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Abstract. In this work, we present a viewpoint selection method specif-
ically designed for fibrous structures in a pre-operative context. A view
quality metric based on entropy was developed, which integrates the typ-
ical requirements of surgery planning. We applied our approach in the
case of cranial nerves surrounding skull base tumors. The relevance of the
viewpoints selected by our method was assessed qualitatively by a neu-
rosurgeon and quantitatively based on statistical tests. These viewpoints
were proven to have a high informative content, and therefore to enable a
good understanding and mental representation the 3D anatomical scene
in a pre-operative context.

Keywords: viewpoint selection · entropy · fiber tractography · cranial
nerves · skull base tumor · surgical planning

1 Introduction

Skull base tumor surgery remains a challenge since it requires complex surgical
approaches reaching deep-seated tumors within a dense anatomical environment
[11]. This environment includes cranial nerves, which are bundles of white matter
fibers with sensorial or motor functions (e.g the optic nerve). The preservation of
the cranial nerves functions is one of the main stakes of tumor resection surgery.
In this context, a thorough visualization of the nerves surrounding or displaced
by the tumor could be of help for intervention planning, as attested by recent
studies [2, 5, 13].

Advances in dMRI have used the unequal movement of water molecules along
axons to reconstruct the 3 dimensional trajectory of the white matter fibers
through tractography. However, tractography involves a complex multistep pro-
cessing pipeline and is still difficult to apply to small-scale structures such as
cranial nerves [6]. As a result, tractography datasets might be hard to visual-
ize due to excessive amount of streamlines that are running in very different
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directions. Moreover, it moves away from the conventional radiological practice
where datasets are visualized in 2 dimensions (2D). In this context, the selection
of the viewpoints which best enhances the display of the important anatomical
structures, here the tumor and nerves, as well as the whole scene, is valuable for
surgery planning. It would reduce the complexity of the data, facilitate the un-
derstanding of the scene in 3 dimensions and guide the selection of the operative
viewpoint.

To our knowledge, viewpoint selection for tractography fibers has never been
investigated in the literature. This idea has been explored for other anatomi-
cal structures like organs, bones, vessels and tumors [9] [3], but the proposed
methods, based on geometrical criteria such as minimum distance or occlusion
between objects, can hardly be applied to scattered and complex structures like
tractography. Besides, one of the purposes of this work is to propose a local met-
ric to prioritize the fibers according to their anatomical relevance. Prioritization
of the structures of interest for medical applications was not introduced in any
of the previous works.

Shannon’s entropy quantifies the information content in a dataset, and is
commonly used in the computer vision field to find informative viewpoints on
meshes [1]. Moreover, it was shown to be an interesting measure to filter and vi-
sualize velocity streamlines [4], which have a nature close to tractography fibers.
In this paper, we propose to use the local entropy of fibers as a selection metric
to select the best viewpoints on a 3 dimensional scene including a tumor and
surrounding nerves.

In section 2, we give details on the acquisition of the medical images, the
tractography pipeline employed and the anatomy of the cranial nerves of inter-
est. In section 3 we describe the application of Shannon entropy to tractography
fibers and the calculation of the viewpoint quality score. Our validation strat-
egy is explained. Finally, in the section 4, the quality of the selected views is
assessed both qualitatively and quantitatively, demonstrating the pertinence of
the selection method.

2 Material

2.1 Cranial Nerves

The fibers of the white matter connects the different areas of the brain. Cranial
nerves are organized bundles of white matter fibers with important sensorial or
motor functions. Five cranial nerves or nerve groups located near the skull base
were considered in this study: the optic nerve (Chiasma); the oculomotor nerve
(III); the trigeminal nerve (V); the fascial and cochleo-vestibular nerves group
(NF) and the mixed nerves groups (NM). Their mean diameter was estimated
according to the known anatomy [7, 10, 16], and reported in Table 1.

