, we deduce that the previous equation has n distinct solutions λ j,k, j =
0, . . . ,n−1, which are given explicitly in item a).

Finally, for all k≥ 1 and j = 0, . . . ,n−1, from (2.15) and the expression of λ j,k, it is not diffi-
cult to see that Φ j,k, with cl

j,k given in (2.14), is an eigenvector of L? associated to the eigenvalue
λ j,k.

Case α = 0: The eigenvalue problem can be rewritten as the algebraic eigenvalue problem
dk2c1

k = λc1
k

k2c1
k +dk2c2

k = λc2
k

...

k2cn−1
k +dk2cn

k = λcn
k .

We deduce that the previous problem has a unique eigenvalue λk := dk2 with algebraic multiplicity
equal to n. An associated eigenvector is the vector en. Moreover the associated generalized
eigenvectors are e1, . . . ,en−1. This ends the proof.

Let us consider the set

B? :=
{

Φ j,k : k ∈ N?, j ∈ {0, ...,n−1}
}
, (2.16)

where the functions Φ j,k are given in Proposition 2.1. Then, we obtain the following result:

Lemma 2.1. Under the assumptions of Proposition 2.1, the set B? is a Schauder basis of the
spaces L2(0,π;Cn) and H1

0 (0,π;Cn), normalized in L2(0,π;Cn).

Proof. Let us prove the result in the case α > 0. The case α < 0 can be deduced with a similar
reasoning and the case α = 0 is trivial. Consider the Schauder basis Bc of L2(0,π;Cn) given by

Bc := {eiwk : k ∈ N?, i ∈ {1, ...,n}} .

Let h ∈ L2(0,π;Cn) (or h ∈ H1
0 (0,π;Cn)). There exists a unique real sequence {αi,k}k∈N?,1≤i≤n

such that

h =
+∞

∑
k=1

n

∑
i=1

αi,keiwk in L2(0,π;Cn) (resp., in H1
0 (0,π;Cn)).

We remark that the matrix Vk := (Ṽ0,k| · · · |Ṽn−1,k) is a Vandermonde matrix (and so, it is invert-

ible), where Ṽj,k =
(

cl
j,k

)
1≤l≤n

for any k ∈ N? and j ∈ {0, . . . ,n−1}, see (2.14). Therefore, for

each k ∈ N?, there exist unique γ0,k, . . . ,γn−1,k ∈ C? such that

n

∑
i=1

αi,kei =
n−1

∑
j=0

γ j,kVj,k.

Finally, arguing by contradiction, we can obtain the sequence {γp,k}k∈N?,0≤p≤n−1 is unique.

Remark 2.1. In the sequel, we will use the notation

Λ0 :=
{

λ j,k : k ∈ N?, j ∈ {0, ...,n−1}
}
,

where λ j,k is given in Proposition 2.1.
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2.2 Biorthogonal family
Given a complex sequence Λ = {Λk}k≥1 ⊂ C, let us denote by pk the complex function given by

pk(t) := e−Λkt , ∀t ∈ (0,T ). (2.17)

We will see in Section 3 that the existence of a biorthogonal family in L2(0,T ;C) to the sequence
{pk}k≥1 will play a key role in the study of the controllability of systems (1.2) and (1.13). Recall
that the sequence {qk}k≥1 is a biorthogonal family to the sequence {pk}k≥1 in L2(0,T ;C) if∫ T

0
e−Λktq?j(t)dt = δk j, ∀k, j ≥ 1.

One has:

Theorem 2.1. Let T > 0 and consider a sequence Λ = {Λk}k≥1 ⊂ C satisfying
Λi 6= Λk, ∀i,k ∈ N? with i 6= k,

∑
k≥1

1
|Λk|

<+∞ and ℜ(Λk)≥ δ |Λk|> 0, ∀k ≥ 1, (2.18)

for some positive constant δ . Then, there exists a biorthogonal family {qk}k≥1 in L2(0,T ;C) to
the family {pk}k≥1, given in (2.17). Moreover, for any ε > 0, there exists a constant Cε > 0 such
that

‖qk‖L2(0,T ;C) ≤Cε e(c(Λ)+ε)ℜ(Λk), (2.19)

where c(Λ) ∈ [0,+∞] is the condensation index of the sequence Λ.

This result corresponds to [9, Proposition 4.1 and Remark 4.3]. See [9, Definition 3.1], for
the definition of the condensation index.

In some situations, this index of condensation of the sequence Λ = {Λk}k≥1 ⊂C can be equal
to zero. Let us consider two different situations:

Lemma 2.2. Let us consider a sequence Λ = {Λk}k≥1 ⊂ C satisfying (2.18). Let us assume
that there exist a positive constant ρ > 0 and a positive integer k1 such that one of the following
conditions hold

|Λk−Λl | ≥ ρ|Λk|1/2, ∀k ≥ k1 and l 6= k. (2.20)

|Λk−Λl | ≥ ρ|k− l|, ∀k, l ∈ N?. (2.21)

Then,
c(Λ) = 0.

For a proof of the previous lemma, we refer to [34, Theorem 6].
In Section 3 we will also use a result on the existence of biorthogonal families to some com-

plex matrix exponentials. In order to state the result, let us fix η ≥ 1, a positive integer, and let us
introduce the notation:

p( j)
k (t) := t je−Λkt , ∀t > 0, (k ≥ 1 and j : 0≤ j ≤ η−1),

where Λ = {Λk}k≥1 ⊂ C is a sequence of complex numbers.

Let us recall that the family {q( j)
k }k≥1,0≤ j≤η−1 ⊂ L2(0,T ;C) is biorthogonal to the sequence

{p( j)
k }k≥1,0≤ j≤η−1 if the equalities∫ T

0
t je−Λktq(l)?m (t)dt = δkmδ jl , ∀( j,k),(l,m) : k,m≥ 1, 0≤ j, l ≤ η−1, (2.22)

hold.
With the previous notation, one has:
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Theorem 2.2. Let us fix η ≥ 1, a positive integer, and T > 0. Assume that {Λk}k≥1 is a sequence
of complex numbers satisfying (2.18) and (2.21) for two positive constants δ and ρ . Then, there
exists a family

{
q( j)

k

}
k≥1,0≤ j≤η−1

⊂ L2(0,T ;C) biorthogonal to
{

p( j)
k

}
k≥1,0≤ j≤η−1

such that,

for every ε > 0, there exists Cε > 0 for which

‖q( j)
k ‖L2(0,T ;C) ≤Cε eεℜ(Λk), ∀( j,k) : k ≥ 1, 0≤ j ≤ η−1. (2.23)

For a proof of this result, see [7, Theorem 1.2].

2.3 Condensation index of the sequence Λ0

Our next objective is to check conditions (2.18) and (2.20) for the sequence

Λ0 = {λ j,k}0≤ j≤n−1,k≥1

in the case α 6= 0. One has:

Proposition 2.2. Let us consider the matrices D,A ∈L(Rn) given by (1.9), with n≥ 2, d ≥ 1 and
α ∈ R, α 6= 0. In addition, assume that n := 2p+ 1 (p ∈ N?) when α > 0. Then, there exist a
positive integer k1 and a constant ρ > 0, only depending on n, α and d, such that∣∣λ j,k−λ j′,k′

∣∣≥ ρ
∣∣λ j,k

∣∣1/2
, ∀k ≥ k1, ∀k′ ≥ 1, ∀ j, j′ ∈ {0, ...,n−1} : ( j,k) 6= ( j′,k′). (2.24)

The expression of λ j,k (k ≥ 1, j : 0≤ j ≤ n−1) is given in item a) of Proposition 2.1.

Proof. Let us prove that condition (2.24) holds when α 6= 0. Fix ( j,k) ∈ {0, ...,n−1}×N? and
notice that ∣∣λ j,k

∣∣1/2 ≤ k
(

d + |α|
1
n k−

2
n

)1/2
≤C1k,

for all k ≥ 1 and for some positive constant C1 independent of j and k.
The goal is to prove that there exist a positive integer k1 and a constant C2 > 0, only depending

on n, α and d, such that∣∣λ j,k−λ j′,k′
∣∣≥C2k, ∀k ≥ k1, ∀k′ ≥ 1, ∀ j, j′ ∈ {0, ...,n−1} : ( j,k) 6= ( j′,k′). (2.25)

Observe that condition (2.24) is a direct consequence of two previous inequality (2.25).

Case A: α > 0. In this case, we assume that n = 2p+1, with p≥ 1.

Thanks to the fact that the function dr2 +α
1
n cos( 2π j

n )r2− 2
n is increasing for r large enough,

we deduce there exists k0 ∈N such that for any k≥ k0, k′ ∈N? (with k′ 6= k) and j ∈ {0, . . . ,n−1},
we have (see item a) of Proposition 2.1)∣∣λ j,k−λ j,k′

∣∣≥min
{∣∣ℜ(λ j,k)−ℜ(λ j,k−1)

∣∣ , ∣∣ℜ(λ j,k)−ℜ(λ j,k+1)
∣∣} ,

≥C3k,

where C3 > 0 is independent of j, k and k′. On the other hand, using that n is odd, we can also
prove that if k 6= k′ we have λ j,k 6= λ j,k′ . This proves conditions (2.25) and (2.24) for k1 = 1.

Consider now k ≥ 1 and j, j′ ∈ {0, ...,n− 1} such that j′ 6= j. The goal is to prove inequal-
ity (2.25) for any k≥ k1, k′≥ 1 and for any j, j′ ∈{0, ...,n−1}with j 6= j′. Again, condition (2.24)
will be a direct consequence of inequality (2.25).

