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DEL PEZZO QUINTICS AS EQUIVARIANT

COMPACTIFICATIONS OF VECTOR GROUPS

ADRIEN DUBOULOZ, TAKASHI KISHIMOTO, AND PEDRO MONTERO

Abstract. We study faithful actions with a dense orbit of abelian unipotent groups on quintic del Pezzo
varieties over a field of characteristic zero. Such varieties are forms of linear sections of the Grassmannian
of planes in a 5-dimensional vector space. We characterize which smooth forms admit these types of actions
and show that in case of existence, the action is unique up to equivalence by automorphisms. We also give
a similar classification for mildly singular quintic del Pezzo threefolds and surfaces.

Introduction

Vector group varieties are defined by analogy to toric varieties as being varieties X endowed with an
effective action of an abelian unipotent group U ∼= Gn

a with a Zariski dense open orbit. For varieties defined
over a field of characteristic zero, the group U then embeds equivariantly as the open orbit, making X into
a partial equivariant completion of U. The study of such equivariant completions which are Fano varieties
was initiated by Hassett and Tschinkel in [21] with views towards Manin’s conjecture on the asymptotic
distribution of rational points of bounded height over number fields (see e.g. [9, 10]). Over algebraically
closed fields of characteristic zero, besides projective spaces of every dimension, many families of Fano
varieties and other Mori fibers spaces including for instance smooth projective quadrics, Grassmannians and
flag varieties are known to be vector group varieties, see e.g. [1, 3, 17, 18, 22, 31, 37].

Of particular interest in this context is the question of classification of possible equivalence classes of
structures of vector group variety up to isomorphisms on a given variety. Indeed, it was observed by Hassett
and Tschinkel [21] that in contrast to toric structures, vector group variety structures on Pn

C, n ≥ 2, are not
unique and that for n ≥ 6 there are even infinitely many equivalence classes of such structures. In contrast,
it is known that over algebraically closed fields of characteristic zero, Grassmannians other than projective
spaces [3] and smooth quadrics [37] admit a unique equivalence class of structure of vector group variety.
For Fano varieties of Picard rank one over the field of complex numbers, Fu and Hwang [15] gave a uniform
characterization of uniqueness of vector group variety structures in terms in the smoothness of the Variety
of Minimal Rational Tangents (VMRT) of a dominating family of minimal rational curves.

In this article, we consider the problem of existence and uniqueness of vector group variety structures on
smooth and mildly singular quintic del Pezzo varieties over an arbitrary field k of characteristic zero. By
definition, a smooth quintic del Pezzo variety is a smooth geometrically connected projective k-variety X
whose base extension Xk̄ = X ×Spec(k) Spec(k̄) to an algebraic closure k̄ of k has an ample invertible sheaf

L of degree 5 such that ω∨Xk̄

∼= L⊗(n−1). If n = 2 then Xk̄ is a del Pezzo surface of degree 5. On the other

hand, by [19], a smooth quintic del Pezzo k-variety X exists if and only if n ≤ 6 and furthermore, for each
n = 3, 4, 5, 6, Xk̄ is unique up to isomorphism, isomorphic to any smooth linear section of the Grassmannian
G(2, 5) ⊂ P9

k̄
of 2-dimensional vector subspaces of k̄⊕5. For n ≤ 3, the automorphism group of Xk̄ is either

finite if n = 2 or isomorphic to PGL2(k̄) if n = 3 (see e.g. [7, Proposition 7.1.10]). In particular, it cannot
contain any abelian unipotent subgroup defining a vector group variety structure on X . Over the field of
complex numbers, existence and uniqueness of vector group variety structures on the remaining varieties,
which are all Fano of Picard rank 1, has been settled affirmatively by Fu and Hwang as a consequence of a
series of articles [16, 17] devoted to the broader study using VMRT techniques of so-called Euler-symmetric
projective varieties.

Here, since we work over arbitrary fields k of characteristic zero, possibly non-closed, the actual question
becomes to determine and classify k-forms of vector group variety structures on del Pezzo quintics. Of course,
the non-existence of such structures after base extension to an algebraic closure is a clear obstruction for
existence of these structures over the given base field, But on the other hand, neither the existence nor its
combination with uniqueness up to equivalence after base extension is enough in general to conclude, say
by Galois descent arguments, the existence of such structures defined over the base field. For instance, a
smooth n-dimensional quadric in Pn+1

Q without Q-rational point does not admit any vector group variety

structure defined over Q, even though its base extension to Q̄ admits infinitely many such structures, which,
as a consequence of [37], are all equivalent. Our approach is thus by necessity different from that using
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VMRT techniques in [16, 17, 18], which, in particular, depend on the Cartan-Fubini analytic extension
theorem [24] that has no arguably straightforward counterpart over arbitrary fields. Instead we build on
elementary birational geometry of the Grassmannian G(2, 5), its linear Schubert sub-varieties and their
associated rational projections, a material which, over algebraically closed fields, goes back to a classical
article of Todd [41]. Our first main result is a classification of k-forms of vector group variety structures on
smooth del Pezzo quintics of dimension ≥ 4 which can be summarized as follows:

Theorem 1. For a smooth quintic del Pezzo k-variety Xn of dimension n ∈ {4, 5, 6}, the following hold:
1) If n = 6 then X6 admits a vector group variety structure if and only if it has a k-rational point. If so,

X6 is isomorphic to G(2, 5) ⊂ P9
k and it admits a unique vector group variety structure up to equivalence.

2) If n = 4, 5 then Xn is unique up to isomorphism, isomorphic to any smooth section of G(2, 5) ⊂ P9
k by

a linear subspace of codimension 6 − n. Furthermore, it admits precisely one vector group variety structure
up to equivalence.

In a second step, we apply the same methods to k-forms of vector group variety structures on mildly
singular del Pezzo quintic threefolds and surfaces. The case of quintic del Pezzo surfaces with canonical
singularities has already been fully settled by Derenthal and Loughran [12] who studied vector group variety
structures on del Pezzo surfaces with canonical singularities over arbitrary fields of characteristic zero. We
therefore mainly focus on the case of quintic del Pezzo threefolds with terminal singularities. We obtain the
following characterization, which says in particular that in contrast to smooth del Pezzo quintics of dimension
4 and 5 and canonical del Pezzo quintic surfaces which have no non-trivial k-forms for any field k, trinodal
del Pezzo quintics threefolds do in general have non-trivial k-forms:

Theorem 2. A quintic del Pezzo threefold X3 with terminal singularities admits a vector group variety
structure if and only if its base extension to k̄ has precisely three ordinary double points. In this case, the
vector group structure is unique up to isomorphism.

Furthermore, isomorphism classes of such threefolds are in one-to-one correspondence with PGL2(k)-orbits
of smooth 0-dimensional sub-schemes of P1

k of length three.

The article is organized as follows. In the first section we collect standard facts on Grassmannians and
basic properties of vector groups and their actions on varieties. Section two is devoted to a review of certain
classes of linear Schubert sub-varieties of the Grassmannian G(2, 5) and its smooth linear sections, and of
their associated rational linear projections. These preliminary results are then applied in the third and fourth
sections to derive the proofs of Theorem 1 and Theorem 2, respectively.
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1. Preliminaries

We work over a field k of characteristic zero, with a fixed algebraic closure k̄ and associated Galois group
Γ = Gal(k̄/k). We consider Γ as the profinite group lim

←
Gal(k′/k) endowed with the profinite topology, the

limit being taken over the directed set of finite Galois extension k ⊂ k′ of k, each group Gal(k′/k) being
endowed with the discrete topology. A k-variety is an integral k-scheme of finite type.

1.1. Notation and conventions. For vector bundles and projective bundles, we follow [20]. Namely, given
a quasi-coherent sheaf F on a scheme X , we let SymF be the symmetric algebra of F and we denote by
p : VX(F) = SpecX(Sym·F) → X the “vector bundle” over X associated to F and by

π : PX(F) = ProjX(SymF) ∼= (VX(F) \ 0X)/Gm,X → X,

where 0X is the zero section of p, its associated “projective bundle”. We denote by OPX(F)(1) the canonical
coherent invertible sheaf of OPX (F)-modules associated to SymF viewed as graded sheaf of modules over
itself with the degree shifted by 1. When E is a coherent locally free sheaf, VX(E) is a usual Zariski locally
trivial vector bundle of finite rank and PX(E) is its associated projective bundle of lines.

Given a quasi-coherent sheaf F on a scheme X and an integer d ≥ 0, we denote by ρ : GX(F , d) → X
the Grassmann bundle whose T -points, where f : T → X is any X-scheme, are equivalence classes of
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coherent locally free quotients E of f∗F of constant rank d, two such quotients being called equivalent
if the corresponding surjections q : f∗F → E and q′ : f∗F → E ′ have the same kernel, see e.g. [26].
We denote by ρ∗F → Q the universal coherent locally free quotient of constant rank d and refer the
kernel S of this surjection to as the universal subsheaf of ρ∗F so that we have the universal exact sequence
0 → S → ρ∗F → Q → 0. For a coherent locally free sheaf F of constant rank n ≥ d+1, there is a canonical
isomorphism GX(F , d) → GX(F∨, n− d) given on T -points by mapping a quotient q : f∗F → E with kernel
K to the quotient f∗F∨ → K∨. For d = 1, GX(F , d) ∼= PX(F) and the universal exact sequence coincides
under this isomorphism with the relative Euler exact sequence of PX(F)

0 → Ω1
PX(F)(1) := Ω1

PX(F) ⊗OPX(F)(1) → π∗F → OPX(F)(1) → 0.

1.2. Grassmannians. We summarize basic properties of Grassmannian varieties, see e.g. [28] and [43,
Chapters 3 and 4] for the details. For a k-vector space V of dimension n ≥ 2 and an integer 1 ≤ d ≤ n− 1,
the Grassmann bundle ρ : Gk(V

∨, d) → Spec(k) is the d(n− d)-dimensional Grassmannian whose geometric
points correspond to equivalence classes of d-dimensional quotients of V ∨

k̄
, equivalently to d-dimensional

k̄-vector subspaces E of Vk̄.

1.2.1. Tautological sheaves. We put V ∨
Gk(V ∨,d) = V ∨ ⊗k OGk(V ∨,d) and we write

0 → S = SGk(V ∨,d) → V ∨Gk(V ∨,d) → Q = QGk(V ∨,d) → 0

for the universal sequence of coherent locally free sheaves on Gk(V
∨, d). The sheaf of Kähler differential

Ω1
Gk(V ∨,d)/k is canonically isomorphic to Hom(Q,S) ∼= S ⊗ Q∨ and its determinant ωGk(V ∨,d) is canoni-

cally isomorphic to (detS)⊗n−d ⊗ (detQ∨)⊗d ∼= (detQ∨)⊗n. The k-vector spaces H0(Gk(V
∨, d),Q) and

H0(Gk(V
∨, d),S∨) are canonically isomorphic to V ∨ and V respectively, H1(Gk(V

∨, d),Ω1
Gk(V ∨,d)/k)

∼= k

and all other cohomology spaces of Q, Q∨, S, S∨ and Ω1
Gk(V ∨,d)/k are zero.

1.2.2. Plücker embedding and automorphisms. We denote by jP : Gk(V
∨, d) → Pk(Λ

dV ∨) the Plücker em-
bedding, that is, the closed immersion determined by the surjection ΛdV ∨

Gk(V ∨,d) → detQ induced by the

universal quotient homomorphism. Letting Autk(Pk(Λ
dV ∨),Gk(V

∨, d)) be the stabilizer of jP (Gk(V
∨, d))

in Autk(Pk(Λ
dV ∨)), it follows from [8] that the composition of the homomorphism of k-group schemes

(1.1) PGLk(V
∨) = Autk(Pk(V

∨)) → Autk(Pk(Λ
dV ∨),Gk(V

∨, d)), ϕ 7→ Λdϕ

with the restriction homomorphism Autk(Pk(Λ
dV ∨),Gk(V

∨, d)) → Autk(Gk(V
∨, d)) is a closed immersion,

which is an isomorphism when n 6= 2d (otherwise, its image is a k-subgroup scheme of index 2).

