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Mix-Nets from Re-Randomizable and Replayable CCA-secure Public-Key Encryption

Mix-nets are protocols that allow a set of senders to send messages anonymously. Faonio et al. (ASIACRYPT'19) showed how to instantiate mix-net protocols based on Public-Verifiable Re-randomizable Replayable CCA-secure (Rand-RCCA) PKE schemes. The bottleneck of their approach is that public-verifiable Rand-RCCA PKEs are less efficient than typical CPA-secure re-randomizable PKEs. In this paper, we revisit their mix-net protocol, showing how to get rid of the cumbersome public-verifiability property, and we give a more efficient instantiation for the mix-net protocol based on a (non publicly-verifiable) Rand-RCCA scheme. Additionally, we give a more careful security analysis of their mix-net protocol.

Introduction

Mixing Networks (aka mix-nets), originally proposed by Chaum [START_REF] Chaum | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF], are protocols that allow a set of senders to send messages anonymously. Typically, a mix-net is realized by a chain of mix-servers (aka mixers) that work as follows. Senders encrypt their messages and send the ciphertexts to the first mix-server in the chain; each mix-server applies a transformation to every ciphertext (e.g., partial decryption, or re-encryption), re-orders the ciphertexts according to a secret random permutation, and passes the new list to the next mix-server. The idea is that the list returned by the last mixer contains (either in clear or encrypted form, depending on the mixing approach) the messages sent by the senders in a randomly permuted order.

Mix-net protocols are fundamental building blocks to achieve privacy in a variety of application scenarios, including anonymous e-mail [START_REF] Chaum | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF], anonymous payments [START_REF] Jakobsson | Mix-based electronic payments[END_REF], and electronic voting [START_REF] Chaum | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF]. Informally, the basic security property of mix-nets asks that, when enough mix-servers are honest, the privacy of the senders of the messages (i.e., "who sent what") is preserved. In several applications, it is also desirable to achieve correctness even in the presence of an arbitrary number of dishonest mixers. This is for example fundamental in electronic voting where a dishonest mixer could replace all the ciphertexts with encrypted votes for the desired candidate.

Realizing Mix-Nets. A popular design paradigm of mixing networks are reencryption mix-nets [START_REF] Park | Efficient anonymous channel and all/nothing election scheme[END_REF] in which each server decrypts and freshly encrypts every ciphertext. Interestingly, such a transformation can be computed even publicly using re-randomizable encryption schemes (e.g., El Gamal). The process of rerandomizing and randomly permuting ciphertexts is typically called a shuffle. Although shuffle-based mix-nets achieve privacy when all the mix-servers behave honestly, they become insecure if one or more mixers do not follow the protocol. An elegant approach proposed to solve this problem is to let each mixer prove the correctness of its shuffle with a zero-knowledge proof. This idea inspired a long series of works on zero-knowledge shuffle arguments, e.g., [START_REF] Bayer | Efficient zero-knowledge argument for correctness of a shuffle[END_REF][START_REF] Furukawa | An efficient scheme for proving a shuffle[END_REF][START_REF] Groth | A verifiable secret shuffle of homomorphic encryptions[END_REF][START_REF] Groth | A verifiable secret shuffle of homomorphic encryptions[END_REF][START_REF] Neff | A verifiable secret shuffle and its application to e-voting[END_REF][START_REF] Terelius | Proofs of restricted shuffles[END_REF][START_REF] Wikström | A sender verifiable mix-net and a new proof of a shuffle[END_REF][START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF]. Notably, some recent works [START_REF] Bayer | Efficient zero-knowledge argument for correctness of a shuffle[END_REF][START_REF] Terelius | Proofs of restricted shuffles[END_REF][START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF] improved significantly over the early solutions, and they have been implemented and tested in real-world applications (elections) [START_REF] Wikström | Verificatum[END_REF]. In spite of the last results, zero-knowledge shuffle arguments are still a major source of inefficiency in mix-nets. This is especially a concern in applications like electronic voting where mix-nets need to be able to scale up to millions of senders (i.e., voters).

Mix-Nets from Replayable CCA Security. Most of the research effort for improving the efficiency of mix-nets has been so far devoted to improving the efficiency of shuffle arguments. A notable exception is the work of Faonio et al. [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. Typical mixing networks based on re-randomizable encryption schemes make use of public-key encryption (PKE) schemes that are secure against chosenplaintext attack (CPA), thus to obtain security against malicious mixers they leverage on the strong integrity property offered by the zero-knowledge shuffle arguments. The work of Faonio et al. instead showed that, by requiring stronger security properties from the re-randomizable encryption scheme, the NP-relation proved by the zero-knowledge shuffle arguments can be relaxed. This design enables faster and more efficient instantiations for the zero-knowledge proof but, on the other hand, requires more complex ciphertexts and thus a re-randomization procedure that is slower in comparison, for example, with the re-randomization procedure for ElGamal ciphertexts. More in detail, Faonio et al. propose a secure mixing network in the universal composability model of Canetti [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF] based on re-randomizable PKE schemes that are replayable-CCA (RCCA) secure (as defined by Canetti et al. [START_REF] Canetti | Relaxing chosen-ciphertext security[END_REF]) and publicly-verifiable. The first notion, namely RCCA security, is a relaxation of the standard notion of chosen-ciphertext security. This notion offers security against malleability attacks on the encrypted message (i.e. an attacker cannot transform a ciphertext of a message M to a ciphertext of a message M ′ ) but it still allows for malleability on the ciphertext (i.e. we can re-randomize the ciphertexts). The second requirement, namely public verifiability, requires that anyone in possession of the public key can check that a ciphertext decrypts correctly to a valid message, in other words, that the decryption procedure would not output an error message on input such a ciphertext. Unfortunately, this second requirement is the source of the major inefficiency in the mixing networks of Faonio et al.. For example, the re-randomization procedure of the state-of-art non publicly-verifiable re-randomizable PKE scheme with RCCA-security (Rand-RCCA PKE, in brief) in the random oracle model of Faonio and Fiore [START_REF] Faonio | Improving the efficiency of re-randomizable and replayable CCA secure public key encryption[END_REF] costs 19 exponentiations in a pairing-free cryptographic group, while the re-randomization procedure of the publicly-verifiable Rand-RCCA PKE of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] costs around 90 exponentiations plus 5 pairing operations.

Our Contribution

We revisit the mix-net design of Faonio et al. [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. Our contributions are twofold: we generalize the mix-net protocol of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] showing how to get rid of the cumbersome public verifiability property, and we give a more efficient instantiation for the mix-net protocol based on the (non publicly-verifiable) Rand-RCCA scheme of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. Our generalization of the mix-net protocol is based on two main ideas. The first idea is that, although the verification of the ciphertexts is still necessary, it is not critical for the verification to be public and non-interactive. In particular, we can replace the public verifiability property with a multi-party protocol (that we call a verify-then-decrypt protocol) that verifies the ciphertexts before the decryption phase and that decrypts the ciphertexts from the last mixer in the chain only if the verification succeeded. The second idea is that in the design of the verify-then-decrypt multiparty protocol we can trade efficiency for security. In particular, we could design a protocol that eventually leaks partial information about the secret key and, if the Rand-RCCA PKE scheme is resilient against this partial leakage of the secret key, we could still obtain a secure mix-net protocol. Along the way, we additionally (1) abstract the necessary properties required by the zero-knowledge proof that the mixers need to attach to their shuffled ciphertexts and (2) give a more careful security analysis of the mixnet protocol. More technically, we define the notion sumcheckadmissible relation w.r.t. the Rand-RCCA PKE scheme (see Definition 2) which is a property of an NP-relation that, informally, states that given two lists of ciphertexts if all the ciphertexts in the lists decrypt to valid messages, then the sum of the messages in the first list is equal to the sum of the messages in the second list. For example, a shuffle relation is a sumcheck-admissible relation, however simpler (and easier to realize in zero-knowledge) NP-relations over the lists of ciphertexts can be considered as well.