Let us introduce the notation

c j := cos(2π j/n) and s j := sin(2π j/n) , ∀ j ∈ {0, ...,n−1}.
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Observe that thanks to the assumption n = 2p+1, with p ∈ N?, we can conclude that s j 6= 0 for
any j : 1≤ j ≤ n−1. On the other hand, with the previous notation, one has (recall that α > 0)

ℜ
(
λ j,k
)
= dk2 +α

1
n c jk2− 2

n and ℑ
(
λ j,k
)
= α

1
n s jk2− 2

n , ∀k ≥ 1, ∀ j ∈ {0, ...,n−1}.

In order to show (2.25), we distinguish three cases:
Case A.1: j = 0.

i. If k′ > k/2 and j′ 6= 0, we obtain∣∣λ0,k−λ j′,k′
∣∣≥ ∣∣ℑ(λ0,k−λ j′,k′

)∣∣= α
1
n
∣∣s j′
∣∣(k′)2− 2

n ≥ α
1
n
∣∣s j′
∣∣k′ ≥ 1

2
α

1
n
∣∣s j′
∣∣k;

ii. If k′ ≤ k/2 then we deduce∣∣λ0,k−λ j′,k′
∣∣≥ ∣∣∣d(k2− (k′)2)+α

1
n k2− 2

n −α
1
n c j′(k

′)2− 2
n

∣∣∣≥ d(k2− (k′)2)≥ 3
4

dk.

In both cases, (2.25) holds for k1 = 1.

Case A.2: j 6= 0 and j′ 6= j with sign(s j) 6= sign(s j′). Then, we have∣∣λ j,k−λ j′,k′
∣∣≥ ∣∣ℑ(λ j,k−λ j′,k′

)∣∣≥ α
1
n
∣∣s j
∣∣k2− 2

n ≥ α
1
n
∣∣s j
∣∣k;

In particular, we deduce (2.25) for k1 = 1.
Case A.3: j 6= 0 and j′ 6= j with sign(s j) = sign(s j′). First, notice that j′ 6= j and the fact that n is
odd implies s j 6= 0, s j′ 6= 0 and |s j| 6= |s j′ |. Now, we define

β :=



( ∣∣s j
∣∣∣∣s j′
∣∣
)1/2

if

∣∣s j
∣∣∣∣s j′
∣∣ > 1,(∣∣s j′

∣∣∣∣s j
∣∣
)1/2

if

∣∣s j
∣∣∣∣s j′
∣∣ < 1

and the numbers:

β1 :=

(
1
β

∣∣s j
∣∣∣∣s j′
∣∣
) n

2(n−1)

and β2 :=

(
β

∣∣s j
∣∣∣∣s j′
∣∣
) n

2(n−1)

.

In any case, one has β > 1 and β1 < β2.
Then, we consider three different cases:

i. If k′ ≤ β1k, with k ≥ 1, we use the imaginary part of λ j,k−λ j′,k′ to deduce

∣∣λ j,k−λ j′,k′
∣∣≥ α

1
n

(
k2− 2

n |s j|− (k′)2− 2
n |s j′ |

)
≥ α

1
n k2− 2

n

(
|s j|−β

2(n−1)
n

1 |s j′ |
)

= α
1
n k2− 2

n

(
1− 1

β

)∣∣s j
∣∣≥ α

1
n

(
1− 1

β

)∣∣s j
∣∣k.

ii. Let us now assume that k′ ≥ β2k. Then a similar reasoning as before provides∣∣λ j,k−λ j′,k′
∣∣≥ α

1
n (β −1)

∣∣s j
∣∣k2− 2

n ≥ α
1
n (β −1)

∣∣s j
∣∣k.

In particular we have (2.25) for k1 = 1.
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iii. If now k′ = γk with γ ∈ (β1,β2), then we deduce∣∣λ j,k−λ j′,k′
∣∣≥ ∣∣∣d k2 +α

1
n c jk2− 2

n −d γ2k2−α
1
n c j′γ

2− 2
n k2− 2

n

∣∣∣
= k2− 2

n

∣∣∣d(1− γ2)k2/n +α
1
n (c j− c j′γ

2− 2
n )
∣∣∣ .

Since 
γ

2−2/n ∈

( ∣∣s j
∣∣1/2∣∣s j′
∣∣1/2 ,

∣∣s j
∣∣3/2∣∣s j′
∣∣3/2

)
if

∣∣s j
∣∣∣∣s j′
∣∣ > 1,

γ
2−2/n ∈

( ∣∣s j
∣∣3/2∣∣s j′
∣∣3/2 ,

∣∣s j
∣∣1/2∣∣s j′
∣∣1/2

)
if

∣∣s j
∣∣∣∣s j′
∣∣ < 1,

we easily deduce that
∣∣γ2−1

∣∣ ≥C > 0 and then there exists a new positive integer k1 ∈ N? such
that for any k ≥ k1 we have∣∣∣d(1− γ

2)k2/n +α
1
n (c j− c j′γ

2− 2
n )
∣∣∣≥C > 0.

Therefore, for k ≥ k1, we obtain ∣∣λ j,k−λ j′,k′
∣∣≥Ck2− 2

n ≥Ck.

In conclusion, we have proved inequality (2.25) when n is odd and α > 0.

Case B: α < 0.

In this case, the eigenvalues of the operator L? =−D?∂xx +A? are given by

λ j,k = d k2 + |α|1/nk2− 2
n e

(2 j+1)π
n i, k ≥ 1, j ∈ {0, ...,n−1}.

Observe that, in this case, λp,k ∈ R when n = 2p+ 1 (p ≥ 1, an integer) and λ j,k ∈ C \R,
otherwise. Again, our goal is to prove inequality (2.25) for a positive integer k1 and a positive
constant C2 only depending on n, d and α .

Let us introduce the notation

c̃ j := cos
(
(2 j+1)π

n

)
and s̃ j := sin

(
(2 j+1)π

n

)
, ∀ j ∈ {0, ...,n−1}.

With this notation, one has (recall that α < 0)

ℜ
(
λ j,k
)
= dk2 + |α|

1
n c̃ jk2− 2

n and ℑ
(
λ j,k
)
= |α|

1
n s̃ jk2− 2

n , ∀k ≥ 1, ∀ j ∈ {0, ...,n−1}.

Using the fact that the function dr2 + |α| 1n c̃ jr2− 2
n is increasing for r large enough, we deduce

the existence of k̃0 ∈ N such that for any k ≥ k̃0, k′ ∈ N? (with k′ 6= k) and j ∈ {0, . . . ,n−1}, we
have ∣∣λ j,k−λ j,k′

∣∣≥min
{∣∣ℜ(λ j,k)−ℜ(λ j,k−1)

∣∣ , ∣∣ℜ(λ j,k)−ℜ(λ j,k+1)
∣∣} ,

≥ C̃3k,

where C̃3 > 0 is independent of j, k and k′.
As in the case α > 0, let us consider k ≥ 1 and j, j′ ∈ {0, ...,n−1} such that j′ 6= j and let us

prove inequality (2.25). We distinguish four cases:

Case B.1: λ j,k ∈ R, i.e., n = 2p+1 (p ∈ N?) and j = p. In this case, λp,k = dk2−|α| 1n k2− 2
n . So,
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i. If k′ > k/2 and j′ 6= p, we obtain∣∣λp,k−λ j′,k′
∣∣≥ ∣∣ℑ(λp,k−λ j′,k′

)∣∣= |α| 1n ∣∣s̃ j′
∣∣(k′)2− 2

n ≥ |α|
1
n
∣∣s̃ j′
∣∣k′ ≥ 1

2
|α|

1
n
∣∣s̃ j′
∣∣k;

ii. If k′ ≤ k/2, we deduce∣∣λp,k−λ j′,k′
∣∣≥ d[k2− (k′)2]−|α|

1
n k2− 2

n −|α|
1
n
∣∣c̃ j′
∣∣(k′)2− 2

n ≥ k2
(

3
4

d−2|α|
1
n k−

2
n

)
.

From this expression, we deduce (2.25) for k1 ≥ 1 and C2 > 0 only depending on n, d and α .

Case B.2: λ j,k ∈ C\R and λ j′,k′ is such that sign(s̃ j) 6= sign(s̃ j′). In this case, s̃ j 6= 0 and we can
write ∣∣λ j,k−λ j′,k′

∣∣≥ ∣∣ℑ(λ j,k−λ j′,k′
)∣∣≥ |α| 1n ∣∣s̃ j

∣∣k2− 2
n ≥ |α|

1
n
∣∣s̃ j
∣∣k;

In particular, we deduce (2.25) for k1 = 1.
Case B.3: λ j,k ∈ C \R and λ j′,k′ is such that s̃ j = s̃ j′ , with j 6= j′. In this case, notice that
c̃ j =−c̃ j′ 6= 0, s̃ j 6= 0 and n should be an even number greater or equal than 4. On the other hand,
we also have:

(x+M)2− 2
n − x2− 2

n ≥
(

2− 2
n

)
Mx1− 2

n , ∀x,M > 0, (n≥ 2). (2.26)

Let us fix η , the positive root of the equation dx2 +2dx−|α| 1n
∣∣c̃ j
∣∣/2 = 0, i.e.

η =
−2d +

√
4d2 +2d|α| 1n

∣∣c̃ j
∣∣

2d
.

We divide the proof into three cases:

i. If k′ ≥ k+ηk2/n, we obtain
∣∣λ j,k−λ j′,k′

∣∣≥ ∣∣ℑ(λ j,k−λ j′,k′
)∣∣= |α| 1n ∣∣s̃ j

∣∣[(k′)2− 2
n − k2− 2

n

]
≥ |α|

1
n
∣∣s̃ j
∣∣[(k+ηk2/n

)2− 2
n − k2− 2

n

]
≥ |α|

1
n
∣∣s̃ j
∣∣η(2− 2

n

)
k.

