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Introduction

A defining issue on the backend of the previous decade has been the ever increasing uncertainty of wildfires locations and durations [START_REF] Juan | Pinpointing spatio-temporal interactions in wildfire patterns[END_REF]. With the increasing temperature globally [START_REF] Holland | Hurricanes and rising global temperatures[END_REF] and falling humidity levels [START_REF] Jin | Decreasing relative humidity dominates a reversal of decreasing pan evaporation in mainland China after 1989[END_REF], forest fires are seen to appear in ever new locations across the world. [START_REF] Bailon | Wildfire remote sensing with UAVs: A review from the autonomy point of view[END_REF] Various research groups around the world have aimed to use the progress in computation modelling for advances in modelling wildfire spread [START_REF] Juan | Pinpointing spatio-temporal interactions in wildfire patterns[END_REF].

Whilst technology and innovation has seen exponential progress in the 21st century,adverse detrimental effects have been seen on long standing parts of society. A defining issue on the back-end of the previous decade has been the breakdown of climate patterns [START_REF] Do | Convolutional neural networks: an overview and application in radiology[END_REF][START_REF] Fernandes | Fire spread prediction in shrub fuels in Portugal[END_REF][START_REF] Cheney | Prediction of fire spread in grasslands[END_REF]. With the spread of cities and construction into nature [START_REF] Julia | The causes of deforestation in developing countries[END_REF][START_REF] Reineck | The Impact of Weather on Residential Fires in Sweden: A Regression Analysis[END_REF], modelling the climate has become increasingly difficult to map due to the vast number of factors to take into consideration. The work of [START_REF] Al-Rawi | Burned area mapping system and fire detection system, based on neural networks and NOAA-AVHRR imagery[END_REF] utilised Neural Networks in the early 2000s [START_REF] Arrue | An intelligent system for false alarm reduction in infrared forest-fire detection[END_REF] using Infrared Images taking into account visual images and meteorological and geographical data to detect wildfires alongside work published by [START_REF] Angayarkkani | An Intelligent System For Effective Forest Fire Detection Using Spatial Data[END_REF] and [START_REF]Predictive modeling of wildfires: A new dataset and machine learning approach[END_REF]. In these works the utility of data driven approaches was identified and the value of correct data prepossessing was established to encourage cohesion between the Ecological Wildfire and Machine Learning communities [START_REF] Nost | Earth for AI: A Political Ecology of Data-Driven Climate Initiatives[END_REF]. The use of CNNs as a widlfire susceptibility tool was initially investigated in 20221 [START_REF]Deep neural networks for global wildfire susceptibility modelling[END_REF] alongside MLPs proving to be more effective and reliable than other SOTA models. To extract features and patterns from spatial images that were available of wildfires CNNS were used as feature recognition tools to detect wildfires in these images. [START_REF] Zhang | Early wildfire smoke detection based on improved codebook model and convolutional neural networks[END_REF][13] [START_REF] Cheng | Parameter Flexible Wildfire Prediction Using Machine Learning Techniques: Forward and Inverse Modelling[END_REF].

With the continuous improvements in deep learning we have seen over the previous decade [START_REF] Salakhutdinov Rr Hinton | Reducing the dimensionality of data with neural networks[END_REF] [Lecun] [START_REF] Keiron | An introduction to convolutional neural networks[END_REF] [26] [START_REF] Liu | Implementation of training convolutional neural networks[END_REF] CNNs have been proven in use cases including object object recognition and data compression [27][46][36][15] [START_REF] Cheng | Observation data compression for variational assimilation of dynamical systems[END_REF]. CNN models were developed by [START_REF]Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images[END_REF]for this particular application and data. [START_REF]Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images[END_REF] found CNNs to explicitly outperform SVM-based methodologies.