2.2 Patients

Patient data (n=31) used in this work is based on the study carried out between
December 2015 and December 2017 in [5] (IRB Number 2015-A01113-46). In-
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Table 1. Estimated diameter of the studied nerves from the literature.

Nerve definition Nerve abbreviation Diameter (mm)

Optic Chiasma 10
Oculomotor III 5
Trigeminal V 7

Facial and cochleo-vestibular NF 3
Mixed NM 2

clusion criteria were: skull base tumor ; at least two cranial nerves in contact
with the tumor; legal capacity; consent provided after fair information; 3T MRI
data with dMRI acquisition. Exclusion criteria were: MR contraindications.

2.3 MRI Acquisition

A set of MR sequences were acquired in order to reconstruct the anatomical
structures of interest. T1 post contrast weighted sequence and T2 steady state
sequence are high resolution images(0.23 x 0.23 x 0.34 mm), which were used as
an anatomical reference. The segmentation of the tumors was made manually
from the T1 sequence by a neurosurgeon. Diffusion images were acquired in
order to compute the trajectories of fibers. It encodes the local diffusion of water
molecules in 32 directions. This modality have a lower spatial resolution (1.75 x
1.75 x 2 mm). Distortions were corrected using the top-up and eddy tools of the
FMRIB software library (FSL) software [12].

2.4 Tractography

Tractography is the method used to reconstruct the trajectory of the white mat-
ter fibers from the diffusion images. Figure 1 shows both the tractography recon-
struction and a per-operative view for the oculomotor nerve. In this study, the
tractography process was carried out from the acquired diffusion images using
the Mrtrix3 software [14]. A brain mask was drawn to restrain the fiber recon-
struction to the brain area. A spherical constrained deconvolution (6 spherical
harmonic terms) was used to create a map of orientation distribution function
(ODF) from the 32 directions of diffusion images. Cubic region-of-interest for
the initialization of the tractography were designed by overlaying the ODF map
on the T2-weighted MRI in order to identify the location of the cranial nerves
with a great precision. A probabilistic tractography algorithm was used for the
tracking of cranial nerves from the regions of interest [5]. The minimum fiber
length required for the tracking was set to 10 mm and the number of fibers of
each nerve to be reconstructed was set from 200 to 1000 according to the es-
timated nerve diameter. The output is a list of the spatial coordinates of the
fibers.
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III

Tumor

Fig. 1. Tractography fibers of the oculomotor nerve, superimposed on the T1 modal-
ity (top image). Post-operative view of the oculomotor nerve (bottom images). The
position of the tumor before resection and the nerve trajectory are highlighted.

3 Methods

3.1 Entropy

Shannon’s entropy is a measure commonly used in information theory, which
quantifies the content of information in a dataset from its distribution. For a
discrete random variable X with n classes, each class xi having a probability
p(xi) to appear, the entropy e(X) is defined as:

e(X) = −
∑

i=1...n

p(xi)log2(p(xi)). (1)

This measure can be easily applied to a vector field, by creating an orientation
histogram of these vectors. With this orientation histogram, the probability of
the vectors in the bin xi, i. e. the vectors corresponding to a specific orientation,
is calculated as:

p(xi) =
C(xi)∑

i=1...n C(xi)
, (2)

where C(xi) is the number of vectors in bin xi. Figure 2 illustrates this
process in a two dimensional case for a case of orientation disorder (Fig. 2-a: low
entropy) and of orientation coherence (Fig. 2-b: high entropy).

In a similar way, we can compute the entropy of the 3 dimensional vector field
that encodes the local direction of the tractography fibers. In this way, entropy
can be used to discriminate the fibers of homogeneous orientation, located in the
core of the nerve, from the more chaotic fibers badly impacting the visual result.
A low entropy indicates that the location contains structures of medical interest
and need to be preserved and enhanced in the visualization. The conversion of
the fibers into a vector field is described in Section 3.2.
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Fig. 2. Vector fields and their associated orientation histogram. The score given in the
right column corresponds to the entropy value of the central vector calculated using a
3 × 3 neighborhood and 10 bins. The more the vector field is scattered the higher the
entropy value.

