
HAL Id: hal-03772227
https://hal.science/hal-03772227

Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulations for Event-Clock Automata
S. Akshay, Paul Gastin, R. Govind, B. Srivathsan

To cite this version:
S. Akshay, Paul Gastin, R. Govind, B. Srivathsan. Simulations for Event-Clock Automata. 33rd In-
ternational Conference on Concurrency Theory (CONCUR 2022), Sep 2022, Varsovie, Poland. pp.13,
�10.4230/LIPIcs.CONCUR.2022.13�. �hal-03772227�

https://hal.science/hal-03772227
https://hal.archives-ouvertes.fr

Simulations for Event-Clock Automata
S. Akshay #

Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

Paul Gastin #

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
CNRS, ReLaX, IRL 2000, Siruseri, India

R. Govind #

Department of CSE, Indian Institute of Technology Bombay, Mumbai, India

B. Srivathsan #

Chennai Mathematical Institute, India
CNRS, ReLaX, IRL 2000, Siruseri, India

Abstract
Event-clock automata are a well-known subclass of timed automata which enjoy admirable theoretical
properties, e.g., determinizability, and are practically useful to capture timed specifications. However,
unlike for timed automata, there exist no implementations for event-clock automata. A main reason
for this is the difficulty in adapting zone-based algorithms, critical in the timed automata setting,
to the event-clock automata setting. This difficulty was studied in [19, 20], where the authors also
proposed a solution using zone extrapolations.

In this paper, we propose an alternative zone-based algorithm, using simulations for finiteness,
to solve the reachability problem for event-clock automata. Our algorithm exploits the G-simulation
framework, which is the coarsest known simulation relation for reachability, and has been recently
used for advances in other extensions of timed automata.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Quantitative automata; Theory of computation → Logic and verification

Keywords and phrases Event-clock automata, verification, zones, simulations, reachability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.13

Related Version Full Version: https://arxiv.org/abs/2207.02633

Funding This work was supported by DST/CEFIPRA/INRIA Project EQuaVE.
S. Akshay: Supported in part by DST/SERB Matrics Grant MTR/2018/000744.
Paul Gastin: Partially supported by ANR project Ticktac (ANR-18-CE40-0015).

1 Introduction

Timed automata (TA) [4] are a well-established model for real-time systems and form the
basis for employing model-checking techniques. The most popular property that has been
considered in these systems is control state reachability. Reachability in timed automata
is a well-studied problem and was shown to be decidable (and PSPACE-complete) using
the so-called region construction [4]. This construction was primarily of theoretical interest,
as the number of regions, which are collections of reachable configurations, explodes both
in theory and in practice. On the other hand, timed automata have been implemented in
several tools: UPPAAL [26, 6], KRONOS [10], PAT [29], RED [31], TChecker [21], Theta [30],
LTS-Min [24], Symrob [28], MCTA [25], etc. Most of these tools have a common underlying
algorithm which is an explicit enumeration of reachable configurations stored as zones [7].
Since the late 90s, a substantial effort has been invested in improving zone enumeration
techniques, the common challenge being how to get a sound and complete enumeration while
exploring as few zones as possible.

© S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:govindr@cse.iitb.ac.in
https://orcid.org/0000-0002-1634-5893
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.CONCUR.2022.13
https://arxiv.org/abs/2207.02633
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Simulations for Event-Clock Automata

The more general model checking problem of whether the system represented by TA
A satisfies the specification given by TA B reduces to the language inclusion problem
L(A) ⊆ L(B). There are two challenges here: first, the inclusion problem is undecidable in
its full generality, and second, having clocks, though excellent for timed implementations, are
often less than ideal for modeling timed specifications. This has led to the introduction of
event-clocks and the corresponding model of event-clock automaton (ECA) [5]. Event-clock
automata make use of special clocks that track the time since the last occurrence of an event
(history clocks) or the time until the next occurrence of an event (prophecy clocks). On one
hand this makes writing timed specifications more natural. Indeed, the role of prophecy clocks
is in the same spirit as future modalities in temporal logics. This has led to several extensions
of temporal logics with event-clocks [15, 1, 27], which are often used as specification languages
and can be converted into ECA. On the other hand, ECA can be determinized and hence
complemented. Observe that model-checking event-clock specifications over TA models can
be reduced to the reachability problem on the product of the TA with an ECA. This product
contains usual clocks, history clocks and prophecy clocks. The usual clocks can be treated in
the same way as history clocks for the zone analysis. Therefore, if we solve ECA reachability
(with history and prophecy clocks) using zones, we can incorporate usual clocks into the
procedure seamlessly. The bottomline is that the well-motivated problem of model-checking
event-clock specifications over TA models can be reduced to an ECA reachability problem.

Thus, in this paper, we focus on the core problem of building efficient, zone-based
algorithms for reachability in ECA. This problem turns out to be significantly different
compared to zone based reachability algorithms in usual TA, precisely due to prophecy clocks.
Our goal is to align the zone-based reachability algorithms for ECA with recent approaches
for TA that have shown significant gains.

As mentioned earlier, the core of an efficient TA reachability algorithm is an enumeration
of zones, where the central challenge is that naïve enumeration does not terminate. One
approach to guarantee termination is to make use of an extrapolation operation on zones:
each new zone that is enumerated is extrapolated to a bigger zone. Any freshly enumerated
zone that is contained in an existing zone is discarded. More recently, a new simulation
approach to zone enumeration has been designed, where enumerated zones are left unchanged.
Instead, with each fresh zone it is checked whether the fresh zone is simulated by an already
seen zone. If yes, the fresh zone is discarded. Otherwise, it is kept for further exploration.
Different simulations have been considered: the LU -simulation [22] which is based on LU -
bounds, or the G-simulation [18], which is based on a carefully-chosen set of constraints.
Coarser simulations lead to fewer zones being enumerated. The G-simulation is currently
the coarsest-known simulation that can be efficiently applied in the simulation approach.
The simulation based approach offers several gains over the extrapolation approach: (1)
since concrete zones are maintained, one could use dynamic simulation parameters and
dynamic simulations, starting from a coarse simulation and refining whenever necessary [23],
(2) the simulation approach has been extended to richer models like timed automata with
diagonal constraints [17, 16], updatable timed automata [18], weighted timed automata [9]
and pushdown timed automata [3]. In these richer models, extrapolation has either been
shown to be impossible [8] or is unknown.

Surprisingly, for ECA, an arguably more basic and well-known model, it turns out that
there are no existing simulation-based approaches. However, an extrapolation approach using
maximal constants has been studied for ECA in [19, 20]. In this work, the authors start by
showing that prophecy clocks exhibit fundamental differences as compared to usual clocks.
To begin with, it was shown that there is no finite time-abstract bisimulation for ECA in

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:3

general. This is in stark contrast to TA where the region equivalence forms a finite time-
abstract bisimulation. The correctness of extrapolation is strongly dependent on the region
equivalence. Therefore, in order to get an algorithm, the authors define a weak semantics for
ECA and a corresponding notion of weak regions which is a finite time-abstract bisimulation
for the weak semantics and show that the weak semantics is sound for reachability. Building
on this, they define an extrapolation operation for the zone enumeration.

Contributions. Given the advantages of using simulations with respect to extrapolations in
the TA setting described above, we extend the G-simulation approach to ECA. Here are the
technical contributions leading to the result.

We start with a slightly modified presentation of zones in ECA and provide a clean
algebra for manipulating weights in the graph representation for such ECA-zones. This
simplifies the reasoning and allows us to adapt many ideas for simulation developed in
the TA setting directly to the ECA setting.
The G-simulation is parameterized by a set of constraints at each state of the automaton.
We adapt the constraint computation and the definition of the simulation to the context
of ECA, the main challenge being the handling of prophecy clocks.
We give a simulation test between two zones that runs in time quadratic in the number
of clocks. This is an extension of the similar test that exists for timed automata, but now
it incorporates new conditions that arise due to prophecy clocks.
Finally, we show that the reachability algorithm using the G-simulation terminates for
ECA: for every sequence Z0, Z1, . . . of zones that are reachable during a zone enumeration
of an ECA, there exist i < j such that Zj is simulated by Zi. This is a notable difference
to the existing methods in TA, where finiteness is guaranteed for all zones, not only the
reachable zones. In the ECA case, this is not true: we can construct an infinite sequence
of zones which are incomparable with respect to the new G-simulation. However, we show
that finiteness does hold when restricting to reachable zones, and this is sufficient to
prove termination of the zone enumeration algorithm. Our argument involves identifying
some crucial invariants in reachable zones, specially, involving the prophecy clocks.