1.3. Vector groups and vector group varieties.

1.3.1. Vector groups. A vector k-group is an abelian unipotent algebraic k-group scheme. By [11, IV.2.4],
there is an equivalence between the category of finite dimensional k-vector spaces and the category of vec-
tor k-groups, given by the map associating to a finite dimensional k-vector space V the k-group scheme
(Vk(V

∨),+), where the comorphism of the k-group scheme structure + is induced by the diagonal homo-
morphism V ∨ → V ∨ ⊕ V ∨, and to a k-linear homomorphism f : W → V the k-group homomorphism
(Vk(W

∨),+) → (Vk(V
∨),+) induced by tf : V ∨ → W∨. The choice of a k-basis of V determines an

isomorphism of k-groups schemes (Vk(V
∨),+) ∼= Gn

a,k. We will repeatedly use the following elementary
results.

Lemma 3. With the notation above, the following hold:

(1) Every k-subgroup and quotient k-group of a vector k-group is a vector k-group.

(2) Every extension 0 → U′ → U → U′′ → 0 of vector k-groups has a splitting h : U
∼=
→ U′ × U′′.

(3) The set MU of U-invariants of a rational U-module M of finite positive dimension is nonzero.

Recall [29, I.3] (see also [23, 4.2]) that a quasi-coherent G-sheaf of OX -modules on a k-scheme X with an
action µ : G×X → X of an algebraic k-group G is a pair (F , θ) consisting of a coherent sheaf of OX -modules

F and an isomorphism θ : µ∗F
∼=
→ p∗2F of coherent sheaves of OG×X -modules, called a G-linearization of F ,

that satisfies the cocycle relation (mG × idX)∗θ = p∗23θ ◦ (idG × µ)∗θ on G×G×X , where mG : G×G → G
is the group law on G and where p23 : G ×G×X → G ×X is the projection onto the last two factors. In
particular, when G acts trivially on X , a G-linearization of F is the same as a homomorphism of G into the
group AutX(F) of OX -module automorphisms of F . Two G-linearizations θ and θ′ of F are called equivalent
if there exists an OX -module automorphism ϕ of F such that p∗2ϕ ◦ θ′ = θ ◦ µ∗ϕ.

Lemma 4. Let X be a normal k-variety endowed with an action of a vector k-group U. Then every coherent
invertible sheaf of OX-modules L admits a U-linearization θL unique up to equivalence.
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Proof. This follows from [5, Lemma 2.13] and the fact that since U ∼= An
k , for every normal k-variety X , the

pullback homomorphisms p∗X : Hi(X,O∗X) → Hi(X × U,O∗X×U), i = 0, 1, are isomorphisms. �

1.3.2. Vector group structures and vector group varieties.

Definition 5. A vector group variety is a k-variety X endowed with an effective action µ : U×X → X of
a vector k-group U which has a Zariski dense open orbit UX . The action µ is said to define a vector group
structure on X . Two vector group structures µ : U ×X → X and µ′ : U′ ×X → X on X are said to have
the same equivalence class if there exists an isomorphism of k-groups α : U′ → U and a k-automorphism ϕ
of X such that ϕ ◦ µ′ = µ ◦ (α× ϕ).

Lemma 6. Let X be a vector group variety with open orbit UX . Then UX is a trivial U-torsor. In particular,
UX contains a k-point of X.

Proof. Since the action of U is effective and UX is Zariski dense, the morphism (µ, p2) : U×kUX → UX×UX

is an isomorphism, i.e., UX endowed with the induced action of U is a U-torsor. The conclusion then follows
from the additive form of Hilbert Theorem 90 which asserts that every such torsor is trivial. �

Example 7. Since all orbits of unipotent group actions on a quasi-affine k-variety are closed [36, Theorem
2], Lemma 6 implies that a quasi-affine vector group variety X is a trivial U-torsor. In particular, An

k is the
unique quasi-affine k-variety with a Gn

a,k-structure and this structure is unique up to isomorphism. On the

other hand, by Sumihiro’s equivariant completion [38, Theorem 3], every normal vector group k-variety X
admits a U-equivariant open immersion j : X →֒ X̄ into a complete vector group k-variety X̄. When X
is smooth, the existence of equivariant resolution of singularities [27, Theorem 3.36 and Proposition 3.9.1]
implies in addition that X̄ can be chosen to be smooth and such that X̄ \ j(X) is the support of a U-stable
smooth normal crossing divisor on X̄ .

Proposition 8. Let X be a k-variety endowed with a vector group structure µ : U×X → X, let f : X → Y
be a proper morphism to a k-variety Y such that f∗OX = OY and let i : F →֒ X be the scheme-theoretic
fiber of f over a k-point y0 of Y in the image by f of the open U-orbit UX . Then there exists an extension

of vector k-groups 0 → U′
a
→ U

b
→ Ū → 0 such that the following hold:

(1) The variety Y is endowed with a vector group structure µY : Ū×k Y → Y with open Ū-orbit UY and
f : X → Y is equivariant with respect to the homomorphism b : U → Ū.

(2) The scheme F is a k-variety endowed with a vector group structure µF : U′×k F → F and the closed
immersion i : F →֒ X is equivariant with respect to the homomorphism a : U′ → U.

(3) Given any section c : Ū → U of b : U → Ū, the morphism

j : µ ◦ (c× i) ◦ (µ−1Y (·, y0)× idF ) : UY × F
∼=
→ Ū× F → U×X → X

is a U′ × Ū-equivariant open immersion with image f−1(UY ).

Proof. By Blanchard’s lemma [6, Theorem 7.2.1], there exists a unique action ν : U× Y → Y such that f is
U-equivariant. Let U′ ⊂ U be the stabilizer of y0 and let Ū = U/U′. Since y0 belongs to f(UX), the U-orbit
of y0 is a constructible set which is not contained in any proper closed subset of Y . It thus contains a Zariski
dense open subset of Y , hence, being homogeneous under the action of U, is a Zariski dense open subset of Y .
This implies that U′ acts trivially on Y and that the induced action µY : Ū× Y → Y of Ū is a vector group
structure on Y with the property that f : X → Y is equivariant with respect to the k-group homomorphism
b : U → Ū. This proves (1). The closed subscheme F is U′-stable, with U′-action µF : U′ × F → F induced
by µ. Given a section c : Ū → U of b, we have the following cartesian square of Ū-equivariant morphisms

Ū× F

id
Ū
×f

��

µ◦(c×i)
// X

f

��

Ū× {y0}
µY (·,y0)

// Y

where Ū acts on Ū×F and Ū×{y0} by translations on the first factor and on X by µ ◦ (c× idX). For every
v ∈ Ū(k), µ ◦ (c(v)× idX) is an automorphism of X which maps F isomorphically onto the scheme-theoretic
fiber of f over the point µY (v, y0). Since µY (·, y0) : Ū× {y0} → Y is an open immersion with image UY , it
follows that µ ◦ (c × i) is an open immersion with image f−1(UY ). Furthermore, µ ◦ (c × i) is equivariant
for the isomorphism h = (c, a) : Ū× U′ → U with respect to the product action of Ū×U′ on Ū× F and the
U-action on X . Assertion (3) follows. Finally, assertion (2) follows from the observation that the intersection
of the inverse image of UX ⊂ f−1(UY ) by µ ◦ (c × i) with {0} × F is a Zariski dense U′-stable open subset
UF of F which is a principal homogeneous space of U′. �
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Recall that a coherent locally free sheaf E on a k-variety X is called simple if its only endomorphisms are
scalar homothethies. Lemma 4 and Proposition 8 imply the following result.

Corollary 9. For a simple coherent locally free sheaf E of rank r ≥ 2 on a normal k-variety X, the total
space of the projective bundle π : PX(E) → X does not admit a vector group structure.

Proof. Assume that PX(E) admits a vector group structure given by the action of vector group U. By
Lemma 4, the invertible sheaf OPX(E)(1) is canonically U-linearized. By Proposition 8, π : PX(E) → X is
U-equivariant for a uniquely determined U-action on X , which factors through an effective action of a non-
trivial quotient Ū = U/U′ defining a vector group structure on X . Since π is U-equivariant, E ∼= π∗OPX(E)(1)
is endowed with an induced U-linearization for the action on X , hence with a linearization for the trivial
action of the positive dimensional vector group U′. The latter is determined by some group homomorphism
U′ → AutX(E) which is injective by Proposition 8. But this is impossible since AutX(E) ∼= Gm,X by
hypothesis. �

2. Linear sections of G(2, 5) and their rational linear projections

We collect results concerning linear Schubert sub-varieties of dimension ≥ 2 of the Grassmannian G(2, 5)
of 2-dimensional k-vector subspaces of k⊕5 and of its smooth linear sections in the Plücker embedding. We
then review the description of the rational maps given by projections with respect to these linear Schubert
sub-varieties. Over algebraically closed fields, all this material is classical, see e.g. [13, 19, 33, 41].

2.1. Linear Schubert subvarieties of G(2, 5) and its hyperplane sections. We put G = Gk(V
∨, 2) ∼=

G(2, 5) for some fixed 5-dimensional k-vector space V . We denote by 0 → S → V ∨G → Q →0 the universal
sequence on G and by jP : G →֒ Pk(Λ

2V ∨) the Plücker embedding. For any algebraic extension k′ of k, we
interpret k′-points of Gk′ either as 2-dimensional k′-vector subspaces E ⊂ Vk′ or as their corresponding lines
Pk′(E∨) in Pk′(V ∨k′ ). For concrete examples, we fix the following coordinate convention:

Notation 10. For a chosen basis e1, . . . , e5 of V with dual basis e∨1 , . . . , e
∨
5 , we identify Pk(V

∨) with P4
k and

G(2, 5) with the closed subvariety of Pk(Λ
2V ∨) = P9

k endowed with the Plücker coordinates wij = e∨i ∧ e∨j ,
1 ≤ i < j ≤ 5, defined by the equations























w12w34 − w13w24 + w14w23 = 0
w12w35 − w13w25 + w15w23 = 0
w12w45 − w14w25 + w15w24 = 0
w13w45 − w14w35 + w15w34 = 0
w23w45 − w24w35 + w25w34 = 0

2.1.1. Solids and planes in G(2, 5). We consider the following linear Schubert sub-varieties of G:

Definition 11. Let {V1 ⊂ V3 ⊂ V4} be a partial flag of k-vector subspaces of V , with dimk Vi = i:
• The σ3,0-solid σ3,0(V1) ∼= Pk((V/V1)

∨) associated to V1 is the zero scheme of the homomorphism
V1,G →֒ VG → S∨. Its intersection σ3,1(V1 ⊂ V4) ∼= Pk((V4/V1)

∨) with the zero scheme of the homomorphism
(V/V4)

∨
G →֒ V ∨G → Q is called the σ3,1-plane associated to {V1 ⊂ V4}.

• The σ2,2-plane σ2,2(V3) = Gk(V
∨
3 , 2) ∼= Pk(V3) associated to V3 is the zero scheme of the homomorphism

(V/V3)
∨
G →֒ V ∨G → Q.

The above sub-schemes are linear subspaces of G in the Plücker embedding G ⊂ Pk(Λ
2V ∨), given respec-

tively as the intersections G ∩ Pk(Λ
2V ∨/Λ2(V/V1)

∨), σ3,0(V1) ∩ Pk(Λ
2V ∨4 ) and G ∩ Pk(Λ

2V ∨3 ). It follows
from [41] that they are the only linear k-subspaces of dimension ≥ 2 contained in G.1 Geometrically, the
closed points of σ3,0(V1)k̄ and σ3,1(V1 ⊂ V4)k̄ correspond respectively to lines in Pk̄(V

∨
k̄
) passing through

the point Pk̄(V
∨
1,k̄

) and its subset of those which are contained in the subspace Pk(V
∨
4 ). The closed points of

σ2,2(V2)k̄ correspond to lines contained in the subspace Pk̄(V
∨
3,k̄

) of Pk̄(V
∨
k̄
).