Our second contribution is a concrete instantiation of the mix-net protocol. The main idea of our concrete protocol is that many (R)CCA PKE schemes can be conceptually divided into two main components: the first "CPA-secure" component assures that the messages are kept private, while the second component assures the integrity of the ciphertexts, namely, the component can identify malformed ciphertexts and avoid dangerous decryptions through the CPA-secure component. Typical examples for such PKE schemes are those based on the Cramer-Shoup paradigm [START_REF] Cramer | Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption[END_REF]. Intuitively, these schemes should be secure even if the adversary gets to see the secret key associated with the second component under the constraint that once such leakage is available the adversary must lose access to the decryption oracle. This suggests a very efficient design for the verify-then-decrypt multiparty protocol: the mixers commit to secret shares of the secret key, once all the ciphertexts are available the mixers open to the secret key material for the second component, now any mixer can non-interactively and efficiently verify the validity of the ciphertexts. If all the ciphertexts are valid the mixers can engage a CPA-decryption multiparty protocol for the ciphertexts in the last list. As last contribution, we show that the Rand-RCCA PKE scheme of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] is leakage resilient (under the aforementioned notion) and we instantiate all the necessary parts.

A final remark, an important property of a mixnet protocol is the so-called auditability 1 , namely the capability of an external party to verify that a given transcript of a protocol execution has produced an alleged output. Intuitively, mixnets based on non-interactive zero-knowledge proofs of shuffle usually should have this property. However, one must be careful, because not only the shuffling phase, but the full mixnet protocol should be auditable. In particular, for our mixnet protocol to be auditable the verify-then-decrypt protocol should be auditable as well. We show that the latter protocol for our concrete instantiation is indeed auditable.

Related work

The notion of mix-net was introduced by Chaum [START_REF] Chaum | Untraceable electronic mail, return addresses, and digital pseudonyms[END_REF]. The use of zero-knowledge arguments to prove the correctness of a shuffle was first suggested by Sako and Kilian [START_REF] Sako | Receipt-free mix-type voting scheme -a practical solution to the implementation of a voting booth[END_REF]. The first proposals used expensive cut-and-choose-based zeroknowledge techniques [START_REF] Abe | Universally verifiable mix-net with verification work independent of the number of mix-servers[END_REF][START_REF] Sako | Receipt-free mix-type voting scheme -a practical solution to the implementation of a voting booth[END_REF]. Abe et al. removed the need for cut-and-choose by proposing a shuffle based on permutation networks [START_REF] Abe | Mix-networks on permutation networks[END_REF][START_REF] Abe | Remarks on mix-network based on permutation networks[END_REF]. Furukawa and Sako [START_REF] Furukawa | An efficient scheme for proving a shuffle[END_REF] and independently Neff [START_REF] Neff | A verifiable secret shuffle and its application to e-voting[END_REF] proposed the first zero-knowledge shuffle arguments for ElGamal ciphertexts that achieve a complexity linear in the number of ciphertexts. These results have been improved by Wikström [START_REF] Wikström | A commitment-consistent proof of a shuffle[END_REF], and later Terelius and Wikström [START_REF] Terelius | Proofs of restricted shuffles[END_REF], who proposed arguments where the proof generation can be split into an offline and online phase (based on an idea of Adida and Wikström [START_REF] Adida | Offline/online mixing[END_REF]). These protocols have been implemented in the Verificatum library [START_REF] Wikström | Verificatum[END_REF]. Groth and Ishai [START_REF] Groth | Sub-linear zero-knowledge argument for correctness of a shuffle[END_REF] proposed the first zero-knowledge shuffle argument with sublinear communication. Bayer and Groth gave a faster argument with sublinear communication in [START_REF] Bayer | Efficient zero-knowledge argument for correctness of a shuffle[END_REF]. The notion of Rand-RCCA PKE encryption was introduced by Groth [START_REF] Groth | Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems[END_REF]. The work of Prabhakaran and Rosulek [START_REF] Prabhakaran | Rerandomizable RCCA encryption[END_REF] showed the first Rand-RCCA PKE in the standard model. The work of Faonio and Fiore [START_REF] Faonio | Improving the efficiency of re-randomizable and replayable CCA secure public key encryption[END_REF] presented a practical Rand-RCCA PKE scheme in the random oracle model. Recently, Wang et al. [START_REF] Wang | Receiver-anonymity in rerandomizable RCCA-secure cryptosystems resolved[END_REF] introduced the first receiver-anonymous Rand-RCCA PKE, solving the open problem raised by Prabhakaran and Rosulek in [START_REF] Prabhakaran | Rerandomizable RCCA encryption[END_REF]. The state-of-art Rand-RCCA PKE scheme can be found in the work of Faonio et al. [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. Other publicly-verifiable Rand-RCCA PKE schemes were presented by Chase et al. [START_REF] Chase | Malleable proof systems and applications[END_REF] and Libert et al. [START_REF] Libert | Structure-preserving chosen-ciphertext security with shorter verifiable ciphertexts[END_REF]. As far as we know, our design for the verify-then-decrypt protocol cannot be easily instantiated with the schemes in [START_REF] Faonio | Improving the efficiency of re-randomizable and replayable CCA secure public key encryption[END_REF][START_REF] Prabhakaran | Rerandomizable RCCA encryption[END_REF][START_REF] Wang | Receiver-anonymity in rerandomizable RCCA-secure cryptosystems resolved[END_REF]. The reason is that for all these schemes the decryption procedures have a "verification step" that depends on the encrypted message.

Preliminaries

For space reasons, we give the basic preliminaries and notations in the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF]. Calligraphic letters denote the sets, while capital letters denote the lists (they are represented as ordered tuples). Given n lists L i , i ∈ [n], and an element x, we define the following operations: (i) Count(x, L i ) returns the number of times the value x appears in the list L i , (ii) Concat(L 1 , . . . , L n ) returns a list L as a concatenation of the input lists, and L 1 ⊆ L 2 returns 1 if each element of L 1 is contained in the list L 2 , or 0 otherwise.

Re-randomizable PKE.

A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms PKE = (Setup, KGen, Enc, Dec, Rand) where the first four represent a PKE, and the last one allows for re-randomization of the ciphertexts. For space reasons, we formally define Rand-PKE and perfect rerandomizability in the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF]. Here we give a short description of the latter notion. The notion of perfect re-randomizability consists of three conditions: (i) the re-randomization of a valid ciphertext and a fresh ciphertext (for the same message) are equivalently distributed; (ii) the re-randomization procedure maintains correctness, i.e. the randomized ciphertext and the original decrypt to the same value, in particular, invalid ciphertexts keep being invalid; (iii) it is hard to find a valid ciphertext that is not in the support of the encryption scheme.

All-but-One tag-based NIZK systems. An ABO Perfect-Hiding tag-based NIZK is a NIZK proof system with tags where there exists an algorithm ABOInit which on input a tag τ creates a common reference string crs together with a trapdoor such that for any tag τ ′ ̸ = τ the trapdoor allows for zero-knowledge while for τ the proof system is adaptive sound. In an ABO Perfect-Sound tagbased NIZK, instead, for any tag τ ′ ̸ = τ the proof system is adaptive sound, while for τ the trapdoor allows for zero-knowledge.

The Universal Composability model. We review some basic notions of the Universal Composability model of Canetti [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF] and defer the definitions in the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF]. In a nutshell, a protocol Π UC-realizes an ideal functionality F F with setup assumption F G if there exists a PPT simulator S such that no PT environment Z can distinguish an execution of the protocols Π which can interact with the setup assumption F G from a joint execution of the simulator S with the ideal functionality F F . The environment Z provides the inputs to all the parties of the protocols, decides which party to corrupt (we consider static corruption, where the environment decides the corrupted parties before the protocol starts), and schedules the order of the messages in the networks. When specifying an ideal functionality, we use the "delayed outputs" terminology of Canetti [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF]. Namely, when a functionality F sends a public delayed output M to party P we mean that M is first sent to the simulator and then forwarded to P only after acknowledgment by the simulator.