The fundamental differences in the behaviour of prophecy clocks as compared to usual
clocks constitute the major challenge in developing efficient procedures for the analysis of
ECAs. In our work, we have developed methods to incorporate prophecy clocks alongside
the usual clocks. We prove a surprising property: in all reachable ECA-zones, the constraints
involving prophecy clocks come from a finite set. A direct consequence of this observation
is that the event zone graph of an ECA containing only prophecy clocks (known as Event-
Predicting Automata EPA) is always finite. We wish to emphasize that, in this work, we are
moving a step towards implementability, and at the same time towards more expressivity,
since simulation approaches are amenable to extensions, e.g., with diagonal constraints.

Organization of the paper. Section 2 recalls ECA and describes a slightly modified
presentation of the ECA semantics. Section 3 introduces event zones, event zone graph
and the simulation based reachability framework. Section 4 introduces the new algebra for
representing event zones and describes some operations needed to build the zone graph.
Section 5 introduces the G-simulation for event-clock automata and gives the simulation
test. Section 6 proves finiteness of the simulation when restricted to reachable zones. All the
missing proofs can be found in the full version of the paper [2].

CONCUR 2022

13:4 Simulations for Event-Clock Automata

2 Event Clock Automata and Valuations

Let X be a finite set of variables called clocks. Let Φ(X) denote a set of clock constraints
generated by the following grammar: φ ::= x ◁ c | c ◁ x | φ ∧ φ where x ∈ X, c ∈ Z =
Z ∪ {−∞, +∞} and ◁ ∈ {<,≤}. The base constraints of the form x ◁ c and c ◁ x will be
called atomic constraints. Constraints x < −∞ and +∞ < x are equivalent to false and
constraints −∞ ≤ x and x ≤ +∞ are equivalent to true.

Given a finite alphabet Σ, we define a set XH = {←−a | a ∈ Σ} of history clocks and a
set XP = {−→a | a ∈ Σ} of prophecy clocks. Together, history and prophecy clocks are called
event clocks. In this paper, all clocks will be event clocks, thus we set X = XH ∪XP .

0 ←−
a

−→
a

∞−∞

Figure 1 Range of valuations of event clocks. A valuation maps history clocks to R≥0 ∪ {+∞}
and prophecy clocks to R≤0 ∪ {−∞}.

▶ Definition 1 (Valuation). A valuation of event clocks is a function v : X 7→ R = R ∪
{−∞, +∞} which maps history clocks to R≥0 ∪ {+∞} and prophecy clocks to R≤0 ∪ {−∞}.
We say a history clock ←−a , for some a ∈ Σ is undefined (resp. defined) when v(←−a) = +∞
(resp. v(←−a) < +∞) and a prophecy clock −→a is undefined (resp. defined) when v(−→a) = −∞
(resp. −∞ < v(−→a)). We denote by V(X) or simply by V the set of valuations over X.

We remark that the history clock and the prophecy clock of an event a are symmetric
notions. In the semantics that we introduce in this paper, history clock ←−a stores the amount
of time elapsed after seeing the last a, measuring how far ahead in the future we are w.r.t.
the last occurrence of a. Before we see an a for the first time, ←−a is set to +∞. The prophecy
clock −→a stores the negative of the amount of time that needs to be elapsed before seeing
the next a. In other words, −−→a tells us how far behind in the past we are w.r.t. the next
occurrence of a. If no more a’s are going to be seen, then the prophecy clock of a is set to
−∞, i.e., −→a = −∞. See Figure 1 for a pictorial representation of valuations of event clocks.

Notice that for history (resp. prophecy) clocks, useful constraints use non-negative (resp.
non-positive) constants. Also, ←−a < 0 and 0 < −→a are equivalent to false whereas 0 ≤ ←−a ,
←−a ≤ ∞, −→a ≤ 0 and −∞ ≤ −→a are equivalent to true. A constraint c ◁ ←−a does not imply
that the history clock ←−a is defined, whereas a constraint ←−a ◁ c with (◁, c) ̸= (≤,∞) does.
The same applies to prophecy clocks where a constraint c ◁ −→a with (c, ◁) ̸= (−∞,≤) implies
that −→a is defined, whereas −→a ◁ c does not; in fact, −→a ≤ −∞ states that −→a is undefined.

▶ Remark 2. In the earlier works on ECA [5, 20], prophecy clocks assumed non-negative
values and decreased along with time. This allowed to write guards on prophecy clocks with
non-negative constants, e.g., −→a ≤ 5 means that the next a occurs in at most 5 time units.
In our convention, this would be written as −5 ≤ −→a . Secondly, an undefined clock (history
or prophecy) was assigned a special symbol ⊥ in earlier works. We have changed this to use
−∞ and +∞ for undefined prophecy and history clocks respectively. We adopt these new
conventions as they allow to treat both history clocks and prophecy clocks in a symmetric
fashion, and a clean integration of undefined values when we describe zones and simulations.

We say that a valuation v satisfies a constraint φ, denoted as v |= φ, if φ evaluates to
true, when each variable x in φ is replaced by its value v(x). We write [←−a]v to denote the
valuation v′ obtained from v by resetting the history clock ←−a to 0, keeping the value of other
clocks unchanged. We denote by [−→a]v the set of valuations v′ obtained from v by setting

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:5

the prophecy clock −→a non-deterministically to some value in [−∞, 0], keeping the value of
other clocks unchanged. We denote by v + δ the valuation obtained by increasing the value
of all clocks from the valuation v by δ ∈ R≥0. Not every time elapse may be possible from a
valuation, since prophecy clocks need to stay at most 0. For example, if there are two events
a, b, then a valuation with v(−→a) = −3 and v(

−→
b) = −2 can elapse at most 2 time units.

▶ Definition 3 (Event-clock automata [5]). An event-clock automaton (ECA) A is given by
a tuple (Q, Σ, X, T, q0, F), where Q is a finite set of states, Σ is a finite alphabet of actions,
X is the set of event clocks for Σ, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states and T ⊆ Q× Σ× Φ(X)×Q is a finite set of transitions.
The semantics of an ECA A = (Q, Σ, X, T, q0, F) is given by a transition system SA whose
states are configurations (q, v) of A, where q ∈ Q and v is a valuation. A configuration
(q, v) is initial if q = q0, v(x) =∞ for all x ∈ XH and −∞ ≤ v(x) ≤ 0 for all x ∈ XP . A
configuration (q, v) is accepting if q ∈ F , and v(x) = −∞ for all x ∈ XP and 0 ≤ v(x) ≤ ∞
for all x ∈ XH . Transitions of SA are of two forms:

Delay transition: (q, v) δ−→ (q, v + δ), if (v + δ)(x) ≤ 0 for all x ∈ XP .
Action transition: (q, v) t−→ (q′, [←−a]v′) if t = (q, a, g, q′) is a transition in A, v(−→a) = 0,
v′ ∈ [−→a]v and v′ |= g.
A transition with action a can be taken when the value of the prophecy clock −→a is 0,
then a new value in [−∞, 0] for −→a is non-deterministically guessed so that the resulting
valuation v′ satisfies the guard g, and finally, the history clock ←−a is reset to 0.

An ECA is called an event recording automaton (ERA) if it only contains history clocks
and event predicting automaton (EPA) if it only contains prophecy clocks. A run of an
event-clock automaton is a finite sequence of transitions from an initial configuration of SA.
A run is said to be accepting if its last configuration is accepting. We are interested in the
reachability problem of an event clock automaton. Formally,

▶ Definition 4 (Reachability problem for ECA). The reachability problem for an event-clock
automaton A is to decide whether A has an accepting run.

Different solutions based on regions and zones have been proposed in [5, 19, 20]. For
ERA, the standard region and zone based algorithms for timed automata work directly.
However, for EPA (and ECA), this is not the case. In fact, [19] show that the standard
region abstraction is not possible, as there exists no finite bisimulation due to the behavior
of prophecy clocks. Also, the standard definition of zones used for timed automata is not
sufficient to handle valuations with undefined clocks. The papers [19, 20] make use of special
symbols ⊥ and ? for this purpose. In this work, we use a different formulation of zones by
making use of +∞ and −∞. Instead of using x = ⊥ (resp. x ̸= ⊥) to state that a clock is
undefined (resp. defined) as in [19, 20], we write +∞ ≤ x or x ≤ −∞ or (resp. x < +∞ or
−∞ < x) depending on whether x is a history clock or a prophecy clock. This distinction
between being undefined for history and prophecy clocks plays an important role.