Remark 12. The conormal sheaves in G of a solid Π = σ3,0(V1) and of a plane Ξ = σ2,2(V3) are canonically
isomorphic to Ω1

Π(1) ⊗ V1,Π and to Ω1
Ξ(1) ⊗ (V/V3)

∨
Ξ, respectively. Indeed, since Π is the zero scheme

of V1,G → S∨, its conormal sheaf CΠ/G is isomorphic to (S ⊗ V1,G)|Π ∼= S|Π ⊗ V1,Π and the canonical

1The two types of planes in G are called planes of the first and second system in [41], and in [19], planes of vertex type and
of non-vertex type, respectively.
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isomorphism S|Π ∼= Ω1
Π(1) is given by the following commutative diagram

0

��

0

��

0 // Ω1
Π(1)

// (V/V1)
∨
Π

//

��

OΠ(1) //

��

0

0 // S|Π //

0

&&▼
▼▼

▼▼
▼ V ∨Π

//

��

Q|Π //

��

0

V ∨1,Π

��

V ∨1,Π

��

0 0

Similarly, since Ξ is a codimension 4 local complete intersection equal to the zero-scheme of the homo-
morphism (V/V3)

∨
G → Q, the conormal sheaf CΞ/G is canonically isomorphic to (Q∨ ⊗ (V/V3)

∨
G)|Ξ

∼=
(Q∨|Ξ) ⊗ (V/V3)

∨
Ξ, and since Q|Ξ equals the universal quotient sheaf on Ξ ∼= Gk(V

∨
3 , 2), the canonical

isomorphism Gk(V
∨
3 , 2) ∼= Pk(V3) gives the identification Q∨|Ξ ∼= Ω1

Ξ(1).

Notation 13. Given a d-dimensional k-vector subspace Vd ⊂ V , 1 ≤ d ≤ 4, we denote by ∆Vd
the stabilizer

in GLk(V
∨) of the subspace (V/Vd)

∨ ⊂ V ∨. The choice of a splitting V ∼= Vd⊕ (V/Vd) identifies this k-group
scheme with that consisting of block-matrices of the form

(2.1) M(A5−d, Ad, U) =

(

A5−d U
0 Ad

)

∈ GLk((V/Vd)
∨ ⊕ V ∨d )

with A5−d ∈ GLk((V/Vd)
∨), Ad ∈ GLk(V

∨
d ) and U ∈ Homk(V

∨
d , (V/Vd)

∨). The associated subgroups P∆Vd

of PGLk(V
∨) correspond under the isomorphism PGLk(V

∨) ∼= Autk(G) of (1.1) to the stabilizer subgroups
of the solid σ3,0(V1) if d = 1 and of the plane σ2,2(V3) if d = 3.

2.1.2. Smooth hyperplane sections. By a hyperplane section of G, we mean the zero scheme Z〈s〉 of a non-

zero global section s ∈ H0(G,Λ2Q) = Λ2V ∨, equivalently the intersection of G in the Plücker embedding
with the hyperplane Pk(Λ

2V ∨/〈s〉) of Pk(Λ
2V ∨). Denote by s̃ : V → V ∨ the k-linear homomorphism

corresponding to the form s under the canonical isomorphism Homk(V ⊗V, k) ∼= Homk(V, V
∨). The fivefold

Z〈s〉 is the isotropic Grassmannian IsGk(V
∨, 2): a closed point E ⊂ Vk̄ of Gk̄ belongs to (Z〈s〉)k̄ if and only

if the homomorphism s̃k̄|E : E → Vk̄ → V ∨
k̄

has image contained in (Vk̄/E)∨, hence if and only if E is
sk̄-isotropic. Considering the conormal sequence

0 → CZ〈s〉/G = Λ2Q∨|Z〈s〉
⊗OZ〈s〉

〈s〉Z〈s〉

d
→ Ω1

G/k|Z〈s〉
= Hom(Q|Z〈s〉

,S|Z〈s〉
) → Ω1

Z〈s〉/k
→ 0

we see that Z〈s〉,k̄ is smooth at E ⊂ Vk̄ if and only if the map

d|E : Λ2E ⊂ Homk(E
∨ ⊗ E∨, k) ∼= Homk(E

∨, E) → Homk̄(E
∨, (Vk̄/E)∨), f 7→ s̃k̄|E ◦ f

is nonzero, hence if and only if E 6⊂ Kers̃k̄. In particular, Z〈s〉 is smooth if and only if s̃ has rank 4. This yields

a functorial correspondence between k-points 〈s〉∨ of Pk(Λ
2V ) \ Gk(V, 2) and smooth hyperplane sections

Z〈s〉 of G from which we get in particular that the action of Autk(G)(k) ∼= PGL5(k) on the set of smooth
hyperplane sections Z〈s〉 of G is transitive.

Given a smooth hyperplane section Z〈s〉, the s-orthogonal V ⊥ = Kers̃ of V has dimension 1. We put

V̄ = V/V ⊥ and denote by s̄ ∈ Λ2V̄ ∨ the symplectic form on V̄ induced by s. Letting Ḡ = Gk(V̄
∨, 2) with

universal sequence 0 → SḠ → V̄ ∨
Ḡ

→ QḠ → 0, the zero scheme Q〈s̄〉 ⊂ Ḡ of s̄ is the Lagrangian Grassmannian

Ls̄Gk(V̄
∨, 2) whose k-points are the maximal s̄-isotropic subspaces of V̄ . The Plücker embedding Ḡ →֒

Pk(Λ
2V̄ ∨) induces a closed immersion of Q〈s̄〉 in Pk(Λ

2V̄ ∨/〈s̄〉) as the zero scheme of the non-degenerate

quadratic form q̄ associated to the symmetric bi-linear form b̄ ∈ Sym2(Λ2V̄ ∨/〈s̄〉) induced by the bi-linear
form b : Λ2V̄ ⊗ Λ2V̄ → k, ū1 ∧ v̄1 ⊗ ū2 ∧ v̄2 7→ (s̄ ∧ s̄)(ū1 ∧ v̄1 ∧ ū2 ∧ v̄2).

Lemma 14. With the notation above, the following hold:

(1) Every smooth hyperplane section Z〈s〉 of G contains a unique solid Π〈s〉 = σ3,0(V
⊥) and conversely

every solid of G is contained in a (non-unique) smooth hyperplane section of G.
(2) A plane σ2,2(V3) of G is contained in a smooth hyperplane section Z〈s〉 if and only if V ⊥ ⊂ V3 and

V3/V
⊥ is s̄-isotropic. In other words, the σ2,2-planes in Z〈s〉 are in one-to-one correspondence with

the k-points of Q〈s̄〉 and they intersect the unique solid Π〈s〉 of Z〈s〉 along lines.

Proof. A solid σ3,0(V1) of G is contained in Z〈s〉 if and only if V = V ⊥1 hence, since by hypothesis V ⊥

is 1-dimensional, if and only if V1 = V ⊥. Conversely, for every 1-dimensional k-vector subspace V1 of V ,
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any choice of symplectic form s̄ ∈ Λ2(V/V1)
∨ on the 4-dimensional k-space V/V1 determines through the

inclusion Λ2(V/V1)
∨ ⊂ Λ2V ∨ a skew-symmetric form s ∈ Λ2V ∨ with Kers̃ = V1, hence a corresponding

smooth hyperplane section Z〈s〉 of G containing σ3,0(V1). A plane σ2,2(V3) of G is contained in Z〈s〉 if and
only if every 2-dimensional k-vector subspace E ⊂ V3 is s-isotropic, which holds if and only if V3 is s-isotropic.
This property is equivalent to the fact that V3 contains V ⊥ and V̄3 = V3/V

⊥ is an s̄-isotropic subspace of
V̄ . Every σ2,2-plane with this property intersects Π〈s〉 ∼= Pk(V̄

∨) along the line Pk(V̄
∨
3 ). �

Remark 15. For a smooth hyperplane section Z = Z〈s〉 of G, the exact sequence

0 → CZ/G|Π ∼= Λ2Q∨|Π
s̄
→ CΠ/G

∼= Ω1
Π(1) → CΠ/Z → 0

identifies the conormal sheaf CΠ/Z of the unique solid Π = Π〈s〉 ∼= Pk(V̄
∨) of Z〈s〉 with the null-correllation

rank 2 locally sheaf N〈s̄〉 associated to the symplectic form s̄ ∈ Λ2V̄ ∨, that is, the sheaf whose fiber over a

closed point ℓ ⊂ V̄k̄ of Pk̄(V̄
∨
k̄
) is the quotient ℓ⊥/ℓ, where ℓ⊥ is the s̄k̄-orthogonal of ℓ.

2.1.3. Smooth linear sections of codimension 2. A codimension 2 linear section of G is the zero scheme
WL of a homomorphism LG → Λ2Q determined by a 2-dimensional k-vector subspace L ⊂ H0(G,Λ2Q) =
Λ2V ∨, equivalently the intersection of G in the Plücker embedding with the codimension 2 linear subspace
Pk(Λ

2V ∨/L) of Pk(Λ
2V ∨). A closed point E ⊂ Vk̄ of Gk̄ belongs to WL if and only if sk̄|E = 0 for every

skew-symmetric form s in L and, arguing as in § 2.1.2, we see from the conormal sequence

CWL/G = Λ2Q∨|WL
⊗ LWL

d
→ Ω1

G/k|WL
= Hom(Q|WL

,S|WL
) → Ω1

WL/k → 0

that WL,k̄ is smooth at a closed point E ⊂ Vk̄ if and only if E 6⊂ Kers̃k̄ for all s ∈ L \ {0}. In particular, WL

is smooth if and only if the line Pk(L
∨) ⊂ Pk(Λ

2V ) is contained in Pk(Λ
2V ) \Gk(V, 2). This yields a natural

correspondence between smooth codimension 2 linear sections WL of G and k-points of the open subset of
Gk(Λ

2V, 2) parametrizing such lines, which is a homogeneous space under the action of PGL5(k).

Lemma 16. A smooth linear section WL of G does not contain any σ3,0-solid of G. It contains a unique
σ2,2-plane ΞL = σ2,2(V3,L), where V3,L ⊂ V is the linear span of the kernels of the linear maps s̃, s ∈ L\{0}.

Proof. By adjunction formula, a solid Π contained in WL would have normal sheaf isomorphic to OΠ(−1),
and hence OWL

(Π) would be an invertible sheaf of degree 1 on WL. This is impossible since Pic(WL) ∼= Z

is generated by an ample invertible sheaf of degree 5. A plane σ2,2(V3) of G is contained in WL if and only
if V3 contains the linear span of the kernels of the linear maps s̃ corresponding to the forms s ∈ L \ {0}.
The image of Pk(L

∨) ⊂ Pk(Λ
2V ) \ Gk(V, 2) by the morphism Pk(Λ

2V ) \ Gk(V, 2) → Gk(V, 4) given by the
complete linear system of quadrics containing Gk(V, 2) is a smooth conic CL in Gk(V, 4) ∼= Pk(V

∨) whose
k-points are the kernels Kers̃ ⊂ V of the elements s ∈ L\{0}. Letting V3,L ⊂ V be the unique 3-dimensional
k-vector subspace such that Pk(V

∨
3,L) contains CL, we conclude that σ2,2(V3,L) is the unique σ2,2-plane in

WL. �

2.2. Projections from σ3,0-solids. Let V1 ⊂ V be a 1-dimensional k-vector subspace, let p : V → V̄ =
V/V1 be the quotient morphism and let Ḡ = Gk(V̄

∨, 2) with universal sequence 0 → SḠ → V̄ ∨
Ḡ

→ QḠ → 0.

