
HAL Id: hal-03772345
https://hal.science/hal-03772345

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mix-Nets from Re-randomizable and Replayable
CCA-Secure Public-Key Encryption

Antonio Faonio, Luigi Russo

To cite this version:
Antonio Faonio, Luigi Russo. Mix-Nets from Re-randomizable and Replayable CCA-Secure Public-
Key Encryption. SCN 2022, 13th Conference on Security and Cryptography for networks, Sep 2022,
Amalfi, Italy. pp.172-196, �10.1007/978-3-031-14791-3_8�. �hal-03772345�

https://hal.science/hal-03772345
https://hal.archives-ouvertes.fr

Mix-Nets from Re-Randomizable and
Replayable CCA-secure Public-Key Encryption

Antonio Faonio and Luigi Russo

EURECOM, Sophia Antipolis, France
{faonio, russol}@eurecom.fr

Abstract. Mix-nets are protocols that allow a set of senders to send
messages anonymously. Faonio et al. (ASIACRYPT’19) showed how to
instantiate mix-net protocols based on Public-Verifiable Re-randomizable
Replayable CCA-secure (Rand-RCCA) PKE schemes. The bottleneck of
their approach is that public-verifiable Rand-RCCA PKEs are less effi-
cient than typical CPA-secure re-randomizable PKEs. In this paper, we
revisit their mix-net protocol, showing how to get rid of the cumbersome
public-verifiability property, and we give a more efficient instantiation for
the mix-net protocol based on a (non publicly-verifiable) Rand-RCCA
scheme. Additionally, we give a more careful security analysis of their
mix-net protocol.

1 Introduction

Mixing Networks (aka mix-nets), originally proposed by Chaum [11], are pro-
tocols that allow a set of senders to send messages anonymously. Typically, a
mix-net is realized by a chain of mix-servers (aka mixers) that work as follows.
Senders encrypt their messages and send the ciphertexts to the first mix-server in
the chain; each mix-server applies a transformation to every ciphertext (e.g., par-
tial decryption, or re-encryption), re-orders the ciphertexts according to a secret
random permutation, and passes the new list to the next mix-server. The idea
is that the list returned by the last mixer contains (either in clear or encrypted
form, depending on the mixing approach) the messages sent by the senders in a
randomly permuted order.

Mix-net protocols are fundamental building blocks to achieve privacy in a
variety of application scenarios, including anonymous e-mail [11], anonymous
payments [24], and electronic voting [11]. Informally, the basic security prop-
erty of mix-nets asks that, when enough mix-servers are honest, the privacy
of the senders of the messages (i.e., “who sent what”) is preserved. In several
applications, it is also desirable to achieve correctness even in the presence of
an arbitrary number of dishonest mixers. This is for example fundamental in
electronic voting where a dishonest mixer could replace all the ciphertexts with
encrypted votes for the desired candidate.

Realizing Mix-Nets. A popular design paradigm of mixing networks are re-
encryption mix-nets [27] in which each server decrypts and freshly encrypts every

https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-9869-786X

ciphertext. Interestingly, such a transformation can be computed even publicly
using re-randomizable encryption schemes (e.g., El Gamal). The process of re-
randomizing and randomly permuting ciphertexts is typically called a shuffle.
Although shuffle-based mix-nets achieve privacy when all the mix-servers behave
honestly, they become insecure if one or more mixers do not follow the protocol.
An elegant approach proposed to solve this problem is to let each mixer prove the
correctness of its shuffle with a zero-knowledge proof. This idea inspired a long se-
ries of works on zero-knowledge shuffle arguments, e.g., [5,19,20,22,26,30,32,33].
Notably, some recent works [5,30,33] improved significantly over the early so-
lutions, and they have been implemented and tested in real-world applications
(elections) [34]. In spite of the last results, zero-knowledge shuffle arguments are
still a major source of inefficiency in mix-nets. This is especially a concern in
applications like electronic voting where mix-nets need to be able to scale up to
millions of senders (i.e., voters).

Mix-Nets from Replayable CCA Security. Most of the research effort for
improving the efficiency of mix-nets has been so far devoted to improving the
efficiency of shuffle arguments. A notable exception is the work of Faonio et
al. [17]. Typical mixing networks based on re-randomizable encryption schemes
make use of public-key encryption (PKE) schemes that are secure against chosen-
plaintext attack (CPA), thus to obtain security against malicious mixers they
leverage on the strong integrity property offered by the zero-knowledge shuffle
arguments. The work of Faonio et al. instead showed that, by requiring stronger
security properties from the re-randomizable encryption scheme, the NP-relation
proved by the zero-knowledge shuffle arguments can be relaxed. This design en-
ables faster and more efficient instantiations for the zero-knowledge proof but, on
the other hand, requires more complex ciphertexts and thus a re-randomization
procedure that is slower in comparison, for example, with the re-randomization
procedure for ElGamal ciphertexts. More in detail, Faonio et al. propose a se-
cure mixing network in the universal composability model of Canetti [7] based
on re-randomizable PKE schemes that are replayable-CCA (RCCA) secure (as
defined by Canetti et al. [9]) and publicly-verifiable. The first notion, namely
RCCA security, is a relaxation of the standard notion of chosen-ciphertext se-
curity. This notion offers security against malleability attacks on the encrypted
message (i.e. an attacker cannot transform a ciphertext of a message M to a ci-
phertext of a message M′) but it still allows for malleability on the ciphertext (i.e.
we can re-randomize the ciphertexts). The second requirement, namely public
verifiability, requires that anyone in possession of the public key can check that a
ciphertext decrypts correctly to a valid message, in other words, that the decryp-
tion procedure would not output an error message on input such a ciphertext.
Unfortunately, this second requirement is the source of the major inefficiency in
the mixing networks of Faonio et al.. For example, the re-randomization pro-
cedure of the state-of-art non publicly-verifiable re-randomizable PKE scheme
with RCCA-security (Rand-RCCA PKE, in brief) in the random oracle model
of Faonio and Fiore [16] costs 19 exponentiations in a pairing-free cryptographic

2

group, while the re-randomization procedure of the publicly-verifiable Rand-
RCCA PKE of [17] costs around 90 exponentiations plus 5 pairing operations.

1.1 Our Contribution

We revisit the mix-net design of Faonio et al. [17]. Our contributions are two-
fold: we generalize the mix-net protocol of [17] showing how to get rid of the
cumbersome public verifiability property, and we give a more efficient instantia-
tion for the mix-net protocol based on the (non publicly-verifiable) Rand-RCCA
scheme of [17]. Our generalization of the mix-net protocol is based on two main
ideas. The first idea is that, although the verification of the ciphertexts is still
necessary, it is not critical for the verification to be public and non-interactive.
In particular, we can replace the public verifiability property with a multi-party
protocol (that we call a verify-then-decrypt protocol) that verifies the cipher-
texts before the decryption phase and that decrypts the ciphertexts from the
last mixer in the chain only if the verification succeeded. The second idea is
that in the design of the verify-then-decrypt multiparty protocol we can trade
efficiency for security. In particular, we could design a protocol that eventually
leaks partial information about the secret key and, if the Rand-RCCA PKE
scheme is resilient against this partial leakage of the secret key, we could still
obtain a secure mix-net protocol. Along the way, we additionally (1) abstract
the necessary properties required by the zero-knowledge proof that the mixers
need to attach to their shuffled ciphertexts and (2) give a more careful security
analysis of the mixnet protocol. More technically, we define the notion sumcheck-
admissible relation w.r.t. the Rand-RCCA PKE scheme (see Definition 2) which
is a property of an NP-relation that, informally, states that given two lists of
ciphertexts if all the ciphertexts in the lists decrypt to valid messages, then the
sum of the messages in the first list is equal to the sum of the messages in the
second list. For example, a shuffle relation is a sumcheck-admissible relation,
however simpler (and easier to realize in zero-knowledge) NP-relations over the
lists of ciphertexts can be considered as well.