3 Event zones and simulation based reachability

The most widely used approach for checking reachability in a timed automaton is based on
reachability in a graph called the zone graph of a timed automaton [13]. Roughly, zones [7]
are sets of valuations that can be represented efficiently using difference constraints between
clocks. In this section, we introduce an analogous notion for event-clock automata. We
consider event zones, which are sets of valuations of event-clock automata.

CONCUR 2022

13:6 Simulations for Event-Clock Automata

▶ Definition 5 (Event zones). An event zone is a set of valuations satisfying a conjunction of
constraints of the form c ◁ x, x ◁ c or x− y ◁ c, where x, y ∈ X and c ∈ Z = Z∪ {−∞, +∞}.
Constraints of the form x−y ◁ c are called diagonal constraints. To evaluate such constraints,
we extend addition on real numbers with the convention that (+∞) + α = +∞ for all α ∈ R
and (−∞) + β = −∞, as long as β ̸= +∞. We simply write v(x− y) for v(x)− v(y).

Let W be a set of valuations and q a state. For transition t := (q, a, g, q1), we write
(q, W) t−→ (q1, W1) if W1 = {v1 | (q, v) t−→ δ−→ (q1, v1) for some δ ∈ R≥0}. As is usual with
timed automata, zones are closed under the time elapse operation. We will show in the next
section that starting from an event zone Z, the successors are also event zones: (q, Z) t−→
(q1, Z1) implies Z1 is an event zone too. We use this feature to define an event zone graph.

▶ Definition 6 (Event zone graph). Nodes are of the form (q, Z) where q is a state and Z is
an event zone. The initial node is (q0, Z0) where q0 is the initial state and Z0 is given by∧

a∈Σ(∞ ≤ ←−a) ∧ (−→a ≤ 0). This is the set of all initial valuations, which is already closed
under time elapse. For every node (q, Z) and every transition t := (q, a, g, q1) there is a
transition (q, Z) t−→ (q1, Z1) in the event zone graph. A node (q, Z) is accepting if q ∈ F and
Z ∩ Zf is non-empty where the final zone Zf is defined by

∧
a∈Σ
−→a ≤ −∞.

Two examples of ECA and their event zone graphs are given in Figure 3 and Figure 4 of
Appendix A.

Similar to the case of timed automata, the event zone graph can be used to decide
reachability. The next lemma follows by a straightforward adaptation of the corresponding
proof [13] from timed automata.

▶ Proposition 7. The event zone graph of an ECA is sound and complete for reachability.

However, as in the case of zone graphs for timed automata, the event zone graph for an
ECA is also not guaranteed to be finite. We will now define what a simulation is and see
how it can be used to get a finite truncation of the event zone graph, which is still sound
and complete for reachability.

▶ Definition 8 (Simulation). A simulation relation on the semantics of an ECA is a reflexive,
transitive relation (q, v) ⪯ (q, v′) relating configurations with the same control state and (1)
for every (q, v) δ−→ (q, v + δ), we have (q, v′) δ−→ (q, v′ + δ) and (q, v + δ) ⪯ (q, v′ + δ), (2) for
every transition t, if (q, v) t−→ (q1, v1) for some valuation v1, then (q, v′) t−→ (q1, v′1) for some
valuation v′1 with (q1, v1) ⪯ (q1, v′1).

For two event zones Z, Z ′, we say (q, Z) ⪯ (q, Z ′) if for every v ∈ Z there exists
v′ ∈ Z ′ such that (q, v) ⪯ (q, v′). The simulation ⪯ is said to be finite if for every sequence
(q1, Z1), (q2, Z2), . . . of reachable nodes, there exists j > i such that (qj , Zj) ⪯ (qi, Zi).

The reachability algorithm enumerates the nodes of the event zone graph and uses ⪯ to
truncate nodes that are smaller with respect to the simulation.

▶ Definition 9 (Reachability algorithm). Let A be an ECA and ⪯ a finite simulation for A.
Add the initial node of the event zone graph (q0, Z0) to a Waiting list. Repeat the following
until Waiting list is empty:

Pop a node (q, Z) from the Waiting list and add it to the Passed list.
For every (q, Z) t−→ (q1, Z1): if there exists a (q1, Z ′1) in the Passed or Waiting lists such
that (q1, Z1) ⪯ (q1, Z ′1), discard (q1, Z1); else add (q1, Z1) to the Waiting list.

If some accepting node is reached, the algorithm terminates and returns a Yes. Else, it
continues until there are no further nodes to be explored and returns a No answer.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:7

The correctness of the reachability algorithm follows once again from the correctness of
the simulation approach in timed automata [22]. Moreover, termination is guaranteed when
the simulation used is finite.

▶ Theorem 10. An ECA has an accepting run iff the reachability algorithm returns Yes.

We have now presented the framework for the simulation approach in its entirety. However,
to make it functional, we will need the following.
1. An efficient representation for event zones and algorithms to compute successors.
2. A concrete simulation relation ⪯ for ECA with an efficient simulation test (q, Z) ⪯ (q, Z ′).
3. A proof that ⪯ is finite, to guarantee termination of the reachability algorithm.
In the rest of the paper, we show how these can be achieved. To start with, for standard
timed automata, zones are represented using Difference-Bound-Matrices (DBMs) [14]. For
such a representation to work on event zones, we will need to incorporate the fact that
valuations can now take +∞ and −∞. In Section 4, we propose a way to merge +∞ and
−∞ seamlessly into the DBM technology. In the subsequent Section 5, we define a simulation
for ECA based on G-simulation, develop some technical machinery and present an efficient
simulation test. Finally, in Section 6, we deal with the main problem of showing finiteness.
For this, we prove some non-trivial invariants on the event zones that are reachable in ECA
and use them to show a surprising property regarding prophecy clocks. More precisely, we
show that constraints involving prophecy clocks in reachable event zones come from a finite
set depending on the maximum constant of the ECA only.

4 Computing with event zones and distance graphs

We now show that event zones can be represented using Difference-Bound-Matrices (DBMs)
and the operations required for the reachability algorithm can be implemented using DBMs.
Each entry in a DBM encodes a constraint of the form x − y ◁ c. For timed automata
analysis, the entries are (◁, c) where c ∈ R and ◁ ∈ {<,≤}, or (◁, c) = (<,∞). In our case,
we will need to deal with valuations having +∞ or −∞. For this purpose, we first extend
weights to include (≤,−∞) and (≤,∞) and define an arithmetic that admits the new entries
in a natural way.

▶ Definition 11 (Weights). Let C = {(≤,−∞)} ∪ {(◁, c) | c ∈ R ∪ {∞} and ◁ ∈ {≤, <}},
called the set of weights.

Order. Define (◁1, c1) < (◁2, c2) when either (1) c1 < c2, or (2) c1 = c2 and ◁1 is <

while ◁2 is ≤. This is a total order, in particular (≤,−∞) < (◁, c) < (<,∞) < (≤,∞)
for all c ∈ R.
Sum. Let α, β, γ, (◁1, c1), (◁2, c2) ∈ C with β ̸= (≤,∞), γ /∈ {(≤,−∞), (≤,∞)} and
c1, c2 ∈ R. We define the operation of sum on weights as follows.

(≤,∞) + α = (≤,∞) (≤,−∞) + β = (≤,−∞) (<,∞) + γ = (<,∞)
(◁1, c1) + (◁2, c2) = (◁, c1 + c2) with ◁ = ≤ if ◁1 = ◁2 = ≤ and ◁ = < otherwise.

The intuition behind the above definition of order is that when (◁, c) < (◁′, c′), the set of
valuations that satisfies a constraint x−y ◁ c is contained in the solution set of x−y ◁′ c′. For
the sum, we have the following lemma which gives the idea behind our choice of definition.

▶ Lemma 12. Let v be a valuation, x, y, z be event clocks and (◁1, c1), (◁2, c2) ∈ C. If
v |= x− y ◁1 c1 and v |= y − z ◁2 c2, then v |= x− z ◁ c where (◁, c) = (◁1, c1) + (◁2, c2).

CONCUR 2022

13:8 Simulations for Event-Clock Automata

Equipped with the weights and the arithmetic over it, we will work with a graph
representation of zones (as so-called distance graphs), instead of matrices (i.e., DBMs),
since this makes the analysis more convenient. We wish to highlight that our definition
of weights, order and sum have been chosen to ensure that this notion of distance graphs
remains identical to the one for usual TA. As a consequence, we are able to adapt many of
the well-known properties about distance graphs for ECA.