Let Z〈s〉 ⊂ G be a smooth hyperplane section determined by the image s ∈ Λ2V ∨ of a symplectic form

s̄ ∈ Λ2V̄ ∨ and let Q〈s̄〉 ⊂ Ḡ be the zero scheme of s̄. Let Π = σ3,0(V1) = G∩Pk(Λ
2V ∨/Λ2(V̄ )∨) be the solid

of G contained in Z〈s〉 determined by V1. The projection of G from the solid Π is the dominant rational map

(2.2) πΠ : G = Gk(V
∨, 2) 99K Ḡ = Gk(V̄

∨, 2)

given by the restriction to G of the linear projection Pk(Λ
2V ∨) 99K Pk(Λ

2V̄ ∨). The morphism πΠ|G\Π maps

a k-point E ⊂ V of G not containing V1 to the k-point p(E) of Ḡ and conversely, the closure in G of a fiber
of πΠ over a k-point Ē ⊂ V̄ of Ḡ is the plane σ2,2(p

−1(Ē)) of G.
The restriction πΠ : Z〈s〉 99K Q〈s〉 of πΠ to Z〈s〉 is called the projection of Z〈s〉 from its solid Π = Π〈s〉. The

restriction πΠ|Z〈s〉\Π maps a k-point of Z〈s〉 represented by an s-isotropic k-point E ⊂ V of G not containing

V1 to the k-point of Q〈s̄〉 represented by the s̄-isotropic k-point p(E) of Ḡ.

To state the next result, we put (X6,Q4, E6) = (G, Ḡ,Q∨
Ḡ
) and (X5,Q3, E5) = (Z〈s〉, Q〈s̄〉,S ), where

S = Q∨
Ḡ
|Q〈s̄〉

is the spinor locally free sheaf of rank 2 on the quadric threefold Q〈s̄〉 ⊂ Ḡ, see e.g. [32].

Proposition 17. For i = 5, 6, let YΠ ⊂ Xi ×Qi−2 be the graph of πΠ with projections pXi
: YΠ → Xi and

let pQi−2
: YΠ → Qi−2. Then we have the following Sarkisov link

(2.3) PΠ(CΠ/Xi
) ∼= PQi−2

(Ei)

��

� � // YΠpXi

uu❧❧❧
❧❧❧

❧❧❧
❧ pQi−2

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲
∼= // PQi−2

(Ei ⊕OQi−2
)

��

Π
� � // Xi

πΠ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Qi−2
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where pXi
: YΠ → Xi is the contraction of the sub-bundle PQi−2

(Ei) ⊂ PQi−2
(Ei ⊕OQi−2

) onto Π.

Proof. The projection pḠ : YΠ → Ḡ is isomorphic to the projective bundle GḠ(F , 2) ∼= PḠ(F
∨) → Ḡ, where

F is the cokernel of the injective homomorphism SḠ → V̄ ∨
Ḡ

→ V ∨
Ḡ

. The latter is locally free of rank 3,

isomorphic to an extension of V ∨
1,Ḡ

by QḠ, hence to QḠ ⊕OḠ due to the vanishing of H1(Ḡ,QḠ), and the

projection pG : YΠ → G contracts the projective sub-bundle PḠ(Q
∨
Ḡ) ⊂ PḠ(Q

∨
Ḡ⊕OḠ) to Π. This identifies

in particular PḠ(Q
∨
Ḡ
) with the exceptional divisor PΠ(CΠ/G) of the blow-up of Π in G. The corresponding

diagram for the smooth hyperplane section Z〈s〉 follows immediately by restriction. �

Example 18. With Notation 10, the kernel V ⊥ of the linear map s̃ associated to the skew-symmetric form
s = e∨1 ∧ e∨3 − e∨2 ∧ e∨4 equals 〈e5〉. The associated hyperplane section Z〈s〉 = G ∩ {w13 − w24 = 0} is the

smooth fivefold in P8
k ⊂ P9

k with coordinates wij , (i, j) 6= (2, 4), defined by the equations






















w12w34 − w2
13 + w14w23 = 0

w12w35 − w13w25 + w15w23 = 0
w12w45 − w14w25 + w13w15 = 0
w13w45 − w14w35 + w15w34 = 0
w23w45 − w13w35 + w25w34 = 0

Putting V̄ = V/〈e5〉, the image of G by the projection

Pk(Λ
2V ∨) = P9

k 99K P5
k = Pk(Λ

2V̄ ∨), [wij ]1≤i<j≤5 7→ [w12 : w13 : w14 : w23 : w24 : w34]

from the solid Π = σ3,0(V
⊥) = {w12 = w13 = w14 = w23 = w24 = w34 = 0} is the smooth quadric

fourfold Ḡ = Gk(V̄
∨, 2) = {w12w34 − w13w24 + w14w23 = 0} in P5

k with Plücker coordinates w̄ij = ē∨i ∧ ē∨j ,

1 ≤ i < j ≤ 4, where ēi denotes the image of ei in V̄ . The image of Z〈s〉 by this projection is the smooth

quadric threefold Q〈s̄〉 = {w12w34 − w2
13 + w14w23 = 0} in P4

k ⊂ P5
k with coordinates w̄ij , (i, j) 6= (2, 4).

With the notation above, let Spk(V̄
∨, s̄) be the symplectic group of the symplectic form s̄ ∈ Λ2V̄ ∨ and

let PSpk(V̄
∨, s̄) be its image in PGLk(V̄

∨). We infer the following description:

Corollary 19. There exists a split exact sequence of k-group schemes

0 → Autk(Z〈s〉,Π〈s〉)0 ∼= G4
a,k ⋊Gm,k → Autk(Z〈s〉,Π〈s〉) = Autk(Z〈s〉) → Autk(Q〈s〉) ∼= PSpk(V̄

∨, s̄) → 0,

where Autk(Z〈s〉,Π〈s〉)0 is the kernel of the restriction homomorphism Autk(Z〈s〉,Π〈s〉) → Autk(Π〈s〉). More-

over, up to the choice of a splitting V ∼= V̄ ⊕V ⊥, Autk(Z〈s〉) is the image under the restriction homomorphism
Autk(G,Z〈s〉) → Autk(Z〈s〉) of the subgroup

{(

Spk(V̄
∨, s̄) Homk((V

⊥)∨, V̄ ∨)
0 Gm,k

)}

/{±Id}

of PGLk(V
∨) under the isomorphism Φ : PGLk(V

∨) → Autk(G) of (1.1).

Proof. Since, by Lemma 14, Π = Π〈s〉 is the unique solid contained in Z = Z〈s〉, we have Autk(Z) =
Autk(Z,Π). The action of Autk(Z,Π) lifts to the blow-up pZ : Y → Z of Π and since the fibers of the
projection πΠ : Z 99K Q〈s̄〉 of Z from Π over k-points of Q〈s̄〉 meet Π along lines, Autk(Z,Π)0 equals the
kernel of the homomorphism Autk(Z,Π) → Autk(Q〈s̄〉) induced by pQ〈s̄〉

: Y → Q〈s̄〉. Let p : Autk(Z,Π) →
B := Autk(Z,Π)/Autk(Z,Π)0 be the quotient morphism and let γ : B → Autk(Q〈s̄〉) be the induced

injective homomorphism. Let ∆V ⊥ ⊂ GLk(V
∨) be the stabilizer of V̄ ∨ ⊂ V ∨, see Notation 13. Let ∆V ⊥,0

∼=
G4

a,k⋊Gm,k be its normal subgroup consisting of matrices M(id4, λ, U) and let SV ⊥ be its subgroup consisting

of matrices M(A4,±1, 0) with A4 ∈ Spk(V̄
∨, s̄). The image of P∆V ⊥ ⊂ PGLk(V

∨) by Φ : PGLk(V
∨) →

Autk(G) is contained in the stabilizer Autk(G, (Z,Π)) of the pair (Z,Π). A direct verification shows that
the homomorphism j : P∆V ⊥ → Autk(Z) obtained by composing with the restriction homomorphism
Autk(G,Z) → Autk(Z) is injective and maps P∆V ⊥,0

∼= ∆V ⊥,0 isomorphically onto Autk(Z,Π)0. Letting

q̄ ∈ Sym2(Λ2V̄ ∨/〈s̄〉) be the quadratic form associated to the symplectic form s̄ (see § 2.1.2), the conclusion
then follows from the fact that the restriction of the composition

P∆V ⊥
j
→ Autk(Z,Π)

p
→ B

γ
→ Autk(Q〈s̄〉) = POk(Λ

2V̄ ∨/〈s〉, q̄) = SOk(Λ
2V̄ ∨/〈s〉, q̄)

to the subgroup PSV ⊥
∼= PSpk(V̄

∨, s̄) is an isomorphism onto its image SOk(Λ
2V̄ ∨/〈s〉, q̄). �



DEL PEZZO QUINTICS AS EQUIVARIANT COMPACTIFICATIONS OF VECTOR GROUPS 9

2.3. Projections from σ2,2-planes. Let V3 ⊂ V be a 3-dimensional k-vector subspace, let K = Λ2V/Λ2V3

and let 〈s〉 ⊂ K∨ and L ⊂ K∨ be respectively a 1-dimensional and a 2-dimensional linear subspace of
skew-symmetric bilinear forms on V whose non-zero elements all have maximal rank. These data determine
respectively a plane Ξ = σ2,2(V3) = G∩Pk(Λ

2V ∨3 ) of G, a smooth hyperplane section Z〈s〉 of G and a smooth
codimension 2 linear section WL of G which both contain Ξ.

• The projection of G from the plane Ξ is the birational map

(2.4) πΞ : G = Gk(V
∨, 2) 99K Pk(K

∨)

induced by the restriction to G of the linear projection Pk(Λ
2V ∨) 99K Pk(K

∨). The morphism πΞ|G\Ξ maps

a k-point E ⊂ V of G not contained in V3 to the image of Λ2E ⊂ Λ2V by the quotient homomorphism
Λ2V → K. Let ZΞ = G ∩ Pk(Λ

2V ∨/Λ2(V/V3)
∨) and HG =Pk(K

∨/Λ2(V/V3)
∨) be the hyperplane sections

of G and Pk(K
∨) determined by the 1-dimensional k-vector subspace Λ2(V/V3)

∨ of K∨ ⊂ Λ2V ∨. Then the
image SG of the rational map πΞ|ZΞ

: ZΞ 99K HG equals that of the Segre embedding

s1,1 : Pk(V
∨
3 )× Pk((V/V3)

∨) →֒ Pk(V
∨
3 ⊗k (V/V3)

∨) ∼= Pk(K
∨/Λ2(V/V3)

∨).

A k-point E ⊂ V of G belongs to ZΞ if and only if E ∩V3 6= {0}, and the closure in G of the fiber of πΞ|ZΞ\Ξ

over the image by s1,1 of a k-point (V1 ⊂ V3, V4/V3 ⊂ V/V3) of Pk(V
∨
3 ) × Pk((V/V3)

∨) is the σ3,1-plane
σ3,1(V1 ⊂ V4).

• Since 〈s〉 ⊂ K∨, the projection of G from Ξ restricts on Z〈s〉 to the birational map

(2.5) πΞ : Z〈s〉 99K Pk(K
∨/〈s〉)

defined by the complete linear system of hyperplane sections of Z〈s〉 containing Ξ, called the projection
of Z〈s〉 from the plane Ξ. Letting HZ〈s〉

= HG ∩ Pk(K
∨/〈s〉), the image of the induced rational map

πΞ|ZΞ∩Z〈s〉
: ZΞ ∩ Z〈s〉 99K HZ〈s〉

is the smooth cubic scroll SZ〈s〉
= SG ∩ Pk(K

∨/〈s〉) in Pk(K
∨/〈s〉).

• Since L ⊂ K∨, the projection of G from Ξ restricts on WL to the birational map

(2.6) πΞ : WL 99K Pk(K
∨/L)

defined by the complete linear system of hyperplane sections of WL containing Ξ, called the projection of
WL from the plane Ξ. Putting HWL

= HG ∩ Pk(K
∨/L), the image of the induced rational map πΞ|ZΞ∩WL

:
ZΞ ∩WL 99K HWL

is the smooth rational cubic curve SWL
= SG ∩ Pk(K

∨/L) in Pk(K
∨/L).