Experiment Exp lRCCA A,PKE,f (λ, b) prm ← Setup(1 λ ) (pk, sk) ←$ KGen(prm) (M0, M1, z) ← A ODec 1 (pk) C ←$ Enc(pk, M b ) z ′ ← A ODec 2 (C, z) b ′ ← A3(f (sk), z ′ ) return b ′ ? = b Oracle ODec(C) M ← Dec(sk, C) if M ∈ {M0, M1} : return ⋄ return M Fig. 1.
The lRCCA security experiment.

Definitions

Replayable CCA with Leakage Security. We rely on the following notion of security for Rand-PKE. Our notion is similar to the RCCA security game, with the difference that here A is given the additional leakage f (sk) just before returning b ′ . A cannot invoke the decryption oracle after the leakage.

Definition 1 (RCCA with leakage Security). Consider the experiment

Exp lRCCA A,PKE,f in Fig. 1, with parameters λ, an adversary A := (A 1 , A 2 , A 3 ), a PKE scheme PKE, and a leakage function f . PKE is leakage-resilient replayable CCA-secure (lRCCA-secure) w.r.t. f if for any PPT adversary A:

Adv lRCCA A,PKE,f (λ) := 2 Pr Exp lRCCA A,PKE,f (λ, b) = 1, b ←$ {0, 1} -1 ∈ negl(λ).
The Mix-Net Ideal Functionality. The Mix-Net ideal functionality is described in Fig. 2. We follow the definition of [START_REF] Wikström | A sender verifiable mix-net and a new proof of a shuffle[END_REF]. The Mix-Net accepts input messages from the senders and waits for the acknowledgment from the mixers to run. It outputs the input messages sorted according to a specific order.

The Verify-then-Decrypt Ideal Functionality. We give in Fig. 3 the formal definition of this ideal functionality. Informally, the ideal functionality accepts two lists of ciphertexts, such that the first list includes all the ciphertexts in the second list, it first verifies that all the ciphertexts in the first list decrypt to valid messages (i.e. no decryption error) and releases such output together with the decryption from the second list. The functionality has parameter f that denotes the leakage of secret information allowed to realize such functionality.

Functionality F Mix

The functionality has n sender parties PS i , m mixer parties PM i .

Input. Upon activation on message (INPUT, sid, M) from PS i (or the adversary relation with respect to a PKE. In this definition we abstract the necessary property for the zero-knowledge proof system used by the mixers in the protocol.

if PS i is corrupted), if i ∈ L S,

Definition 2 (Sumcheck-Admissible Relation w.r.t. PKE).

Let PKE be a public-key encryption scheme with public space PK and the ciphertext space being a subset of CT . For any λ, any prm ∈ Setup(1 λ ), let R prm ck : (PK×CT 2n )×{0, 1} * be an NP-relation. We parse an instance of R prm ck as x = (pk, L 1 , L 2 ) where

L j = (C j i ) i∈[n] for j ∈ {1, 2}. R ck is Sumcheck-Admissible w.r.t. PKE if:
(Sumcheck) For any (pk, sk) ←$ KGen(prm) and for any x := (pk, L 1 , L 2 ) we have that if x ∈ L(R ck ) and ∀j, i : Dec(sk,

C j i ) ̸ = ⊥ then i Dec(sk, C 1 i ) - Dec(sk, C 2 i ) = 0.
(Re-Randomization Witness) For any (pk, sk) ←$ KGen(prm) and for any

x := (pk, L 1 , L 2 ) such that there exists

(r i ) i∈[n] where ∀i ∈ [n], ∃j ∈ [n] : C 2 i = Rand(pk, C 1 j ; r i ) we have that (x, (r i ) i∈[n] ) ∈ R ck .
Building Blocks. Let PKE be a Rand-PKE scheme, let f be any efficientlycomputable function and let R ck be any Sumcheck-Admissible relation w.r.t. PKE. The building blocks for our Mix-Net are:

1. A Rand-PKE scheme PKE that is lRCCA-secure w.r.t. f (cfr. Definition 1).

2. An All-but-One Perfect-Sound tag-based NIZK (cfr. Section 2) NIZK mx := (Init mx , P mx , V mx ) for proving membership in R ck , with tag space [m]. 3. An All-but-One Perfect-Hiding tag-based NIZK NIZK sd = (Init sd , P sd , V sd ) for knowledge of the plaintext, i.e. a NIZK for the relation

R msg := {(pk, C), (M, r) : C = Enc(pk, M; r)}, with tag space [n].
In particular, a weaker notion of extractability that guarantees that the message M is extracted is sufficient.

An ideal functionality F PKE,f

VtDec , as defined in Fig. 3.

Functionality F PKE,f

VtDec

The ideal functionality has as parameters a public-key encryption scheme PKE := (Setup, KGen, Enc, Dec), an efficiently-computable function f and (implicit) group parameters prm ∈ Setup(1 λ ). The functionality interacts with m parties Pi and with an adversary S. 5. An ideal functionality for the common reference string (see Fig. 4) of the above NIZKs. In particular, the functionality initializes a CRS crs mx for NIZK mx , and an additional CRS crs sd for NIZK sd .

Public

V i ) i∈[|C V |] and CD as (C D i ) i∈[|C D |] -Compute b ∈ {0, 1} |C V | such that for any i, bi = 1 iff Dec(sk, C V i ) ̸ = ⊥. -If ∃i : bi = 0 set Mo := (), else compute Mo := (Dec(sk, C D i )) i∈[|C D |] , send a public delayed output (VTDEC, sid, b, Mo) to the parties Pi for i ∈ [m],
Finally, we assume parties have access to point-to-point authenticated channels.

Protocol Description. To simplify the exposition, we describe in this section the case of a single invocation, i.e. the protocol is run only once with a single, fixed session identifier sid; in Fig. 5 we describe in detail the protocol for the general case of a multi-session execution. At the first activation of the protocol, both the mixer parties and the sender parties receive from F VtDec the public key pk for the scheme PKE and the CRSs from F CRS . At submission phase, each sender P Si encrypts their input message M i by computing C i ←$ Enc(pk, M i ), and attaches a NIZK proof of knowledge π i sd of the plaintext, using i as tag. Finally, the party P Si broadcasts their message (C i , π i sd ). After all sender parties have produced their ciphertexts, the mixers, one by one, shuffle their input lists and forward to the next mixer their output lists. In particular, the party P Mi produces a random permutation of the input list of ciphertexts L i-1 (L 0 is the list of ciphertexts from the senders) by re-randomizing each ciphertext in the list and then permuting the whole list, thus computing a new list L i . Additionally, the mixer computes a NIZK proof of membership π i mx with tag i, for the instance (pk, L i-1 , L i ) being in the sumcheck-admissible relation, be-

Functionality F Init

CRS

The functionality interacts with n parties Pi and an adversary S and has parameters a PPT algorithm Init that outputs obliviously sampleable commonreference string and an (implicit) public parameter prm. cause of the re-randomization witness property of Definition 2, the mixer holds a valid witness for such an instance. After this phase, the mixers are ready for the verification: the mixers invoke the Verify-then-Decrypt functionality F VtDec to (i) verify that each list seen so far is made up only of valid ciphertexts and (ii) decrypt the ciphertexts contained in the final list. Finally publishes the list of the messages received by F VtDec , sorted according to some common deterministic criterion, e.g. the lexicographical order.

Theorem 1. For any arbitrary leakage function

f , if PKE is lRCCA-secure w.r.t. f , NIZK mx is ABO Perfect Sound,
NIZK sd is ABO Perfect Hiding, then the protocol described in Fig. 5 UC-realizes the functionality F Mix , described in Fig. 2, with setup assumptions F PKE,f VtDec and F crs .