Our second contribution is a concrete instantiation of the mix-net protocol.
The main idea of our concrete protocol is that many (R)CCA PKE schemes
can be conceptually divided into two main components: the first “CPA-secure”
component assures that the messages are kept private, while the second compo-
nent assures the integrity of the ciphertexts, namely, the component can identify
malformed ciphertexts and avoid dangerous decryptions through the CPA-secure
component. Typical examples for such PKE schemes are those based on the
Cramer-Shoup paradigm [13]. Intuitively, these schemes should be secure even
if the adversary gets to see the secret key associated with the second compo-
nent under the constraint that once such leakage is available the adversary must
lose access to the decryption oracle. This suggests a very efficient design for the
verify-then-decrypt multiparty protocol: the mixers commit to secret shares of
the secret key, once all the ciphertexts are available the mixers open to the secret
key material for the second component, now any mixer can non-interactively and
efficiently verify the validity of the ciphertexts. If all the ciphertexts are valid

3

the mixers can engage a CPA-decryption multiparty protocol for the ciphertexts
in the last list. As last contribution, we show that the Rand-RCCA PKE scheme
of [17] is leakage resilient (under the aforementioned notion) and we instantiate
all the necessary parts.

A final remark, an important property of a mixnet protocol is the so-called
auditability1, namely the capability of an external party to verify that a given
transcript of a protocol execution has produced an alleged output. Intuitively,
mixnets based on non-interactive zero-knowledge proofs of shuffle usually should
have this property. However, one must be careful, because not only the shuffling
phase, but the full mixnet protocol should be auditable. In particular, for our
mixnet protocol to be auditable the verify-then-decrypt protocol should be au-
ditable as well. We show that the latter protocol for our concrete instantiation
is indeed auditable.

1.2 Related work

The notion of mix-net was introduced by Chaum [11]. The use of zero-knowledge
arguments to prove the correctness of a shuffle was first suggested by Sako
and Kilian [29]. The first proposals used expensive cut-and-choose-based zero-
knowledge techniques [1,29]. Abe et al. removed the need for cut-and-choose by
proposing a shuffle based on permutation networks [2,3]. Furukawa and Sako
[19] and independently Neff [26] proposed the first zero-knowledge shuffle argu-
ments for ElGamal ciphertexts that achieve a complexity linear in the number
of ciphertexts. These results have been improved by Wikström [33], and later
Terelius and Wikström [30], who proposed arguments where the proof genera-
tion can be split into an offline and online phase (based on an idea of Adida
and Wikström [4]). These protocols have been implemented in the Verificatum
library [34]. Groth and Ishai [23] proposed the first zero-knowledge shuffle argu-
ment with sublinear communication. Bayer and Groth gave a faster argument
with sublinear communication in [5]. The notion of Rand-RCCA PKE encryp-
tion was introduced by Groth [21]. The work of Prabhakaran and Rosulek [28]
showed the first Rand-RCCA PKE in the standard model. The work of Faonio
and Fiore [16] presented a practical Rand-RCCA PKE scheme in the random
oracle model. Recently, Wang et al. [31] introduced the first receiver-anonymous
Rand-RCCA PKE, solving the open problem raised by Prabhakaran and Ro-
sulek in [28]. The state-of-art Rand-RCCA PKE scheme can be found in the
work of Faonio et al. [17]. Other publicly-verifiable Rand-RCCA PKE schemes
were presented by Chase et al. [10] and Libert et al. [25]. As far as we know, our
design for the verify-then-decrypt protocol cannot be easily instantiated with the
schemes in [16,28,31]. The reason is that for all these schemes the decryption
procedures have a “verification step” that depends on the encrypted message.

1 This notion is sometimes called verifiability, however, we prefer to use the term
“auditability” to avoid confusion with the verifiability of the ciphertexts property.

4

2 Preliminaries

For space reasons, we give the basic preliminaries and notations in the full version
[18]. Calligraphic letters denote the sets, while capital letters denote the lists
(they are represented as ordered tuples). Given n lists Li, i ∈ [n], and an element
x, we define the following operations: (i) Count(x, Li) returns the number of times
the value x appears in the list Li, (ii) Concat(L1, . . . , Ln) returns a list L as a
concatenation of the input lists, and L1 ⊆ L2 returns 1 if each element of L1 is
contained in the list L2, or 0 otherwise.

Re-randomizable PKE. A re-randomizable PKE (Rand-PKE) scheme PKE
is a tuple of five algorithms PKE = (Setup,KGen,Enc,Dec,Rand) where the
first four represent a PKE, and the last one allows for re-randomization of the
ciphertexts. For space reasons, we formally define Rand-PKE and perfect re-
randomizability in the full version [18]. Here we give a short description of the
latter notion. The notion of perfect re-randomizability consists of three condi-
tions: (i) the re-randomization of a valid ciphertext and a fresh ciphertext (for the
same message) are equivalently distributed; (ii) the re-randomization procedure
maintains correctness, i.e. the randomized ciphertext and the original decrypt
to the same value, in particular, invalid ciphertexts keep being invalid; (iii) it
is hard to find a valid ciphertext that is not in the support of the encryption
scheme.

All-but-One tag-based NIZK systems. An ABO Perfect-Hiding tag-based
NIZK is a NIZK proof system with tags where there exists an algorithm ABOInit
which on input a tag τ creates a common reference string crs together with a
trapdoor such that for any tag τ ′ ̸= τ the trapdoor allows for zero-knowledge
while for τ the proof system is adaptive sound. In an ABO Perfect-Sound tag-
based NIZK, instead, for any tag τ ′ ̸= τ the proof system is adaptive sound,
while for τ the trapdoor allows for zero-knowledge.

The Universal Composability model. We review some basic notions of the
Universal Composability model of Canetti [7] and defer the definitions in the
full version [18]. In a nutshell, a protocol Π UC-realizes an ideal functionality
FF with setup assumption FG if there exists a PPT simulator S such that no
PT environment Z can distinguish an execution of the protocols Π which can
interact with the setup assumption FG from a joint execution of the simulator
S with the ideal functionality FF. The environment Z provides the inputs to
all the parties of the protocols, decides which party to corrupt (we consider
static corruption, where the environment decides the corrupted parties before
the protocol starts), and schedules the order of the messages in the networks.
When specifying an ideal functionality, we use the “delayed outputs” terminology
of Canetti [7]. Namely, when a functionality F sends a public delayed output M
to party P we mean that M is first sent to the simulator and then forwarded to
P only after acknowledgment by the simulator.

5

Experiment ExplRCCA
A,PKE,f (λ, b)

prm← Setup(1λ)
(pk, sk)←$ KGen(prm)

(M0, M1, z)← AODec
1 (pk)

C←$ Enc(pk, Mb)

z
′ ← AODec

2 (C, z)

b
′ ← A3(f(sk), z

′)

return b
′ ?= b

Oracle ODec(C)
M← Dec(sk, C)
if M ∈ {M0, M1} :

return ⋄
return M

Fig. 1. The lRCCA security experiment.

3 Definitions

Replayable CCA with Leakage Security. We rely on the following notion
of security for Rand-PKE. Our notion is similar to the RCCA security game,
with the difference that here A is given the additional leakage f(sk) just before
returning b′. A cannot invoke the decryption oracle after the leakage.

Definition 1 (RCCA with leakage Security). Consider the experiment
ExplRCCA

A,PKE,f in Fig. 1, with parameters λ, an adversary A := (A1,A2,A3), a
PKE scheme PKE, and a leakage function f . PKE is leakage-resilient replayable
CCA-secure (lRCCA-secure) w.r.t. f if for any PPT adversary A:

AdvlRCCA
A,PKE,f (λ) :=

∣∣2 Pr
[
ExplRCCA

A,PKE,f (λ, b) = 1, b←$ {0, 1}
]
− 1

∣∣ ∈ negl(λ).

The Mix-Net Ideal Functionality. The Mix-Net ideal functionality is de-
scribed in Fig. 2. We follow the definition of [32]. The Mix-Net accepts input
messages from the senders and waits for the acknowledgment from the mixers
to run. It outputs the input messages sorted according to a specific order.

The Verify-then-Decrypt Ideal Functionality. We give in Fig. 3 the formal
definition of this ideal functionality. Informally, the ideal functionality accepts
two lists of ciphertexts, such that the first list includes all the ciphertexts in the
second list, it first verifies that all the ciphertexts in the first list decrypt to valid
messages (i.e. no decryption error) and releases such output together with the
decryption from the second list. The functionality has parameter f that denotes
the leakage of secret information allowed to realize such functionality.

4 Mix-Net

We now describe our mixnet protocol that UC-realizes FMix with setup assump-
tions FVtDec and Fcrs. We start by giving the definition of Sumcheck-Admissible

6

Functionality FMix

The functionality has n sender parties PSi , m mixer parties PMi .

Input. Upon activation on message (INPUT, sid, M) from PSi (or the adversary
if PSi is corrupted), if i ∈ LS,sid ignore the message else register the index
i in the list of the senders LS,sid and register the message M in the list LI,sid
of the input messages. Notify the adversary that PSi has sent an input.