To state the next result, we put (X6,P6) = (G,Pk(K
∨)), (X5,P5) = (Z〈s〉,Pk(K

∨/〈s〉)) and (X4,P4) =
(WL,Pk(K

∨/L)). We denote by YΞ,i ⊂ Xi ×Pi, the graph of πΞ,i = πΞ : Xi 99K Pi, i = 4, 5, 6.

Proposition 20. With the notation above, for i = 4, 5, 6 we have the following Sarkisov link

(2.7) BlSXi
HXi

∼= PΞ(CΞ/Xi
)

��

� � // YΞ,i

pXi

��✁✁
✁✁
✁✁
✁

p2

��
❂❂

❂❂
❂❂

❂
BlΞ(ZΞ ∩Xi)? _oo

��

Ξ
� � // ZΞ ∩Xi

� � // Xi

πΞ,i
//❴❴❴❴❴❴
Pi

Φi

oo❴ ❴ ❴ ❴ ❴ ❴ HXi
? _oo SXi

? _oo

where pXi
: YΞ,i → Xi is the blow-up of Ξ, BlΞ(ZΞ ∩Xi) is the proper transform of ZΞ ∩Xi, p2 : YΞ,i → Pi

if the blow-up of SXi
and BlSXi

HXi
is the proper transform of HXi

⊂ Pi. The birational inverse Φi of πΞ,i

is given by the complete linear system of quadrics in Pi containing SXi
.

Proof. All the properties follow from [41] and the description above. �

Example 21. With Notation 10, let V3 = 〈e3, e4, e5〉, let

Ξ = σ2,2(V3) = {w12 = w13 = w14 = w15 = w23 = w24 = w25 = 0}

be the associated plane of G and let

Pk(Λ
2V ∨) = P9

k 99K P6
k = Pk(K

∨), [wij ]1≤i<j≤5 7→ [w12 : w13 : w14 : w15 : w23 : w24 : w25]

be the associated linear projection. The skew-symmetric forms s = e∨1 ∧e
∨
3 −e∨2 ∧e

∨
4 and s′ = e∨1 ∧e

∨
4 −e∨2 ∧e

∨
5

generate a subspace L ⊂ Λ2V ∨ whose non-zero elements all have rank 4. The associated smooth linear section
WL = G ∩ {w13 − w24 = 0} ∩ {w14 − w25 = 0} is the smooth fourfold in P7

k ⊂ P9
k with coordinates wij ,

(i, j) 6= (2, 4), (2, 5) defined by the equations






















w12w34 − w2
13 + w14w23 = 0

w12w35 − w13w14 + w15w23 = 0
w12w45 − w2

14 + w13w15 = 0
w13w45 − w14w35 + w15w34 = 0
w23w45 − w13w35 + w14w34 = 0
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The smooth hyperplane section Z〈s〉 = G ∩ {w13 − w24 = 0} of Example 18 and the above smooth linear
section WL both contain Ξ. The images of ZΞ = G ∩ {w12 = 0}, ZΞ ∩ Z〈s〉 and ZΞ ∩WL by the projection

πΞ and its successive restrictions are the smooth threefold SG
∼= P1

k × P2
k, the smooth rational cubic surface

SZ〈s〉
∼= PP1

k
(OP1

k
(1)⊕OP1

k
(2)) ∼= F1 and the smooth rational normal curve SWL

∼= P1
k with equations







−w13w24 + w14w23 = 0
−w13w25 + w15w23 = 0
−w14w25 + w15w24 = 0







−w2
13 + w14w23 = 0

−w13w25 + w15w23 = 0
−w14w25 + w15w13 = 0

and







−w2
13 + w14w23 = 0

−w13w14 + w15w23 = 0
−w2

14 + w15w13 = 0

in P5
k , P4

k and P3
k respectively.

Remark 22. By a result attributed to Weil [42], the smooth varieties P1
k×P2

k ⊂ P5
k, F1 ⊂ P4

k and the rational
normal curve P1

k ⊂ P3
k are the only smooth cubics which are not hypersurfaces.

For a smooth codimension 2 linear section WL of G with unique σ2,2-plane ΞL = σ2,2(V3,L), we infer the
following description of Autk(WL):

Corollary 23. There exists a split exact sequence of k-group schemes

0 → Autk(WL,ΞL)0 ∼= G4
a,k ⋊Gm,k → Autk(WL,ΞL) = Autk(WL) → Autk(SWL

) ∼= PGLk(L) → 0,

where Autk(WL,ΞL)0 is the kernel of the restriction homomorphism Autk(WL,ΞL) → Autk(ΞL).

Proof. Since, by Lemma 16, Ξ = ΞL is the unique σ2,2-plane contained in WL and since the intersection
ZΞ∩WL is the union of all the σ3,1-planes contained in WL, we have Autk(WL) = Autk(WL, (ZΞ,Ξ)). Since
the σ3,1-planes of WL intersect Ξ ∼= Pk(V3,L) along the smooth conic CL∨ dual to CL

∼= Pk(L
∨) →֒ Pk(V

∨
3,L)

(see the proof of Lemma 16), the image of the restriction homomorphism Autk(WL,ΞL) → Autk(ΞL) is
contained in the subgroup Aut(ΞL, CL∨) ∼= Autk(CL∨) ∼= PGLk(L). Since on the other hand the σ3,1-
planes of WL are the closures of the fibers of πΞ : WL \ Ξ → Pk(K

∨/L) over the k-points of SWL
,

the projection πΞ : WL 99K Pk(K
∨/L) induces an isomorphism of k-group schemes Autk(WL, (ZΞ,Ξ)) ∼=

Autk(Pk(K
∨/L), (HWL

, SWL
)) which maps Autk(WL,ΞL)0 isomorphically onto the kernel G4

a,k ⋊ Gm,k of

the restriction homomorphism Autk(Pk(K
∨/L), (HWL

, SWL
)) → Autk(SWL

). The latter homomorphism is
a split surjection, which identifies Autk(SWL

) with Autk(HWL
, SWL

). �

3. Smooth quintic del Pezzo varieties with vector group structures

Recall that a smooth quintic del Pezzo k-variety of dimension n ∈ {2, . . . 6} is a k-form X of a smooth
section of the Grassmannian G(2, 5) ⊂ P9

k by a linear subspace of dimension 6− n. For n ≤ 3, the automor-
phism group of Xk̄ is too small to allow the existence of a vector subgroup structure on Xk̄. In this section,
we consider the case of smooth quintic del Pezzo k-varieties of dimension 4, 5 and 6.

3.1. Toric vector groups structures on linear sections of G(2, 5). Let V be a k-vector space of dimen-
sion 5 and, with the notation introduced in § 2.3, let X6 = Gk(V

∨, 2), let V3 ⊂ V be a 3-dimensional k-vector
subspace with associated plane Ξ = σ2,2(V3) of X6 and let K6 = Λ2V/Λ2V3. Let 〈s〉 ⊂ K∨6 and L ⊂ K∨6
be respectively a 1-dimensional and a 2-dimensional linear subspace of skew-symmetric bilinear forms on
V whose non-zero elements all have maximal rank. Put K∨5 = K∨6 /〈s〉, K∨4 = K∨6 /L and let X5 = Z〈s〉
and X4 = WL be the smooth linear sections of X6 containing Ξ defined by 〈s〉 and L respectively. Let
Fi = Homk(K

∨
i /Λ

2(V/V3)
∨,Λ2(V/V3)

∨) ∼= k⊕i, i = 4, 5, 6, and let Vk(F
∨
i ) be the associated vector group.

We derive from the exact sequence

0 → Λ2(V/V3)
∨ a
→ K∨i

b
→ K∨i /Λ

2(V/V3)
∨ → 0, i = 4, 5, 6

a faithful homomorphism of k-group schemes Vk(F
∨
i ) → GLk(K

∨
i ), f 7→ idK∨

i
+ a ◦ f ◦ b correspond-

ing to a Vk(F
∨
i )-action on Pk(K

∨
i ) restricting to the trivial action on the invariant hyperplane HXi

=
Pk(K

∨
i /Λ

2(V/V3)
∨) and having Pk(K

∨
i ) \HXi

as an open orbit. By Proposition 20, this action lifts through
the birational projection πΞ : Xi 99K Pk(K

∨
i ) from the plane Ξ to a Vk(F

∨
i )-action on Xi with open orbit

Xi \ (ZΞ ∩Xi) and whose restriction to Ξ is trivial. As a consequence, we obtain the following:

Proposition 24. Every smooth section of G(2, 5) ⊂ P9
k by a linear subspace of codimension ≤ 3 admits a

vector group structure.

Example 25. With the notation of Example 21, let V3 = 〈e3, e4, e5〉 with associated linear projection

P9
k 99K P6

k, [wij ]1≤i<j≤5 7→ [w12 : w13 : w14 : w15 : w23 : w24 : w25],

let s = e∨1 ∧ e∨3 − e∨2 ∧ e∨4 ∈ K∨6 and L ⊂ K∨6 be the subspace generated by s and s′ = e∨1 ∧ e∨4 − e∨2 ∧ e∨5 .
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• For the basis tij = (e∨i ∧ e∨j ) ⊗ (ē1 ∧ ē2), i = 1, 2, j = 3, 4, 5 of F∨6 , the corresponding action of

Vk(F
∨
6 ) ∼= Spec(k[tij ]) on Pk(K

∨
6 ) = P6

k with open orbit P6
k \ {w12 = 0} is the “toric” G6

a-structure on P6
k

given by w12 7→ w12 and wij 7→ wij + tijw12 for (i, j) 6= (1, 2).2 Its lift to X6 = G is the restriction of the
Vk(F

∨
6 )-action on Pk(Λ

2V ∨) induced by the second exterior power of the representation

(3.1) ρ6 : Vk(F
∨
6 ) → GLk(V

∨), (t13, t23, t14, t24, t15, t25) 7→

















1 0 −t23 −t24 −t25
0 1 t13 t14 t15
...

. . . 1 0 0
...

. . . 1 0
0 · · · · · · 0 1

















.

Comparing with the classification in [39, Chapter 3, § 3, IV], the image of ρ6 is one of the two maximal abelian
unipotent subgroups of GL5 corresponding to cases N2 and N3. The other one, given by the representation
dual to ρ6, corresponds to a vector group structure on Gk(V, 2) ∼= Gk(V

∨, 3).
• The corresponding action of Vk(F

∨
5 ) ∼= Spec(k[t13, t23, t14, t15, t25]) on Pk(K

∨
5 ) = P5

k with open orbit P5
k\

{w12 = 0} is the toric G5
a-structure on P5

k given by w12 7→ w12 and wij 7→ wij+tijw12 for (i, j) 6= (1, 2), (2, 4).
Its lift to X5 = Z〈s〉 is the restriction of the Vk(F

∨
5 )-action on Pk(Λ

2V ∨) preserving Z〈s〉 = G∩{w13−w24 = 0}
induced by the second exterior power of the representation

(3.2) ρ5 : Vk(F
∨
5 ) → GLk(V

∨), (t13, t23, t14, t15, t25) 7→

















1 0 −t23 −t13 −t25
0 1 t13 t14 t15
...

. . . 1 0 0
...

. . . 1 0
0 · · · · · · 0 1

















.