3.2 Vector Field Reconstruction

To apply entropy to tractography data, we first need to obtain a vector field
of local fiber orientations. This information could be extracted from the main
eigenvector of the diffusion tensor estimated from the raw dMRI data. However,
this method is very sensitive to noise, particularly because of the low resolution
of the dMRI data (2 mm) compared to the diameter of the nerves (2-10 mm:
cf Table 1). We therefore propose to reconstruct a vector field from the fibers
themselves. These are indeed less sensitive to noise because they have undergone
numerous post-treatments during the of tractography process. Considering that
fibers are sampled more than 10 times finer than the dMRI voxel, the resolution
of the final vector field can be drastically improved.

In this sense, the fibers are first transformed into a 3D image encoding the
local fiber density information. Then, a map of the maximum intensity gradient
direction of this image is calculated using a 3× 3× 3 neighborhood according to
the method in [15]. Since the gradient orientation is normal to the actual fiber
orientation, the vectors are reoriented according to the average of the vector
products of the central voxel and its neighbors in the 3× 3× 3 neighborhood.

3.3 Entropy Map

In order to produce a three dimensional entropy map E(x, y, z) that represents
the local entropy value of the fibers, each voxel of coordinates (x, y, z) in the
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vector field is associated to a small cubic neighbourhood n× n× n. Considering
3D vectors, an orientation histogram in the neighborhood of the considered voxel
is computed. This is achieved in 3D by decomposing the unit sphere into patches
of equal area [8], and using the cones connecting the patches to the center of the
sphere as bins for the orientation histogram. Each vector in the neighborhood
is assigned to the appropriate bin (i.e cone) and the computed entropy value is
assigned to the corresponding voxel (x, y, z) in the 3D entropy map E(x, y, z).

Based on Eq. (1) and (2), entropy map depends on two parameters; the
number of bins n used in the histogram and the size of neighborhood considered
to build the histogram. In our case, the parameters are chosen taking into account
priors on the dMRI acquisition and the anatomy of the cranial nerves. The
number of bins corresponds roughly to the number of diffusion directions used
in dMRI acquisition and the neighborhood size is proportional to the diameter
of the considered nerve, as given in Table 1.

The resolution of the computed vector field (see Section 3.2) also impacts the
computed 3D entropy map. As shown by Figure 3, working at a better resolution
makes it possible to use a neighborhood size for entropy computation smaller
than the diameter of the nerve and hence to have a low entropy at the center of
the nerve, as expected.

0

0.1

0.2

0.3

0.4

(a) (b)

Fig. 3. Minimum entropy projections along the axial view for the optic nerve. Entropy
maps were built from reconstructed vector fields of resolution 2 mm for (a) and 0.2
mm for (b).

3.4 Viewpoint Selection

Viewpoints are finally evaluated based on the information of the 3D entropy map.
For a given viewpoint, we compute a 2D projection of the entropy map according
to the specific view angle, as illustrated by Figure 4. For each pixel of the 2D
projection, we store the minimum entropy value found in the given direction.
The projections are hereafter referred to as minimum entropy projection (MEP).
The average of the entropy values in the MEP, which we call entropy score, is
used as a quality metric for the viewpoint. A viewpoint with a low entropy score
is considered to display relevant information about the 3D scene.
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entropy

Fig. 4. Minimum entropy projection of a scene with a tumor and several nerves accord-
ing to a given viewpoint. For clarity, a mesh of the tumor and fibers (colored according
to their main direction) is represented instead of the 3D entropy map.

In order to combine the different anatomical structures which compose the
scene, the raw entropy map has to undergo some pre-treatments before the
projections. First, the entropy map of each cranial nerve is min-max normalized
to give the same importance to each nerve in the scene to be visualized. Second,
to prevent the occlusion of cranial nerves by themselves, the entropy is computed
in a isotropic environment (in terms of number of pixels) to average the entropy
on the same number of pixels regardless of the cranial nerve orientation. To do
so, a bounding sphere of maximal entropy (entropy=1) centered on the nerves
is used.