Mix. Upon activation on message (MIX, sid) from PMi (or the adversary if
PMi is corrupted), register the index i in the list of the mixers Lmix,sid and
notify the adversary.

Delivery. Upon activation on message (DELIVER, sid) from the adversary S
If |Lmix,sid| = m and |LS,sid| = n then send a public delayed output Msid ←
Sort(LI,sid) to all the mixer parties.

Fig. 2. UC ideal functionality for MixNet.

relation with respect to a PKE. In this definition we abstract the necessary prop-
erty for the zero-knowledge proof system used by the mixers in the protocol.

Definition 2 (Sumcheck-Admissible Relation w.r.t. PKE). Let PKE be a
public-key encryption scheme with public space PK and the ciphertext space being
a subset of CT . For any λ, any prm ∈ Setup(1λ), let Rprm

ck : (PK×CT 2n)×{0, 1}∗
be an NP-relation. We parse an instance of Rprm

ck as x = (pk, L1, L2) where
Lj = (Cj

i)i∈[n] for j ∈ {1, 2}. Rck is Sumcheck-Admissible w.r.t. PKE if:

(Sumcheck) For any (pk, sk) ←$ KGen(prm) and for any x := (pk, L1, L2) we
have that if x ∈ L(Rck) and ∀j, i : Dec(sk, Cj

i) ̸= ⊥ then
∑

i Dec(sk, C1
i) −

Dec(sk, C2
i)=0.

(Re-Randomization Witness) For any (pk, sk) ←$ KGen(prm) and for any
x := (pk, L1, L2) such that there exists (ri)i∈[n] where ∀i ∈ [n],∃j ∈ [n] :
C2

i = Rand(pk, C1
j ; ri) we have that (x, (ri)i∈[n]) ∈ Rck.

Building Blocks. Let PKE be a Rand-PKE scheme, let f be any efficiently-
computable function and let Rck be any Sumcheck-Admissible relation w.r.t.
PKE. The building blocks for our Mix-Net are:

1. A Rand-PKE scheme PKE that is lRCCA-secure w.r.t. f (cfr. Definition 1).
2. An All-but-One Perfect-Sound tag-based NIZK (cfr. Section 2) NIZKmx :=

(Initmx,Pmx,Vmx) for proving membership in Rck, with tag space [m].
3. An All-but-One Perfect-Hiding tag-based NIZK NIZKsd = (Initsd,Psd,Vsd) for

knowledge of the plaintext, i.e. a NIZK for the relationRmsg := {(pk, C), (M, r) :
C = Enc(pk, M; r)}, with tag space [n]. In particular, a weaker notion of ex-
tractability that guarantees that the message M is extracted is sufficient.

4. An ideal functionality FPKE,f
VtDec , as defined in Fig. 3.

7

Functionality FPKE,f
VtDec

The ideal functionality has as parameters a public-key encryption scheme
PKE := (Setup, KGen, Enc, Dec), an efficiently-computable function f and (im-
plicit) group parameters prm ∈ Setup(1λ). The functionality interacts with m
parties Pi and with an adversary S.

Public Key. Upon message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk)
is not in the database sample (pk, sk) ←$ KGen(prm) and store the tuple
(sid, pk, sk) in the database. Send (KEY, sid, pk) to Pi.

Verify then Decrypt. Upon message (VTDEC, sid, CV , CD) from party Pi:
– If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
– Check that a tuple (sid, CV , CD, I) where I ⊆ [m] exists in the database;

if so, update I including the index i, otherwise create the new entry
(sid, CV , CD, {i}) in the database.

If |I| = m and CD ⊆ CV then:
– Send (sid, f(sk)) to the adversary S.
– Parse CV as (CV

i)i∈[|CV |] and CD as (CD
i)i∈[|CD|]

– Compute b ∈ {0, 1}|CV | such that for any i, bi = 1 iff Dec(sk, CV
i) ̸= ⊥.

– If ∃i : bi = 0 set Mo := (), else compute Mo := (Dec(sk, CD
i))i∈[|CD|], send

a public delayed output (VTDEC, sid, b, Mo) to the parties Pi for i ∈ [m],

Fig. 3. UC ideal functionality for Verify-then-Decrypt.

5. An ideal functionality for the common reference string (see Fig. 4) of the
above NIZKs. In particular, the functionality initializes a CRS crsmx for
NIZKmx, and an additional CRS crssd for NIZKsd.

Finally, we assume parties have access to point-to-point authenticated channels.

Protocol Description. To simplify the exposition, we describe in this section
the case of a single invocation, i.e. the protocol is run only once with a single,
fixed session identifier sid; in Fig. 5 we describe in detail the protocol for the
general case of a multi-session execution. At the first activation of the protocol,
both the mixer parties and the sender parties receive from FVtDec the public key
pk for the scheme PKE and the CRSs from FCRS. At submission phase, each
sender PSi

encrypts their input message Mi by computing Ci ←$ Enc(pk, Mi),
and attaches a NIZK proof of knowledge πi

sd of the plaintext, using i as tag.
Finally, the party PSi

broadcasts their message (Ci, π
i
sd). After all sender par-

ties have produced their ciphertexts, the mixers, one by one, shuffle their input
lists and forward to the next mixer their output lists. In particular, the party
PMi produces a random permutation of the input list of ciphertexts Li−1 (L0
is the list of ciphertexts from the senders) by re-randomizing each ciphertext
in the list and then permuting the whole list, thus computing a new list Li.
Additionally, the mixer computes a NIZK proof of membership πi

mx with tag
i, for the instance (pk, Li−1, Li) being in the sumcheck-admissible relation, be-

8

Functionality F Init
CRS

The functionality interacts with n parties Pi and an adversary S and has pa-
rameters a PPT algorithm Init that outputs obliviously sampleable common-
reference string and an (implicit) public parameter prm.

Initialization. Upon activation, sample crs←$ Init(prm) and store it.
Public Value. Upon activation on message CRS from Pi, send crs to Pi.

Fig. 4. UC ideal functionality for Common Reference String.

cause of the re-randomization witness property of Definition 2, the mixer holds
a valid witness for such an instance. After this phase, the mixers are ready for
the verification: the mixers invoke the Verify-then-Decrypt functionality FVtDec
to (i) verify that each list seen so far is made up only of valid ciphertexts and (ii)
decrypt the ciphertexts contained in the final list. Finally publishes the list of
the messages received by FVtDec, sorted according to some common deterministic
criterion, e.g. the lexicographical order.

Theorem 1. For any arbitrary leakage function f , if PKE is lRCCA-secure
w.r.t. f , NIZKmx is ABO Perfect Sound, NIZKsd is ABO Perfect Hiding, then
the protocol described in Fig. 5 UC-realizes the functionality FMix, described in
Fig. 2, with setup assumptions FPKE,f

VtDec and Fcrs.

Proof. We now prove the existence of a simulator S, and we show that no PPT
environment Z can distinguish an interaction with the real protocol from an in-
teraction with S and the ideal functionality FMix (the ideal world), i.e. the distri-
bution (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ) is indistinguishable from IdealZ,FMix,S(λ).
In our proof, we give a sequence of hybrid experiments in which the (FVtDec,Fcrs)-
hybrid world is progressively modified until reaching an experiment that is iden-
tically distributed to the ideal world. In what follows, we indicate with h∗ the
index of the first honest mixer. For label ∈ {in,hide}, we introduce the set Ψlabel
consisting of tuples (x, y). We define the functions ψlabel and ψ−1

label associated
with the corresponding set:

ψlabel(x) :=
{
y if (x, y) ∈ Ψlabel

x otherwise
ψ−1

label(y) :=
{
x if (x, y) ∈ Ψlabel

y otherwise

Informally, the pair of functions ψin, ψ
−1
in helps the hybrids to keep track of

the ciphertexts sent by the honest senders while they are mixed by the first
h∗ − 1 mixers, while the pair of functions ψhide, ψ

−1
hide helps to keep track of

the ciphertexts output by the first honest mixer while they are mixed by the
remaining mixers in the chain. We recall that in the protocol the mixers PMi

,
for i ∈ [m], send a message which includes a list Li of ciphertexts. Whenever it
is convenient we parse Li as (Ci,j)j∈[n]. Let Invalid be the event that, during

9

Protocol ΠMix

Input. Upon activation on message (INPUT, sid, M), PSi computes
C←$ Enc(pk, M), and πsd ←$ Psd(crssd, i, (pk, C), (M, r)). Broadcasts (sid, i, C, πsd).