The stabilizer Stab(〈e∨5 〉) of the subspace 〈e∨5 〉 is the subgroup Spec(k[t15, t25]) of Vk(F
∨
5 ) and the induced

action of the vector group Vk(F
∨
5 )/Stab(〈e∨5 〉)

∼= Spec(k[t̄13, t̄23, t̄14]) on V̄ ∨ = (V/〈e5〉)∨ endowed with the
basis dual to that determined by the images ēi of the ei, i = 1, . . . , 4, is given by the representation

(3.3) ρ̄5 : Vk(F
∨
5 )/Stab(〈e∨5 〉) → Sp4(V̄

∨, s̄), (t̄13, t̄23, t̄14) 7→









1 0 −t̄23 −t̄13
0 1 t̄13 t̄14
0 0 1 0
0 0 0 1









,

where s̄ = ē∨1 ∧ ē∨3 − ē∨2 ∧ ē∨4 is the symplectic form on V̄ induced by s.
• The corresponding action of Vk(F

∨
4 ) ∼= Spec(k[t13, t23, t14, t15, ]) on Pk(K

∨
4 ) = P4

k with open orbit
P4
k \ {w12 = 0} is the toric G4

a-structure on P4
k given by w12 7→ w12 and wij 7→ wij + tijw12 for (i, j) 6=

(1, 2), (2, 4), (2, 5). Its lift to X4 = WL is the restriction of the Vk(F
∨
4 )-action on Pk(Λ

2V ∨) preserving
WL = G ∩ {w13 − w24 = w14 − w25 = 0} induced by the second exterior power of the representation

(3.4) ρ4 : Vk(F
∨
4 ) → GLk(V

∨), (t13, t23, t14, t15) 7→

















1 0 −t23 −t13 −t14
0 1 t13 t14 t15
...

. . . 1 0 0
...

. . . 1 0
0 · · · · · · 0 1

















.

3.2. Proof of Theorem 1. We now proceed to the proof of Theorem 1, each case n ∈ {4, 5, 6} is treated
separately in the next subsections.

3.2.1. Proof of Theorem 1 for sixfolds. A smooth quintic del Pezzo sixfold X is a k-form of the Grassman-
nian G(2, 5). Recall [4] that isomorphism classes of k-forms of a projective k-variety X are in one-to-one
correspondence with the elements of the Galois cohomology set H1(Γ,Autk̄(Xk̄)) of continuous Galois 1-
cocycles γ : Γ = Gal(k̄/k) → Autk̄(Xk̄), where Autk̄(Xk̄) is endowed with the discrete topology and the
natural action of Γ by conjugation. Since Autk̄(G(2, 5)k̄)

∼= PGL5(k̄) = Autk̄(P
4
k̄
) (see § 1.2), isomorphism

classes of k-forms of G(2, 5) are in one-to-one correspondence with isomorphism classes of k-forms P of P4
k.

In view of Lemma 6, the existence of a k-rational point is a necessary condition for the existence of a vector
group structure on X . Conversely, for a k-form X of G(2, 5) containing a k-rational point, the corresponding
k-form P of P4

k contains a closed sub-variety C defined over k whose base extension Ck̄ is a line in Pk̄
∼= P4

k̄
.

2By [2], every complete toric variety admitting a vector group structure has such a structure which is normalized by the
torus. We used the term “toric” here to indicate the fact that the given G6

a-action is normalized by the toric structure on P6

k
.



DEL PEZZO QUINTICS AS EQUIVARIANT COMPACTIFICATIONS OF VECTOR GROUPS 12

Since the restriction of a canonical divisor KP of P to C has odd degree, C is the trivial k-form of P1
k and

hence, P is the trivial k-form of P4
k. This implies in turn that X is isomorphic to G(2, 5). By Proposition

24, G(2, 5) admits at least one vector group structure.
The following proposition completes the proof of Theorem 1 in the case n = 6.

Proposition 26. The Grassmannian G(2, 5) has a unique class of vector group structure.

Proof. Write G(2, 5) = Gk(V
∨, 2) = G for some 5-dimensional k-vector space V . Through the isomorphism

PGLk(V
∨) ∼= Autk(G) of (1.1), a vector group structure on G is given by the projective representation

associated to a faithful representation ρ : U → GLk(V
∨) of a vector group U. Let V1 ⊂ V be a 1-dimensional

k-vector subspace of V that is invariant for the representation dual to ρ, its existence being guaranteed by
Lemma 3(3). Since the action of GLk(V ) on such 1-dimensional subspaces is transitive, up to the choice of
a basis of V as in Notation 10 and up to changing ρ by its conjugate by a suitable automorphism of G we
henceforth assume without loss of generality that V1 = 〈e5〉 and put V̄ = V/V1

∼= 〈e1, . . . , e4〉. The image of
ρ is then contained in the stabilizer ∆V1

of the subspace V̄ ∨ ⊂ V ∨, see Notation 13. Let U′ be the kernel
of the induced representation U → GLk(V̄

∨) and let ρ̄ : Ū = U/U′ → GLk(V̄
∨) be the induced faithful

representation. With the notation of § 2.2 and Example 18, the projection

πΠ : G 99K Ḡ = {w12w34 − w13w24 + w14w23 = 0} ⊂ P5
k

from the solid Π = σ3,0(V1) is then U-equivariant for the action of U on Ḡ factoring through the action of
Ū determined under the isomorphism Autk(Ḡ) ∼= PGLk(V̄

∨) by the projective representation induced by ρ̄.
The U-action on G lifts to a vector group structure on the blow-up YΠ → G of Π and, by Proposition 8
applied to the induced morphism pḠ : YΠ → Ḡ, the Ū-action on Ḡ defines a vector group structure on it.
In particular, Ū is 4-dimensional, say Ū = Spec(k[t13, t23, t14, t24]). By [37], Ḡ admits a unique vector group
structure given up to isomorphism by the projective representation associated to the representation

Ū → GLk(V̄
∨), t = (tij)i=1,2,j=3,4 7→ A(t) =









1 0 −t23 −t24
0 1 t13 t14
0 0 1 0
0 0 0 1









.

Write U′ = Spec(k[s1, s2]), U ∼= Spec(k[t̄][s1, s2]) ∼= Ū× U′ and put u = (t, s1, s2). Then, with Notation 13,
the representation ρ : U → ∆V1

lifting ρ̄ : Ū → GLk(V̄
∨) has the form u 7→ M(u) = M(A(t̄), 1, tL(u)) for

some row matrix L(u) = (fi(u))i=1,...4 of elements of k[u] such that M(u+u′) = M(u)M(u′) = M(u)M(u′) =
M(u′ + u). By direct computation, this identity implies that f3 = f4 = 0 and that f1 and f2 are linear
polynomials. Moreover, since ρ is injective, we must have k[t̄, f1, f2] = k[t̄, s1, s2]. Denoting t̄ij , f1 and f2
anew by tij , −t25 and t15 then identifies ρ with the representation (3.1) in Example 25. �

3.2.2. Proof of Theorem 1 for fivefolds. The following proposition establishes the first part of the assertion
of Theorem 1 for n = 5.

Proposition 27. A smooth quintic del Pezzo fivefold is isomorphic to a smooth hyperplane section of G(2, 5)
and all these sections are isomorphic.

Proof. Let X be smooth quintic del Pezzo fivefold. By [19], Xk̄ is isomorphic to a smooth hyperplane section
Z〈s〉 of G = Gk̄(V

∨, 2) for some 5-dimensional k̄-vector space V . By Lemma 14, X contains a unique 3-

dimensional sub-scheme Π whose base extension Πk̄ to k̄ is a σ3,0-solid of Xk̄. Let IΠk̄
⊂ OXk̄

be the ideal
sheaf of Πk̄, let OXk̄

(1) = Λ2Q|Xk̄
and consider the projection

πΠk̄
: Xk̄ = Z〈s〉 99K Q〈s̄〉 ⊂ Pk̄(H

0(Xk̄, IΠk̄
(1)) ∼= P4

k̄

from Πk̄. Since the action of the Galois group Γ = Gal(k̄/k) on Xk̄ maps smooth hyperplane sections of
Xk̄ to smooth hyperplane sections, the projective space Pk̄(H

0(Xk̄, IΠk̄
(1)) inherits a natural continuous

linear Galois action of Γ. By Galois descent for quasi-projective varieties and rational maps between these,
the map πΠk̄

thus descends to a rational map πΠ : X 99K Q ⊂ P4 whose image is a k-form Q of Q〈s̄〉 in

a k-form P4 of P4
k̄
. The divisor −KP4

− 2Q being defined over k and of degree 1, P4 is the trivial form of

P4
k. Let pX : Y → X be the blow-up of Π. Then, by Proposition 17, the induced morphism pQ : Y → Q

is an étale locally trivial P2-bundle whose base extension to k̄ is isomorphic to PQ〈s〉
(S ⊕OQ〈s̄〉

) where S

denotes the spinor sheaf on Q〈s̄〉. Furthermore, the restriction pQ : E → Q of pQ to the exceptional divisor

of pX is an étale locally trivial P1-sub-bundle of pQ : Y → Q, whose base extension to k̄ is isomorphic to the
sub-bundle PQ〈s̄〉

(S ) of PQ〈s̄〉
(S ⊕OQ〈s̄〉

). Thus, considering the direct image by pQ of the exact sequence

0 → OY → OY (E) → OE(E) → 0 on Y , we conclude that pQ : Y → Q is isomorphic to the P2-bundle PQ(E)
where E = (pQ)∗OY (E) is a locally free sheaf of rank 3 on Q. Furthermore, SQ = (pQ)∗OE(E) is a locally
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free sheaf of rank 2 whose base extension to k̄ is isomorphic to the spinor sheaf S on Qk̄
∼= Q〈s̄〉. Since

H0(Q〈s̄〉,S
∨) ∼= H0(Q,S ∨Q )⊗k k̄ by flat base change and since S ∨ is globally generated by sections whose

zero schemes are lines of Q〈s̄〉 ⊂ P4
k̄

(see e.g. [32]), we infer that Q contains a line of P4
∼= P4

k. A smooth

quadric of P4
k containing a line being unique up to isomorphism and equal to a hyperplane section of the

smooth quadric G(2, 4) ⊂ P5
k, we conclude by reading the Sarkisov link of Proposition 20 backwards that X

is isomorphic to a smooth hyperplane section of G(2, 5) over k. The transitivity of the action of Autk(G)(k)
on the set of such smooth sections, see § 2.1.2, implies that they are all isomorphic. �

Since by Proposition 24 every smooth hyperplane section of G(2, 5) ⊂ P9
k admits a vector group structure,

the following proposition completes the proof of Theorem 1 in the case n = 5.

Proposition 28. A smooth hyperplane section of G(2, 5) has a unique class of vector group structure.

Proof. Write G(2, 5) = Gk(V
∨, 2) = G for some 5-dimensional k-vector space V . The action of Autk(G) on

the set of smooth hyperplane sections being transitive, we are reduced without loss of generality to prove
that the smooth hyperplane section Z〈s〉 associated to the skew-symmetric form s = e∨1 ∧ e∨3 − e∨2 ∧ e∨4
with V ⊥ = 〈e5〉 considered in Example 25 admits a unique class of vector group structure. Under the
isomorphism of Corollary 19, a vector group structure on Z〈s〉 is given by a certain faithful representation
ρ : U → GLk(V

∨) of a vector group U with image contained in the subgroup of the stabilizer ∆V ⊥ of the
subspace V̄ ∨ ⊂ V ∨ consisting of matrices of the form

M(A4, λ, U) =

(

A4 U
0 λ

)

with A4 ∈ Sp4(V̄
∨, s̄), U ∈ Homk((V

⊥)∨, V̄ ∨), λ ∈ GLk((V
⊥)∨) = Gm,k.