In the previous inequalities we have used (2.26) with x = k and M = ηk2/n. This proves
inequality (2.25) for k1 = 1.

ii. Let us take k′ ∈ (k−ηk2/n,k+ηk2/n). Let us take k0 large enough such that k−ηk2/n > 0
for all k ≥ k0. If k ≥ k0 and using that n≥ 4 and

1+
2
n
≤ 2− 2

n
,

4
n
≤ 2− 2

n
,

we deduce

∣∣λ j,k−λ j′,k′
∣∣≥ ∣∣ℜ(λ j,k−λ j′,k′

)∣∣
≥ |α|

1
n
∣∣c̃ j
∣∣[k2− 2

n +(k′)2− 2
n

]
−d
∣∣k2− (k′)2∣∣

≥ |α|
1
n
∣∣c̃ j
∣∣k2− 2

n −d max
{

k2−
(

k−ηk2/n
)2

,
(

k+ηk2/n
)2
− k2

}
≥ |α|

1
n
∣∣c̃ j
∣∣k2− 2

n −2dηk1+ 2
n −dη

2k
4
n

≥
[
|α|

1
n
∣∣c̃ j
∣∣−2dη−dη

2
]

k2− 2
n =

1
2
|α|

1
n
∣∣c̃ j
∣∣k2− 2

n .

In the last equality, we have used the expression of η . Then, we obtain inequality (2.25) for
k1 = k0 ≥ 1.
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iii. Finally, let us consider k,k′ such that 1 ≤ k′ ≤ k−ηk2/n. In this case we can repeat the
previous arguments. Indeed, if we choose k ≥ k1 ≥ k0 large enough, one has:

∣∣λ j,k−λ j′,k′
∣∣≥ ∣∣ℑ(λ j,k−λ j′,k′

)∣∣= |α| 1n ∣∣s̃ j
∣∣[k2− 2

n − (k′)2− 2
n

]
≥ |α|

1
n
∣∣s̃ j
∣∣[k2− 2

n −
(

k−ηk2/n
)2− 2

n
]

≥ |α|
1
n
∣∣s̃ j
∣∣η(2− 2

n

)
k

2
n

(
k−ηk2/n

)1− 2
n ≥ C̃k,

where C̃ is a new positive constant only depending on n, α and d. In the previous inequalities
we have used that n≥ 4 and inequality (2.26) with x= k−ηk2/n and M =ηk2/n. This proves
inequality (2.25) for k1 ≥ k0 ≥ 1.

Case B.4: λ j,k ∈C\R and λ j′,k′ is such that s̃ j 6= s̃ j′ and sign(s̃ j) = sign(s̃ j′). Observe that in this
case, s̃ j s̃ j′ are non null and we can repeat the same proof as Case A.3. This ends the proof.

Remark 2.2. Under the conditions of Proposition 2.2 we infer that

µ(λ j,k) = 1,1 ∀k ≥ k1, ∀ j : 0≤ j ≤ n−1

and it is easy to see that there exists k̃0 ∈ N? such that ℜ
(
λ j,k
)
> 0, for any k ≥ k̃0 and any

j ∈ {0,1, . . . ,n−1}. Thus, if we define the set

J :=
{
( j,k) ∈ {0, . . . ,n−1}×N? : µ(λ j,k) = 1, ℜ

(
λ j,k
)
> 0
}
, (2.27)

then, under conditions of Proposition 2.2, there exists k0 ∈ N? such that

{0, . . . ,n−1}×{k0,k0 +1, . . .} ⊂ J.

On the other hand, the situation is very different when n is even and α > 0. For instance, when
n = 2 and d and α does not satisfy (1.12), the operator L? has an infinite number of eigenvalues
with geometric multiplicity equal to 2 (see (3.45)).

Remark 2.3. As said in Remark 1.4, when n = 2p, p ∈ N?, and α > 0, the operator L? :=
−D?∂xx f +A? has, for any k ≥ 1, exactly two real eigenvalues, λ0,k and λp,k, and n−2 complex
eigenvalues (see Proposition 2.1). In this case the real eigenvalues are given by

λ0,k = dk2 +α
1/nk2−1/p and λp,k = dk2−α

1/nk2−1/p, ∀k ≥ 1.

In this case and in view of the proof of Proposition 2.2, we can conclude that inequality (2.24)
holds except for ( j, j′) = (0, p) or ( j, j′) = (p,0).

As a direct consequence of Proposition 2.2, Lemma 2.2 and Remark 2.2, we have:

Corollary 2.1. Under conditions of Proposition 2.2, the sequence Λ = {λ j,k}( j,k)∈J, with J given
by (2.27), satisfies (2.18) and c(Λ) = 0.

3 Boundary null controllability
In this section, we will prove the boundary null controllability results stated in Theorems 1.1 and
1.2.

1µ(λ ) is the geometric multiplicity of λ ∈ σ(L?)
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3.1 Proof of Theorem 1.1
The proof of Theorem 1.1 will be developed in three sections. In the first section we will prove the
sufficient condition stated in item 1. The second section is devoted to the proof of the necessary
condition in item 1. Finally, we will prove item 2 in Section 3.1.3.

3.1.1 Sufficient condition of the item 1 of Theorem 1.1

Recall that the matrices D,A ∈ L(Rn) and B ∈ Rn are given by (1.9), with d ≥ 1 and α ∈ R?,
and the expression of the eigenvalues of L? =−D?∂xx +A? is given in item a) of Proposition 2.1.
Remember also that in the case α > 0 the dimension n of system (1.2) is odd and, therefore, (2.24)
holds.

Let us first observe that, under assumptions of Theorem 1.1, one has

λ j,k 6= λ j′,k′ , ∀k,k′ ∈ N?, ∀ j, j′ ∈ {0, ...,n−1} with ( j,k) 6= ( j′,k′) (3.28)

and condition (1.12) holds when α < 0 and n is odd. Then, the goal is to prove that system (1.2)
is null (resp., approximately) controllable at time T .

On the other hand, without loss of generality, we can assume that ℜ
(
λ j,k
)
> 0 for any k ≥ 1

and j : 0 ≤ j ≤ n− 1. Indeed, taking into account that limk→∞ ℜ
(
λ j,k
)
= ∞, for any j : 0 ≤ j ≤

n−1, we can conclude the existence of a positive constant M > 0 such that

ℜ
(
λ j,k +M

)
> 0, ∀k ∈ N?, ∀ j ∈ {0, ...,n−1}.

Performing the change z̃ = e−Mtz in system (1.2), the controllability properties of this system at
time T are equivalent to the corresponding properties of system

z̃t −Dz̃xx +(A+MIn)z̃ = 0 in QT ,

z̃(·,0) = Be−Mtv, z̃(·,π) = 0 in (0,T ),

z̃(0, ·) = z0 in (0,π),

with z0 ∈ H−1(0,π;Rn) and v ∈ L2(0,T ). It is clear that

σ(−D?
∂xx +A?+MIn) = {λ +M : λ ∈ σ(−D?

∂xx +A?)} ,

(In ∈ L(Rn) is the identity matrix) and then ℜ(λ )> 0 for any λ ∈ σ(−D?∂xx +A?+MIn).
In order to prove that system (1.2) is null controllable at time T > 0, let us first present an

equivalent property to the null controllability of the system. Let us introduce the following adjoint
system to (1.2): 

−ϕt −D?ϕxx +A?ϕ = 0 in QT ,

ϕ(·,0) = ϕ(·,π) = 0 on (0,T ),
ϕ(T, ·) = ϕT in (0,π),

(3.29)

where ϕT ∈H1
0 (0,π;Cn) and matrices D, A and B are defined in (1.9). For any ϕT ∈H1

0 (0,π;Cn)
system (3.29) has a unique solution

ϕ ∈ L2(0,T ;H2(0,π;Cn)∩H1
0 (0,π;Rn))∩C0(0,T ;H1

0 (0,π;Cn))

which depends continuously on the initial data ϕT . In fact, if ϕT ∈ H1
0 (0,π;Cn), v ∈ L2(0,T ;C)

and y0 ∈ H−1(0,π;Cn), the corresponding solutions z and ϕ of systems (1.2) and (3.29) satisfy

〈y(T, ·),ϕT 〉H−1,H1
0
−〈y0,ϕ(0, ·)〉H−1,H1

0
=
∫ T

0
(v(t),B?D?

ϕx(t,0))C dt, (3.30)

where 〈·, ·〉H−1,H1
0

is the duality pairing between H−1(0,π;Cn) and H1
0 (0,π;Cn).
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From identity (3.30), the null controllability problem of system (1.2) can be reformulated as a
moment problem. More precisely, system (1.2) is null controllable at time T > 0 if and only if for
any initial data y0 ∈ H−1(0,π;Cn) there exists a control v ∈ L2(0,T ;C) such that

−〈y0,ϕ(0, ·)〉H−1,H1
0
=
∫ T

0
(v(t),B?D?

ϕx(t,0))C dt, ∀ϕT ∈ H1
0 (0,π;Cn),

with ϕ the solution of the adjoint problem (3.29) associated to ϕT . Since B? is a Schauder basis
of H1

0 (0,π;Cn) (see (2.16) and Lemma 2.1), the null controllability of system (1.2) is equivalent
to the following property:

Property: For any initial data y0 ∈ H−1(0,π;Cn), there exists a control v ∈ L2(0,T ;C) such
that

−〈y0,ϕ j,k(0, ·)〉H−1,H1
0
=
∫ T

0

(
v(t),B?D?