Mix. Upon activation, the party PMi , depending on its state, does as follow:

– If it is the first activation with message (MIX, sid) from the environment
sends the message (KEY, sid) to FVtDec and return.

– If the message (KEY, sid, pk), the messages (sid, i, C, πsd) for all senders and
the messages (sid, Lj , πj

mx) for all mixers with index j ≤ i−1 were received:
1. Samples a permutation ζi

2. Reads the pair message (Li−1, πi
mx) sent by the party PMi−1 (or simply

reads L0 if this is the first mixer party)
3. Shuffles and re-randomizes the list of ciphertexts: produces the new

list Li = (C′
ζi(j))j∈[n] where C′

j ← Rand(pk, Ci−1; rj) and rj uniformly
random string.

4. Computes the sumcheck proof for the two lists of ciphertexts πi
mx ←$

Pmx(crsmx, (pk, L1, L2), (rj)j∈[n])
5. Sends to all the mixers (sid, Li, πi

mx).
– If the message (sid, Lm, πm

mx) was received, checks that all the mixer proofs
πi

mx, for i ∈ [m] accept, else abort.
– Computes L := Concat(L1, . . . , Lm) and sends (VtDEC, sid, L, Lm) to FVtDec
– If the message (sid, b, Mo) from FVtDec was received, if ∃i : bi = 0 then

returns ⊥, else computes and returns Lo := Sort(Mo)

Fig. 5. Our protocol ΠMix.

the interaction of Z with the simulator/protocol, there exist i ∈ [m], j ∈ [n] such
that Dec(sk, Ci,j) = ⊥ or Vf(crsmx, (pk, Li−1, Li), πi

mx) = 0 (namely, πi
mx does not

verify). Clearly, when the event Invalid occurs, the protocol aborts.

Hybrid H0. This first hybrid is equivalent to (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ).

Hybrid H1. In this hybrid, we change the way crsmx is generated. We run
(crsmx, tps) ←$ ABOInit(prm, h∗). Also, the proof πh∗

mx of the first honest mixer
is simulated. H1 is indistinguishable from H0 because of the ABO Composable
Perfect Zero-Knowledge property of the NIZK.

Hybrid H2. The first honest mixer PMh∗ , rather than re-randomizing the ci-
phertexts received in input, decrypts and re-encrypts all the ciphertexts. If the
decryption fails for some ciphertext Ci, PMh∗ re-randomizes this “invalid” cipher-
text and continues. H2 is indistinguishable from H1 because PKE is perfectly
re-randomizable: because of the tightness of the decryption property, we have
that ∀j, if Dec(sk, Ch∗−1,j) = Mh∗−1,j ̸= ⊥ then Ch∗,j ∈ Enc(pk, Mh∗−1,j) with
overwhelming probability; also, by the indistinguishability property, the distri-
bution of the re-randomized ciphertext Rand(pk, Ch∗−1,j) and a fresh encryption
Enc(pk, Mh∗−1,j) are statistically close.

10

Hybrid H3. Here we introduce the set Ψhide and we populate it with the pairs
(Mh∗−1,i, Hi)i∈[n], where H1, . . . , Hn are distinct and sampled at random from the
message space M. When we simulate the ideal functionality FVtDec, we output
ψ−1

hide(M) for all successfully decrypted messages M. The only event that can distin-
guish the two hybrids is the event that ¬Invalid and ∃j, j′ : Dec(sk, Cm,j) = Hj′ .
However, H1, . . . , Hn are not in the view of Z, thus the probability of such event
is at most n2

|M| . H3 and H2 are statistically indistinguishable.

Hybrid H4. In this hybrid, rather than re-encrypting the same messages, the
first honest mixer re-encrypts the fresh and uncorrelated messages H1, . . . , Hn

(used to populate Ψhide). Specifically, PMh∗ samples a random permutation ζh∗

and computes the list Lh∗ := (Ch∗,j)j∈[n], with Ch∗,ζh∗ (j) ←$ Enc(pk, ψhide(Mh∗−1,j)).

Lemma 1. Hybrids H3 and H4 are computationally indistinguishable.

Proof. We use a hybrid argument. Let H3,i be the hybrid game in which the
first honest mixer computes the list Lh∗ := (Ch∗,j)j∈[n] as:

Ch∗,ζh∗ (j) :=
{

Enc(pk, ψhide(Mh∗−1,j)) if j ≤ i
Enc(pk, Mh∗−1,j) if j > i

In particular, it holds that H3 ≡ H3,0 and H4 ≡ H3,n. We prove that ∀i ∈ [n]
the hybrid H3,i−1 is computationally indistinguishable from H3,i, reducing to
the lRCCA-security of the scheme PKE. Consider the following adversary against
the lRCCA-security experiment.

Adversary B(pk) with oracle access to ODec(·).
– Simulate H3,i−1, in particular, when the environment instructs a cor-

rupted mixer to send the message (KEY, sid) simulate the ideal func-
tionality FVtDec sending back the answer (KEY, sid, pk).

– When it is time to compute the list of the first honest mixer Lh∗ ,
namely, when the mixer PMh∗ is activated by the environment and
has received for all j ∈ [n] the messages (sid, j, C, πsd) from the senders
and the messages (sid, Lj , π

j
mx) from all the mixers with index j ≤

h∗ − 1, first decrypt all the ciphertexts received so far using ODec(·).
Let Mh∗−1,i be the decryption of the ciphertext Ch∗−1,i. If Mh∗−1,i = ⊥
then output a random bit, else send the pair of messages (Mh∗−1,i, Hi)
to the lRCCA challenger, thus receiving a challenge ciphertext C∗.

– Populate the list Lh∗ by setting Cζh∗ (i) ← C∗, and computing all the
other ciphertexts as described in H3,i−1. Continue the simulation as
the hybrid does.

– When all the mixers have sent the message (VtDEC, L, Lm), to FVtDec,
check that all the mixer proofs accept, otherwise abort the simulation
and output a random bit. Then decrypt all the ciphertexts in L by
sending queries to the guarded decryption oracle, i,e. send the query
Ci′,j , receiving back the message Mi′,j ∈ M ∪ {⋄,⊥}. If Mi′,j = ⊥,
abort and output a random bit. If Mi′,j = ⋄, then set Mi′,j := Mh∗−1,i.

11

Simulate the leakage from FVtDec through the leakage received by the
lRCCA security experiment: in particular, the reduction loses access
to the guarded decryption oracle, receives the value f(sk) and sends
the message (sid,b, {Mm,j}j∈[n]) as required by the protocol.

– Finally, forward the bit returned by Z.
First we notice that when the guarded decryption oracle returns a message Mi′,j =
⋄ then the reduction can safely return Mh∗−1,i. In fact, the ciphertext would
decrypt to either Hi or to Mh∗−1,i, however by the change introduced in H3, we
have that Mh∗−1,i = ψ−1

hide(Hi) and Mh∗−1,i = ψ−1
hide(Mh∗−1,i).

It is easy to see that when the challenge bit b of the experiment is equal
to 0, the view of Z is identically distributed to the view in H3,j−1, while if the
challenge bit is 1, the view of Z is identically distributed to the one in H3,j . Thus
|Pr[H3,j−1(λ) = 1]− Pr[H3,j(λ) = 1]| ≤ AdvlRCCA

B,PKE,f (λ).

Hybrid H5. Let Vm := (Mm,j)j∈[n] (resp. Vh∗ := (Mh∗,j)j∈[n]) be the list of
decrypted ciphertexts output by the last mixer PMm

(resp. by the first honest
mixer PMh∗). In the hybrid H5 the simulation aborts if ¬Invalid and Vm ̸= Vh∗ .

Lemma 2. Hybrids H4 and H5 are computationally indistinguishable.

Proof. Since |Vm| = |Vh∗ | and the messages H1, . . . , Hn are distinct, the event
Vh∗ ̸= Vm holds if and only if there exists an index j ∈ [n] such that Count(Hj , Vm) ̸=
1. Let H4,i be the same as H4 but the simulation aborts if ¬Invalid and
∃j ∈ [i] : Count(Hj , Vm) ̸= 1. Clearly, H4,0 ≡ H4 and H4,n ≡ H5. Let Badi

be the event that (¬Invalid ∧ Count(Hi, Vm) ̸= 1). It is easy to check that:

|Pr[H4,i−1(λ) = 1]− Pr[H4,i(λ) = 1]| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the

event above.
Adversary B(pk) with oracle access to ODec(·).