Let U′ be the kernel of the induced representation U → Sp4(V̄
∨, s̄) and let ρ̄ : Ū = U/U′ → Sp4(V̄

∨, s̄) be
the induced injective homomorphism. With the notation of § 2.2 and Example 18, the projection

πΠ : Z〈s〉 99K Q〈s̄〉 = {w12w34 − w2
13 + w14w23 = 0}

from the solid Π = σ3,0(V
⊥) is then U-equivariant for the action of U on Q〈s̄〉 factoring through the action

of Ū determined under the isomorphism Autk(Q〈s̄〉) ∼= PSpk(V̄
∨, s̄) by the projective representation induced

by ρ̄. The U-action on Z〈s〉 lifts to a vector group structure on the blow-up YΠ → Z〈s〉 of Π and, by

Proposition 8 applied to the induced morphism pQ〈s̄〉
: YΠ → Q〈s̄〉, the Ū-action on Q〈s̄〉 defines a vector

group structure on it. In particular, Ū is 3-dimensional, say Ū = Spec(k[t13, t23, t24]). By [37], Q〈s̄〉 admits a
unique vector group structure up to isomorphism, which, with our choice of coordinates, is induced by the
representation ρ̄5 : Vk(F

∨
5 )/Stab(〈e∨5 〉) → Sp4(V̄

∨, s̄) of (3.3) in Example 25. Writing U′ = Spec(k[s1, s2]),
U ∼= Spec(k[t̄][s1, s2]) ∼= Ū×U′ and u = (t, s1, s2), the same argument as in the proof of Proposition 26 implies
that the lift ρ : U → ∆V ⊥ ⊂ GLk(V

∨) of ρ̄ : Ū → Sp4(V̄
∨, s̄) has the form u 7→ M(u) = M(A(t̄), 1, tL(s))

where L(s) = (f1(s), f2(s), 0, 0) is a row matrix of linear elements of k[s] with the property that k[t̄, f1, f2] =
k[t̄, s1, s2]. Denoting the t̄ij , f1 and f2 anew by tij , −t25 and t15 respectively, we get that ρ : U → GLk(V

∨)
is the representation (3.2) of Example 25. �

3.2.3. Proof of Theorem 1 for fourfolds. The following proposition completes the proof of Theorem 1.

Proposition 29. A smooth quintic del Pezzo fourfold is isomorphic to a smooth section of G(2, 5) ⊂ P9
k

by a linear subspace of codimension 2. Furthermore, all such sections are isomorphic and admit exactly one
class of vector group structure.

Proof. Let X be smooth quintic del Pezzo fourfold. By [19], we can assume that Xk̄ is a smooth section
WL of G(2, 5)k̄ by a linear subspace of codimension 2. By Lemma 16, X contains a unique 2-dimensional
sub-scheme Ξ whose base extension Ξk̄ to k̄ is a σ2,2-plane of WL. Let IΞk̄

⊂ OXk̄
be the ideal sheaf of Ξk̄,

let OXk̄
(1) = Λ2Q|Xk̄

and consider the projection

πΞk̄
: Xk̄ = WL 99K Pk̄(H

0(Xk̄, IΞk̄
(1)) ∼= P4

k̄

from Ξk̄ as in § 2.3. The projective space Pk̄(H
0(Xk̄, IΞk̄

(1)) inherits a natural continuous linear action

of the Galois group Γ = Gal(k̄/k), which stabilizes the hyperplane corresponding to the unique section of
IΞk̄

(1) whose zero scheme is the special hyperplane section ZΞk̄
∩ Xk̄ of Xk̄ spanned by the σ3,1-planes of

Xk̄. In particular, the divisor ZΞk̄
∩ Xk̄ is defined over k, say ZΞk̄

∩ Xk̄ = (ZΞ)k̄ for some geometrically
irreducible divisor ZΞ ⊂ X containing Ξ. In view of Proposition 20, the projection πΞk̄

thus descends to a

birational map πΞ : X 99K P4, with image equal to a k-form P4 of P4
k, which contract ZΞ onto a smooth curve

C contained in a hypersurface P3 ⊂ P4 such that the triple (P4, P3, C) is a k-form of the triple (P4
k,P

3
k, C3),

where P3
k is a hyperplane of P4

k and C3 ⊂ P3
k is a smooth rational cubic curve. Thus, P4 and P3 are trivial

forms of P4
k and P3

k respectively, and, since the intersection of C with a hyperplane of P3
k is a divisor of degree
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3 on C, it follows that C ∼= P1
k. Reading the Sarkisov link of Proposition 20 backwards, we conclude that X

is isomorphic to a smooth section of G(2, 5) by a linear subspace of codimension 2, and the uniqueness up
to isomorphism follows from the transitivity of the action PGL5(k) on triples (P4

k,P
3
k, C3) where C3 ⊂ P3

k

is a smooth rational cubic. Proposition 24 implies that X admits a vector group structure. To show the
uniqueness, we observe that being unique, the σ2,2-plane Ξ is stable under any faithful action of a unipotent
abelian group U on X defining a vector group structure on X . This vector group structure lifts to the
blow-up pΞ : Y → X of Ξ and then, by Proposition 8, descends via the contraction p2 : Y → P4

k of the
proper transform of ZΞ to a faithful U-action on P4

k defining a vector group structure, for which the pair
(P3

k, C) is globally U-stable. By the classification of vector group structures on P4
k, see [21] or [22, Corollary

3.6], the unique class of vector group structure with this property is the toric G4
a-structure on P4

k described
in Example 25. �

Remark 30. A by-product of Proposition 29 is that among the four non-isomorphic compactifications of A4
C

into the smooth quintic del Pezzo fourfold classified by Prokhorov [34, Theorem 3.1], only the case (i) can
be endowed with a vector group structure making it an equivariant compactification of G4

a,C.

Remark 31. By [14, § 2.2], smooth sections of G(2, 5) ⊂ P9
k by linear subspaces of codimension 3 have

in general non-trivial k-forms, whose isomorphism classes are parametrized by equivalence classes of non-
degenerate ternary quadratic forms over k. In contrast, Proposition 27 and Proposition 29 imply that smooth
del Pezzo quintics of dimension n = 4, 5 do not have non-trivial k-forms. Since these are compactifications
of An

k , one deduces from the techniques in loc. cit. that a proper morphism f : X → Y between normal
varieties over an algebraically closed field of characteristic zero whose general closed fibers are smooth quintic
del Pezzo varieties of dimension n = 4, 5 contains a vertical An-cylinder in the sense of [14]. Similarly, a
proper morphism f : X → Y whose general closed fibers are isomorphic to G(2, 5) and which has a rational
section contains a vertical A6-cylinder.

4. Vector group structures on terminal quintic del pezzo threefolds and canonical

quintic del Pezzo surfaces

Classifying vector group structures on all del Pezzo quintics, including singular ones, is a challenging
problem. For instance, many families of singular del Pezzo quintics of dimension n = 3, 4, 5 endowed with a
vector group structure can be constructed as hyperplanes sections of G = G(2, 5) with respect to the Plücker
embedding containing a σ2,2-plane Ξ of G (see § 2.3 for the notation) which is fixed by the G6

a,k-structure

on G corresponding under the birational projection πΞ : G = G(2, 5) 99K P6
k = P(H0(G, IΞ(1))) to the toric

G6
a,k-structure on P6

k described in Example 25. Namely, every linear subspace L of codimension m = 1, 2, 3 of

P6
k which intersects the complement H∞ = {w12 = 0} of the open orbit transversely has stabilizer isomorphic

to Gm
a,k and the induced effective action of the quotient group G6−m

a,k on L defines a vector group structure on
it. The proper transform of L by πΞ is then a linear section XL of G of dimension 6−m, singular in general,
endowed with a vector structure for which the inclusion XL →֒ G is equivariant for the induced action of a
subgroup G6−m

a,k of the group G6
a,k which acts with an open orbit on G.

Here, we consider mildly singular del Pezzo quintics of dimension 3 and 2, a case of special interest due
to the fact that no smooth del Pezzo quintics in these dimensions admit a vector group structure.

4.1. Vector group structures on terminal quintic del Pezzo threefolds. Over algebraically closed
fields of characteristic zero, non-smooth terminal quintic del Pezzo threefolds are classified in [35]. By
Corollary 5.3 in loc. cit., the main invariant of such a threefold X is the rank r(X) = rkZCl(X) of its divisor
class group, which is either 2, 3 or 4. Furthermore, all the singularities of X are ordinary double points and,
by [35, Corollary 8.3.1], the number of such nodes equals r(X)− 1.

Lemma 32. A terminal quintic del Pezzo threefold X over k whose base extension Xk̄ to k̄ has one or two
nodes does not admit a vector group structure.

Proof. Since it is enough to show that Xk̄ does not admit any vector group structure, we henceforth assume
that k = k̄. Assume that X has a vector group structure. Then the latter lifts to a vector group structure
on a small Q-factorialization ξ : X̂ → X of X . If X has a unique node then, by [25, Theorem 3.6] or [35,

Theorem 5.2], X̂ is isomorphic to the total space of a P1-bundle π : X̂ ∼= PP2

k
(E) → P2

k for some stable,

hence simple, locally free sheaf E of rank 2 on P2
k. We would thus obtain a vector group structure on PP2

k
(E)

which is impossible by Corollary 9. If X has two nodes then, by [35, Theorem 8.1 and Corollary 8.1.1], X̂ is

isomorphic to the blow-up σ : X̂ → X̃ of the total space of the projective bundle π : X̃ = PP2

k
(TP2

k
(−1)) → P2

k

at a point. By Proposition 8, the vector group structure on X̂ descends to a vector group structure on X̃ .
But again, this is impossible since TP2

k
(−1) is a simple sheaf. �
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We now consider the case of terminal quintic del Pezzo threefolds whose base extensions to k̄ possess
exactly three nodes, which we henceforth call for short trinodal quintic del Pezzo threefolds.

Proposition 33. A trinodal quintic del Pezzo threefold X3 is isomorphic to a section of G(2, 5) ⊂ P9
k

by a linear subspace of codimension 3. It contains a unique σ2,2-plane Ξ of G(2, 5) and the projection
πΞ : G(2, 5) 99K P6

k from Ξ induces the following Sarkisov link

(4.1) BlSX3
HX3

��

� � // BlΞX3
∼= BlSX3

P3
k

pX3

yyrr
rr
rr
rr
rr
r

p2

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

Ξ
� � // X3

πΞ //❴❴❴❴❴❴❴❴❴❴❴❴
P3
k

Φ
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ HX3

? _oo SX3

? _oo

where pX3
: BlΞX3 → X3 is the blow-up of Ξ, p2 : BlΞX3 → P3

k is the blow-up of a smooth 0-dimensional
sub-scheme SX3

of length 3 of P3
k not contained in a line, HX3

is the unique hyperplane of P3
k containing SX3

and BlSX3
HX3

is its proper transform. Furthermore, the birational inverse Φ of πΞ is given by the complete

linear system of quadrics of P3
k containing SX3

.

Proof. By [35, Theorem 7.1], X3,k̄ is isomorphic to a threefold obtained from P3
k̄

as the blow-up σ : Y → P3
k̄

of three non-colinear closed points, say p1, p2, p3, followed by the contraction ξ : Y → X3,k̄ of the proper

transforms by σ of the lines in P3
k̄

passing through pi and pj , 1 ≤ i < j ≤ 3 to the nodes of X3,k̄. The class

group of X3,k̄ is freely generated by the classes of the proper transform H̃ of the unique hyperplane H ⊂ P3
k̄

containing the points pi and of the images Fi, 1 ≤ i ≤ 3, of the exceptional divisors of σ. By [35, Theorem
7.2], P and the Fi are the only planes contained in X3,k̄. Their union is thus defined over k and since P is
the only plane among these which fully contains the singular locus of X3,k̄ it is defined over k as well, say
P = Ξk̄ for some closed sub-scheme Ξ of X3. This implies in turn that the union of the Fi is defined over k,

say
⋃

Fi = Fk̄ for some closed sub-scheme F of X3. Since the divisor (Ξ + F )k̄ = P +
∑3

i=1 Fi is linearly
equivalent to the proper transform in X3,k̄ of any hyperplane H ′ ⊂ P3

k̄
not passing through the points blown-

up, it is Cartier. The invertible sheaf OX
3,k̄

(P +
∑3

i=1 Fi) is then the base extension to k̄ of the invertible

sheaf OX3
(1) := OX3

(Ξ+F ) and, letting I ⊂ OX3
be the ideal sheaf of the singular locus of X3, the rational

map σ ◦ ξ−1 : X3,k̄ 99K P3
k̄

is the base extension of the birational map π : X3 99K P(H0(X3, I(1)) ∼= P3
k. The

latter maps Ξ to a hyperplane HX3
⊂ P3

k and contracts F to a smooth closed sub-scheme SX3
⊂ HX3

of
length 3 whose base extension to k̄ equals the union of the points pi. Since SX3

is not contained in a line,
there exists a smooth rational cubic curve SX4

⊂ P3
k whose scheme-theoretic intersection with HX3

equals
SX3

. Considering P3
k as a hyperplane HX4

of P4
k, it follows from Proposition 20 that the image of the rational

map P4
k 99K P7

k given by the complete linear system of quadrics containing SX4
⊂ HX4

is a smooth quintic
del Pezzo fourfold X4 containing X3 as a hyperplane section and which has the proper transform Ξ of HX4

as
its unique σ2,2-plane. By construction, the birational map π : X3 99K P3

k then coincides with the restriction
to X3 of the projection πΞ : X4 99K P4

k from Ξ, which completes the proof. �

Corollary 34. Isomorphism classes of trinodal quintic del Pezzo threefolds are in one-to-one correspondence
with PGL2(k)-orbits of smooth 0-dimensional sub-schemes of P1

k of length three. Furthermore, every such
threefold admits a unique class of vector group structure.