▶ Definition 13 (Distance graphs). A distance graph is a weighted directed graph, with vertices
being XP ∪XH ∪ {0} where 0 is a special vertex that plays the role of constant 0. Edges are
labeled with weights from C. An edge x

◁ c−→ y represents the constraint y − x ◁ c. For a graph
G, we define [[G]] := {v | v |= y − x ◁ c for all edges x

◁ c−→ y in G}. Further,
The weight of a path in a distance graph G is the sum of the weight of its edges. A cycle
in G is said to be negative if its weight is strictly less than (≤, 0).
A graph G is said to be in canonical form if it has no negative cycles and for each pair of
vertices x, y, the weight of x→ y is not greater than the weight of any path from x to y.
For two graphs G1, G2, we write min(G1,G2) for the distance graph obtained by setting
the weight of each edge to the minimum of the corresponding weights in G1 and G2.

For an event zone Z, we write G(Z) for the canonical distance graph that satisfies [[G(Z)]] = Z.
We denote by Zxy the weight of the edge x→ y in G(Z).

We will make use of an important property, which has been shown when weights come
from C \ {(≤, +∞), (≤,−∞)}, but continues to hold even with the new weights added.

▶ Lemma 14. For every distance graph G, we have [[G]] = ∅ iff G has a negative cycle.

Successor computation. To implement the computation of transitions (q, Z) t−→ (q1, Z1)
in an event zone graph, we will make use of some operations on event zones that we define
below. Using distance graphs, we show that these operations preserve event zones, that is,
starting from an event zone and applying any of the operations leads to an event zone again.
Thanks to the algebra over the new weights that we have defined, the arguments are very
similar to the case of standard timed automata.

▶ Definition 15 (Operations on event zones). Let g be a guard and Z an event zone.
Guard intersection: Z ∧ g := {v | v ∈ Z and v |= g}
Release: [−→a]Z =

⋃
v∈Z [−→a]v

Reset: [←−a]Z = {[←−a]v | v ∈ Z}
Time elapse: −→Z = {v + δ | v ∈ Z, δ ∈ R≥0 s.t. v + δ |=

∧
a∈Σ
−→a ≤ 0}

A guard g can be seen as yet another event zone and hence guard intersection is just an
intersection operation between two event zones. By definition, for a transition t := (q, a, g, q′)
and a node (q, Z) the successor (q, Z) t−→ (q′, Z ′) can be computed in the following sequence:

Z1 := Z ∩ (0 ≤ −→a) Z2 := [−→a]Z1 Z3 := Z2 ∩ g Z4 := [←−a]Z3 Z ′ := −→Z4

As an example, in Figure 2, suppose an action b with guard −→a = −1 (−→a ≤ −1 ∧ −1 ≤ −→a)
is fired from Zone Z as depicted, applying the above sequence in order gives Z1, Z2, Z3, Z4
resulting in the successor zone Z ′, as depicted in the figure.

We are now ready to state Theorem 16 that says that the operations on event zones
translate easily to operations on distance graphs and that the successor of an event zone is an
event zone. Except for the release operation [←−a], the rest of the operations are standard in
timed automata, but need to be extended to cope with the new weights (≤, +∞), (≤,−∞).

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:9

Z Z1 Z2 Z3 Z4 Z ′

−→a ≤ 0 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→a ≤ 0 ←−a =∞
−→
b = 0

←−
b =∞

−→a −
−→
b ≤ 0

−→a ≤ 0 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→a = −1 ←−a =∞
−→
b ≤ 0

←−
b =∞

−→
b −−→a ≤ 1

−→a = −1 ←−a =∞
−→
b ≤ 0

←−
b = 0

−→
b −−→a ≤ 1
←−
b −−→a = 1
−→
b −
←−
b ≤ 0

−1 ≤ −→a ≤ 0

0 ≤
←−
b ≤ 1

−→
b ≤ 0 ←−a =∞
−→
b −−→a ≤ 1
←−
b −−→a = 1
−→
b −
←−
b ≤ 0

Figure 2 Successor computation from event zone Z on an action b with guard −→a = −1.

We show that we can perform all these operations in the new algebra with quadratic
complexity, as in timed automata without diagonal constraints [32].

▶ Theorem 16. Let Z be an event zone and G be its canonical distance graph. Let g be a
guard. We can compute, in O(|XP ∪XH |2) time, distance graphs Gg, [−→a]G, [←−a]G and −→G
in canonical form, such that Z ∧ g = [[Gg]], [−→a]Z = [[[−→a]G]], [←−a]Z = [[[←−a]G]], and −→Z = [[−→G]].

Proof (sketch). The distance graphs Gg, [−→a]G, [←−a]G and −→G are computed as follows:
Guard intersection: a distance graph Gg is obtained from G as follows,

for each atomic constraint x ◁ c in g, replace weight of edge 0→ x with the minimum
of its weight in G and (◁, c),
for each atomic constraint d ◁ y in g, replace weight of edge y → 0 with the minimum
of its weight in G and (◁,−d),
canonicalize the resulting graph.

Release: a distance graph [−→a]G is obtained from G by
removing all edges involving −→a and then
adding the edges 0 (≤,0)−−−→ −→a and −→a (≤,∞)−−−−→ 0, and then
canonicalizing the resulting graph.

Reset: a distance graph [←−a]G is obtained from G by
removing all edges involving ←−a and then
adding the edges 0 (≤,0)−−−→←−a and ←−a (≤,0)−−−→ 0, and then
canonicalizing the resulting graph.

Time elapse: the distance graph −→G is obtained by the following transformation:
if ←−x is defined, i.e., the weight of 0 −→←−x is not (≤,∞), then replace it with (<,∞),
if −→x is defined, i.e., the weight of 0 −→ −→x is not (≤,−∞), then replace it with (≤, 0),
canonicalize the resulting graph.

It is not hard to prove that they correspond to the operations on event zones. Other than
canonicalization, it can be easily checked that these operations can be computed in quadratic
time. Though canonicalization is cubic time in general, in each of the special cases above, it
can be implemented in quadratic time. ◀

5 A concrete simulation relation for ECAs

We fix an event-clock automaton A = (Q, Σ, X, T, q0, F) for this section. We will define a
simulation relation ⪯A on the configurations of the ECA. We first define a map G from Q to
sets of atomic constraints. The map G is obtained as the least fixpoint of the set of equations:

G(q) = {
−→
b ≤ 0, 0 ≤

−→
b | b ∈ Σ} ∪

⋃
(q,a,g,q′)∈T

split(g) ∪ pre(a,G(q′))

CONCUR 2022

13:10 Simulations for Event-Clock Automata

where split(g) is the set of atomic constraints occurring in g and, for a set of atomic constraints
G, pre(a, G) is defined as the set of constraints in G except those on −→a or ←−a . Notice that
constraints in G(q) use the constant 0 and constants used in constraints of A.

Let G be a set of atomic constraints. The preorder ⪯G is defined on valuations by

v ⪯G v′ if ∀φ ∈ G, ∀δ ≥ 0, v + δ |= φ =⇒ v′ + δ |= φ .

Notice that in the condition above, we do not restrict δ to those such that v + δ is a valuation:
we may have v(−→a) + δ > 0 for some a ∈ Σ. This is crucial for the proof of Theorem 17
below. It also allows to get a clean characterizations of the simulation (Lemma 18) which in
turn is useful for deriving the simulation test and in showing finiteness. Based on ⪯G and
the G(q) computation, we can define a preorder ⪯A between configurations of ECA A as
(q, v) ⪯A (q′, v′) if q = q′ and v ⪯G(q) v′.

▶ Theorem 17. The relation ⪯A is a simulation on the transition system SA of ECA A.

When G = {φ} is a singleton, we simply write ⪯φ for ⪯{φ}. The definition of the ⪯G

simulation above in some sense declares what is expected out of the simulation. Below, we
give a constructive characterization of the simulation in terms of the constants used and the
valuations. For example, if v(←−a) = 3 and ←−a ≤ 5 is a constraint in G, point 2 below says
that all v′ with v′(←−a) ≤ 3 simulate v. The next lemma is a generalization of Lemma 8 from
[18] to our setting containing prophecy clocks and the undefined values +∞ and −∞.

▶ Lemma 18. Let v, v′ be valuations and G a set of atomic constraints. We have
1. v ⪯G v′ iff v ⪯φ v′ for all φ ∈ G.
2. v ⪯x◁c v′ iff v(x) ̸◁ c or v′(x) ≤ v(x) or (◁, c) = (≤,∞) or (◁, c) = (<,∞) ∧ v′(x) <∞.
3. v ⪯c◁x v′ iff c ◁ v′(x) or v(x) ≤ v′(x) or (c, ◁) = (∞, <) or (c, ◁) = (∞,≤) ∧ v(x) <∞.