1. Simulate H5; in particular, when the environment instructs a corrupted
mixer to send the message (KEY, sid) simulate the ideal functionality
FVtDec sending back the answer (KEY, sid, pk). (Thus embedding the
public key from the challenger in the simulation.)

2. When it is time to compute the list of the first honest mixer Lh∗ ,
namely, when the mixer PMh∗ is activated by the environment and has
received the messages (sid, i, C, πsd) for all senders and the messages
(sid, Lj , π

j
mx) for all mixers with index j ≤ h∗ − 1, first decrypt all the

ciphertexts received so far using the guarded decryption oracle. If there
is a decryption error, output a random bit b′.

3. Sample H(0), H(1) ←$ M and send the pair of messages (H(0), H(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗. Set
the list Lh∗ = (Ch∗,j)j∈[n] as follow:

Ch∗,ζh∗ (j) :=
{

Enc(pk, Mh∗−1,j) if j ̸= i
C∗ else

12

where recall that ζh∗ is the random permutation used by the h∗-th
mixer. Continue the simulation as the hybrid does.

4. When all the mixer have sent the message (VtDEC, L, Lm), to FVtDec,
decrypt all of the ciphertexts in L by sending queries to the guarded
decryption oracle, namely, send the query Ci′,j for all i′ > h∗ and all
j ∈ [n], receiving back as answer Mi′,j ∈M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a
random bit b′.

5. Let C ← Count(⋄, Vm), if C = 1 then abort the simulation and output
a random bit b′.

6. From now one we can assume that ¬Invalid and C ̸= 1; Compute

M← (C − 1)−1 ·

 ∑
j∈[n],Mm,j ̸=⋄

Mm,j −
∑

j ̸=ζh∗ (i)

Mh∗,j

 . (1)

Output b′ s.t. M = H(b′).

First, we notice that the simulation B provides to the environment Z is perfect,
indeed, independently of the challenge bit, the message H(b) is distributed identi-
cally to Hj . Thus the probability that Badi happens in the reduction is the same
as the probability the event happens in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Cm,j) = H(1−b); notice that the message
H(1−b) is independent of the view of the environment Z, thus the probability of
Wrong is at most n/|M|. Moreover, we have Badi ≡ ¬Abort ∧ ¬Wrong because,
by definition of ¬Wrong, all the ciphertexts that decrypt to ⋄ in Lm are indeed an
encryption of H(b); thus, assuming the event holds, C ̸= 1 iff Count(H(b), Vm) ̸= 1.
The probability of guessing the challenge bit when B aborts is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi]− n

|M| (2)

We now compute the probability that b = b′ conditioned on Badi. First notice
that ¬Invalid implies that the ciphertexts in the lists Lh∗ , . . . , Lm decrypt cor-
rectly and that the proofs πj

mx for j > h∗ verify. Thus by applying the sumcheck-
admissibility w.r.t. PKE of the relation Rmx and by the ABO perfect soundness
of NIZKmx we have:∑

j∈[n]

Dec(sk, Ch∗,j)−
∑

j∈[n]

Dec(sk, Cm,j) = 0.

If we condition on ¬Wrong then:H(b) +
∑

j ̸=ζh∗ (j∗)

Mh∗,j

−
C · H(b) +

∑
j∈[n],Mm,j ̸=⋄

Mm,j

 = 0.

13

By solving the above equation for H(b), we obtain M = H(b), therefore B guesses
the challenge bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong.

Hybrid H6. Here we modify the decryption phase. When for all j ∈ [m] the
mixer has sent (VtDEC, sid, L, Lm) to FVtDec, the hybrid simulates the answer of
the ideal functionality sending the message (sid,b,M ′o) where b is computed as
defined by the ideal functionality FVtDec and M ′o is the empty list () if Invalid
occurs; else, if all the messages in L correctly decrypt and the mixer proofs
are valid, compute M ′o ← (Mh∗−1,ζo(j))j∈[n], where ζo is an uniformly random
permutation. Notice that H6 does not use the map ψ−1

hide at decryption phase.
We show that this hybrid and the previous one are equivalently distributed. First,
by the change introduced in the previous hybrid, if the hybrid does not abort
then Vm = Vh∗−1. Moreover, the two sets below are equivalently distributed:

{(Mh∗−1,j , Hj) : j ∈ [n]} ≡ {(Mh∗−1,j , Hζo(j) : j ∈ [n])}

because the messages H1, . . . , Hn are uniformly distributed.

Hybrid H7. Similarly to what done in H3, in this hybrid we introduce the set
Ψin, and we populate it with the pairs (Mi, M̃i)i≤[n], where the messages Mi are
the inputs of the honest senders, and the messages M̃i are distinct and sampled
uniformly at random from the message space M. When we simulate the ideal
functionality FVtDec, in case all the ciphertexts decrypts, we output the list Mo :=
(Mo,i)i, where Mo,ζo(i) ← ψ−1

in (Mh∗−1,i). We notice that if Vh∗−1 ∩MH ̸= ∅, the
map ψ−1

in would modify the returned value; however, since the messages M̃i are
not in the view of Z, there is a probability of at most n2

|M| that this event happens
and that Z distinguishes H6 from H7.

Hybrid H8. In this hybrid, we encrypt the simulated (honest) sender inputs M̃j

instead of the (honest) sender inputs Mj to populate the list L0. The proof that
this hybrid and the previous one are computationally indistinguishable follows
by the lRCCA security of PKE and the zero-knowledge of NIZKsd. The proof
follows along the same line of the proof for H5, the details can be found in the
full version [18].

We now introduce the latest two hybrids that ensure that none of the inputs
of the honest senders is duplicated or discarded: we start by introducing a check
on malicious senders, while in H10 we ensure that no malicious mixer can dupli-
cate or discard the honest inputs.

Hybrid H9. Let MH be the set of simulated messages {M̃i}i≤[n] for the honest
sender parties and let V0 be the decryption of the list of ciphertexts received by
the first mixer. If ¬Invalid and a message M ∈MH appears more than once in
the list V0 then the simulation aborts. The analysis of this hybrid is very similar
to the analysis in Lemma 2, and we therefore defer it to the full version [18].

Hybrid H10. Recall that Vh∗ := (Mh∗,j)j∈[n] is the list of decrypted ciphertexts
output by the first honest mixer PMh∗ . In the hybrid H10 the simulation aborts

14

if ¬Invalid and ∃i ∈ [n] such that Count(M̃i, Vh∗−1) ̸= 1, i.e., some of the
simulated honest inputs do not appear or appear more than once, encrypted, in
the list received in input by the first honest mixer. With this check we ensure
that none of the inputs of the honest senders has been discarded or duplicated
by the (malicious) mixers. The proof is given in the full version [18] since it is
similar to the proof of Lemma 1.

Simulator S.

Initialization. Simulate the ideal functionality Fcrs by sampling crsmx in ABO
Perfect Sound mode on the tag h∗, while crssd is honestly generated with
Init(1λ). Also, simulate FVtDec by a sampling key pair (pk, sk)←$ KGen(prm).
Populate the setMH of the simulated honest inputs, by sampling uniformly
random (and distinct) messages from the message space M.

Honest Senders. On activation of the honest sender PSi
, where i ∈ [n], sim-

ulate by executing the code of the honest sender on input the simulated
message M̃j chosen uniformly at random, without re-introduction, fromMH .

Extraction of the Inputs. Let Lh∗−1 be the list produced by the malicious
mixer PMh∗−1 . For any j ∈ [n], decrypt Mj ←$ Dec(sk, Ch∗−1,j) and if a
decryption error occurs, or some of the mixer proofs πj

mx is not valid, i.e. the
event Invalid occurs, abort the simulation. If Mj /∈ MH then submit it as
input to the ideal functionality FMix.

First Honest Mixer. Simulate by computing Lh∗ as a list of encryption of
random (distinct) messages H1, . . . , Hn, simulating the proof of mixing πh∗

mx.
Verification Phase. Receive from the ideal mixer functionality FMix the sorted

output (Mi)i∈[n]. Sample a random permutation ζo and populate the list of
outputs Mo := (Mo,i)i∈[n] with Mo,ζo(i) ← Mi.

We notice that there are some differences between H10 and the interaction
of S with the ideal functionality FMix. In particular, the hybrid defines the
function ψin by setting a mapping between the inputs of the honest senders and
the simulated ones, and, during the decryption phase, and uses ψ−1

in to revert this
change. S cannot explicitly set this mapping, because the inputs of the honest
senders are sent directly to the functionality and are unknown to S. However,
the simulator is implicitly defining the function ψin (and ψ−1

in) since during the
simulation chooses a simulated input M̃i for each honest sender and at decryption
phase outputs the messages coming from the sorted list (given in output by the
ideal functionality) which contains the inputs of the honest senders.