Proof. We now prove the existence of a simulator S, and we show that no PPT environment Z can distinguish an interaction with the real protocol from an interaction with S and the ideal functionality F Mix (the ideal world), i.e. the distribution (F VtDec , F crs )-Hybrid Z,Π Mix ,A (λ) is indistinguishable from Ideal Z,F Mix ,S (λ).

In our proof, we give a sequence of hybrid experiments in which the (F VtDec , F crs )hybrid world is progressively modified until reaching an experiment that is identically distributed to the ideal world. In what follows, we indicate with h * the index of the first honest mixer. For label ∈ {in, hide}, we introduce the set Ψ label consisting of tuples (x, y). We define the functions ψ label and ψ -1 label associated with the corresponding set:

ψ label (x) := y if (x, y) ∈ Ψ label x otherwise ψ -1 label (y) := x if (x, y) ∈ Ψ label y otherwise
Informally, the pair of functions ψ in , ψ -1 in helps the hybrids to keep track of the ciphertexts sent by the honest senders while they are mixed by the first h * -1 mixers, while the pair of functions ψ hide , ψ -1 hide helps to keep track of the ciphertexts output by the first honest mixer while they are mixed by the remaining mixers in the chain. We recall that in the protocol the mixers P Mi , for i ∈ [m], send a message which includes a list L i of ciphertexts. Whenever it is convenient we parse L i as (C i,j ) j∈ [n] . Let Invalid be the event that, during Protocol Π Mix Input. Upon activation on message (INPUT, sid, M), PS i computes C ←$ Enc(pk, M), and π sd ←$ P sd (crs sd , i, (pk, C), (M, r)). Broadcasts (sid, i, C, π sd ).

Mix. Upon activation, the party PM i , depending on its state, does as follow:

-If it is the first activation with message (MIX, sid) from the environment sends the message (KEY, sid) to F VtDec and return. -If the message (KEY, sid, pk), the messages (sid, i, C, π sd ) for all senders and the messages (sid, Lj, π j mx ) for all mixers with index j ≤ i -1 were received: the interaction of Z with the simulator/protocol, there exist i ∈ [m], j ∈ [n] such that Dec(sk, C i,j ) = ⊥ or Vf(crs mx , (pk, L i-1 , L i ), π i mx ) = 0 (namely, π i mx does not verify). Clearly, when the event Invalid occurs, the protocol aborts.

Hybrid H 0 . This first hybrid is equivalent to (F VtDec , F crs )-Hybrid Z,Π Mix ,A (λ).

Hybrid H 1 . In this hybrid, we change the way crs mx is generated. We run (crs mx , tps) ←$ ABOInit(prm, h * ). Also, the proof π h * mx of the first honest mixer is simulated. H 1 is indistinguishable from H 0 because of the ABO Composable Perfect Zero-Knowledge property of the NIZK.

Hybrid H 2 . The first honest mixer P M h * , rather than re-randomizing the ciphertexts received in input, decrypts and re-encrypts all the ciphertexts. If the decryption fails for some ciphertext C i , P M h * re-randomizes this "invalid" ciphertext and continues. H 2 is indistinguishable from H 1 because PKE is perfectly re-randomizable: because of the tightness of the decryption property, we have that ∀j, if Dec(sk, C h * -1,j ) = M h * -1,j ̸ = ⊥ then C h * ,j ∈ Enc(pk, M h * -1,j ) with overwhelming probability; also, by the indistinguishability property, the distribution of the re-randomized ciphertext Rand(pk, C h * -1,j ) and a fresh encryption Enc(pk, M h * -1,j ) are statistically close.

Hybrid H 3 . Here we introduce the set Ψ hide and we populate it with the pairs (M h * -1,i , H i ) i∈ [n] , where H 1 , . . . , H n are distinct and sampled at random from the message space M. When we simulate the ideal functionality F VtDec , we output ψ -1 hide (M) for all successfully decrypted messages M. The only event that can distinguish the two hybrids is the event that ¬Invalid and ∃j, j ′ : Dec(sk, C m,j ) = H j ′ . However, H 1 , . . . , H n are not in the view of Z, thus the probability of such event is at most n 2

|M| . H 3 and H 2 are statistically indistinguishable. Hybrid H 4 . In this hybrid, rather than re-encrypting the same messages, the first honest mixer re-encrypts the fresh and uncorrelated messages H 1 , . . . , H n (used to populate Ψ hide ). Specifically, P M h * samples a random permutation ζ h * and computes the list Proof. We use a hybrid argument. Let H 3,i be the hybrid game in which the first honest mixer computes the list L h * := (C h * ,j ) j∈ [n] as:

L h * := (C h * ,j ) j∈[n] , with C h * ,ζ h * (j) ←$ Enc(pk, ψ hide (M h * -1,j )).
C h * ,ζ h * (j) := Enc(pk, ψ hide (M h * -1,j )) if j ≤ i Enc(pk, M h * -1,j ) if j > i
In particular, it holds that H 3 ≡ H 3,0 and H 4 ≡ H 3,n . We prove that ∀i ∈ [n] the hybrid H 3,i-1 is computationally indistinguishable from H 3,i , reducing to the lRCCA-security of the scheme PKE. Consider the following adversary against the lRCCA-security experiment.

Adversary B(pk) with oracle access to ODec(•).

-Simulate H 3,i-1 , in particular, when the environment instructs a corrupted mixer to send the message (KEY, sid) simulate the ideal functionality F VtDec sending back the answer (KEY, sid, pk). -When it is time to compute the list of the first honest mixer L h * , namely, when the mixer P M h * is activated by the environment and has received for all j ∈ [n] the messages (sid, j, C, π sd ) from the senders and the messages (sid, L j , π j mx ) from all the mixers with index j ≤ h * -1, first decrypt all the ciphertexts received so far using ODec(•). Let M h * -1,i be the decryption of the ciphertext C h * -1,i . If M h * -1,i = ⊥ then output a random bit, else send the pair of messages (M h * -1,i , H i ) to the lRCCA challenger, thus receiving a challenge ciphertext C * . -Populate the list L h * by setting C ζ h * (i) ← C * , and computing all the other ciphertexts as described in H 3,i-1 . Continue the simulation as the hybrid does. -When all the mixers have sent the message (VtDEC, L, L m ), to F VtDec , check that all the mixer proofs accept, otherwise abort the simulation and output a random bit. Then decrypt all the ciphertexts in L by sending queries to the guarded decryption oracle, i,e. send the query C i ′ ,j , receiving back the message M i ′ ,j ∈ M ∪ {⋄, ⊥}. If M i ′ ,j = ⊥, abort and output a random bit.

If M i ′ ,j = ⋄, then set M i ′ ,j := M h * -1,i .
Simulate the leakage from F VtDec through the leakage received by the lRCCA security experiment: in particular, the reduction loses access to the guarded decryption oracle, receives the value f (sk) and sends the message (sid, b, {M m,j } j∈ [n] ) as required by the protocol. -Finally, forward the bit returned by Z.

First we notice that when the guarded decryption oracle returns a message M i ′ ,j = ⋄ then the reduction can safely return M h * -1,i . In fact, the ciphertext would decrypt to either H i or to M h * -1,i , however by the change introduced in H 3 , we have that

M h * -1,i = ψ -1 hide (H i ) and M h * -1,i = ψ -1 hide (M h * -1,i
). It is easy to see that when the challenge bit b of the experiment is equal to 0, the view of Z is identically distributed to the view in H 3,j-1 , while if the challenge bit is 1, the view of Z is identically distributed to the one in H 3,j . Thus

| Pr[H 3,j-1 (λ) = 1] -Pr[H 3,j (λ) = 1]| ≤ Adv lRCCA B,PKE,f (λ) 
. 