Concurrently [START_REF] Zhao | SVM based forest fire detection using static and dynamic features[END_REF] utilised SVMs to automatically detect wildfires from video frames. CNNs were also utilised effectively for landslide susceptibility [START_REF] Wang | Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China[END_REF], biodiversity detection detection [START_REF]Scene-specific convectional neural networks for video-based biodiversity detection[END_REF] and to uncover general Ecological Patterns [START_REF]Uncovering Ecological Patterns with Convolutional Neural Networks[END_REF]. In a more trailblazing and experimental approach DCNNs were utilised to monitor reefs [START_REF]Deep convolutional neural networks to monitor coralligenous reefs: Operationalizing biodiversity and ecological assessment[END_REF]. When coupled with high resolution remote sensing data, DCCNs were shown to provide powerful classification capabilities in ecological settings [START_REF]Uncovering Ecological Patterns with Convolutional Neural Networks[END_REF][14] [START_REF]Deep convolutional neural networks to monitor coralligenous reefs: Operationalizing biodiversity and ecological assessment[END_REF]. The emphasise to the conclusion of this study was a full scale adopting of CNNs as to map biological patterns through automated mapping over spatial and temporal scales. [START_REF]Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[END_REF] utilised DCCNs alongside a small data set for algae classification ensembled initially with various feature extraction techniques.

Extrapolating from the work discussed above we take steps into a novel direction to tackle the issue of minimising the effects of wildfire on natural ecosystems and industrial areas [START_REF] Caon | Effects of wildfire on soil nutrients in Mediterranean ecosystems[END_REF][START_REF] Johnson | Wildfire[END_REF], we utilise the latest in Artificial Intelligence, Machine Learning and Deep Learning to assist public domain efforts into wildfire prediction. With inspiration form [START_REF]Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[END_REF] we use a small data set for a regression problem alongside hyper-prameter optimised DCCNs [START_REF]Uncovering Ecological Patterns with Convolutional Neural Networks[END_REF] [START_REF]Deep convolutional neural networks to monitor coralligenous reefs: Operationalizing biodiversity and ecological assessment[END_REF].We further suggest focus for multi-pronged approaches suggested for such future exercises which include ensemble ML techniques as well as using SOTA method that would become available in the ML community over time. To carry out such work we propose a testing pipeline to carry out our investigation into the optimal data prepossessing techniques and Neural Network architecture for prediction of our independent variables.

To extrapolate the in-built functions of CNNs we manually ensemble as a convolutional auto encoder for feature extraction on sparse image data [START_REF] Chen | Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network[END_REF][37] [START_REF] Polic | Convolutional Autoencoder for Feature Extraction in Tactile Sensing[END_REF]. In an ecological setting such features are extremely valuable with the reduction of noise thus being an effective domain of use for use a method [START_REF] Pozzobon De Bem | Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas[END_REF]. We ensemble how feature reduced latent space data as inputs for a random forest to optimise for dropout and learning [START_REF] Xu | An improved random forest classifier for image classification[END_REF] [START_REF] Noi Phan | Land Cover Classification using Google Earth Engine and Random Forest Classifier-The Role of Image Composition[END_REF][39] [START_REF] Akar | Classification of multispectral images using Random Forest algorithm[END_REF].

In summary, the following contributions are made in this study:

• Compare different algorithms including Convolutions Neural Networks to Random Forests alongside pretrained algorithms including Vgg-16 AND Resnet-50 for bench marking.

• Implement a tested approach of using auto encoders and random forests for the regression problem [START_REF] Vilar Del Hoyo | Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data[END_REF] at hand.

• Augment fire data with ecological factors to determine environmental impacts on wildfires.

The paper is organised in the chronological paper format study Area and Data, Methodology, Results and Future Work.

Study area and data

Our study area is based in the USA with a concentration of study data based around the focal point of California. The State of California is located on the west coast of the USA known for its desert, mountains, beaches and plains.(WWF,EPA) The US terrain consists of a diverse range of terrain types from the Pacific Ocean at the west to the Atlantic Ocean to the east.

California is a ranging terrain with cliffs, beaches mountains and deserts. With a dry climate and dense vegetation California is one of the most susceptible wildfire states in the USA and We tackle our temporal problem by further complementing fire data with slope and vegetation canopy height data from the same region.

Methodology

This work aims to provide implementations of state of the art algorithms on fire progression data to evaluate the predictability of fire duration data across a time series. It further investigates the influence of of ecological factors on the spread of wildfires in the US by taking into account various ecological factor data to complement wildfire spread data that we utilise to make predictions.