5 A concrete Mix-Net protocol from RCCA-PKE

As already mentioned, to instantiate the blue-print protocol defined in Fig. 2
we need two main components: (1) a Rand lRCCA PKE scheme PKE and (2) a
verify-then-decrypt protocol for such PKE.

15

5.1 Split PKE

We start by introducing the notion of Split Public-Key Encryption scheme. In-
formally, a Split PKE scheme is a special form of PKE scheme that extends and
builds upon another PKE scheme. For example, CCA-secure PKE schemes alá
Cramer-Shoup [12] can be seen as an extension of CPA-secure PKE schemes.
We give the formal definition in the following.

Definition 3 (Split PKE). A split PKE scheme PKE is a tuple of seven ran-
domized algorithms:

Setup(1λ) : upon input the security parameter 1λ produces public parameters
prm, which include the description of the message (M) and two ciphertext
spaces (C1, C2).

KGenA(prm) : upon input the parameters prm, outputs a key pair (pkA, skA).
KGenB(prm, pkA) : upon inputs the parameters prm and a previously generated

public key pkA, outputs a key pair (pkB , skB).
EncA(pkA, M; r) : upon inputs a public key pkA, a message M ∈M, and random-

ness r, outputs a ciphertext CA ∈ CA.
EncB(pkA, pkB , C; r) : upon inputs a pair of public keys (pkA, pkB), a ciphertext

C ∈ CA, and some randomness r, outputs a ciphertext CB ∈ CB.
DecA(pkA, skA, C) : upon inputs a secret key skA and a ciphertext C ∈ CA, outputs

a message M ∈M or an error symbol ⊥.
DecB(pkA, pkB , skA, skB , C) : upon inputs secret keys skA, skB and a ciphertext

C ∈ CB, outputs a message M ∈M or an error symbol ⊥.

Moreover, we say that a split PKE scheme PKE splits on a PKE scheme PKEA :=
(KGenA,EncA,DecA) defined over message spaceM and ciphertext space CA and
we say that a split PKE scheme PKE forms a PKE PKE := (KGen,Enc,Dec)
defined over message space M and ciphertext space CB where KGen(prm) is
the algorithm that first runs pkA, skA ←$ KGenA(prm), then runs pkB , skB ←$
KGenB(prm, pkA) and sets pk := (pkA, pkB), sk := (skA, skB), where Enc(pk, M) is
the algorithm that outputs EncB(pkA, pkB ,EncA(pkA, M; r); r) and Dec := DecB.

The correctness property is straightforward: a split PKE is correct if it forms a
PKE that is correct in the standard sense. Our definition is general enough to
capture a large class of schemes. We first note that any PKE scheme is trivially
split: it suffices that EncB on input C outputs C, and DecB runs DecA. A more
natural (and less trivial) example is the above-cited Cramer-Shoup.

In this paper, we will focus on PKE schemes that are Re-Randomizable and
Verifiable. Since, as we noted above, any PKE can be parsed as a Split PKE,
Re-Randomizability is captured by an additional algorithm Rand(pk, C; r) that
takes as input a ciphertext C and outputs a new ciphertext Ĉ.

As for the verifiability property, instead, there are three possible levels: (i)
both the secret keys are required to verify a ciphertext, or (ii) only skA is needed,
or (iii) no secret key is required at all. We refer to the third one as the public
setting, while the other two are different flavors of a private/designated-verifier
setting. We give the definition of (ii) in what follows.

16

Definition 4 (verifiable split PKE). A verifiable split PKE is a split PKE,
as defined above, with an additional algorithm Vf(pk, skB , C) that takes as input
the public key pk, the secret key skB and a ciphertext C ∈ CB and outputs 1
whenever DecB(pk, sk, C) ̸= ⊥, otherwise outputs 0 for invalid ciphertexts.

5.2 A protocol for Verify-then-Decrypt for verifiable split PKE

Functionality FPKE
Dec

The ideal functionality has as parameters a public-key encryption scheme
PKE := (KGen, Enc, Dec) and (implicit) public parameters prm. The function-
ality interacts with m parties Pi and with an adversary S.

Public Key. Upon activation on message (KEY, sid) from a party Pi, i ∈ [m],
if (sid, pk, sk) is not in the database sample (pk, sk)←$ KGen(prm) and store
the tuple (sid, pk, sk) in the database and send (KEY, sid, pk) to Pi.

Decryption. Upon activation on (DECRYPT, sid, C) from party Pi, i ∈ [m]:
– If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
– Check that a tuple (sid, C, Mo, I), where I ⊆ [m], exists in the database; if

so, update I including the index i. Else, parse C as (Ci)i and compute the
list Mo := (Dec(sk, Ci))i∈[|C|], and create the new entry (sid, C, Mo, {i}) in
the database.

– If |I| equals m, then send a public delayed output (DECRYPT, sid, Mo) to
the parties Pi for i ∈ [m].

Fig. 6. UC ideal functionality for (n-out-n Threshold) Key-Generation and Decryption
of PKE

We realize the Verify-then-Decrypt ideal functionality (see Section 3) needed
to instantiate our Mix-Net protocol. Let PKE be a verifiable split PKE. We
define in Fig. 8 the protocol ΠVtDec that realizes FVtDec in the FCom-hybrid
model. Before doing that, we need to assume an extra property for our verifiable
split PKE, so we introduce the notion of linear key-homomorphism for a PKE.

Definition 5 (Linearly Key-Homomorphic PKE). We say that a PKE
PKE := (Setup,KGen,Enc,Dec) is linearly key-homomorphic if there exist PPT
algorithms GenPK,CheckPK and an integer s such that:

– KGen(prm), where prm contains the description of a group of order q, first
executes sk←$ Zs

q, and then produces the public key pk←$ GenPK(sk).
– GenPK is linearly homomorphic in the sense that for any sk1, sk2 ∈ Zs

q and
α ∈ Zs

q we have GenPK(α · sk1 + sk2) = α · GenPK(sk1) + GenPK(sk2).
– CheckPK on input the public key pk outputs a bit b to indicate if the public

key belongs on the subgroup of PK spanned by GenPK. Namely, for any pk
we have CheckPK(pk) = 1 iff pk ∈ Im(GenPK(prm, ·)).

17

Moreover, a split PKE PKE is linearly key-homomorphic it forms a linearly key-
homomorphic PKE and it splits to a key-homomorphic PKE.

It is not hard to verify that the key generation of a linearly key-homomorphic
split PKE can be seen as sampling two secret vectors skA ∈ Zs

q and skB ∈ Zs′

q

for s, s′ ∈ N and then applying two distinct homomorphisms GenPKA,GenPKB

to derive the public key.

Building Blocks. Let PKE be a split PKE that splits over PKEA, consider the
following building blocks:

1. An ideal functionality FPKEA

Dec for threshold decryption, as defined in Fig. 6,
of PKEA.

2. A single-sender multiple-receiver commitment ideal functionality FCom [8]
for strings, as defined in Fig. 7.

We describe the protocol in Fig. 8. At a high level, the protocol works as follows.
Each party Pi interacts with the ideal functionality FDec to get the public key pkA

and, after that, samples the pair of keys (pki
B , sk

i
B). The secret key is committed

through the ideal functionality FCom. After this step, the parties compute the
final key pkB as the sum of all their input public key shares. To verify the
ciphertexts CV , the parties reveal their secret key shares ski

B , verify that all the
keys are consistent, and locally verify the ciphertexts. Finally, to decrypt the
ciphertexts CD, the parties invoke FDec after checking that CD ⊆ CV .

Functionality FCom

The functionality interacts with n parties Pi and an adversary S.

Commitment. Upon activation on message (COMMIT, sid,Pi, s) from a party
Pi, where s ∈ {0, 1}∗, record the tuple (sid,Pi, s) and send the public
delayed output (RECEIPT, sid,Pi) to all the parties Pj , j ∈ [n], j ̸= i.

Opening. Upon activation on message (OPEN, sid,Pi) from a party Pi, i ∈
[n], proceed as follows: if the tuple (sid,Pi, s) was previously recoded, then
send the public delayed output (OPEN, sid,Pi, s) to all other parties Pj , j ∈
[n], j ̸= i. Otherwise halt.

Fig. 7. UC ideal functionality for (Single) Commitment.