Finally, the tumor-nerve occlusion is taken into account by including the
tumor in the MEPs. A binary segmentation mask of the tumor is produced from
the T2-weighted MRI data and registered to dMRI. The tumor voxels are then
identified in the entropy map and set to the maximal entropy value (entropy=1).
As a result and illustrated in Figure 4, the score of entropy of the MEP where
the nerve hides the tumor and vice versa increases and the viewpoint associated
is less likely to be selected.

For every scene, the MEPs associated 60 different angles in spherical coor-
dinates (θ, φ) with θ ∈ [0, π] and φ ∈ [−π, π] are produced. A total of 60 view
angles, equally distributed over the unit sphere according to [8], are evaluated.
MEPs are ranked according to their entropy score. The viewpoints with the
lowest and highest entropy scores are considered respectively best and worst
viewpoints, as illustrated by Figure 5 in the case of the optic nerve.
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Fig. 5. Result of the best (a) and worst (b) viewpoints selection on the optic nerve.
(c) shows the change in best viewpoint if we add a tumor (in purple). For each view,
the corresponding MEP is given.

3.5 Validation

A surgical intervention planning context is simulated in order to measure the
usefulness of the viewpoint selection algorithm in clinical routine. For all the
patients included in our study, the cranial nerves of surgical interest were iden-
tified by a neurosurgeon: they correspond to the nerves that are very close to
the tumor and might be damaged during surgery. For each patient, the entropy
score of 60 viewpoints on the tumor and nerves of surgical interest is computed,
as described in Section 3.4. The viewpoints of minimal entropy score Emin and
maximal entropy score Emax, referred hereafter respectively as best and worst
viewpoint, were identified.

The performance of the viewpoint selection is first evaluated qualitatively
by comparing the best viewpoint selected to the viewpoint chosen for surgery.
The idea is to assess if the selected viewpoint can retrieve or surpass the surgi-
cal viewpoint. For this, we asked the neurosurgeon to systematically qualify it
as better, equivalent or worse than the surgical viewpoint. In other words, the
expert must assess whether the selected view better highlights the nervous struc-
tures in relation to the environment (other nerves and tumor) for the purpose
of tumor resection.

The global performance of the proposed viewpoint selection method can be
quantified from the appreciations given by the expert by computing the preva-
lence of better or equivalent views such as:
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prevalence =
|Sup|+ |Eq|

|Sup|+ |Eq|+ |Inf|
, (3)

where Sup, Eq and Inf respectively correspond to the patient cases where the
viewpoint associated with Emin is superior, equivalent or inferior to the surgical
viewpoint according to the expert.

Finally, the entropy scores associated to respectively Emin and Emax and Emin

and Esurg are compared on the basis of a paired sample t-test. The entropy Esurg

associated with the surgical viewpoint was estimated from its orientation, which
was repositioned in the framework of the 60 viewpoints tested in Section 3.4 and
associated with the nearest viewpoint on the basis of a Euclidean distance on
the angles.

4 Results

Counting the occurrences of binary score results at the scale of all patients, as
explained in Section 3.5 enables us to assess that the viewpoint of best entropy,
compared to the surgical viewpoint, provides additional information in 60% of
the cases (17/28), a similar level of information in 28% of the cases (7/28) and
bring a lower level of information in 14% of the cases (4/28). It was not possible
for the neurosurgeon to assess three surgical cases, which is why the occurrence
was performed on a total of 28 patients and not 31 as announced in Section 2.2.
Overall, the view selection method provides additional or similar information
compared to the surgical viewpoint up to 88% (see Equation 3). Regarding
the fact that the surgical viewpoint had been carefully selected by the medical
expert, this results shows that the entropy score proposed in this work is relevant
in a clinical context and meets the requirements of neurosurgeons in terms of
visualization.