Our Method is split into:

• Pre-processing Fire data • Pre-processing influencing factor data.(Google Earth Engine)

• Model Architectures

• Hyper-prameter Optimisation 3.1. Pre-processing Fire Data 3.1.1.Data Collection Fire Data was acquired for all significant fires using the MODIS satellite at a 1km resolution for all significant fires in the state of California from 2012 to 2021.

Data Conversion

We carried out a cutting and overlapping procedure with the data to model a regression problem for our algorithms by append additional areas burnt onto each fire on a day to day basis. Thus the output could be modelled as wither the area burnt or the duration of fire remaining.

Data Cleaning

After the data conversion we followed a more abstract approach above our testing pipeline to narrow down the most effective size interval for fire data. Mention the size chosen and the sizes tested. Data was augmented to represent fires for their entire individual durations depending on starting and ending dates. These were arranged in reversed descending order to create a regression problem. Fire data for each day was utilised and overlapped for the entire duration of the fire to create augmented images for all fires. These overall fire areas were then appended next to their respective fire duration's in days. By appending each image with the amount of days left for the variables to burn we were able to create a regression problem for our algorithms to be solved. Similarly we take final areas burnt as our regression variable (explore this further).

We represent our data augmentation as:

Fire: {F i } Fire Duration d F i Final Burned Area (km2): b F i Burned area (image) 2nd day for the i'th fire B (2) F i
An experimental pipeline was setup where the following are treated as parameters to be optimised before evaluating model performance:

• The optimal image size for model performance.

• Various interpolations for image size change.

• Train and test split.

• Different normalisation's for our data. 

Convolutional Neural Networks (CNN)

We use CNNs as our primary architecture to provide regression predictions for our data. CNN'S are effective at extracting local spatial features from image data and combining them to higher order features. Both MLPs and CNNs can be used for Image data but the main difference is MLPs take vectors as inputs and CNNs (local filters) take tensors therefore are able to understand spatial relationships between pixels to higher order than MLPs. CNNs are found to be built from convolutional layers, pooling layers, and fully connected layers which we utilise in a block layers at a high level. CNNs were first introduced as notable Deep Learning techniques and established as notable feature learning techniques for image data fitting perfectly with our intention to model the spread of wildfires across a time horizon. The principal of kernel convolution is utilised to pass over our images and transformed based on the values on the filter. Feature map values can then be calculated based on the following implicit equation.

Our CNN take initially take an input 200x200 of image data based of Random Search optimisation for image size and outputs a regression value of the number of days left for the fire to burn. Our input is them layered with further features of ecological data extracted from GEE as discussed above. (see section Pre-processing Forest Fire Influencing Factors) We carry of a Random search to optimise hyper-parameters internal to our model.

Convolutional Autoencoder (CAE)

Autoencoders can be utilised for an array of cutting edge uses of which the main include dimension reduction [START_REF] Cheng | Reduced order surrogate modelling and Latent Assimilation for dynamical systems[END_REF] and image noise reduction. The principal we exploited in the bottleneck 

introduced in the neural network architecture which forces compressed knowledge representation of the the original inputs. If structure in internal within data there patterns can be extracted and thus reconstructed as outputs.

We use Autoencoders as the main principal to represent our problem in a latent space followed by a model in the latent space for our regressive prediction [START_REF] Arrue | An intelligent system for false alarm reduction in infrared forest-fire detection[END_REF]. As seen for our architecture we select a latent space of 10x10 after grid testing a wider array of spaces for optimal random forest performance. 

Random Forest (RF)

To benchmark our CNN we use an ensemble of autoencoder + random forest to carry out our regression predictions in a latent space, Random Forests vastly provide higher accuracy compared to single decision tree models therefore will be utilised as part of our state of the art in modern prediction algorithms. Random Forests are an accumulation of decision trees that work in an ensemble (Speiser, Durkalski, & Lee, 2015). Predictions from each decision tree are accumulated within the Forest providing us with aggregated predictions that are based on a large accumulation of models.