We now state some useful properties that get derived from Lemma 18.
▶ Remark 19. Let v, v′ be valuations and G a set of atomic constraints.
1. For all a ∈ Σ, if {0 ≤ −→a ,−→a ≤ 0} ⊆ G and v ⪯G v′ then v(−→a) = v′(−→a).
2. Let x ◁1 c1 and x ◁2 c2 be constraints with (◁1, c1) ≤ (◁2, c2) < (<,∞) (we say that

x ◁1 c1 is subsumed by x ◁2 c2). If v ⪯x◁2c2 v′ then v ⪯x◁1c1 v′.
Indeed, from (◁2, c2) < (<,∞) and v ⪯x◁2c2 v′ we get v′(x) ≤ v(x) or v(x) ̸◁2 c2, which
implies v(x) ̸◁1 c1 since (◁1, c1) ≤ (◁2, c2).

3. Let c1 ◁1 x and c2 ◁2 x be constraints with (c1, ◁1) ≤ (c2, ◁2) < (∞,≤) (we say that
c1 ◁1 x is subsumed by c2 ◁2 x). If v ⪯c2◁2x v′ then v ⪯c1◁1x v′.
Indeed, from (c2, ◁2) < (∞,≤) and v ⪯c2◁2x v′ we get v(x) ≤ v′(x) or c2 ◁2 v′(x), which
implies c1 ◁1 v′(x) since (c1, ◁1) ≤ (c2, ◁2).
The ordering between lower weights is defined by (c1, ◁1) < (c2, ◁2) if c1 < c2 or c1 = c2,
◁1 = ≤ and ◁2 = <. We have (c1, ◁1) < (c2, ◁2) iff (◁2,−c2) < (◁1,−c1).

Before lifting the simulation to event zones, we present a central technical object that will be
used from time to time in the next set of results.

Distance graph for valuations that simulate a valuation v. For a valuation v, we let
↑Gv = {v′ ∈ V | v ⪯G v′}, i.e., the set of valuations v′ which simulate v. We will define a
distance graph, denoted GG(v), such that [[GG(v)]] = ↑Gv. We remark that [[GG(v)]] is not
really a zone since it may use constants that are not integers.

We assume that G contains {0 ≤ −→a ,−→a ≤ 0 | a ∈ Σ} so that v ⪯G v′ implies v(−→a) = v′(−→a)
for all prophecy clocks −→a with a ∈ Σ. We remove from G constraints equivalent to true,
such as x ≤ ∞, −3 <←−a or 0 ≤ ←−a , or equivalent to false, such as ←−a < 0 or ∞ < x. Also, by

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:11

Remark 19, we may remove from G constraints that are subsumed by other constraints in G,
while not changing the simulation relation. Hence, for history clocks, we have at most one
upper-bound constraint ←−a ◁ c with (≤, 0) ≤ (◁, c) < (<,∞), and at most one lower-bound
constraint c ◁ ←−a with (0,≤) < (c, ◁) < (∞,≤). From now on, we always assume that the
sets G of atomic constraints that we consider satisfy the above conditions.

The definition of the distance graph GG(v) which defines ↑Gv is based on Lemma 18.
For each prophecy clock −→a , we have the edges −→a (≤,−v(−→a))−−−−−−−→ 0 and 0 (≤,v(−→a))−−−−−−→ −→a .
For each history clock ←−a , we have the edge 0→←−a with weight

(≤, v(←−a)) if ←−a ◁ c ∈ G with (◁, c) < (<,∞) and v(←−a) ◁ c,
(<,∞) if we are not in the case above and ←−a <∞ ∈ G, v(←−a) <∞,
(≤,∞) otherwise.

For each history clock ←−a , we have the edge ←−a → 0 with weight
(≤,−∞) if ∞ ≤←−a ∈ G and v(←−a) =∞, and if we are not in this case:
(◁,−c) if c ◁←−a ∈ G with (c, ◁) < (∞,≤) and c ◁ v(←−a),
(≤,−v(←−a)) if c ◁←−a ∈ G with (c, ◁) < (∞,≤) and c ̸◁ v(←−a),
(≤, 0) otherwise.

With this definition, while GG(v) is not in canonical form, it has the desired property:

▶ Lemma 20. We have v ⪯G v′ iff v′ satisfies all the constraints of GG(v).

Simulation for event zones and an efficient algorithmic check. Let Z, Z ′ be two event
zones and G be a set of atomic constraints. We say that Z is G-simulated by Z ′, denoted
Z ⪯G Z ′, if for all v ∈ Z there exists v′ ∈ Z ′ such that v ⪯G v′. Finally, we define
(q, Z) ⪯A (q′, Z ′) if q = q′ and Z ⪯G(q) Z ′. In the rest of this section, we show how to
check this relation efficiently. We let ↓GZ = {v ∈ V | v ⪯G v′ for some v′ ∈ Z}. Notice that
Z ⪯G Z ′ iff Z ⊆ ↓GZ ′ iff ↓GZ = ↓GZ ′.

▶ Lemma 21. For event zones Z, Z ′, we have Z ̸⪯G Z ′ iff ∃v ∈ Z with ↑Gv ∩ Z ′ = ∅.

To check Z ̸⪯G Z ′, we require a valuation v ∈ Z with a witness that ↑Gv ∩ Z ′ is empty.
In the language of distance graphs, the witness will be a negative cycle in min(↑Gv, Z ′). We
show that if ↑Gv ∩Z ′ is empty, then there is a small witness, i.e., a negative cycle containing
at most three edges, and belonging to one of three specific forms.

▶ Lemma 22. Let v be a valuation, Z ′ a non-empty reachable event zone with canonical
distance graph G(Z ′) and G a set of atomic constraints. Then, ↑Gv ∩ Z ′ is empty iff there is
a negative cycle in one of the following forms:
1. 0→ x→ 0 with 0→ x from GG(v) and x→ 0 from G(Z ′),
2. 0→ y → 0 with 0→ y from G(Z ′) and y → 0 from GG(v), and
3. 0→ x→ y → 0, with weight of x→ y from G(Z ′) and the others from GG(v). Moreover,

this negative cycle has finite weight.

Proof. Since Z ′ ̸= ∅, the distance graph G(Z ′) has no negative cycle. The same holds for
GG(v) since v ∈ ↑Gv ̸= ∅. We know that ↑Gv ∩ Z ′ = ∅ iff there is a (simple) negative cycle
using edges from GG(v) and from G(Z ′). Since G(Z ′) is in canonical form, we may restrict to
negative cycles which do not use two consecutive edges from G(Z ′). Now all edges of GG(v)
are adjacent to node 0. Hence, if a simple cycle uses an edge from G(Z ′) which is adjacent to
0, it consists of only two edges 0→ x→ 0, one from G(Z ′) and one from GG(v). Otherwise,
the simple cycle is of the form 0 → x → y → 0 where the edge x → y is from G(Z ′) and
the other two edges are from GG(v). It remains to show that the two clock negative cycle
0→ x→ y → 0 can be considered to have finite weight, i.e., weight is not (≤,−∞).

CONCUR 2022

13:12 Simulations for Event-Clock Automata

For the cycle to have weight (≤,−∞), one of the edges should have weight (≤,−∞) and
the others should have a weight different from (≤,∞). We will show that for every such
combination, there is a smaller negative cycle with a single clock and 0. Hence we can ignore
negative cycles of the form 0→ x→ y → 0 with weight (≤,−∞).

Suppose Z ′xy = (≤,−∞). Then, for every valuation in u ∈ Z ′, we have u(y)−u(x) ≤ −∞,
which implies u(y) = −∞ or u(x) = +∞. If u(x) = +∞ for some valuation u ∈ Z ′, then the
value of x is +∞ for every valuation in Z ′. This follows from the successor computation:
initially, history clocks are undefined, and then an action a defines ←−a , and from that point
onwards, ←−a is always < ∞. Now, if x is not an undefined history clock in Z ′, then we
need to have u(y) = −∞ for all valuations of Z ′. Therefore, either x is a history clock
that is undefined in Z ′ or y is a prophecy clock that is undefined in Z ′. In the former case,
Z ′x0 = (≤,−∞) and in the latter case Z ′0y = (≤,−∞). This gives a smaller negative cycle

0→ x
Z′

x0−−→ 0 or 0
Z′

0y−−→ y → 0 with the remaining edge 0→ x or y → 0 coming from GG(v),
since by our hypothesis of a negative cycle, these edges have weight different from (≤,∞).