∂xϕ j,k(t,0)
)
C dt, ∀k ∈ N?, ∀ j ∈ {0, ...,n−1}, (3.31)

where ϕ j,k is the solution of system (3.29) associated to the initial data ϕT = Φ j,k.
A simple computation leads to the formula

ϕ j,k(t,x) = e−λ j,k(T−t)
Φ j,k(x), (t,x) ∈ QT ,

whence 
ϕ j,k(0,x) = e−λ j,kT

Φ j,k(x), x ∈ (0,π),

∂xϕ j,k(t,0) = k

√
2
π

e−λ j,k(T−t)Vj,k, ∀t ∈ (0,T ),

where the vector Vj,k ∈ Cn is given in Proposition 2.1. Thus, using these expressions in prob-
lem (3.31) we can conclude that system (1.2) is null controllable at time T > 0 if and only if

there is v ∈ L2(0,T ;C) such that for all k ∈ N? and j ∈ {0, . . . ,n−1},(
B?D?Vj,k

)? ∫ T

0
v(T − t)e−λ ?

j,kt dt =−1
k

√
π

2
e−λ ?

j,kT 〈y0,Φ j,k〉H−1,H1
0
.

(3.32)

Let us analyse the expression B?D?Vj,k. From (1.9) and Proposition 2.1, we deduce that, for each
k ∈ N? and j : 0≤ j ≤ n−1:

B?D?Vj,k = 0 ⇐⇒

 1+dα
− 1

n k
2
n e−

2π j
n i = 0, if α > 0,

1+d |α|−
1
n k

2
n e−

(2 j+1)π
n i = 0, if α < 0.

(3.33)

If α > 0, thanks to the assumption n= 2p+1, with p∈N?, we can conclude that B?D?Vj,k 6= 0
for every k ∈ N? and j : 0 ≤ j ≤ n− 1. On the other hand, if α < 0, B?D?Vj,k = 0 if and only if
n = 2p+ 1, with p ∈ N?, j = p and k =:

√
|α|/dn/2 ∈ N?. Thanks to assumption (1.12) we can

also conclude that B?D?Vj,k 6= 0 for every k ∈N? and j : 0≤ j≤ n−1. Therefore, problem (3.32)
is equivalent to:

find v ∈ L2(0,T ;C) such that for all, k ∈ N? and j ∈ {0, . . . ,n−1},∫ T

0
v(T − t)e−λ ?

j,kt dt = e−λ ?
j,kT M j,k(y0),

(3.34)

where

M j,k(y0) :=−1
k

√
π

2

〈y0,Φ j,k〉H−1,H1
0

V ?
j,kDB

.

This is the moment problem associated to the boundary null controllability of system (1.2).
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In order to solve the moment problem (3.34), we will apply Theorem 2.1 to the sequence Λ :={
λ j,k
}

k≥1,0≤ j≤n−1 of eigenvalues of the operator L? =−D?∂xx f +A?. Thanks to condition (3.28),
the sequence Λ satisfies condition (2.18). If we use the notation

p j,k(t) := e−λ j,kt , ∀t ∈ (0,T ), (3.35)

we can apply Theorem 2.1 and deduce the existence of a biorthogonal family
{

q j,k
}

k≥1,0≤ j≤n−1
to
{

p j,k
}

k≥1,0≤ j≤n−1 in L2(0,T ;C) which satisfies (2.19), i.e., a family such that

∫ T

0
p j,k(t)q?l,m(t)dt = δkmδ jl , ∀k,m≥ 1, ∀ j, l : 0≤ j, l ≤ n−1.

Moreover, under the assumptions of Theorem 1.1, we can also apply Proposition 2.2 and Lem-
ma 2.2 to obtain that c(Λ) = 0. Therefore, the biorthogonal family

{
q j,k
}

k≥1,0≤ j≤n−1 satisfies the
following property: for any ε > 0, there exists a constant Cε > 0 such that

‖q j,k‖L2(0,T ;C) ≤Cε eεℜ(λ j,k), ∀k ≥ 1, ∀ j : 0≤ j ≤ n−1. (3.36)

We are in conditions to solve problem (3.34). The function

v(t) =
∞

∑
k=1

n−1

∑
j=0

e−λ ?
j,kT M j,k(y0)q j,k(T − t)

provides a formal solution to this problem. Let us see that, in fact, it is a solution to the moment
problem, i.e., let us see that v ∈ L2(0,T ;C).

First, since y0 ∈ H−1(0,π;Rn) and taking into account the expression of the vectors Vj,k (see
Proposition 2.1), we infer that, for any ε > 0, there exists a positive constant Cε such that∣∣M j,k(y0)

∣∣≤Cε eεℜ(λ j,k)‖y0‖H−1(0,π;Cn), ∀k ≥ 1, ∀ j : 0≤ j ≤ n−1.

Let us take ε > 0 (which will be chosen later). Using the previous estimate together with inequal-
ity (3.36), we get

‖v‖L2(0,T ;C) ≤
+∞

∑
k=1

n−1

∑
j=0

Cε e−ℜ(λ j,k)T e2εℜ(λ j,k)‖y0‖H−1(0,π;Cn)

=
+∞

∑
k=1

n−1

∑
j=0

Cε e−ℜ(λ j,k)(T−2ε)‖y0‖H−1(0,π;Cn).

where Cε is a positive constant. Taking, for example, ε = T/4, we obtain that the series in the
definition of v converges absolutely in L2(0,T ;C). Thus, the previous control v solves the moment
problem (3.34). This proves the null controllability result at time T > 0 of system (1.2).

3.1.2 Necessary condition of Item 1 of Theorem 1.1

First of all, notice that the approximate controllability at time T for system (1.2) is equivalent to
a Fattorini-Hautus test. More precisely,

Theorem 3.1. System (1.2) is approximately controllable at time T if and only if, for every λ ∈C
and Φ ∈ D(L?), we have the following property

L?Φ = λΦ in (0,π)
B?D?∂xΦ(0) = 0

}
=⇒Φ = 0 in (0,π).
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For the proof, one just have to apply [33, Theorem 1.1].
Let us use Theorem 3.1 applied to the operator L =−D∂xx +A. To do this, by contradiction,

assume first that n= 2p+1, with p∈N?, α < 0 and
√
|α|/dn/2 :=K∈N?. In this case, Φ=Φp,K

(see item a) of Proposition 2.1) satisfies Φ 6≡ 0, L?Φ = λΦ, with λ = λp,K, and

B?D?
∂xΦ(0) =K

√
2
π

B?D?Vp,K =−K
√

2
π
|α|−

n−2
n k2 n−2

n

(
1−d |α|−

1
n K

2
n

)
= 0.

From Theorem 3.1, we deduce that system (1.2) is not approximately controllable at time T .
On the other hand, assume now that there exists k,k′ ∈ N? and j, j′ ∈ {0, ...,n− 1} such that

( j,k) 6= ( j′,k′) and
λ := λ j,k = λ j′,k′ .

The eigenvalue λ is, at least, double (geometric multiplicity) and some associated eigenfunctions
are

Φ̃ j,k = Ṽj,kwk and Φ̃ j′,k′ = Ṽj′,k′wk′ ,

where Ṽj,k :=
(

cl
j,k

)
1≤l≤n

∈Cn and the coefficients cl
j,k, 1≤ l ≤ n, are given in (2.14) (see Propo-

sition 2.1).
Let us point out that B?D? = (0, · · · ,0,1,d). Thus, we introduce

Φ := k′
[
cn−1

j′,k′ +dcn
j′,k′

]
Φ̃ j,k− k

[
cn−1

j,k +dcn
j,k

]
Φ̃ j′,k′ .

It is not difficult to see that Φ is not identically zero and satisfies{
−D?∂xxΦ+A?Φ = λΦ in (0,π)
B?D?∂xΦ(0) = 0.

Therefore, Theorem 3.1 leads to the non-approximate controllability of system (1.2). �

3.1.3 Proof of the item 2 of Theorem 1.1

As in Section 3.1.1, we will apply the moment method to prove the null controllability at time
T > 0 of system (1.2) when α = 0. In particular, L? =−D?∂xx and from Proposition 2.1, we have

σ(L?) = {λk := dk2 : k ∈ N?}.

As in the previous case, system (1.2) is null controllable at time T > 0 if and only if there exists
a control v∈ L2(0,T ) such that (3.31) holds, where Φ j,k = en− jwk (see item b) of Proposition 2.1).

For the initial data ϕT := Φ j,k = en− jwk, k ≥ 1, j : 0 ≤ j ≤ n− 1, the solution to the adjoint
problem (3.29) is given by:

ϕ j,k(t,x) = e−dk2(T−t)
j

∑
l=0

(−1) j−l k2( j−l)

( j− l)!
(T − t) j−len−lwk(x), (t,x) ∈ QT . (3.37)

From this identity, we infer
ϕ j,k(0,x) = e−dk2T

j

∑
l=0

(−1) j−l

(
k2T
) j−l

( j− l)!
en−lwk(x),

∂xϕ j,k(t,0) = k

√
2
π

e−dk2(T−t)
j

∑
l=0

(−1) j−l k2( j−l)

( j− l)!
(T − t) j−len−l ,

for any k ≥ 1 and j : 0≤ j ≤ n−1.
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Thus, if we introduce the notation

M̃ j,k(y0) =−1
k

√
π

2

j

∑
l=0

(−1)l

(
k2T
) j−l

( j− l)!
〈y0,en−lwk〉H−1,H1

0
, ∀k ∈ N?, 0≤ j ≤ n−1 (3.38)

and observing that
B?D? = (0,0, . . . ,1,d) ,

the moment problem (3.31) becomes: find v ∈ L2(0,T ) such that for all k ∈ N? one has
d
∫ T

0
v(T − t)e−dk2t dt = e−dk2T M̃0,k(y0),

− k2( j−1)

( j−1)!