Hybrid H 5 . Let V m := (M m,j ) j∈[n] (resp. V h * := (M h * ,j ) j∈[n] )
| Pr[H 4,i-1 (λ) = 1] -Pr[H 4,i (λ) = 1]| ≤ Pr[Bad i ].
In fact, the two hybrids are equivalent if the event Bad i does not happen.

We define an adversary to the lRCCA security of PKE that makes use of the event above.

Adversary B(pk) with oracle access to ODec(•). 1. Simulate H 5 ; in particular, when the environment instructs a corrupted mixer to send the message (KEY, sid) simulate the ideal functionality F VtDec sending back the answer (KEY, sid, pk). (Thus embedding the public key from the challenger in the simulation.) 2. When it is time to compute the list of the first honest mixer L h * , namely, when the mixer P M h * is activated by the environment and has received the messages (sid, i, C, π sd ) for all senders and the messages (sid, L j , π j mx ) for all mixers with index j ≤ h * -1, first decrypt all the ciphertexts received so far using the guarded decryption oracle. If there is a decryption error, output a random bit b ′ . 3. Sample H (0) , H (1) ←$ M and send the pair of messages (H (0) , H (1) ) to the lRCCA challenger, receiving back the challenge ciphertext C * . Set the list L h * = (C h * ,j ) j∈[n] as follow:

C h * ,ζ h * (j) := Enc(pk, M h * -1,j ) if j ̸ = i C * else
where recall that ζ h * is the random permutation used by the h * -th mixer. Continue the simulation as the hybrid does. 4. When all the mixer have sent the message (VtDEC, L, L m ), to F VtDec , decrypt all of the ciphertexts in L by sending queries to the guarded decryption oracle, namely, send the query C i ′ ,j for all i ′ > h * and all j ∈ [n], receiving back as answer M i ′ ,j ∈ M ∪ {⋄, ⊥}.

If the event Invalid holds, then abort the simulation and output a random bit b ′ . 5. Let C ← Count(⋄, V m ), if C = 1 then abort the simulation and output a random bit b ′ . 6. From now one we can assume that ¬Invalid and C ̸ = 1; Compute

M ← (C -1) -1 •   j∈[n],Mm,j ̸ =⋄ M m,j - j̸ =ζ h * (i) M h * ,j   . ( 1 
) Output b ′ s.t. M = H (b ′ ) .
First, we notice that the simulation B provides to the environment Z is perfect, indeed, independently of the challenge bit, the message H (b) is distributed identically to H j . Thus the probability that Bad i happens in the reduction is the same as the probability the event happens in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).
Let Wrong be the event that ∃j : Dec(sk, C m,j ) = H (1-b) ; notice that the message H (1-b) is independent of the view of the environment Z, thus the probability of Wrong is at most n/|M|. Moreover, we have Bad i ≡ ¬Abort ∧ ¬Wrong because, by definition of ¬Wrong, all the ciphertexts that decrypt to ⋄ in L m are indeed an encryption of H (b) ; thus, assuming the event holds,

C ̸ = 1 iff Count(H (b) , V m ) ̸ = 1.
The probability of guessing the challenge bit when B aborts is 1 2 , thus we have:

Pr[b = b ′ ] ≥ 1 2 Pr[¬Bad i ] + Pr[b = b ′ |Bad i ] Pr[Bad i ] -n |M| (2) 
We now compute the probability that b = b ′ conditioned on Bad i . First notice that ¬Invalid implies that the ciphertexts in the lists L h * , . . . , L m decrypt correctly and that the proofs π j mx for j > h * verify. Thus by applying the sumcheckadmissibility w.r.t. PKE of the relation R mx and by the ABO perfect soundness of NIZK mx we have:

j∈[n] Dec(sk, C h * ,j ) - j∈[n] Dec(sk, C m,j ) = 0.
If we condition on ¬Wrong then:

  H (b) + j̸ =ζ h * (j * ) M h * ,j   -   C • H (b) + j∈[n],Mm,j ̸ =⋄ M m,j   = 0.
By solving the above equation for H (b) , we obtain M = H (b) , therefore B guesses the challenge bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong.

Hybrid H 6 . Here we modify the decryption phase. When for all j ∈ [m] the mixer has sent (VtDEC, sid, L, L m ) to F VtDec , the hybrid simulates the answer of the ideal functionality sending the message (sid, b, M ′ o ) where b is computed as defined by the ideal functionality F VtDec and M ′ o is the empty list () if Invalid occurs; else, if all the messages in L correctly decrypt and the mixer proofs are valid, compute

M ′ o ← (M h * -1,ζo(j) ) j∈[n]
, where ζ o is an uniformly random permutation. Notice that H 6 does not use the map ψ -1 hide at decryption phase. We show that this hybrid and the previous one are equivalently distributed. First, by the change introduced in the previous hybrid, if the hybrid does not abort then V m = V h * -1 . Moreover, the two sets below are equivalently distributed:

{(M h * -1,j , H j ) : j ∈ [n]} ≡ {(M h * -1,j , H ζo(j) : j ∈ [n])}
because the messages H 1 , . . . , H n are uniformly distributed.

Hybrid H 7 .

Similarly to what done in H 3 , in this hybrid we introduce the set Ψ in , and we populate it with the pairs (M i , Mi ) i≤ [n] , where the messages M i are the inputs of the honest senders, and the messages Mi are distinct and sampled uniformly at random from the message space M. When we simulate the ideal functionality F VtDec , in case all the ciphertexts decrypts, we output the list

M o := (M o,i ) i , where M o,ζo(i) ← ψ -1 in (M h * -1,i ). We notice that if V h * -1 ∩ M H ̸ = ∅, the map ψ -1
in would modify the returned value; however, since the messages Mi are not in the view of Z, there is a probability of at most n 2 |M| that this event happens and that Z distinguishes H 6 from H 7 .

Hybrid H 8 . In this hybrid, we encrypt the simulated (honest) sender inputs Mj instead of the (honest) sender inputs M j to populate the list L 0 . The proof that this hybrid and the previous one are computationally indistinguishable follows by the lRCCA security of PKE and the zero-knowledge of NIZK sd . The proof follows along the same line of the proof for H 5 , the details can be found in the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF].

We now introduce the latest two hybrids that ensure that none of the inputs of the honest senders is duplicated or discarded: we start by introducing a check on malicious senders, while in H 10 we ensure that no malicious mixer can duplicate or discard the honest inputs. Hybrid H 9 . Let M H be the set of simulated messages { Mi } i≤ [n] for the honest sender parties and let V 0 be the decryption of the list of ciphertexts received by the first mixer. If ¬Invalid and a message M ∈ M H appears more than once in the list V 0 then the simulation aborts. The analysis of this hybrid is very similar to the analysis in Lemma 2, and we therefore defer it to the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF].

Hybrid H 10 . Recall that V h * := (M h * ,j ) j∈[n]
is the list of decrypted ciphertexts output by the first honest mixer P M h * . In the hybrid H 10 the simulation aborts if ¬Invalid and ∃i ∈ [n] such that Count( Mi , V h * -1 ) ̸ = 1, i.e., some of the simulated honest inputs do not appear or appear more than once, encrypted, in the list received in input by the first honest mixer. With this check we ensure that none of the inputs of the honest senders has been discarded or duplicated by the (malicious) mixers. The proof is given in the full version [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF] since it is similar to the proof of Lemma 1.

Simulator S.

Initialization. Simulate the ideal functionality F crs by sampling crs mx in ABO Perfect Sound mode on the tag h * , while crs sd is honestly generated with Init(1 λ ). Also, simulate F VtDec by a sampling key pair (pk, sk) ←$ KGen(prm).