Suppose the weight of 0→ x is (≤,−∞). This can happen only when x is a prophecy clock,
v(x) = −∞ and weight of 0→ x is (≤, v(x)). Since Z ′xy ̸= (≤,∞), we infer Z ′x0 ̸= (≤,∞) by

†1 of Lemma 26. Hence 0 (≤,v(x))−−−−−→ x
Z′

x0−−→ 0 is also a negative cycle.
Suppose y → 0 has weight (≤,−∞). This can happen only when y is a history clock and

v(y) = +∞. Since Z ′xy ≠ (≤,∞), we obtain Z ′0y ̸= (≤,∞) and hence 0
Z′

0y−−→ y
(≤,−v(y))−−−−−−→ 0 is

a negative cycle. ◀

We now have all the results required to state our inclusion test. Using the above lemma,
and relying on a careful analysis (as shown in the full version [2]), we obtain the following
theorem.

▶ Theorem 23. Let Z, Z ′ be non-empty reachable zones, and G a set of atomic constraints
containing −→a ≤ 0 and 0 ≤ −→a for every prophecy clock −→a . Then, Z ̸⪯G Z ′ iff one of the
following conditions holds:
1. Z ′x0 < Zx0 for some prophecy clock x, or for some history clock x with

(x <∞) ∈ G and Z ′x0 = (≤,−∞), or
(x ◁1 c) ∈ G for c ∈ N and (≤, 0) ≤ Zx0 + (◁1, c).

2. Z ′0y < Z0y for some prophecy clock y, or for some history clock y with
(∞ ≤ y) ∈ G and Z0y = (≤,∞), or
(d ◁2 y) ∈ G for d ∈ N and Z ′0y + (◁2,−d) < (≤, 0)

3. Z ′xy < Zxy and Z ′xy is finite for two distinct (prophecy or history) clocks x, y with
(x ◁1 c), (d ◁2 y) ∈ G for c, d ∈ N and (≤, 0) ≤ Zx0 + (◁1, c) and Z ′xy + (◁2,−d) < Zx0.
From Theorem 23, we can see that the inclusion test requires iteration over clocks x, y

and checking if the conditions are satisfied by the respective weights.

▶ Corollary 24. Checking if (q, Z) ⪯A (q′, Z ′) can be done in time O(|X|2) = O(|Σ|2).

6 Finiteness of the simulation relation

In this section, we will show that the simulation relation ⪯A defined in Section 5 is finite, which
implies that the reachability algorithm of Definition 9 terminates. Recall that given an event
clock automaton A, we have an associated map G from states of A to sets of atomic constraints.
Let M = max{|c| | c ∈ Z is used in some constraint of A}, the maximal constant of A. We
have M ∈ N and constraints in the sets G(q) use constants in {−∞,∞} ∪ {c ∈ Z | |c| ≤M}.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:13

Recall that the simulation relation ⪯A was defined on nodes of the event zone graph
EZG(A) by (q, Z) ⪯A (q′, Z ′) if q = q′ and Z ⪯G(q) Z ′. This simulation relation ⪯A is finite
if for any infinite sequence (q, Z0), (q, Z1), (q, Z2), . . . of reachable nodes in EZG(A) we find
i < j with (q, Zj) ⪯A (q, Zi), i.e., Zj ⪯G(q) Zi. Notice that we restrict to reachable zones in
the definition above. Our goal now is to prove that the relation ⪯A is finite. The structure
of the proof is as follows.
1. We prove in Lemma 26 that for any reachable node (q, Z) of EZG(A), the distance graph

G(Z) in canonical form satisfies a set of (†) conditions which depend only on the maximal
constant M of A.

2. We introduce an equivalence relation ∼M of finite index on valuations (depending on M

only) and show in Lemma 28 that, if G is a set of atomic constraints using constants in
{c ∈ Z | |c| ≤ M} ∪ {−∞,∞} and if Z is a zone such that its distance graph G(Z) in
canonical form satisfies (†) conditions, then ↓GZ is a union of ∼M equivalence classes.

We start with a lemma which highlights an important property of prophecy clocks in
reachable event zones. This property is essential for the proof of the (†) conditions. The proof
follows from the observation that the property is true in the initial zone, and is invariant
under the zone operations, namely, guard intersection, reset, release and time elapse.

▶ Lemma 25. Let Z be a reachable event zone. For every valuation v ∈ Z, and for every
prophecy clock −→x , if −∞ < v(−→x) < −M , then v[−→x 7→ α] ∈ Z for every −∞ < α < −M .

There is no similar version of the above lemma for history clocks. A reset of a history
clock makes its value exactly equal to 0 in every valuation and creates non-trivial diagonal
constraints with other clocks. Moreover repeated resets can generate arbitrarily large diagonal
constraints, for e.g., a loop with guard x = 1 and reset x. This is why simulations are
particularly needed to control history clocks. Notice that in our simulation v ⪯G v′, we have
v(−→a) = v′(−→a): there is no abstraction of the value of prophecy clocks and the simulation
relation by itself does not have any means to show finiteness. However, as we show below,
the reachable zones themselves take care of finiteness with respect to prophecy clocks. The
challenge is then to combine this observation on prophecy clocks along with the non-trivial
simulation happening for history clocks to prove that we still get a finite simulation. This is
the purpose of the above mentioned item 2.

Now, we give the (†) conditions and prove that they are satisfied by distance graphs of
reachable zones. In particular, the (†) conditions imply that the weight of edges of the form
0 → −→x , −→x → 0 and −→x → −→y belong to the finite set {(≤,−∞), (<,∞), (≤,∞)} ∪ {(◁, c) |
c ∈ Z ∧ −M ≤ c ≤M}. For an example, see Figure 4. Thus, we obtain as a corollary that,
for EPA, we do not even need simulation to obtain finiteness.

▶ Lemma 26. Let (q, Z) be a reachable node in EZG(A) with Z ̸= ∅. Then, the distance
graph G(Z) in canonical form satisfies the (†) conditions:
†1 If Z−→x 0 = (≤,∞) then Z−→x y = (≤,∞) for all y ̸= −→x .
†2 If Z−→x 0 = (<,∞) then for all y ≠ −→x , either y is a prophecy clock which is undefined in Z

and Z−→x y = Z0y = (≤,−∞) or Z−→x y ∈ {(<,∞), (≤,∞)}.
†3 If Z−→x 0 < (<,∞) then (≤, 0) ≤ Z−→x 0 ≤ (≤, M).
†4 If Z−→x←−y < (<,∞) then (≤, 0) ≤ Z−→x 0 ≤ (≤, M).
†5 Either Z0−→y = (≤,−∞) (−→y is undefined in Z), or Zx0 + (<,−M) ≤ Zx−→y for all x ̸= −→y

(including x = 0).
†6 Either Z0−→x = (≤,−∞) or (<,−M) ≤ Z0−→x ≤ (≤, 0).
†7 Either Z−→x−→y ∈ {(≤,−∞), (<,∞), (≤,∞)} or (<,−M) ≤ Z−→x−→y ≤ (≤, M).

CONCUR 2022

13:14 Simulations for Event-Clock Automata

Proof sketch. †4 follows immediately from †1, †2, †3 and †6, †7 can be inferred from †5 and
the other conditions. So here, we focus on †1, †2, †3 and partially the case of †5, leaving other
details to the full version [2].

For †1, since Z−→x 0 = (≤,∞), there is a valuation v ∈ Z with v(−→x) = −∞. Therefore,
for every clock y ̸= −→x , we have v(y −−→x) = +∞. Since v ∈ Z, it satisfies the constraint on
y −−→x given by Z−→x y. This is possible only when Z−→x y = (≤,∞).