∫ T

0
v(T − t)t j−1e−dk2t dt +d

k2 j

j!

∫ T

0
v(T − t)t je−dk2t dt = e−dk2T M̃ j,k(y0),

∀ j : 1≤ j ≤ n−1.

This linear system can be written in a vectorial form as

AkXk = e−dk2T M̃k(y0), (3.39)

where

Ak =



d 0 0 0 · · · 0
−1 dk2 0 0 · · · 0
0 −k2 d

2 k4 0 · · · 0
0 0 − 1

2 k4 d
6 k6 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · − k2(n−2)

(n−2)! d k2(n−1)

(n−1)!


∈ L(Rn),

Xk =

(∫ T

0
v(T − t)t je−dk2t dt

)
0≤ j≤n−1

∈ Rn, M̃k(y0) =
(

M̃ j,k(y0)
)

0≤ j≤n−1
∈ Rn.

(3.40)

System (3.39) is triangular, then it is equivalent to
Find v ∈ L2(0,T ) such that∫ T

0
v(T − t)t je−λkt dt = e−dk2T M j,k(y0), ∀k ∈ N?, 0≤ j ≤ n−1,

(3.41)

where the coefficients M j,k(y0) are given by(
M j,k(y0)

)
0≤ j≤n−1 :=A−1

k M̃k(y0) ∈ Rn. (3.42)

In summarizing, the null controllability property of system (1.2) at time T is equivalent to the
moment problem (3.41).

Our next step will be to prove that the moment problem (3.41) admits a solution v ∈ L2(0,T ).
Firstly, we can apply Theorem 2.2, with η = n, to the real sequence Λ := {dk2}k≥1 and deduce the
existence of a family

{
q j,k
}

k≥1,0≤ j≤n−1 ⊂ L2(0,T ) biorthogonal to
{

t je−λkt
}

k≥1,0≤ j≤n−1 which
satisfies (2.23). As in the previous case, this fact provides a formal solution to the moment prob-
lem (3.41):

v(t) :=
∞

∑
k=1

n−1

∑
j=0

e−dk2T M j,k(y0)q j,k(T − t).

On the other hand, the previous series converges absolutely in L2(0,T ). Indeed, taking into ac-
count the expression of the coefficients M j,k(y0) (see (3.42), (3.38) and (3.39)), the estimate (2.23)
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and y0 ∈ H−1(0,π;Rn), it is not difficult to prove the following property: for any ε > 0, there ex-
ists a positive constant Cε such that∣∣M j,k(y0)

∣∣‖q j,k‖L2(0,T ) ≤Cε eεdk2‖y0‖H−1(0,π;Rn), ∀( j,k) : k ≥ 1, 0≤ j ≤ n−1.

With this inequality, we can reason as in Section 3.1.1 and prove that v is a solution to the moment
problem (3.41). �

3.2 Proof of Theorem 1.2
We will devote this section to prove Theorem 1.2. To this end, let us consider system (1.2) in the
case n = 2, with matrices D,A ∈ L(R2) and B ∈ R2 given by (1.9), with d ≥ 1 and α > 0. In this
case, recall Proposition 2.1, the eigenvalues of the operator L? =−D?∂xx +A? are given by

λ0,k := dk2 +
√

αk, λ1,k := dk2−
√

αk, k ≥ 1 (3.43)

and Φ0,k =V0,kwk and Φ1,k =V1,kwk, with Vj,k = Ṽj,k/|Ṽj,k| ( j = 0,1) and

Ṽ0,k =

(
1

α−1/2k

)
, Ṽ1,k =

(
1

−α−1/2k

)
, (3.44)

are eigenvectors associated to λ0,k and λ1,k.
As in Section 3.1.1 and without loss of generality, we are going to assume that σ(L?)⊂ (0,∞),

i.e., λ1,k > 0 for all k ∈ N?.
Observe that in the case n = 2, inequalities (2.20) and (2.21) are, in general, not valid when

one takes as sequence Λ the real sequence Λ :=
{

λ0,k,λ1,k
}

k≥1. Indeed, from (3.43), we deduce
the equalities {

λ1,k+m−λ0,k = (2k+m)
(
dm−

√
α
)
, ∀k,m ∈ N?,

λ1,k−λ1,` = (k− `)
[
d(k+ `)−

√
α
]
, ∀k, ` ∈ N?.

(3.45)

Thus, if
√

α/d = m ∈ N?, we have λ0,k = λ1,k+m, for any k ≥ 1, and λ1,k = λ1,m−k, for any
k : 1≤ k ≤ m−1.

As a consequence, we deduce that the operator L? has an infinite number of eigenvalues with
geometric multiplicity equal to 2. Therefore, we can follow the arguments of Section 3.1.2 and
conclude that system (1.2) is neither approximately nor null controllable in H−1(0,π;R2) at any
time T > 0. This proves the necessary part of Theorem 1.2.

Let us now assume that
√

α/d 6∈ N? and prove that system (1.2) is null controllable in the
space H−1(0,π;R2) at time T > 0. As in Section 3.1.1, this controllability result is equivalent to
the moment problem:

Given y0 ∈ H−1(0,π;R2), find v ∈ L2(0,T ) such that for all k ∈ N? and j = 0,1,

B?D?Vj,k

∫ T

0
v(T − t)e−λ j,kt dt =−1

k

√
π

2
e−λ j,kT 〈y0,Φ j,k〉H−1,H1

0
.

(3.46)

We follow the arguments of Section 3.1.1 in order to solve the previous moment problem.
In this case, we can write

m−1 <

√
α

d
< m,

where m ≥ 1 is a positive integer. From (3.45), it is not difficult to prove that the eigenvalues of
L? are simple and one has

λ1,k+m−1 < λ0,k < λ1,k+m, ∀k ≥ 1,
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and {
λ1,k+m−λ0,k = (2k+m)

(
dm−

√
α
)
≥ 3

(
dm−

√
α
)

:= C0 > 0,

λ0,k−λ1,k+m−1 = (2k+m−1)
[√

α−d(m−1)
]
≥ 2

[√
α−d(m−1)

]
:= C1 > 0,

for any positive integer k ∈ N?. Thus, the sequence Λ =
{

λ0,k,λ1,k
}

k≥1 can be rearranged as an
increasing sequence of positive real numbers Λ = {Λk}k≥1 as follows:

{Λk}1≤k≤m :=
{

λ1,k
}

1≤k≤m ,

Λm+2`−1 := λ0,`, ∀`≥ 1,
Λm+2` := λ1,m+`, ∀`≥ 1.

Therefore, the increasing sequence Λ satisfies properties (2.18) and (2.21) for

ρ := min{C0,C1,C2}> 0, C2 :=
1
m

min
1≤k,`≤m

∣∣λ1,k−λ1,`
∣∣ .

On the other hand, as in Section 3.1.1 (see(3.33)), we can see that the assumption
√

α/d 6∈ N?

implies that B?D?Vj,k 6= 0 for every k ∈ N? and j = 0,1 (see (3.44)). Therefore, we can apply
the arguments of Section 3.1.1 to solve the moment method (3.46) and obtain the null controlla-
bility property of this system in H−1(0,π;R2) at time T > 0. This proves the sufficient part of
Theorem 1.2.

Let us now prove the last part of Theorem 1.2. So, assume that
√

α

d
= m ∈ N?. (3.47)

As said before, the operator L? has an infinite number of eigenvalues with geometric multiplicity
equal to 2 (see (3.45)) and, in general, the moment problem (3.46) cannot be solved. Nevertheless,
this problem has a solution v ∈ L2(0,T ) for some initial data y0 ∈ H−1(0,π;R2). Let us see this
point.

Firstly, we have λ0,k = λ1,k+m, for any k ≥ 1, and λ1,k = λ1,m−k, for any k : 1 ≤ k ≤ m− 1.
Thus, the real sequence Λ :=

{
λ0,k,λ1,k

}
k≥1 is, in fact, Λ =

{
λ1,k
}

k≥m0
, where m0 = 1+

⌊m−1
2

⌋
(b·c is the floor function). From the expression of m (see (3.47)) and m0, we can prove that the
sequence Λ is increasing and satisfies properties (2.18) and (2.21).

Secondly, let us remember that, given y0 ∈ H−1(0,π;R2), there exists v ∈ L2(0,T ) such that
the solution y of (1.2) satisfies y(T, ·) = 0 in (0,π) if and only if the control v solves the moment
problem (3.46). Using the expressions (3.44) and (3.47), this moment problem can be rewritten
as 

Given y0 ∈ H−1(0,π;R2), find v ∈ L2(0,T ) such that for all k ∈ N?,(
1+

k
m

)∫ T

0
v(T − t)e−λ0,kt dt =−1

k

√
π

2
e−λ0,kT

(
y0

k ,Ṽ0,k

)
R2

,(
1− k

m

)∫ T

0
v(T − t)e−λ1,kt dt =−1

k

√
π

2
e−λ1,kT

(
y0

k ,Ṽ1,k

)
R2

,

(3.48)

where y0
k = 〈y0,wk〉H−1,H1

0
∈ R2, k ≥ 1, are the Fourier coefficients of y0.