Proof. By Proposition 33, two trinodal quintic del Pezzo threefolds X3 and X ′3 are isomorphic if and only
if there exists an automorphism of P3

k which maps the pair (HX3
, SX3

) onto the pair (HX′
3
, SX′

3
). Being of

length 3 and not contained in a line, the schemes SX3
and SX′

3
are contained in smooth k-rational conics

CX3
and CX′

3
of HX3

and HX′
3
, respectively. Since Autk(P

3
k) acts transitively on pairs (H,C) consisting of

a hyperplane H of P3
k and a smooth k-rational conic C ∼= P1

k in it and since for such pairs the restriction
homomorphism Autk(H,C) → Autk(C) is an isomorphism, we conclude that X3 and X ′3 are isomorphic if
and only if there exists an isomorphism ϕ : CX3

→ CX′
3

which maps SX3
onto SX′

3
. This holds if and only if

SX3
and ϕ−1(SX′

3
) belong to the same orbit of the action of Autk(CX3

)(k) ∼= PGL2(k).
For the second assertion, since the singular locus of X3 and the unique σ2,2-plane Ξ of X3 are stable under

any vector group action on X3, it follows from Proposition 8 applied to the birational morphism BlΞX → P3
k

that the Sarkisov link of Proposition 33 is equivariant for any vector group structure on X3 and that the
corresponding vector group structure on P3

k stabilizes the non-linear closed sub-scheme SX3
of length 3. By

the classification [21] of vector group structures on P3
k = Projk(k[x0, x1, x2, x3]), the unique class of vector

group structure with this property is that of the toric G3
a-structure defined by x0 7→ x0 and xi 7→ xi + tix0,

1 ≤ i ≤ 3. Conversely, this structure lifts to a vector group structure on the blow-up of SX3
, which, by

Proposition 8 again, descends in turn to a vector group structure on X3. �
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Remark 35. By Proposition 33 and Corollary 34, every trinodal quintic del Pezzo threefold contains the
affine 3-space A3

k as a Zariski open subset. In contrast, there exist in general k-forms of smooth quintic del
Pezzo threefolds contains which do not contain A3

k, see [14, Theorem 12].

Example 36. With Notation 10, let V3 = 〈e3, e4, e5〉 and let Ξ = σ2,2(V3) be the associated plane of
G = G(2, 5) ⊂ P9

k as in Example 21. For every β ∈ k∗, the linear section

X3(β) = G ∩ {w13 − w24 = 0} ∩ {βw14 − w25 = 0} ∩ {βw15 + w23 = 0}

is a trinodal quintic del Pezzo threefold containing Ξ, isomorphic to the sub-variety in P6
k with coordinates

wij , (i, j) 6= (2, 3), (2, 4), (2, 5) defined by the equations






















w12w34 − w2
13 − βw14w15 = 0

w12w35 − βw13w14 − βw2
15 = 0

w12w45 − βw2
14 + w13w15 = 0

w13w45 − w14w35 + w15w34 = 0
−βw15w45 − w13w35 + βw14w34 = 0

Its singular locus Sing(X3(β)) is the closed sub-scheme of Ξ ∼= Projk(k[w34, w35, w45]) with equations

βw34w45 − w2
35 = w34w35 − βw2

45 = w35w45 − w2
34 = 0.

Letting λ, ǫ ∈ k̄ be respectively a third root of β and a primitive third root of unity, the singular locus of
X3(β)k̄ is the union of the three closed points [λǫm : (λǫm)2 : 1], 0 ≤ m ≤ 2, of Ξ. Thus, according to
whether β is cube in k∗ or not and k∗contains a primitive primitive third root of unity or not, Sing(X3(β))
consists either of a single closed point, or the union of a k-point and a single other closed point, or the union
of three k-points. The image of Ξ by the restriction X3(β) 99K P3

k = Projk(k[w12, w13, w14, w15]) of the
projection from Ξ is the hyperplane HX3(β) = {w12 = 0}. The associated smooth 0-dimensional sub-scheme
SX3(β) of length 3 is the closed sub-scheme of HX3(β) defined by the equations

βw14w15 + w2
13 = w13w14 + w2

15 = w13w15 − βw2
14 = 0.

The restriction to X3(β) of the action of the sub-group U ∼= G3
a,k of the vector group Vk(F

∨
6 ) of (3.1) in

Example 25 defined by t24 = t13, t25 = βt14 and t23 = −βt15 induces a vector group structure







































w12 7−→ w12

w13 7−→ w13 + t13w12

w14 7−→ w14 + t14w12

w15 7−→ w15 + t15w12

w34 7−→ w34 + 2t13w13 + β(t15w14 + t14w15) + (t213 + βt14t15)w12

w35 7−→ w35 + β(t14w13 + t13w14 + 2t15w15) + β(t13t14 + t215)w12

w45 7−→ w45 + (2βt14w14 − t15w13 − t13w15) + (βt214 − t15t13)w12

on X3(β) with open orbit X3(β) \ {w12 = 0}.

4.2. Vector group structures on canonical quintic del Pezzo surfaces. Del Pezzo surfaces with
canonical singularities admitting a vector group structure are classified in [12], see also [30]. For the sake of
completeness, we record the following consequence of the classification in the quintic case:

Proposition 37. Up to isomorphism, there exist two quintic del Pezzo surfaces with canonical singularities
which admit a vector group structure:

a) A surface S with an A3-singularity, whose neutral component Aut0(S) of the automorphism group is
isomorphic to G2

a,k ⋊Gm,k and which admits a unique class of vector group structure.

b) A surface S′ with an A4-singularity, whose neutral component Aut0(S′) of the automorphism group is
isomorphic to U3 ⋊Gm,k, where U3 is a maximal unipotent subgroup of PGL3(k), and which admits exactly
two classes of vector group structures.

Proof. All the properties but those concerning the actual number of equivalence classes of vector group
structures are established in [12] and for the description of the automorphism groups in [30, Table 1], cases
5E and 5F for S and S′ respectively. We briefly recall the principle of the argument in loc. cit. and explain
how derive from it the equivalence classes of vector group structures. Equivalence classes of vector group
structures on a del Pezzo surface S with canonical singularities are in one-to-one correspondence with those on
its minimal desingularization S̃ → S, which is obtained from S by performing a finite sequence of successive
blow-ups of singular loci of intermediate surfaces and normalizations. Indeed, a vector group structure
stabilizes singular loci, hence canonically lifts to their blow-ups and, by universal property, canonically
lifts as well to normalizations. Conversely, Proposition 8 ensures that every vector group structure on S̃
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descend to S. Here, the surfaces S̃ are weak del Pezzo surfaces of degree 5 whose base extensions to k̄ are
obtained from P2

k̄
by performing certain finite sequences of blow-ups of closed points. In the two cases under

consideration, the respective dual graphs of the unions of the (−1)-curves and (−2)-curves in S̃k̄ have the
following structure

e1
◦

e2
◦

e3
◦

ℓ̃2
•

•
ℓ̃1

e1
◦

e4
◦

e3
◦

e2
◦

•
ℓ̃

in which the vertices • and ◦ correspond respectively to (−1)-curves which are the proper transforms of the

lines in Sk̄ and to (−2)-curves which are the exceptional divisors of the desingularization S̃k̄ → Sk̄. Since
these diagrams have no symmetries, all the curves displayed are defined over k, corresponding to irreducible
smooth k-rational curves in S̃ with the same self-intersection numbers.

In the case of an A3-singularity, the successive contractions of ℓ̃2, and then of the exceptional divisors e3,
e2 and e1 yield a birational morphism σ : S̃ → P2

k = Projk(k[u0, u1, u2]) which maps ℓ̃1 onto a line ℓ ⊂ P2
k

and contracts ℓ̃2 ∪ e1 ∪ e2 ∪ e3 onto a k-point p ∈ ℓ , say, up to composition by a suitable automorphism
of P2

k, ℓ = {u2 = 0} and p = [1 : 0 : 0]. A vector group structure on S and its canonical lift to S̃ being

given, Proposition 8 implies the existence of a unique vector group structure on P2
k for which σ : S̃ → P2

k

is equivariant. The latter stabilizes ℓ as well as the proper and infinitely near base points of σ−1. By [21,
Proposition 3.2] there are two classes of vector group structures on P2

k fixing ℓ and p: the “toric” structure
given by the G2

a,k-action [u0 : u1 : u2] 7→ [u0 + t0u2 : u1 + t1u2 : u2] and the “non-toric” one given by the

G2
a,k-action [u0 : u1 : u2] 7→ [u0+ t1u1+(12 t

2
1+ t0)u2 : u1+ t1u2 : u2]. A direct verification shows that the lift

of the toric structure to the surface S̃1 obtained from S̃ by contracting ℓ̃2 acts transitively on e3 \ e2, hence

that this structure cannot be induced by a vector group structure on S̃. On the other hand, the lift to S̃1

of the other structure fixes e3 point wise, hence is descended via the contraction of ℓ̃2 from a vector group
structure on S̃. Thus, S̃, whence S, has a unique class of vector group structure.

In the case of an A4-singularity, the successive contractions of ℓ̃, and then of the exceptional divisors e4,
e3 and e2 yield birational morphism σ : S̃ → P2

k which maps e1 onto a line ℓ ⊂ P2
k and ℓ̃ ∪ e4 ∪ e3 ∪ e2 onto

a k-point p ∈ ℓ. Up to composing by a suitable automorphism of P2
k as above, we again infer that a vector

group structure on S̃ is equivalent to the lift via σ of one of the two equivalence classes of such structures
on P2

k described above. Noting that for both structures the first three points blown-up by σ are fixed and
that the lifts of these two structures to the resulting surface both fix e4 point wise, we conclude that both
structures lift to S̃. These two structures descend in turn on S, showing that S has at most two equivalence
classes of vector group structures. The conclusion follows from the observation that two so-constructed
induced structures have non-isomorphic fixed point schemes, hence are not equivalent. �

Remark 38. With the notation of the proof of Proposition 37, in the case of the del Pezzo surface S with
an A3-singularity, the contractions of ℓ̃1, e1, e2 and ℓ̃2 yield another birational morphism σ′ : S̃ → P2

k which

maps e3 onto a line ℓ′ and contracts ℓ̃1 ∪ e2 ∪ e1 and ℓ̃2 onto a pair of disctinct k-points of ℓ. In contrast
with the morphism σ : S̃ → P2

k constructed in the proof of Proposition 37 which is equivariant with respect
to the non-toric G2

a,k-structure on P2
k, the birational morphism σ′ is equivariant with respect to the toric

G2
a,k-structure on P2

k. The toric and non-toric structure on P2
k thus become equivalent on S and hence, are

birationally conjugated on P2
k by the birational automorphism σ′ ◦ σ−1.
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