Populate the set M H of the simulated honest inputs, by sampling uniformly random (and distinct) messages from the message space M. Honest Senders. On activation of the honest sender P Si , where i ∈ [n], simulate by executing the code of the honest sender on input the simulated message Mj chosen uniformly at random, without re-introduction, from M H . Extraction of the Inputs. Let L h * -1 be the list produced by the malicious mixer

P M h * -1 . For any j ∈ [n], decrypt M j ←$ Dec(sk, C h * -1,j
) and if a decryption error occurs, or some of the mixer proofs π j mx is not valid, i.e. the event Invalid occurs, abort the simulation. If M j / ∈ M H then submit it as input to the ideal functionality F Mix . First Honest Mixer. Simulate by computing L h * as a list of encryption of random (distinct) messages H 1 , . . . , H n , simulating the proof of mixing π h * mx . Verification Phase. Receive from the ideal mixer functionality F Mix the sorted output (M i ) i∈ [n] . Sample a random permutation ζ o and populate the list of outputs

M o := (M o,i ) i∈[n] with M o,ζo(i) ← M i .
We notice that there are some differences between H 10 and the interaction of S with the ideal functionality F Mix . In particular, the hybrid defines the function ψ in by setting a mapping between the inputs of the honest senders and the simulated ones, and, during the decryption phase, and uses ψ -1 in to revert this change. S cannot explicitly set this mapping, because the inputs of the honest senders are sent directly to the functionality and are unknown to S. However, the simulator is implicitly defining the function ψ in (and ψ -1 in ) since during the simulation chooses a simulated input Mi for each honest sender and at decryption phase outputs the messages coming from the sorted list (given in output by the ideal functionality) which contains the inputs of the honest senders.

A concrete Mix-Net protocol from RCCA-PKE

As already mentioned, to instantiate the blue-print protocol defined in Fig. 2 we need two main components: (1) a Rand lRCCA PKE scheme PKE and (2) a verify-then-decrypt protocol for such PKE.

Split PKE

We start by introducing the notion of Split Public-Key Encryption scheme. Informally, a Split PKE scheme is a special form of PKE scheme that extends and builds upon another PKE scheme. For example, CCA-secure PKE schemes alá Cramer-Shoup [START_REF] Cramer | A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack[END_REF] can be seen as an extension of CPA-secure PKE schemes. We give the formal definition in the following.

Definition 3 (Split PKE). A split PKE scheme PKE is a tuple of seven randomized algorithms:

Setup(1 λ ) : upon input the security parameter 1 λ produces public parameters prm, which include the description of the message (M) and two ciphertext spaces (C 1 , C 2 ). KGen A (prm) : upon input the parameters prm, outputs a key pair (pk A , sk A ). KGen B pk A ) : upon inputs the parameters prm and a previously generated public key pk A , outputs a key pair (pk B , sk B ). Enc A (pk A , M; r) : upon inputs a public key pk A , a message M ∈ M, and randomness r, outputs a ciphertext Moreover, we say that a split PKE scheme PKE splits on a PKE scheme PKE A := (KGen A , Enc A , Dec A ) defined over message space M and ciphertext space C A and we say that a split PKE scheme PKE forms a PKE PKE := (KGen, Enc, Dec) defined over message space M and ciphertext space C B where KGen(prm) is the algorithm that first runs pk A , sk A ←$ KGen A (prm), then runs pk B , sk B ←$ KGen B (prm, pk A ) and sets pk := (pk A , pk B ), sk := (sk A , sk B ), where Enc(pk, M) is the algorithm that outputs Enc B (pk A , pk B , Enc A (pk A , M; r); r) and Dec := Dec B .

C A ∈ C A . Enc B (pk A , pk B , C; r) : upon inputs a pair of public keys (pk A , pk B ), a ciphertext C ∈ C A ,
The correctness property is straightforward: a split PKE is correct if it forms a PKE that is correct in the standard sense. Our definition is general enough to capture a large class of schemes. We first note that any PKE scheme is trivially split: it suffices that Enc B on input C outputs C, and Dec B runs Dec A . A more natural (and less trivial) example is the above-cited Cramer-Shoup.

In this paper, we will focus on PKE schemes that are Re-Randomizable and Verifiable. Since, as we noted above, any PKE can be parsed as a Split PKE, Re-Randomizability is captured by an additional algorithm Rand(pk, C; r) that takes as input a ciphertext C and outputs a new ciphertext Ĉ.

As for the verifiability property, instead, there are three possible levels: (i) both the secret keys are required to verify a ciphertext, or (ii) only sk A is needed, or (iii) no secret key is required at all. We refer to the third one as the public setting, while the other two are different flavors of a private/designated-verifier setting. We give the definition of (ii) in what follows.

Definition 4 (verifiable split PKE).

A verifiable split PKE is a split PKE, as defined above, with an additional algorithm Vf(pk, sk B , C) that takes as input the public key pk, the secret key sk B and a ciphertext C ∈ C B and outputs 1 whenever Dec B (pk, sk, C) ̸ = ⊥, otherwise outputs 0 for invalid ciphertexts. We realize the Verify-then-Decrypt ideal functionality (see Section 3) needed to instantiate our Mix-Net protocol. Let PKE be a verifiable split PKE. We define in Fig. 8 the protocol Π VtDec that realizes F VtDec in the F Com -hybrid model. Before doing that, we need to assume an extra property for our verifiable split PKE, so we introduce the notion of linear key-homomorphism for a PKE.

Definition 5 (Linearly Key-Homomorphic PKE).

We say that a PKE PKE := (Setup, KGen, Enc, Dec) is linearly key-homomorphic if there exist PPT algorithms GenPK, CheckPK and an integer s such that:

-KGen(prm), where prm contains the description of a group of order q, first executes sk ←$ Z s q , and then produces the public key pk ←$ GenPK(sk). -GenPK is linearly homomorphic in the sense that for any sk 1 , sk 2 ∈ Z s q and α ∈ Z s q we have GenPK(α • sk 1 + sk 2 ) = α • GenPK(sk 1 ) + GenPK(sk 2 ). -CheckPK on input the public key pk outputs a bit b to indicate if the public key belongs on the subgroup of PK spanned by GenPK. Namely, for any pk we have CheckPK(pk) = 1 iff pk ∈ Im(GenPK(prm, •)).

Moreover, a split PKE PKE is linearly key-homomorphic it forms a linearly keyhomomorphic PKE and it splits to a key-homomorphic PKE.

It is not hard to verify that the key generation of a linearly key-homomorphic split PKE can be seen as sampling two secret vectors sk A ∈ Z s q and sk B ∈ Z s ′ q for s, s ′ ∈ N and then applying two distinct homomorphisms GenPK A , GenPK B to derive the public key.

Building Blocks. Let PKE be a split PKE that splits over PKE A , consider the following building blocks:

1. An ideal functionality F PKE A Dec for threshold decryption, as defined in Fig. 6, of PKE A . 2. A single-sender multiple-receiver commitment ideal functionality F Com [START_REF] Canetti | Universally composable commitments[END_REF] for strings, as defined in Fig. 7.

We describe the protocol in Fig. 8. At a high level, the protocol works as follows.

Each party P i interacts with the ideal functionality F Dec to get the public key pk A and, after that, samples the pair of keys (pk i B , sk i B ). The secret key is committed through the ideal functionality F Com . After this step, the parties compute the final key pk B as the sum of all their input public key shares. To verify the ciphertexts C V , the parties reveal their secret key shares sk i B , verify that all the keys are consistent, and locally verify the ciphertexts. Finally, to decrypt the ciphertexts C D , the parties invoke F Dec after checking that C D ⊆ C V .

Functionality F Com

The functionality interacts with n parties Pi and an adversary S.