For y0 ∈ H−1(0,π;R2), let us consider the conditions

(
y0

k ,Ṽ1,k

)
R2

=
(

y0
m−k,Ṽ1,m−k

)
R2

∀k : 1≤ k ≤ m0−1,(
y0

k ,Ṽ0,k

)
R2

=−
(

y0
k+m,Ṽ1,k+m

)
R2
∀k ≥ 1,(

y0
m,Ṽ1,m

)
R2

= 0,

(3.49)
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and introduce the closed subspace of H−1(0,π;R2) given by:

X :=
{

y0 ∈ H−1(0,π;R2) : y0 satisfies conditions (3.49)
}
.

The set X is a closed subspace of H−1(0,π;R2) which has infinite codimension. Indeed, if we
consider the closed subspace

Y :=
{

e1 f : fk = 0, k ∈ {1, . . . ,m}, { fk}k≥1 are the Fourier coefficients of f ∈ H−1(0,π)
}

then, thanks to conditions (3.49), one has

X∩Y= {0}.

On the other hand, taking into account that dimY=∞, we deduce that X has infinite codimension2.
In order to finish the proof of Theorem 1.2, let us see the property: “given y0 ∈H−1(0,π;R2),

there exists a control v ∈ L2(0,T ) such that the solution y of system (1.2) satisfies y(T, ·) = 0 in
(0,π) if and only if y0 ∈ X”, i.e., let us prove that the moment problem (3.48) has solution if and
only if y0 ∈ X.

Let us start assuming that y0 ∈ X. In this case, from (3.49) and the expressions of m and the
functions Φ j,k (see (3.47) and (3.44)), the moment problem (3.48) is equivalent to

Find v ∈ L2(0,T ) such that for all k ≥ m0, k 6= m,(
1− k

m

)∫ T

0
v(T − t)e−λ1,kt dt =−1

k

√
π

2
e−λ1,kT

(
y0

k ,Ṽ1,k

)
R2

.

As proved before, the sequence Λ =
{

λ1,k
}

k≥m0
is increasing and satisfies properties (2.18)

and (2.21). Following the arguments of Section 3.1.1, we deduce that the previous moment prob-
lem admits a solution v ∈ L2(0,T ).

Let us now suppose that y0 6∈ X. In this case, the moment problem is incompatible and does
not admit any solution:

1. If
(

y0
m,Ṽ1,m

)
R2
6= 0, it is clear that the second equation of (3.48) has no solution when

k = m.

2. If for some k0 : 1≤ k0 ≤m0−1 (resp., k0 ≥ 1) one has
(

y0
k0
,Ṽ1,k0

)
R2
6=
(

y0
m−k0

,Ṽ1,m−k0

)
R2

(resp.,
(

y0
k0
,Ṽ0,k0

)
R2
6= −

(
y0

k0+m,Ṽ1,k0+m

)
R2

), from the equality λ1,k0 = λ1,m−k0 (resp.,

λ0,k0 = λ1,k0+m), it is not difficult to show that the problem (3.48) is incompatible.

This proves the previous equivalence and ends the proof of Theorem 1.2. �

3.3 Pointwise controllability
In this section we will prove the null controllability at time T > 0 of system (1.13) in L2(0,π;Rn)
when x0 ∈ (0,π) satisfies appropriate properties. To this end, we will follow the same ideas of the
proof of Theorem 1.1.

Remark 3.1. Taking into account that δx0 ∈H−1(0,π), we deduce that, for any y0 ∈ L2(0,π;Rn)
and u ∈ L2(0,T ), system (1.13) admits a unique solution y with regularity

y ∈ L2(0,T ;H1
0 (0,π;Rn))∩C0([0,T ];L2(0,π;Rn)),

and which depends continuously on y0 and u.

2H−1(0,π;R2) is a Hilbert space. Then, consider P : H−1(0,π;R2)→X, the orthogonal projection of H−1(0,π;R2)
onto X. Thus, A : y ∈ Y 7→A(y) = y−Py ∈X⊥ is injective.
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Let us first describe the approximate controllability result for system (1.13). One has:

Theorem 3.2. Let us consider the matrices D,A ∈ L(Rn) and B ∈ Rn given by (1.9), with d ≥ 1
and α ∈ R. In addition, assume that n = 2p+1 (p ∈ N?) when α > 0. Let us also fix x0 ∈ (0,π).
Then,

1. If α 6= 0, system (1.13) is approximately controllable at time T if and only if one has:{
the eigenvalues of L? =−D?∂xx +A? has geometric multiplicity equal to 1;
x0 6= rπ, with r ∈Q∩ (0,1).

(3.50)

2. If α = 0, system (1.13) is approximately controllable at time T > 0 if and only if x0 6= rπ ,
with r ∈Q∩ (0,1).

Proof. As saw in Section 3.1.2, it is not to difficult to show that system (1.13) is approximately
controllable in L2(0,π;R2) at time T > 0 if and only if, for every λ ∈ C and Φ ∈ D(L?), we have
the following property

L?Φ = λΦ in (0,π)
B?Φ(x0) = 0

}
=⇒Φ = 0 in (0,π). (3.51)

We will do the proof for α 6= 0. The case α = 0 can be obtained following the same argument.
Let us first see that the conditions in (3.50) are necessary for the approximate controllability

of system (1.13). We can argue as in Section 3.1.2 and prove that the first condition in (3.50) is
necessary. On the other hand, if x0 = rπ , with r = m/` ∈Q∩ (0,1) and m, ` ∈N?, we deduce that
λ = λ0,` ∈ R and Φ := Φ0,` =V0,`w` (see Proposition 2.1) satisfy L?Φ = λΦ,

B?
Φ(x0) =

√
2
π

B?V0,` sin(`x0) =

√
2
π

B?D?V0,` sin(mπ) = 0,

and Φ 6≡ 0 in (0,π). Therefore, from (3.51) we deduce that system (1.13) cannot be approximately
controllable at time T > 0.

Let us see that conditions in (3.50) imply the approximate controllability of system (1.13) at
time T > 0 i.e., the Fattorini-Hautus test (3.51). Indeed, first, if Φ ∈ D(L?) satisfies L?Φ = λΦ

in (0,π), for λ ∈ C, we deduce λ = λ j,k and Φ = CΦ j,k, with k ≥ 1, 0 ≤ j ≤ n− 1 and C ∈ C.
Secondly, taking into account the expression of Φ j,k (see Proposition 2.1), condition B?Φ(x0) = 0
can be also written as

0 = B?
Φ(x0) =



C∣∣∣∣(cl
j,k

)
1≤l≤n

∣∣∣∣
√

2
π

(
α
− n−1

n k2 (l−1)
n e−

2π j
n (n−1)i

)
sin(kx0), if α > 0,

C∣∣∣∣(cl
j,k

)
1≤l≤n

∣∣∣∣
√

2
π

(
|α|−

n−1
n k2 (n−1)

n e−
(2 j+1)π

n (n−1)i
)

sin(kx0), if α < 0.

In both cases, assumptions (3.50) imply C = 0 and, therefore, Φ ≡ 0. Then, one has (3.51) and
the approximate controllability of system (1.13) at time T > 0. This ends the proof.

Remark 3.2. Taking into account Proposition 2.2 (see Remark 2.2), we deduce that, when α 6= 0
is under the assumptions of Theorem 3.2, the eigenvalues of L? satisfy µ(λ j,k) = 1 for any k≥ k1
and any j : 0≤ j≤ n−1. Thus, if x0 ∈ (0,π) is such that x0/π 6∈Q, system (1.13) is approximately
controllable in L2(0,π;R2) at time T > 0 apart from a finite dimensional space of L2(0,π;R2).

On the other hand, the proof of Theorem 3.2 is still valid when α > 0 and n = 2p, with
p ∈ N?, that is to say, system (1.13) is approximately controllable at time T if and only if (3.50)
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holds. Nevertheless, in this case, we can have an infinite number of eigenvalues λ of L? such that
µ(λ )≥ 2 (this is the case when n = 2 and p and α satisfy (3.47), see Section 3.2). So, we cannot
conclude that, if x0 ∈ (0,π) is such that x0/π 6∈Q, system (1.13) is approximately controllable in
L2(0,π;R2) at time T > 0 apart from a finite dimensional space of L2(0,π;R2).

Let us now study the null controllability of system (1.13). The result reads as follows:

Theorem 3.3. Under conditions of Theorem 3.2, let us assume that (3.50) holds when α 6= 0. In
addition, assume that x0 = ϑπ , with ϑ ∈ (0,1) an irrational number, and consider

Tϑ = limsup
k→∞

− log |sin(kϑπ)|
dk2 ∈ [0,∞].

Then:

1. System (1.13) is null controllable in L2(0,π;Cn) at any time T > Tϑ .

2. System (1.13) is not null controllable in L2(0,π;Cn) for T < Tϑ .

Proof. Again, we will do the proof of the result when α 6= 0. The case α = 0 can be obtained
from a similar argument (see Section 3.1.3). So, assume that (3.50) holds and take x0 = ϑπ where
ϑ ∈ (0,1) is an irrational number.

Let us first prove the first item in Theorem 3.3. To this end, assume Tϑ ∈ [0,∞) and take
T > Tϑ . As in Section 3.1.1, the null controllability at time T > 0 of system (1.13) is equivalent
to the following moment problem: given y0 ∈ L2(0,π;Cn), find a control v ∈ L2(0,π;C) such that√

2
π

sin(kϑπ)
(
B?Vj,k

)? ∫ T

0
v(T − t)e−λ ?

j,kt dt =−e−λ ?
j,kT (y0,Φ j,k)L2 ,

for any k ∈N? and any j : 0≤ j≤ n−1. From (3.50) we deduce that µ(λ j,k) = 1 and sin(kϑπ) 6=
0. Also, it is easy to check that B?Vj,k 6= 0. Thus, the previous moment problem is equivalent to

Given y0 ∈ L2(0,π;Cn), find v ∈ L2(0,π;C) s.t. for all k ≥ 1 and j : 0≤ j ≤ n−1,∫ T

0
v(T − t)e−λ ?

j,kt dt = e−λ ?
j,kT M̃ j,k(y0),

(3.52)

where

M̃ j,k(y0) :=− 1
sin(kϑπ)

√
π

2
(y0,Φ j,k)L2

V ?
j,kB

.