best           surgical        worst
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Fig. 6. Distribution of entropy associated with viewpoints in patients. The viewpoints
associated to Emin, Emax and the surgery are respectively annotated ”best”, ”worst”
and ”surgical”.
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Moreover, a statistical analysis of the entropy scores associated with the
best, surgical and worst viewpoint was conducted as proposed in Section 3.5.
The Figure 6, illustrates the distribution of the entropy scores Emin, Esurg and
Emax for all the patients. A paired sample t-tests shows a significant difference
between the entropy scores of the best and the worst viewpoints (p-value =
3e-13) and between the entropy scores of the best and surgical viewpoints (p-
value = 2e-06). The best viewpoints scores significantly better than the surgical
viewpoint, which indicates that the surgical viewpoint selection can be improved
by our algorithm.

Furthermore, as illustrated on Figure 7, the best viewpoint selected with
our algorithm clearly depicts the tumor and the displaced nerves. Although
occlusion areas still exist, this viewpoint seems to provide the best trade-off
between showing the nerves of interest in their entirety and minimizing occlusion
with the tumor and the most disorganized fibers. Figure 7 shows the cases of
three patients with respectively medium, high and low information gains from
the surgical viewpoint as depicted by the curves on top of each row.

In the case of patient 1, the worst viewpoint is particularly unfavorable : high
entropy fibers are present in the foreground, causing occlusion of both the tumor
and the nerves. On the contrary, from the best viewpoint, the trajectory of the
nerves V, III, and NF can be clearly observed, even if the nerve III and the tumor
partially overlaps. The surgical viewpoint gives less information on the nerves
and their context because the tumor masks nerves III and V and NF is hidden
behind III, but still outperforms the worst view. The case of patient 2 is the most
interesting as regards the contribution of our algorithm. Because of the important
size of the tumor and the very close location of the nerves, very few viewpoint
enables an optimal representation of the scene. Few choices were offered for the
approach way of the tumor, resulting in a very poor visualization on the surgical
viewpoint where the huge tumor masks almost completely the nerves NF and
V. Even for this difficult case, our algorithm was able to find a viewpoint where
all the nerve and their trajectory can be clearly identified. This representation
can therefore be seen by the surgeon before the operation and used for the pre-
surgery planning. In the case of patient 3, where the gain is low, the best and
surgical viewpoint offers a very similar information on the nerve trajectory and
tumor position. In comparison, the worst viewpoint appear very poor: the tumor
and nerve NF are almost completely hidden by the most disorganized fibers of
the nerve V, making the scene very difficult to understand. In all the illustrated
cases, the entropy score seems to match correctly the qualitative evaluation of
the different viewpoints.

5 Conclusion

In this paper, we presented a viewpoint selection framework for fibrous structures
applied in the context of tumors surrounded by cranial nerves. The entropy of
the direction of the white matter fibers was identified as an interesting metric to
enhance the areas of the scene with high informative content (i.e. inside a nerve),
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Fig. 7. MEPs, anatomical reference and scene visualization for the surgical viewpoint
and the best and worst viewpoints returned by our algorithm. The difference of entropy
score between the 3 viewpoints is given through a step function. A partial transparency
of the tumor helps the visualization of the fibers inside and behind it.

in accordance with the concerns of the surgery. The occlusion caused by the tu-
mor was taken into account. The best viewpoints selected by our algorithm were
judged equivalent or superior than the viewpoint used for surgery in 88% of the
cases. The difference of quality score for those two viewpoints is significant. This
results indicates that neurosurgeons could benefit from the present algorithm in
the choice of the surgery viewpoint. However, we acknowledge some limitation
to this work; in clinical routine, the choice of the surgical viewpoint is restricted
by anatomical considerations. Some viewpoints can not be realistically chosen,



12 M. Decroocq et al.

for instance viewpoints going through the face or the neck of the patient. As a
future work, we want to include such anatomical constraints in the viewpoint
selection process. We also plan to extend the use of the entropy metric to filter
tractography fibers for an enhanced visualization.
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