WildWood (WildWood)

Wildwood was first introduced by Stéphane Gaïffas, Ibrahim Merad, Yiyang Yu as a new ensemble algorithm for supervised learning of Random Forest (RF) type. Standard RF algo- rithms use bootstrap out-of-bag samples to compute out-of-bag scores, WW uses these samples to produce improved predictions given by an aggregation of the predictions of all possible subtrees of each fully grown tree in the forest. This is achieved by aggregation with exponential weights computed over out-of-bag samples, that are computed exactly and very efficiently thanks to an algorithm called context tree weighting. This improvement, combined with a histogram strategy to accelerate split finding, makes WW fast and competitive compared with other well-established ensemble methods, such as standard RF and extreme gradient boosting algorithms.

U-net! (U-net!)

The U-Net architecture is a neural network first revealed by Long, Shelhamer, and Darrell on the basis on being a fully connected neural network.

The main idea is to supplement a usual contracting network by successive layers, where pooling operations are replaced by upsampling operators. These layers will therefore increase the resolution of the output. A successive convolutional layer can then learn to assemble a precise output based on this information. [START_REF] Caon | Effects of wildfire on soil nutrients in Mediterranean ecosystems[END_REF] The network only uses the valid part of each convolution without any fully connected layers. [START_REF] Zhao | SVM based forest fire detection using static and dynamic features[END_REF] To predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the input image. This tiling strategy is important to apply the network to large images, since otherwise the resolution would be limited by the GPU memory. The channel can propagate context information to higher resolutions as there are a large number of features in the upsampling function within the U-net architecture.

GAN/C-GAN! (GAN/C-GAN!)

Performmance Evaluation

Evaluating CNN architecture Our CNN architectures are evaluated for regression outcomes using mae (insert reference) and see the convergence training and test subsets. Whilst our problem was

Evaluating Auto-encoder/Random Forest architecture 

Results

We will dedicate a focused results section to discuss our findings at a granular level followed by literature backed discussions. We represent our results as comparisons between loss and mae of both train and validation sets. In our testing split as previously outlined we have no look ahead bias thus holding up the time series properties of our investigation.

We display the most competitive accuracies shown in figure 7 comparing results between fire only prediction with out CNN model plus various layering ensembles with ecological features. To take various points of contention into account we will discuss the minimum accuracies achieved the the feature ensembles as well as the general shape of the accuracy curves.

More broadly we select carry out broader hyperprameter optimisation in the form of epoch selection which we saw all results represented within 200 epochs at a batch size of 32. As seen in figure 7 we see a knowledge transfer for any ensemble that includes the slope data as hypothesised by (reference sibo and rosella studies). We see lower accuracies for classification based models which includes the Conus classification layer to our research ensemble. 

Discussion and future work

Observations to link to results

Conclusion

Our article carries out an investigation into the utilisation of the state of the art in A.I.

in the form of Convolutional Neural Networks, Auto-encoders and Random Forests to predict remaining days left for a fire to burn as well as the area burnt by a fire. Taking into account fire spread data alongside ecological factors allows us to increase our prediction accuracy with certain ecological features such as slope and vegetation density providing higher predictability features compared to solely fire data. 
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 1 Figure 1: CaliInfographic

  3.1.4 Data Interpolation Interpolation for neural networks and fire sizes and ecology. Interpolation for auto encoder.
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 2 Figure 2: Methodology Flowchart

Figure 3 :

 3 Figure 3: Fire Lengths
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 2 Pre-processing Forest Fire Influencing Factors Talk about the longitude and latitude conversion... We use Google Earth Engine to extract each of the influencing factors(reference of GEE). By defining a bounding box depending of the max and min longitude and latitude of the fire data we extract the same region of data for the variables. A list of influencing factors considered include: • Slope-Global ALOS mTPI (Multi-Scale Topographic Position Index) • Grass-Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 • Bare-Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 • Tree-Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 • Biomass-Copernicus Global Land Cover Layers: replace this • Conus-USGS GAP CONUS 2011 • Below ground Biomass-Global Aboveground and Belowground Biomass Carbon Density Maps Datasets extracted form Google Earth Engine.Factors were imported as similar size images to the corresponding fires where a fire of length n is appended alongside complete images of stored data. Ecological Features were selected based of availability from Google Earth Engine Datasets;
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 5 Figure 5: model selection
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 6 Figure 6: Latent space reconstruction