Again, a formal solution to the previous moment problem is

v(t) =
∞

∑
k=1

n−1

∑
j=0

e−λ ?
j,kT M̃ j,k(y0)q j,k(T − t),

where
{

q j,k
}

k≥1,0≤ j≤n−1 is a biorthogonal family to
{

p j,k
}

k≥1,0≤ j≤n−1 (see (3.35)) in L2(0,T ;C)
satisfying (3.36) (see Theorem 2.1).

Let us check that the previous series is absolutely convergent in L2(0,T ;C). Indeed, from
Proposition 2.1, we get

dk2−|α|1/nk2− 2
n ≤ℜ(λ ?

j,k)≤ dk2 + |α|1/nk2− 2
n , ∀k ≥ 1, j : 0≤ j ≤ n−1,

On the other hand, using the expression of Tϑ , we deduce that for any ε > 0 there exists a positive
constant Cε such that

1
|sin(kϑπ)|

≤Cε e(Tϑ+ε)dk2
, ∀k ≥ 1.
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Finally, repeating the arguments in Section 3.1.1, we also have that, for any ε > 0 there exists a
positive constant Cε such that∣∣∣∣∣ (y0,Φ j,k)L2

V ?
j,kB

∣∣∣∣∣≤Cε eεdk2‖y0‖L2(0,π;Cn), ∀k ≥ 1, j : 0≤ j ≤ n−1.

Therefore, since
{

q j,k
}

k≥1,0≤ j≤n−1 satisfies (3.36), we have

‖v‖L2(0,T ;C) ≤
∞

∑
k=1

n−1

∑
j=0

Cε e−ℜ(λ j,k)T e(Tϑ+ε)dk2
eεdk2‖y0‖L2(0,π;Cn)e

εℜ(λ j,k)

≤
∞

∑
k=1

n−1

∑
j=0

Cε e−dk2T e(T+ε)|α|1/nk2− 2
n e(Tϑ+ε)dk2

e2εdk2‖y0‖L2(0,π;Cn)

=
∞

∑
k=1

n

∑
j=1

Cε e−dk2(T−Tϑ−3ε)e(T+ε)|α|1/nk2− 2
n ‖y0‖L2(0,π;Cn).

where Cε is a new positive constant. It is clear that, taking ε = (T −Tϑ )/6, the previous series
converges absolutely. This proves that v ∈ L2(0,T ;C) and we have constructed a solution of the
moment problem (3.52). This shows the first item in Theorem 3.3.

Let us now assume that Tϑ ∈ (0,∞] and consider 0 < T < Tϑ . The objective is to prove that
system (1.13) is not null controllable in L2(0,π;Cn) at time T . To this end, we will use the
following result:

Theorem 3.4. Let us consider the matrices D,A ∈ L(Rn) and B ∈ Rn given by (1.9), with d ≥ 1
and α ∈ R. Then, system (1.13) is not null controllable in L2(0,π;Cn) at time T > 0 if and only
if there exists a constant CT > 0 such that

‖ϕ(0, ·)‖2
L2(0,π;Cn) ≤CT

∫ T

0
|B?

ϕ(t,x0)|2 dt, ∀ϕT ∈ L2(0,π;Cn), (3.53)

where ϕ ∈ L2(0,T ;H1
0 (0,π;Cn)) ∩ C0([0,T ];L2(0,π;Cn)) is the solution of the adjoint prob-

lem (3.29) associated to ϕT ∈ L2(0,π;Cn).

For a proof of this result, see [35] and [36].
Let us see that the observability inequality (3.53) fails when T < Tϑ and, therefore, sys-

tem (1.13) is not null controllable in L2(0,π;Cn) at time T . By contradiction, assume that, for a
positive constant CT , inequality (3.53) holds. In particular, if we take

ϕ
T (x) =V0,kwk(x) =

√
2
π

V0,k sin(kx), x ∈ (0,π),

(see Proposition 2.1), the corresponding solution of system (1.13) is given by

ϕ(t,x) =

√
2
π

e−λ0,k(T−t)V0,k sin(kx), (t,x) ∈ QT ,

and inequality (3.53) becomes∣∣V0,k
∣∣2 e−2ℜ(λ0,k)T ≤ 2

π
CT
∣∣B?V0,k

∣∣2 1
2ℜ(λ0,k)

(
1− e−2ℜ(λ0,k)T

)
|sin(kϑπ)|2 , ∀k ≥ 1. (3.54)

On the other hand, let us take ε > 0 such that T +ε < Tϑ . From the definition of Tϑ we deduce
the existence of a subsequence {kn}n≥1 such that

T + ε <
− log |sin(knϑπ)|

dk2
n

, ∀n≥ 1,
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or, equivalently,
|sin(knϑπ)|2 < e−2dk2

n(T+ε), ∀n≥ 1.

Combining the previous inequality and (3.54) written for the subsequence {kn}n≥1, we get

∣∣V0,kn

∣∣2 e−2ℜ(λ0,kn )T ≤ 2
π

CT
∣∣B?V0,kn

∣∣2 1
2ℜ(λ0,kn)

(
1− e−2ℜ(λ0,kn )T

)
e−2dk2

n(T+ε), ∀n≥ 1,

that is to say,
0 <

π

2
C−1

T ≤An, ∀n≥ 1,

where

An :=

∣∣B?V0,kn

∣∣2∣∣V0,kn

∣∣2 1
2ℜ(λ0,kn)

(
1− e−2ℜ(λ0,kn )T

)
e−2dk2

nε+2[ℜ(λ0,kn )−dk2
n ]T ∀n≥ 1.

Finally, taking into account the expressions of V0,k and λ0,k (see Proposition 2.1) and the inequality

ℜ(λ0,k)≤ dk2 + |α|1/nk2− 2
n , ∀k ≥ 1,

we obtain that lim
n→+∞

An = 0.

This provides a contradiction and the proof of item 2 of Theorem 3.3.

Remark 3.3. To the authors’ knowledge, the first pointwise null controllability result for a
parabolic equation was proved in [16] for the one dimensional heat equation. Similar results
were obtained for coupled parabolic systems in [9].

4 Parabolic systems with non-diagonalizable diffusion matrix
and non-constant coefficients
This section is devoted to prove Theorem 1.3. The negative part relies on the Fattorini-Hautus
test applied to the operator L0 :=−D∂xx +qA0. On the other hand, the positive part relies on the
algebraic resolvability (see [27]).

Proof of Theorem 1.3, item a). First of all, notice that, from Theorem 3.1, system (1.10) is ap-
proximately controllable at time T if and only if the following property for the adjoint operator
L?

0 holds:

For every λ ∈ C and (ψ,ϕ) ∈ H2(0,π;R2)∩H1
0 (0,π;R2), it holds

L?
0

(
ψ

ϕ

)
= λ

(
ψ

ϕ

)
in (0,π)

B?

(
ψ

ϕ

)
= 0 in ω

=⇒
(

ψ

ϕ

)
=

(
0
0

)
in (0,π).

(4.55)

The idea is to construct a potential q ∈ C∞([0,π]) such that property (4.55) does not holds. To
this end, consider ω := (5π/12,7π/12) and let us construct three functions ϕ, ψ ∈ H2(0,π)∩
H1

0 (0,π) and q ∈ C∞([0,π]) satisfying
−∂xxψ +q(·)ψ = 36ψ in (0,π),
−∂xxϕ−∂xxψ = 36ϕ in (0,π),
ϕ = 0 in ω,

ψ 6≡ 0, ϕ 6≡ 0 in (0,π).

(4.56)
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The strategy will be to construct a suitable function ψ as a perturbation of sin(2x). With such
a function, we define q and ϕ as (4.56)1 and (4.56)2, respectively, and we check that (ϕ,ψ)
satisfies (4.56).

Consider ψ a function of C∞([0,π])∩H1
0 (0,π) satisfying

ψ(x) = sin(2x)+C1θ1(x)−C2θ2(x) ∀x ∈
[
0,

π

3

]
∪
[

2π

3
,π

]
,

ψ(x) =− 6
π

x+3 ∀x ∈ ω =

[
5π

12
,

7π

12

]
,

|ψ(x)− sin(2x)|< ε ∀x ∈
[

π

3
,

5π

12

]
∪
[

7π

12
,

2π

3

]
,

(4.57)

where θ1 and θ2 are two nontrivial nonnegative functions of C∞([0,π]) satisfying
supp(θ1)⊂

(
π

24
,

3π

24

)
,

supp(θ2)⊂
(

21π

24
,

23π

24

)
,

(4.58)

ε > 0 is small enough and C1 and C2 are two positive constants to be determined. The graph of ψ

is given in Figure 1.