Commitment. Upon activation on message (COMMIT, sid, Pi, s) from a party Pi, where s ∈ {0, 1} * , record the tuple (sid, Pi, s) and send the public delayed output (RECEIPT, sid, Pi) to all the parties Pj, j ∈ [n], j ̸ = i. Opening. Upon activation on message (OPEN, sid, Pi) from a party Pi, i ∈

[n], proceed as follows: if the tuple (sid, Pi, s) was previously recoded, then send the public delayed output (OPEN, sid, Pi, s) to all other parties Pj, j ∈

[n], j ̸ = i. Otherwise halt. Theorem 2. Let PKE be a verifiable split PKE that is linearly key-homomorphic, let f be the leakage function that on input sk := (sk A , sk B ) outputs sk B . The protocol Π PKE VtDec described in Fig. 8 UC-realizes the functionality F PKE,f VtDec described in Fig. 3 with setup assumptions F PKE A Dec and F Com .

We observe that the inputs simulated for the honest parties P i , for i ̸ = h * , are perfectly simulated since S chooses uniformly at random the matrices and the vectors for the secret keys sk i B . The public key for the h * -th party is chosen dependently of the message of the corrupted parties. In particular, if one of the corrupted parties sends an invalid public key the h * -th mixer follows the specification of the protocol, thus the simulation is perfect; if all the public keys are valid, the public key of h * -th party is chosen as a function of the previously chosen keys and the public key given in input to the simulator. This is distributed identically to a real execution of the protocol: the only difference is that S computes the random public key, while in the real execution the party P h * would choose at random their secret key and then project it to compute the corresponding public key, but this difference is only syntactical. In the next steps, the simulation is perfect since it proceeds exactly as in the real protocol.

Our concrete verifiable split PKE

In this section, we show that the Rand-PKE in [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] has all the properties needed to instantiate our protocol Π Mix . In particular, in Fig. 9 we parse their PKE as a split PKE, and we prove that the scheme is lRCCA w.r.t. the leakage function f such that f (sk) := sk B , and that the scheme is linearly key-homomorphic.

The schemes in [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] are proven secure under a decisional assumption that we briefly introduce here. Let ℓ, k be two positive integers. We call D ℓ,k a matrix distribution if it outputs (in probabilistic polynomial time, with overwhelming probability) matrices in Z ℓ×k q . Definition 6 (Matrix Decisional Diffie-Hellman Assumption in G γ , [START_REF] Escala | An algebraic framework for Diffie-Hellman assumptions[END_REF]).

The D ℓ,k -MDDH assumption holds if for all non-uniform PPT adversaries

A, |Pr[A(G, [A] γ , [Aw] γ ) = 1] -Pr[A(G, [A] γ , [z] γ ) = 1]| ∈ negl(λ),
where the probability is taken over G The proof of Theorem 3 is in the full version of this paper [START_REF] Faonio | Mix-nets from re-randomizable and replayable cca-secure public-key encryption[END_REF].

:= (q, G 1 , G 2 , G T , e, P 1 , P 2 ) ← GGen(1 λ ), A ←$D ℓ,k , w ←$ Z k q , [z] γ ←$ G ℓ γ and

Putting all together

We can instantiate the ABO Perfect Hiding NIZK proof of membership NIZK mx using Groth-Sahai proofs [START_REF] Escala | Fine-tuning Groth-Sahai proofs[END_REF]. In particular, notice that the necessary tag-space for NIZK mx is the set [m] which in typical scenarios is a constant small number (for example 3 mixers). Thus we can instantiate the tag-based ABO Perfect Hiding NIZK mx by considering an Init algorithm that samples m different common reference strings (crs i ) i∈[m] , the prover algorithm (resp. the verify algorithm) on tag j invokes the GS prover algorithm (resp. verifier algorithm) with input the 20 KGenA(prm) common reference string crs j . We can instantiate the tag-based ABO Perfect Sound NIZK NIZK sd using the technique presented in the full version of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. By the universal composability theorem, once we compose the protocol Π Mix from Fig. 5 and Π VtDec from Fig. 8 we obtain a protocol with setup assumption F Dec , F Com and F CRS . The first ideal functionality can be implemented using classical approaches (for example, see Benaloh [START_REF] Benaloh | Simple verifiable elections[END_REF]). Briefly, the mixers can compute the shares of the public key [a ⊤ D] 1 for KGen A as in Fig. 9 and prove the knowledge of the secret key share a (i) where a = i a (i) , to obtain UC security in the malicious setting against static corruptions we can use an ABO Perfect Hiding NIZK proof system for this step. At decryption time, the mixers can compute a batched zero-knowledge proof of knowledge for "encryption of zero", they can use a NIZK proof of membership and, for UC security, it is sufficient for such proofs to be adaptive perfect sound.

D ←$ D k ; a ←$ Z k+1 q D * ← (D ⊤ , (a ⊤ D) ⊤ ) ⊤ sk A ← a; pk A ← ([D]1, [a ⊤ D]1) return (pk A , sk A ) KGenB(prm, pk A ) E ←$ D k ; f , g ←$ Z k+1 q F ←$ Z k+1×k+1 q , G ←$ Z k+1×k+2 q sk B ← (f , g, F, G) pk B ← ([E]2, [f ⊤ D] T , [F ⊤ D]1, [g ⊤ E] T , [G ⊤ E]2, [GD * ]1, [FE]2) return (pk B , sk B ) DecA(pk A , sk A , C = [x]1) return [p]1 -[a ⊤ u]1 EncA(pk A , [M]1; r) [u] 1 ← [D]1 • r; [p] 1 ← [a ⊤ D]1 • r + [M]1 return ([u ⊤ ]1, [p]1) ⊤ EncB(pk, C = [x]1; (r, s)) [v] 2 ← [E]2 • s [π1] T ← [f ⊤ D] T • r + e([F ⊤ D]1 • r, [v]2) [π2] T ← [g ⊤ E] T • s + e([x]1, [G ⊤ E]2 • s) [π] T ← [π1] T + [π2] T return ([x]1, [v]2, [π] T ) DecB(pk, sk, C = ([x]1, [v]2, [π]T )) [π1] T ← [(f + Fv) ⊤ u] T [π2] T ← [(g + Gx) ⊤ v] T if [π] T ̸ = [π1] T + [π2] T return ⊥ else return Dec A (sk A , [x]1) Rand(pk, C = ([x]1, [v]2, [π]T )) parse [x]1 as ([u ⊤ ]1, [p]1) ⊤ , r, ŝ ←$ Z k q [x]1 ← [x]1 + [D * ]1 • r, [v]2 ← [v]2 + [E]2 • ŝ [π1] T ← [f ⊤ D] T • r + e([F ⊤ D]1 • r, [v]2) + e([u]1, [FE]2 • ŝ) [π2] T ← [g ⊤ E] T • ŝ + e([x]1, [G ⊤ E]2 • ŝ) + e([GD * ]1 • r, [v]
Auditability. For space reasons, we only sketch the auditability of our protocol. Roughly speaking, a protocol Π is auditable if there exists a PT algorithm Audit that on input a transcript τ and an output y output 1 if and only if the execution of the protocol that produces the transcript τ ends up with the parties outputting y. We focus on the auditability of the protocol obtained composing Π Mix from Fig. 5 and Π VtDec from Fig. 8. The auditing algorithm, given a transcript of Π VtDec can reconstruct the secret key sk 2 and can check that Vf(sk 2 , C i,j ) = 1 for all i ∈ [m] and j ∈ [n] moreover it checks that all the NIZK proofs verify. The checks performed guarantee that the protocol execution resulting to the transcript did not abort, moreover, the auditability is guaranteed by the correctness of the protocol. Finally, we notice that the protocol for F Dec sketched in the previous section is auditable (see [START_REF] Benaloh | Simple verifiable elections[END_REF]).