Theorem 2. Let PKE be a verifiable split PKE that is linearly key-homomorphic,
let f be the leakage function that on input sk := (skA, skB) outputs skB. The pro-
tocol ΠPKE

VtDec described in Fig. 8 UC-realizes the functionality FPKE,f
VtDec described in

Fig. 3 with setup assumptions FPKEA

Dec and FCom.

18

Protocol ΠPKE
VtDec

The party Pi executes the following commands:

Public Key. Upon activation on message:
– (KEY, sid) from the environment, forward the message to FPKEA

Dec .
– (KEY, sid, pkA) from FPKEA

Dec proceed as below:
1. Sample ski

B ←$ Zs
q compute pki

B ← GenPK(ski
B).

2. Commit the secret key ski
B through the ideal functionality FCom, i.e.

send the message (COMMIT, sid, ski
B) to the functionality FCom.

– (RECEIPT, sid,Pj) from all j ∈ [m] broadcast (KEY, sid, i, pki
B).

When the parties have sent their public key shares, compute pkB :=
∑

i
pki

B

and abort if ∃i : CheckPK(pkA, pki
B) = 0 else output (KEY, sid, pk).

Verify then Decrypt. Upon activation on message:
– (VTDEC, sid, CV , CD) send (OPEN, sid,Pi) to FCom and broadcast

(VTDEC, sid, CV , CD) to the other parties.
– (OPEN, sid,Pj , skj

B) for all i ∈ [m] compute skB :=
∑

i
skj

B and assert that
GenPKB(skB) ?= pkB and that all parties broadcast the same lists CV and
CD. Parse CV as (Ci

V)i∈|CV |, compute ∀j : bj ← Vf(pk, skB , Cj
V).

If CD ̸⊆ CV or ∃i : bi = 0 return (DECRYPT, sid, b, ()) else send
(DECRYPT, sid, CD) to FPKEA

Dec and upon receipt of (DECRYPT, sid, Mo),
output (DECRYPT, sid, b, Mo)

Fig. 8. Our protocol ΠVtDec.

Proof. We now prove that there exists a simulator S such that no PPT environ-
ment Z can distinguish an interaction with the real protocol from an interaction
with S and the ideal functionality FVtDec.
Simulator S.

Public Key. S receives in input from Z the set of corrupted parties, and receives
from FVtDec the public key pk that is parsed as the tuple (pkA, pkB). S gets to
see the secret key shares of the corrupted parties when they send the message
(COMMIT, sid, ski

B). Let h∗ be the index of an honest party. S samples at
random the secret keys ski

B for all honest parties Pi, with i ̸= h∗, from
which can honestly compute the corresponding public keys through GenPK.
As for the h∗-th party, S checks if ∀j ̸= h∗ : CheckPK(pkA, pkj

B) = 1. If so it
computes directly the public key pkh∗

B := pkB −
∑

i̸=h∗ pki
B , else it samples

skh∗

B and computes the corresponding public key.
Verification. When all the parties have sent the message (OPEN, sid,Pi) to the

commitment functionality FCom, the simulator receives the leakage (sid, skB)
from FPKE,f

VtDec , it computes the secret key for party Ph∗ , i.e. it computes skh∗

B :=
skB −

∑
i̸=h∗ ski

B . From this point on, the simulation becomes trivial since
the simulator follows the protocol, and can easily verify and decrypt all the
ciphertexts by interacting with the ideal functionality FVtDec.

19

We observe that the inputs simulated for the honest parties Pi, for i ̸= h∗, are
perfectly simulated since S chooses uniformly at random the matrices and the
vectors for the secret keys ski

B . The public key for the h∗-th party is chosen
dependently of the message of the corrupted parties. In particular, if one of
the corrupted parties sends an invalid public key the h∗-th mixer follows the
specification of the protocol, thus the simulation is perfect; if all the public
keys are valid, the public key of h∗-th party is chosen as a function of the
previously chosen keys and the public key given in input to the simulator. This
is distributed identically to a real execution of the protocol: the only difference
is that S computes the random public key, while in the real execution the party
Ph∗ would choose at random their secret key and then project it to compute
the corresponding public key, but this difference is only syntactical. In the next
steps, the simulation is perfect since it proceeds exactly as in the real protocol.

5.3 Our concrete verifiable split PKE

In this section, we show that the Rand-PKE in [17] has all the properties needed
to instantiate our protocol ΠMix. In particular, in Fig. 9 we parse their PKE as
a split PKE, and we prove that the scheme is lRCCA w.r.t. the leakage function
f such that f(sk) := skB , and that the scheme is linearly key-homomorphic.

The schemes in [17] are proven secure under a decisional assumption that we
briefly introduce here. Let ℓ, k be two positive integers. We call Dℓ,k a matrix
distribution if it outputs (in probabilistic polynomial time, with overwhelming
probability) matrices in Zℓ×k

q .

Definition 6 (Matrix Decisional Diffie-Hellman Assumption in Gγ, [15]).
The Dℓ,k-MDDH assumption holds if for all non-uniform PPT adversaries A,

|Pr[A(G, [A]γ , [Aw]γ) = 1]− Pr[A(G, [A]γ , [z]γ) = 1]| ∈ negl(λ),

where the probability is taken over G := (q,G1,G2,GT , e,P1,P2)← GGen(1λ),
A←$Dℓ,k,w←$ Zk

q , [z]γ ←$ Gℓ
γ and the coin tosses of adversary A.

Theorem 3. PKE described in Fig. 9 is linearly key-homomorphic and lRCCA-
secure w.r.t. f such that f(sk) := skB under the Dk+1,k-MDDH assumption.

The proof of Theorem 3 is in the full version of this paper [18].

5.4 Putting all together

We can instantiate the ABO Perfect Hiding NIZK proof of membership NIZKmx
using Groth-Sahai proofs [14]. In particular, notice that the necessary tag-space
for NIZKmx is the set [m] which in typical scenarios is a constant small number
(for example 3 mixers). Thus we can instantiate the tag-based ABO Perfect
Hiding NIZKmx by considering an Init algorithm that samplesm different common
reference strings (crsi)i∈[m], the prover algorithm (resp. the verify algorithm) on
tag j invokes the GS prover algorithm (resp. verifier algorithm) with input the

20

KGenA(prm)
D←$ Dk; a ←$ Zk+1

q

D∗ ← (D⊤
, (a⊤D)⊤)⊤

skA ← a; pkA ← ([D]1, [a⊤D]1)
return (pkA, skA)

KGenB(prm, pkA)
E←$ Dk; f , g←$ Zk+1

q

F←$ Zk+1×k+1
q , G←$ Zk+1×k+2

q

skB ← (f , g, F, G)

pkB ← ([E]2, [f ⊤D]T , [F⊤D]1,

[g⊤E]T , [G⊤E]2, [GD∗]1, [FE]2)
return (pkB , skB)

DecA(pkA, skA, C = [x]1)
return [p]1 − [a⊤u]1

EncA(pkA, [M]1; r)
[u]1 ← [D]1 · r; [p]1 ← [a⊤D]1 · r + [M]1

return ([u⊤]1, [p]1)⊤

EncB(pk, C = [x]1; (r, s))
[v]2 ← [E]2 · s

[π1]T ← [f ⊤D]T · r + e([F⊤D]1 · r, [v]2)

[π2]T ← [g⊤E]T · s + e([x]1, [G⊤E]2 · s)
[π]T ← [π1]T + [π2]T

return ([x]1, [v]2, [π]T)

DecB(pk, sk, C = ([x]1, [v]2, [π]T))
[π1]T ← [(f + Fv)⊤u]T

[π2]T ← [(g + Gx)⊤v]T

if [π]T ̸= [π1]T + [π2]T return ⊥
else return DecA(skA, [x]1)

Rand(pk, C = ([x]1, [v]2, [π]T))
parse [x]1 as ([u⊤]1, [p]1)⊤

, r̂, ŝ←$ Zk
q

[x̂]1 ← [x]1 + [D∗]1 · r̂, [v̂]2 ← [v]2 + [E]2 · ŝ

[π̂1]T ← [f ⊤D]T · r̂ + e([F⊤D]1 · r̂, [v̂]2) + e([u]1, [FE]2 · ŝ)

[π̂2]T ← [g⊤E]T · ŝ + e([x̂]1, [G⊤E]2 · ŝ) + e([GD∗]1 · r̂, [v]2)
[π̂]← [π]T + [π̂1]T + [π̂2]T

return ([x̂]1, [v̂]2, [π̂]T)

Fig. 9. The Split RCCA-secure Scheme. prm include the description of a bilinear group.

common reference string crsj . We can instantiate the tag-based ABO Perfect
Sound NIZK NIZKsd using the technique presented in the full version of [17]. By
the universal composability theorem, once we compose the protocol ΠMix from
Fig. 5 and ΠVtDec from Fig. 8 we obtain a protocol with setup assumption FDec,
FCom and FCRS. The first ideal functionality can be implemented using classical
approaches (for example, see Benaloh [6]). Briefly, the mixers can compute the
shares of the public key [a⊤D]1 for KGenA as in Fig. 9 and prove the knowledge
of the secret key share a(i) where a =

∑
i a(i), to obtain UC security in the

malicious setting against static corruptions we can use an ABO Perfect Hiding
NIZK proof system for this step. At decryption time, the mixers can compute
a batched zero-knowledge proof of knowledge for “encryption of zero”, they can
use a NIZK proof of membership and, for UC security, it is sufficient for such
proofs to be adaptive perfect sound.