0 0.5 1 1.5 2 2.5 3

−1

0

1 sin(2x)
3− 6

π
x

Figure 1: Example of a function ψ in [0,π]

Notice that the function ϕ ∈ C∞([0,π]), defined by

ϕ(x) :=
[

τ− 1
6

∫ x

0
cos(6y)ψyy(y)dy

]
sin(6x)+

[
1
6

∫ x

0
sin(6y)ψyy(y)dy

]
cos(6x), ∀x ∈ [0,π],

satisfies the second equation of (4.56), where τ ∈ R is a constant to be fixed later.
Let us now verify the boundary conditions and (4.56)3 for ϕ . Let us first prove that C1,

in (4.57), and τ can be chosen such that ϕ ≡ 0 in ω . As ψ(x) = − 6
π

x + 3 for x ∈ ω and ψ

coincides with sin(2x) in a neighborhood of 0, we have
−1

6

∫ 5π
12

0
cos(6y)ψyy(y)dy = 6

∫ 5π
12

0
cos(6y)ψ(y)dy− 1

6
,

1
6

∫ 5π
12

0
sin(6y)ψyy(y)dy =−6

∫ 5π
12

0
sin(6y)ψ(y)dy− 1

π
,

(4.59)
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and for all x ∈ ω:

ϕ(x) =

[
τ− 1

6
+6

∫ 5π
12

0
cos(6y)ψ(y)dy

]
sin(6x)−

[
1
π
+6

∫ 5π
12

0
sin(6y)ψ(y)dy

]
cos(6x).

Since
1
π
+6

∫ 5π
12

0
sin(6y)sin(2y)dy =

1
π
− 3
√

3
16

< 0,

thanks to (4.57)3 (for ε small enough), one can choose C1 (recalling that sin(6x)> 0 in the interval
(π/24,3π/24)) such that

1
π
+6

∫ 5π
12

0
sin(6y)ψ(y)dy = 0. (4.60)

In this way, for

τ :=
1
6
−6

∫ 5π
12

0
cos(6y)ψ(y)dy,

we obtain ϕ = 0 in ω .
Let us now verify the boundary conditions for ϕ . Notice that ϕ(0) = 0, by definition. A

suitable choice of C2 will give us ϕ(π) = 0. Indeed, using that ψ is an affine function in ω and
from equalities (4.59) and (4.60), we have

ϕ(π) =
1
6

∫
π

0
sin(6y)ψyy(y)dy =

1
6

∫ 5π
12

0
sin(6y)ψyy(y)dy+

1
6

∫
π

7π
12

sin(6y)ψyy(y)dy

=
1
6

∫
π

7π
12

sin(6y)ψyy(y)dy =− 1
π
−6

∫
π

7π
12

sin(6y)ψ(y)dy.

Since

− 1
π
−6

∫
π

7π
12

sin(6y)sin(2y)dy =− 1
π
+

3
√

3
16

> 0

again thanks to (4.57)3 (for ε small enough) one can choose C2 (recalling that sin(6x) < 0 in
(21π/24,23π/24)) such that

− 1
π
−6

∫
π

7π
12

sin(6y)ψ(y)dy = 0

and then ϕ(π) = 0.
Finally, to verify the first equality in (4.56), we define q ∈ C∞([0,π]) by

q :=
∂xxψ +36ψ

ψ
, (4.61)

with ψ given in (4.57). Taking into account that ψ is null only at points 0, π/2 and π , we infer the
existence of neighborhoods of 0 and π in which ψ is equal to sin(2x) and a neighborhood of π/2
in which ψ is equal to − 6

π
x+ 3. Therefore, we have that q is equal to 32 in the neighborhoods

of 0 and π and equal to 36 in the neighborhood of π/2. Therefore, the function q is bounded and
item a) in Theorem 1.3 is proved.

Remark 4.1. The previous proof provides an argument to construct functions ϕ, ψ ∈H2(0,π)∩
H1

0 (0,π) and q ∈ C∞([0,π]) satisfying (4.56). In fact, this construction is valid for any functions
θ1,θ2 ∈ C∞([0,π]) satisfying (4.58). We will use this construction in the proof of Theorem 1.3,
item b).

Let us now prove item b) of Theorem 1.3. To do that, we will use the following result, whose
proof is given below, after the proof of this theorem.
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Theorem 4.1. Let T > 0, ω ⊂ (0,π), a nonempty open set, and q ∈ C∞([0,π]) such that q is not
constant on an open subset ω1 ⊂ ω . Then, system (1.10) is null controllable (then, approximately
controllable) at time T .

Proof of Theorem 1.3, item b). Let us take ω = (π/24,3π/24) and θ1,θ2 ∈ C∞([0,π]) satisfy-
ing (4.58) and θ1(x) = ex for any x∈ω1, with ω1 an open interval such that ω1⊂⊂ (π/24,3π/24).
With the previous choice, let us consider the function q ∈ C∞([0,π]) given in (4.61), with ψ given
in (4.57). It is clear that the functions ϕ, ψ ∈H2(0,π)∩H1

0 (0,π) and q∈ C∞([0,π]) satisfy (4.56)
and

q(x) = 37−5
sin(2x)

sin(2x)+C1ex , ∀x ∈ ω1.

Since q is not constant on ω1, we can apply Theorem 4.1 and guarantee that system (1.10) is null
controllable at time T > 0. This ends the proof of item b).

Let us now return to Theorem 4.1 and establish its proof.

Proof of Theorem 4.1. Since q is not constant on the open set ω1 ⊂⊂ ω , there exist a constant
C > 0 and a new open subset ω̂ ⊂ ω1 such that

|∂xq|>C > 0 and |q|>C > 0 on ω̂. (4.62)

Now, let us reduce the proof of the null controllability of system (1.10) is null controllable at time
T to the resolution of two problems:

• Analytic problem: find (ŷ, û), with ŷ ∈ L2(0,T ;H1
0 (0,π;R2))∩C0([0,T ];L2(0,π;R2))) and

û ∈ Ck(QT ;R2) (k is a positive integer that will be fixed later) such that:

∂t ŷ1 = ∂xxŷ1 +∂xxŷ2−q(·)ŷ1 + û1 in QT ,

∂t ŷ2 = ∂xxŷ2 + û2 in QT ,

ŷ = 0 on (0,T )×{0,π},
ŷ(0, ·) = y0, y(T, ·) = 0 in (0,π),
supp(û)⊂ (0,T )× ω̂,

ω̂ ⊂⊂ ω.

(4.63)

• Algebraic problem: find (z,v)∈ L2(0,T ;H1
0 (0,π;R2))∩C0([0,T ];L2(0,π;R2)))×L2(QT )

such that: 
∂tz1 = ∂xxz1 +∂xxz2−q(·)z1 + û1 in (0,T )×ω,

∂tz2 = ∂xxz2 + v+ û2 in (0,T )×ω,

supp(z,v)⊂⊂ (0,T )×ω.

(4.64)

If we are able to solve the analytic and algebraic problems, then (ŷ− z,−v) is a solution to the
null controllability problem for system (1.10).

The next task will be to solve the analytic and algebraic problems.
The resolution of the analytic problem (4.63) is standard and can be established taking into

account that q ∈ C∞([0,π]) and thanks to the local regularity of parabolic equations (see [12]
and [24] where the local regularity is used to construct regular controls).

Now, let us present a resolution of the algebraic problem. System (4.64) can be rewritten as
follow

L(z,v) = û,

where

L(z,v) =

(
∂tz1−∂xxz1−∂xxz2 +q(·)z1

∂tz2−∂xxz2− v

)
.
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Let us search a differential operator M with C∞ coefficients such that

L◦M= Id, (4.65)

thus (z,v) := M(û) will be a solution to (4.64). In the analytic problem (4.63), we search for û
regular enough (k large enough) in order to apply the differential operator M. The formal adjoint
to (4.65) is given by

(M? ◦L?)ψ = ψ, (4.66)

where

L?(ψ) =

 L?
1ψ

L?
2ψ

L?
3ψ

=

 −∂tψ1−∂xxψ1 +q(·)ψ1

−∂tψ2−∂xxψ2−∂xxψ1

−ψ2

 .

To build the differential operator M? (then we find M), the goal is to apply some differential
operator to the components of L?Ψ to obtain ψ .

Let us introduce the operator M?
1 := (0 −1 ∂t +∂xx). Then, we obtain

M?
1 ◦L?

ψ = ∂xxψ1.

Taking M?
2 :=−M?

1− (1 0 0), we deduce

M?
2 ◦L?

ψ = ∂tψ1−q(·)ψ1.

Using (4.62), we define M?
3 := (−2∂xq(·))−1[(−∂t +q(·))◦M?

1 +∂xx ◦M?
2] in ω̂ . Hence, we have

M?
3 ◦L?

ψ = ∂xψ1 +
∂xxq(·)
2∂xq(·)

ψ1.

Setting M?
4 := ∂x ◦M?

2−∂t ◦M?
3, it holds

M?
4 ◦L?

ψ =−q(·)∂xψ1−∂xq(·)ψ1−
∂xxq(·)
2∂xq(·)

∂tψ1.

Again, using (4.62), we consider M?
5 :=−(q(·))−1[M?

4 +
∂xxq(·)
2∂xq(·)M

?
2]−M?

3. Then, we obtain

M?
5 ◦L?

ψ =
∂xq(·)
q(·)

ψ1.

Finally, if we take

M? :=

 q(·)
∂xq(·)

M?
5

M?
6

 ,

where M?
6 := (0 0 −1), we obtain (4.66). Therefore, we have also solved the algebraic prob-

lem (4.64). This ends the proof of Theorem 4.1.

Remark 4.2. The idea of algebraic resolvability for differential operators can be found in [27,
Section 2.3.8]. In the context of control theory, the Gromov algebraic resolvability was widely
used, for instance in [15] for a Navier Stokes control system, in [4] for first order quasi-linear
hyperbolic systems and in [18, 19] for zero and first order coupled linear parabolic systems with
a reduced number of distributed controls.
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