For †2, assume that Z−→x 0 = (<,∞) and let y ̸= −→x . Consider first the case Z0y = (≤,−∞),
i.e., y is a prophecy clock which is undefined in Z. Then, since G(Z) is in canonical
form, we have Z−→x y ≤ Z−→x 0 + Z0y = (<,∞) + (≤,−∞) = (≤ −∞). The second case
is when Z0y ̸= (≤,−∞). This implies Z−→x y ̸= (≤,−∞) since otherwise we would get
Z0y ≤ Z0−→x + Z−→x y = (≤,−∞). We claim that there is a valuation v ∈ Z with −∞ < v(y)
and −∞ < v(−→x) < −M . Consider the distance graph G′ obtained from G(Z) by setting
the weight of edge y → 0 to min(Zy0, (<,∞)) and of edge 0 → −→x to min(Z0−→x , (<,−M)).
We show that there are no negative cycles in this graph. Since Z ̸= ∅, the candidates for
being negative must use the new weight (<,−M) of 0 → −→x or the new weight (<,∞) of
y → 0 or both. This gives the cycle 0→ −→x → 0 with weight (<,−M) + Z−→x 0 = (<,∞) since
Z−→x 0 = (<,∞), the cycle 0→ y → 0 with weight Z0y + (<,∞) which is not negative since
Z0y ≠ (≤,−∞), and the cycle y → 0→ −→x → y with weight (<,∞) + (<,−M) + Z−→x y which
is not negative since Z−→x y ̸= (≤,−∞). Since G′ has no negative cycle, Lemma 14 implies
[[G′]] ̸= ∅. Note that [[G′]] ⊆ [[G(Z)]] = Z. Finally, for all v ∈ G′, we have −∞ < v(y) and
−∞ < v(−→x) < −M , which proves the claim. By Lemma 25, vα = v[−→x 7→ α] ∈ Z for all
−∞ < α < −M . Now, vα(y −−→x) = v(y)− α satisfies the constraint Z−→x y. We deduce that
Z−→x y is either (<,∞) or (≤,∞).

Next, we turn to †3. Suppose Z−→x 0 = (◁, c) for some integer c > M . Then, there exists
a valuation v ∈ Z with v(−→x) = −c or v(−→x) = −c + 1

2 depending on whether ◁ is ≤ or <.
Since c, M are integers, we get −∞ < v(−→x) < −M . By Lemma 25, v[−→x 7→ α] ∈ Z for
all −∞ < α < −M . In particular, v′ = v[−→x 7→ −c − 1] ∈ Z. For this valuation, we have
v′(−→x) = −c− 1. This violates Z−→x 0 which says 0− v′(−→x) ◁ c, or seen differently, −c ◁ v′(−→x).

Finally, for †5, if Zx0 = (≤,−∞) the condition is trivially true. If Zx0 ∈ {(<,∞), (≤,∞)}
then x is a prophecy clock and †5 follows from †1, †2. Therefore, we assume Zx0 = (◁, c) for
c ∈ Z. The left hand side of the condition is Zx0 + (<,−M) = (<, c−M), with c−M ∈ Z.
Let Zx−→y = (◁′, e) with e ∈ Z ∪ {−∞, +∞}. To show †5 it then suffices to show c−M ≤ e.
This involves more arguments in the same spirit as in †2 case above, and we leave these
technical details to the full version [2]. ◀

We turn to the second step of the proof and define an equivalence relation of finite
index ∼M on valuations. First, we define ∼M on α, β ∈ R = R ∪ {−∞,∞} by α ∼M β if
(α ◁ c ⇐⇒ β ◁ c) for all (◁, c) with ◁ ∈ {<,≤} and c ∈ {−∞,∞} ∪ {d ∈ Z | |d| ≤ M}. In
particular, if α ∼M β then (α = −∞⇐⇒ β = −∞) and (α =∞⇐⇒ β =∞).

Next, for valuations v1, v2 ∈ V, we define v1 ∼M v2 by two conditions: v1(x) ∼M v2(x)
and v1(x) − v1(y) ∼2M v2(x) − v2(y) for all clocks x, y ∈ X. Notice that we use 2M for
differences of values. Clearly, ∼M is an equivalence relation of finite index on valuations.

The next result relates the equivalence relation ∼M and the simulation relation ⪯G when
the finite constants used in the constraints are bounded by M . Recall from Section 5 the
definition of the distance graph GG(v) for the set of valuations ↑Gv.

▶ Lemma 27. Let v1, v2 ∈ V be valuations with v1 ∼M v2 and let G be a set of atomic
constraints using constants in {−∞,∞} ∪ {c ∈ Z | |c| ≤ M}. By replacing the weights
(≤, v1(x)) (resp. (≤,−v1(x))) by (≤, v2(x)) (resp. (≤,−v2(x))) in the graph GG(v1) we
obtain the graph GG(v2).

Next we state the central lemma that says that ↓GZ is a union of ∼M equivalence classes.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:15

▶ Lemma 28. Let v1, v2 ∈ V be valuations with v1 ∼M v2 and let G be a set of atomic
constraints using constants in {−∞,∞}∪{c ∈ Z | |c| ≤M}. Let Z be a zone with a canonical
distance graph G(Z) satisfying (†). Then, v1 ∈ ↓GZ iff v2 ∈ ↓GZ.

Proof sketch. We will consider two valuations v1, v2 such that v1 ∼M v2 and v1 ∈ ↓GZ

and show that the assumption that v2 ̸∈ ↓GZ leads to a contradiction. Roughly the proof
proceeds as follows. Firstly, v2 ̸∈ ↓GZ implies that ↑Gv2 ∩ Z = ∅. Further, recall from
Lemma 22 that if ↑Gv2 ∩ Z = ∅, then we can find a negative cycle C2 using one edge from
G(Z) and one or two edges from GG(v2). From Lemma 27, there exists a cycle C1 involving
the corresponding edges from G(Z) and GG(v1). Since ↑Gv1 ∩ Z ̸= ∅, we know that C1 is
not negative. We will show that this implies that the C2 (which was a witness for emptiness
of ↑Gv2 ∩Z) also cannot be negative, which leads to a contradiction. The central part of the
proof involves a careful case analysis of the various forms that the cycle C2 can take, using
different † conditions. We detail two cases here. The remaining eight can be found in the
full version [2].

Cycle C2 = 0 (≤,v2(−→x))−−−−−−→ −→x Z−→x 0−−−→ 0. We have C1 = 0 (≤,v1(−→x))−−−−−−→ −→x Z−→x 0−−−→ 0.
Let Z−→x 0 = (◁, c). Since C2 is negative, we deduce that c ̸= ∞. From (†3), we infer
Z−→x 0 ≤ (≤, M) and 0 ≤ c ≤M .
Since C1 is not negative, we get (≤, 0) ≤ (◁, c+v1(−→x)), which is equivalent to −c ≤ v1(−→x).
Using v1 ∼M v2 and 0 ≤ c ≤ M we deduce that −c ≤ v2(−→x). This is equivalent to
(≤, 0) ≤ (◁, c + v2(−→x)), a contradiction with C2 being a negative cycle.
Cycle C2 = 0 Z0−→x−−−→ −→x (≤,−v2(−→x))−−−−−−−−→ 0. We have C1 = 0 Z0−→x−−−→ −→x (≤,−v1(−→x))−−−−−−−−→ 0.
Let Z0−→x = (◁, c). Since C2 is negative, we deduce that −v2(−→x) ̸=∞. Using v1 ∼M v2,
we infer −v1(−→x) ̸=∞. Since C1 is not negative, we get Z0−→x ̸= (≤,−∞). From (†6), we
infer (<,−M) ≤ Z0−→x and −M ≤ c ≤ 0.
Since C1 is not a negative cycle, we get (≤, 0) ≤ (◁, c− v1(−→x)), which is equivalent to
v1(−→x) ≤ c. Using v1 ∼M v2 and −M ≤ c ≤ 0, we deduce that v2(−→x) ≤ c. This is
equivalent to (≤, 0) ≤ (◁, c− v2(−→x)), a contradiction with C2 being a negative cycle. ◀

Finally, from Lemmas 26 and 28, we obtain our main theorem of the section.

▶ Theorem 29. The simulation relation ⪯A is finite.

Proof. Let (q, Z0), (q, Z1), (q, Z2), . . . be an infinite sequence of reachable nodes in EZG(A).
By Lemma 26, for all i, the distance graph G(Zi) in canonical form satisfies conditions (†).

The atomic constraints in G = G(q) use constants in {−∞,∞}∪{c ∈ Z | |c| ≤M}. From
Lemma 28 we deduce that for all i, ↓GZi is a union of ∼M -classes. Since ∼M is of finite
index, there are only finitely many unions of ∼M -classes. Therefore, we find i < j with
↓GZi = ↓GZj , which implies Zj ⪯G Zi. ◀

Note that the number of enumerated zones is bounded by 2r, where r is the number of
regions. This is similar to the exponential blow up that happens in normal timed automata.
Indeed, despite this blow up the interest in zone algorithms is that, at least in the timed
setting, they work significantly better in practice. We hope the above zone-based approach
for ECA will also pave the way for fast implementations for ECA.