Efficiency. We analyze the efficiency of the protocol obtained composing Π Mix and Π VtDec , and we consider the most efficient instantiation of the scheme in [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] based on SXDH assumption, i.e. for k = 1. We denote with E 1 , E 2 (resp. E T ) the cost of a multiplication in groups G 1 and G 2 (resp. exponentiation in G T ), and with P the cost of computing a bilinear pairing. We give an intuition on how much the protocol scales when a mixer is given N processors and may make use of parallelism. We compare our results with the Mix-Net protocol of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF]. In our protocol Π Mix , each mixer re-randomizes a list of n ciphertexts which requires n(7E 1 + 7E 2 + 2E T + 9P ), and additionally computes a proof π mx for the sumcheck relation R mx which requires n additions in Z q and 6E 1 + 8E 2 . Rerandomization of a ciphertext in the list does not depend on other ciphertexts in the list, so the parallel cost is n N (7E 1 +7E 2 +2E T +9P ). Additionally, the mixers verify all the sumcheck NIZK proofs, which requires 3nm additions in G 1 and around 8 pairings. The parallel cost is 8m N pairings plus log N (3n) m N additions. In the protocol Π VtDec , each mixer sends a commitment of their secret key share, which requires a UC-commitment for the elements of the secret key sk, and receives commitments of secret key shares of the other m -1 mixers. Additionally, the mixers derives the public key shares, using GenPK, this corresponds to the cost of generating m times a key pk i B and requires m(4E T + 6E 1 + 6E 2 ). Finally, each mixer needs to verify the n • m ciphertexts produced in the protocol execution of the last list which requires n(m -1)(6E 1 + 4E 2 + 4P ).

The protocol of [START_REF] Faonio | Structure-preserving and rerandomizable RCCA-secure public key encryption and its applications[END_REF] the public key shares pk i B (and not the secret ones) are committed using an equivocable commitment and an ABO NIZK proof (which can be seen as a UC-secure commitment against static corruption). The parallel cost of re-randomize their ciphertexts is n N 36E 1 + 45E 2 + 6E T + 5P , while the cost of verifying the ciphertexts and decrypting the last list is equal to nm N 36P + m N (2E 1 + 50P ). In comparison, our approach allows to save at least n N (30E 1 + 39E 2 + 36P ) cryptographic operations, where we recall that n is the number of shuffled ciphertexts.
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  Upon activation, sample crs ←$ Init(prm) and store it. Public Value. Upon activation on message CRS from Pi, send crs to Pi.
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 4 Fig. 4. UC ideal functionality for Common Reference String.
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  and some randomness r, outputs a ciphertext C B ∈ C B . Dec A (pk A , sk A , C) : upon inputs a secret key sk A and a ciphertext C ∈ C A , outputs a message M ∈ M or an error symbol ⊥. Dec B (pk A , pk B , sk A , sk B , C) : upon inputs secret keys sk A , sk B and a ciphertext C ∈ C B , outputs a message M ∈ M or an error symbol ⊥.

5. 2 A

 2 protocol for Verify-then-Decrypt for verifiable split PKE Functionality F PKE Dec The ideal functionality has as parameters a public-key encryption scheme PKE := (KGen, Enc, Dec) and (implicit) public parameters prm. The functionality interacts with m parties Pi and with an adversary S. Public Key. Upon activation on message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk) is not in the database sample (pk, sk) ←$ KGen(prm) and store the tuple (sid, pk, sk) in the database and send (KEY, sid, pk) to Pi. Decryption. Upon activation on (DECRYPT, sid, C) from party Pi, i ∈ [m]: -If the tuple (sid, pk, sk) does not exist in the database, ignore the message. -Check that a tuple (sid, C, Mo, I), where I ⊆ [m], exists in the database; if so, update I including the index i. Else, parse C as (Ci)i and compute the list Mo := (Dec(sk, Ci)) i∈[|C|] , and create the new entry (sid, C, Mo, {i}) in the database. -If |I| equals m, then send a public delayed output (DECRYPT, sid, Mo) to the parties Pi for i ∈ [m].

Fig. 6 .

 6 Fig. 6. UC ideal functionality for (n-out-n Threshold) Key-Generation and Decryption of PKE
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 7 Fig. 7. UC ideal functionality for (Single) Commitment.
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 3 the coin tosses of adversary A. PKE described in Fig.9is linearly key-homomorphic and lRCCAsecure w.r.t. f such that f (sk) := sk B under the D k+1,k -MDDH assumption.
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 29 Fig. 9. The Split RCCA-secure Scheme. prm include the description of a bilinear group.

  Key. Upon message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk) is not in the database sample (pk, sk) ←$ KGen(prm) and store the tuple (sid, pk, sk) in the database. Send (KEY, sid, pk) to Pi. Verify then Decrypt. Upon message (VTDEC, sid, CV , CD) from party Pi:-If the tuple (sid, pk, sk) does not exist in the database, ignore the message.-Check that a tuple (sid, CV , CD, I) where I ⊆ [m] exists in the database; if so, update I including the index i, otherwise create the new entry (sid, CV , CD, {i}) in the database. If |I| = m and CD ⊆ CV then: -Send (sid, f (sk)) to the adversary S.

-Parse CV as (C

  1. Samples a permutation ζi 2. Reads the pair message (Li-1, π i mx ) sent by the party PM i-1 (or simply reads L0 if this is the first mixer party) 3. Shuffles and re-randomizes the list of ciphertexts: produces the new list Li = (C ′ ζ i (j) ) j∈[n] where C ′ j ← Rand(pk, Ci-1; rj) and rj uniformly random string. 4. Computes the sumcheck proof for the two lists of ciphertexts π i mx ←$ Pmx(crsmx, (pk, L1, L2), (rj) j∈[n]

  be the list of decrypted ciphertexts output by the last mixer P Mm (resp. by the first honest mixer P M h * ). In the hybrid H 5 the simulation aborts if ¬Invalid and V m ̸ = V h

* . Lemma 2. Hybrids H 4 and H 5 are computationally indistinguishable. Proof. Since |V m | = |V h * | and the messages H 1 , . . . , H n are distinct, the event V h * ̸ = V m holds if and only if there exists an index j ∈ [n] such that Count(H j , V m ) ̸ = 1. Let H 4,i be the same as H 4 but the simulation aborts if ¬Invalid and ∃j ∈ [i] : Count(H j , V m ) ̸ = 1. Clearly, H 4,0 ≡ H 4 and H 4,n ≡ H 5 . Let Bad i be the event that (¬Invalid ∧ Count(H i , V m ) ̸ = 1). It is easy to check that:

This notion is sometimes called verifiability, however, we prefer to use the term "auditability" to avoid confusion with the verifiability of the ciphertexts property.

Mix-NetWe now describe our mixnet protocol that UC-realizes F Mix with setup assumptions F VtDec and F crs . We start by giving the definition of Sumcheck-Admissible
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Protocol Π PKE

VtDec

The party Pi executes the following commands:

Public Key. Upon activation on message: -(KEY, sid) from the environment, forward the message to F PKE A Dec .

-(KEY, sid, pk A ) from F PKE A Dec proceed as below: Proof. We now prove that there exists a simulator S such that no PPT environment Z can distinguish an interaction with the real protocol from an interaction with S and the ideal functionality F VtDec .

Simulator S.

Public Key. S receives in input from Z the set of corrupted parties, and receives from F VtDec the public key pk that is parsed as the tuple (pk A , pk B ). S gets to see the secret key shares of the corrupted parties when they send the message (COMMIT, sid, sk i B ). Let h * be the index of an honest party. S samples at random the secret keys sk i B for all honest parties P i , with i ̸ = h * , from which can honestly compute the corresponding public keys through GenPK. As for the h * -th party, S checks if ∀j ̸ = h * : CheckPK(pk A , pk j B ) = 1. If so it computes directly the public key pk h * B := pk B -i̸ =h * pk i B , else it samples sk h * B and computes the corresponding public key. Verification. When all the parties have sent the message (OPEN, sid, P i ) to the commitment functionality F Com , the simulator receives the leakage (sid, sk B ) from F PKE,f VtDec , it computes the secret key for party P h * , i.e. it computes sk h * B := sk B -i̸ =h * sk i B . From this point on, the simulation becomes trivial since the simulator follows the protocol, and can easily verify and decrypt all the ciphertexts by interacting with the ideal functionality F VtDec .