Auditability. For space reasons, we only sketch the auditability of our proto-
col. Roughly speaking, a protocol Π is auditable if there exists a PT algorithm

21

Audit that on input a transcript τ and an output y output 1 if and only if
the execution of the protocol that produces the transcript τ ends up with the
parties outputting y. We focus on the auditability of the protocol obtained com-
posing ΠMix from Fig. 5 and ΠVtDec from Fig. 8. The auditing algorithm, given
a transcript of ΠVtDec can reconstruct the secret key sk2 and can check that
Vf(sk2, Ci,j) = 1 for all i ∈ [m] and j ∈ [n] moreover it checks that all the NIZK
proofs verify. The checks performed guarantee that the protocol execution re-
sulting to the transcript did not abort, moreover, the auditability is guaranteed
by the correctness of the protocol. Finally, we notice that the protocol for FDec
sketched in the previous section is auditable (see [6]).

Efficiency. We analyze the efficiency of the protocol obtained composing ΠMix
and ΠVtDec, and we consider the most efficient instantiation of the scheme in [17]
based on SXDH assumption, i.e. for k = 1. We denote with E1, E2 (resp. ET)
the cost of a multiplication in groups G1 and G2 (resp. exponentiation in GT),
and with P the cost of computing a bilinear pairing. We give an intuition on
how much the protocol scales when a mixer is given N processors and may make
use of parallelism. We compare our results with the Mix-Net protocol of [17].
In our protocol ΠMix, each mixer re-randomizes a list of n ciphertexts which
requires n(7E1 + 7E2 + 2ET + 9P), and additionally computes a proof πmx for
the sumcheck relation Rmx which requires n additions in Zq and 6E1 + 8E2. Re-
randomization of a ciphertext in the list does not depend on other ciphertexts in
the list, so the parallel cost is n

N (7E1 +7E2 +2ET +9P). Additionally, the mixers
verify all the sumcheck NIZK proofs, which requires 3nm additions in G1 and
around 8 pairings. The parallel cost is 8m

N pairings plus logN (3n) m
N additions.

In the protocol ΠVtDec, each mixer sends a commitment of their secret key
share, which requires a UC-commitment for the elements of the secret key sk,
and receives commitments of secret key shares of the other m− 1 mixers. Addi-
tionally, the mixers derives the public key shares, using GenPK, this corresponds
to the cost of generating m times a key pki

B and requires m(4ET + 6E1 + 6E2).
Finally, each mixer needs to verify the n ·m ciphertexts produced in the protocol
execution of the last list which requires n(m− 1)(6E1 + 4E2 + 4P).

The protocol of [17] the public key shares pki
B (and not the secret ones) are

committed using an equivocable commitment and an ABO NIZK proof (which
can be seen as a UC-secure commitment against static corruption). The parallel
cost of re-randomize their ciphertexts is n

N 36E1 + 45E2 + 6ET + 5P , while the
cost of verifying the ciphertexts and decrypting the last list is equal to nm

N 36P +
m
N (2E1 + 50P). In comparison, our approach allows to save at least n

N (30E1 +
39E2 + 36P) cryptographic operations, where we recall that n is the number of
shuffled ciphertexts.

Acknowledgements

This work has been partially supported by the MESRI-BMBF French-German joint
project named PROPOLIS (ANR-20-CYAL-0004-01).

22

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: EUROCRYPT’98. pp. 437–447 (1998)

2. Abe, M.: Mix-networks on permutation networks. In: ASIACRYPT’99. pp. 258–273
(1999)

3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: PKC 2001. pp. 317–324 (2001)

4. Adida, B., Wikström, D.: Offline/online mixing. In: ICALP 2007. pp. 484–495
(2007)

5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: EUROCRYPT 2012. pp. 263–280 (2012)

6. Benaloh, J.: Simple verifiable elections. In: 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT 06). USENIX Association,
Vancouver, B.C. (Aug 2006), https://www.usenix.org/conference/evt-06/
simple-verifiable-elections

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145 (2001)

8. Canetti, R., Fischlin, M.: Universally composable commitments. In:
CRYPTO 2001. pp. 19–40 (2001)

9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
CRYPTO 2003. pp. 565–582 (2003)

10. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: EUROCRYPT 2012. pp. 281–300 (2012)

11. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (Feb 1981). https://doi.org/10.
1145/358549.358563, http://doi.acm.org/10.1145/358549.358563

12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: CRYPTO’98. pp. 13–25 (1998)

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: EUROCRYPT 2002. pp. 45–64 (2002)

14. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: PKC 2014. pp. 630–649
(2014)

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. In: CRYPTO 2013, Part II. pp. 129–147 (2013)

16. Faonio, A., Fiore, D.: Improving the efficiency of re-randomizable and replayable
CCA secure public key encryption. In: ACNS 20, Part I. pp. 271–291 (2020)

17. Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-
randomizable RCCA-secure public key encryption and its applications. In: ASI-
ACRYPT 2019, Part III. pp. 159–190 (2019)

18. Faonio, A., Russo, L.: Mix-nets from re-randomizable and replayable cca-secure
public-key encryption. Cryptology ePrint Archive, Paper 2022/856 (2022), https:
//eprint.iacr.org/2022/856, https://eprint.iacr.org/2022/856

19. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In:
CRYPTO 2001. pp. 368–387 (2001)

20. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: PKC 2003.
pp. 145–160 (2003)

21. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: TCC 2004. pp. 152–170 (2004)

23

https://www.usenix.org/conference/evt-06/simple-verifiable-elections
https://www.usenix.org/conference/evt-06/simple-verifiable-elections
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
http://doi.acm.org/10.1145/358549.358563
https://eprint.iacr.org/2022/856
https://eprint.iacr.org/2022/856
https://eprint.iacr.org/2022/856

22. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Journal of Cryp-
tology 23(4), 546–579 (2010)

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: EUROCRYPT 2008. pp. 379–396 (2008)

24. Jakobsson, M., M’Räıhi, D.: Mix-based electronic payments. In: SAC 1998. pp.
157–173 (1999)

25. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: PKC 2017, Part I. pp. 247–276 (2017)

26. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS
2001. pp. 116–125 (2001)

27. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: EUROCRYPT’93. pp. 248–259 (1994)

28. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In:
CRYPTO 2007. pp. 517–534 (2007)

29. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to
the implementation of a voting booth. In: EUROCRYPT’95. pp. 393–403 (1995)

30. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: AFRICACRYPT 10.
pp. 100–113 (2010)

31. Wang, Y., Chen, R., Yang, G., Huang, X., Wang, B., Yung, M.: Receiver-anonymity
in rerandomizable RCCA-secure cryptosystems resolved. In: CRYPTO 2021,
Part IV. pp. 270–300 (2021)

32. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: ASI-
ACRYPT 2005. pp. 273–292 (2005)

33. Wikström, D.: A commitment-consistent proof of a shuffle. In: ACISP 09. pp. 407–
421 (2009)

34. Wikström, D.: Verificatum (2010), https://www.verificatum.com

24

https://www.verificatum.com

	Mix-Nets from Re-Randomizable and Replayable CCA-secure Public-Key Encryption
	1 Introduction
	1.1 Our Contribution
	1.2 Related work

	2 Preliminaries
	3 Definitions
	4 Mix-Net
	5 A concrete Mix-Net protocol from RCCA-PKE
	5.1 Split PKE
	5.2 A protocol for Verify-then-Decrypt for verifiable split PKE
	5.3 Our concrete verifiable split PKE
	5.4 Putting all together