7 Conclusion

In this paper, we propose a simulation based approach for reachability in ECAs. The main
difficulty and difference from timed automata is the use of prophecy clocks and undefined
values. We believe that the crux of our work has been in identifying the new representation

CONCUR 2022

13:16 Simulations for Event-Clock Automata

for prophecy clocks and undefined values. With this as the starting point, we have been able
to adapt the zone graph computation and the G-simulation technique to the ECA setting.
This process required us to closely study the mechanics of prophecy clocks in the zone
computations and we discovered this surprising property that prophecy clocks by themselves
do not create a problem for finiteness.

The final reachability algorithm looks almost identical to the timed automata counterpart
and hence provides a mechanism to transfer timed automata technology to the ECA setting.
The performance benefits observed for the LU and G-simulation-based reachability procedures
for timed automata encourages us to believe that an implementation of our algorithm would
also yield good results, thereby providing a way to efficiently check event-clock specifications
on timed automata models. We also hope that our framework can be extended to other
verification problems, like liveness and to extended models like ECA with diagonal constraints
that have been studied in the context of timeline based planning [11, 12].

References
1 S. Akshay, Benedikt Bollig, and Paul Gastin. Event clock message passing automata: a

logical characterization and an emptiness checking algorithm. Formal Methods Syst. Des.,
42(3):262–300, 2013.

2 S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. Simulations for event-clock automata.
CoRR, abs/2207.02633, 2022.

3 S. Akshay, Paul Gastin, and Karthik R. Prakash. Fast zone-based algorithms for reachability
in pushdown timed automata. In CAV (1), volume 12759 of Lecture Notes in Computer
Science, pages 619–642. Springer, 2021.

4 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

5 Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.

6 Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Hakansson, Paul Pettersson,
Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In QEST, pages 125–126. IEEE Computer
Society, 2006.

7 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In ACPN
2003, volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer, 2003.

8 Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods Syst. Des.,
24(3):281–320, 2004.

9 Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reachability in
weighted timed automata. In CAV (1), volume 9779 of Lecture Notes in Computer Science,
pages 513–530. Springer, 2016.

10 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-time systems. In CAV, volume 1427 of Lecture
Notes in Computer Science, pages 546–550. Springer, 1998.

11 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Taming the complexity of timeline-
based planning over dense temporal domains. In FSTTCS, volume 150 of LIPIcs, pages
34:1–34:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

12 Laura Bozzelli, Angelo Montanari, and Adriano Peron. Complexity issues for timeline-based
planning over dense time under future and minimal semantics. Theor. Comput. Sci., 901:87–113,
2022.

13 Conrado Daws and Stavros Tripakis. Model checking of real-time reachability properties using
abstractions. In TACAS, volume 1384 of Lecture Notes in Computer Science, pages 313–329.
Springer, 1998.

S. Akshay, P. Gastin, R. Govind, and B. Srivathsan 13:17

14 David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 197–212. Springer, 1989.

15 Deepak D’Souza and Nicolas Tabareau. On timed automata with input-determined guards.
In FORMATS/FTRTFT, volume 3253 of Lecture Notes in Computer Science, pages 68–83.
Springer, 2004.

16 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in timed automata with
diagonal constraints. In CONCUR, volume 118 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018.

17 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms for handling diagonal
constraints in timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer
Science, pages 41–59. Springer, 2019.

18 Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability for updatable timed automata
made faster and more effective. In FSTTCS, volume 182 of LIPIcs, pages 47:1–47:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

19 Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. Event clock automata: From
theory to practice. In FORMATS, volume 6919 of Lecture Notes in Computer Science, pages
209–224. Springer, 2011.

20 Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. On regions and zones for
event-clock automata. Formal Methods Syst. Des., 45(3):330–380, 2014.

21 Frédéric Herbreteau and Gerald Point. TChecker. https://github.com/fredher/tchecker,
v0.2 – April 2019.

22 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions for timed
automata. In LICS, pages 375–384. IEEE Computer Society, 2012.

23 Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy abstractions for timed
automata. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 990–1005.
Springer, 2013.

24 Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk.
LTSmin: High-performance language-independent model checking. In TACAS, volume 9035 of
Lecture Notes in Computer Science, pages 692–707. Springer, 2015.

25 Sebastian Kupferschmid, Martin Wehrle, Bernhard Nebel, and Andreas Podelski. Faster
than UPPAAL? In CAV, volume 5123 of Lecture Notes in Computer Science, pages 552–555.
Springer, 2008.

26 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. STTT,
1(1-2):134–152, 1997.

27 Jean-François Raskin and Pierre-Yves Schobbens. The logic of event clocks – decidability,
complexity and expressiveness. J. Autom. Lang. Comb., 4(3):247–282, 1999.

28 Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction refinement algorithms for
timed automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
22–40. Springer, 2019.

29 Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: towards flexible verification under
fairness. In CAV, volume 5643 of Lecture Notes in Computer Science, pages 709–714. Springer,
2009.

30 Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: A
framework for abstraction refinement-based model checking. In FMCAD, pages 176–179. IEEE,
2017.

31 Farn Wang. REDLIB for the formal verification of embedded systems. In ISoLA, pages
341–346. IEEE Computer Society, 2006.

32 Jianhua Zhao, Xuandong Li, and Guoliang Zheng. A quadratic-time DBM-based successor
algorithm for checking timed automata. Inf. Process. Lett., 96(3):101–105, 2005.

CONCUR 2022

https://github.com/fredher/tchecker

13:18 Simulations for Event-Clock Automata

A Appendix for Section 3

In Figure 3, we give the event zone graph of the event-clock automaton A1 that recognizes
the language {bna | n ≥ 1} such that there exists some b which occurs exactly one time unit
before a.

q0 q1 q2

A1

b b

b

−→a = −1

a

q0

−→a ≤ 0 ←−a =∞

−→
b ≤ 0

←−
b =∞

q0

−→a ≤ 0 ←−a =∞
−→
b ≤ 0 0 ≤

←−
b <∞

−→a −
←−
b ≤ 0

−→
b −
←−
b ≤ 0

q1

−1 ≤ −→a ≤ 0 ←−a =∞
−→
b ≤ 0 0 ≤

←−
b ≤ 1

←−
b −−→a = 1

−→
b −−→a ≤ 1

−→
b −
←−
b ≤ 0

q1

−1 ≤ −→a ≤ 0 ←−a =∞
−→
b ≤ 0 0 ≤

←−
b ≤ 1

0 ≤
←−
b −−→a ≤ 1

−→
b −−→a ≤ 1

−→
b −
←−
b ≤ 0

q2

−→a ≤ 0 0 ≤ ←−a <∞
−→
b ≤ 0 0 ≤

←−
b <∞

0 ≤
←−
b −←−a ≤ 1

−→a −←−a ≤ 0
−→
b −←−a ≤ 0

−→a −
←−
b ≤ 0

−→
b −
←−
b ≤ 0

b

b

b

−→a = −1

b

−→a = −1 b

b

a

a

Figure 3 An event-clock automaton and its event zone graph. Missing lower bounds are of the
form −∞ ≤ x − y and missing upper bounds are of the form x − y ≤ ∞ (including y = 0).

Further, Geeraerts et al. [19, 20] showed that there exists no finite time abstract bisimu-
lation relation for the event predicting automaton (EPA) A2 given in Figure 4. Figure 4 also
depicts the event zone graph of A2. Note that, since this is an event predicting automaton,
there are no history clocks. It is easy to see that there are only finitely many distinct
constraints involving the prophecy clocks.

q0 q1 q2

A2

b
−→
b = −1 ∧ −→a < −1

b

−→a = −1

a

d

q0

−→a ≤ 0
−→
b ≤ 0
−→
d ≤ 0

q0

−1 ≤
−→
b ≤ 0

−→a −
−→
b < 0

−→
d −
−→
b ≤ 1

−→a < 0,
−→
d ≤ 0

q1

−1 ≤ −→a ≤ 0
−→
b −−→a ≤ 1
−→
d −−→a ≤ 1
−→
b ≤ 0,

−→
d ≤ 0

q2

−→a ≤ 0
−→
b ≤ 0
−→
d ≤ 0

b
−→
b = −1 ∧−→a < −1

b

−→
b = −1 ∧ −→a < −1

b

−→a = −1

b

−→a = −1

a
d

Figure 4 Event predicting automaton for which there exists no finite time abstract bisimulation
and its event zone graph. Missing lower bounds are of the form −∞ ≤ x − y and missing upper
bounds are of the form x − y ≤ ∞ (including y = 0).

	1 Introduction
	2 Event Clock Automata and Valuations
	3 Event zones and simulation based reachability
	4 Computing with event zones and distance graphs
	5 A concrete simulation relation for ECAs
	6 Finiteness of the simulation relation
	7 Conclusion
	A Appendix for Section 3