  2017). The five statistical measures are computed in the following manner:where TP (true positive) and TN (true negative) are the number of samples that are correctly classified as positive (fire class) and negative (nonfire class) observations, respectively. FP (false positive) and FN (false negative) are the number of samples that are misclassified. Sensitivity is the percentage of positive (fire class) observations that are correctly classified whereas specificity is the percentage of negative (nonfire class) observations that are correctly identified.

Figure 7

 7 Figure 7: Only CNN accuracy results

Table 1 :

 1 NN structure of the CNN

	Layer (type)	Output Shape Activation
	CNN Structure		
	Input	(200, 200, 1)	
	Conv2D (8)(3, 3)	(198, 198, 32)	
	LeakyRelu ()	(198, 198, 32)	
	Conv2D (8)(3, 3)	(196, 196, 32)	
	LeakyRelu ()	(196, 196, 32)	
	MaxPooling 2D (3, 3)	(65, 65, 32)	
	Dropout (0.3)	(65, 65, 32)	
	Conv2D (8)(4, 4)	(63, 63, 64)	
	LeakyRelu ()	(63, 63, 64)	
	Conv2D (8)(4, 4)	(61, 61, 64)	
	LeakyRelu ()	(61, 61, 64)	
	MaxPooling 2D (4, 4)	(20, 20, 64)	
	Dropout (0.5)	(20, 20, 64)	
	Flatten ()	(25600)	
	Dense (300)	470700)	ReLu
	Dense (30)	(9030)	ReLu
	Dense (1)	(31)	ReLu
	Output		

Table 2 :

 2 NN structure of the CAE

	Layer (type)	Output Shape Activation
	Encoder		
	Input	(200, 200, 1)	
	Conv 2D (1) (3, 3)	(200, 200, 1)	ReLu
	MaxPooling 2D (5, 5)	(40, 40, 1)	
	Conv 2D (1) (3, 3)	(40, 40, 1)	ReLu
	MaxPooling 2D (2, 2)	(20, 20, 1)	
	Conv 2D (1) (3, 3)	(20, 20, 1)	ReLu
	MaxPooling 2D (2, 2)	(10, 10, 1)	
	Decoder		
	Input	10, 10, 1	
	Conv 2D (1) (3, 3)	(10, 10, 1)	ReLu
	Upsampling (2, 2)	(20, 20, 1)	
	Conv 2D (1) (3, 3)	(20, 20, 1)	ReLu
	Upsampling (2, 2)	(40, 40, 1)	
	Conv 2D (1) (3, 3)	(40, 40, 1)	ReLu
	Upsampling 5, 5	(200, 200, 1)	
	Conv 2D (1) (3, 3)	(200, 200, 1)	Sigmoid

Table 3 :

 3 Hyperparmater grid search spaceThe evaluation criteria are a key factor in assessing the classification performance and guiding the classifier mod-eling (Sokolova and Lapalme 2009). In this article, a two-class classification method is modeled to predict forest fire susceptibility. Thus, five statistical measures including overall accuracy, specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) are employed to appraise the classification capability (Tien Bui et al.

	Model/Hyperparamters	Grid search space	Final set
	CNN		
	epochs	{ 50,100,200,500}	200
	batchsize	{8, 16, 32, 64, 128}	32
	CAE		
	Filter, Strides, Pooling size	/	Table ??
	Activation	{ReLu, LeakyReLu, Sigmoid} Table ??
	Optimizer	{Adam, SGD}	Adam
	Batch size	{16, 32, 64}	32
	RF		
	split criteria	{ 'gini', 'entropy'}	'gini'
	n DT	{10, 50, 100}	100
	n features	{ 'log2','sqrt'}	'sqrt'

Table 4 :

 4 Data descriptions of forest fire influencing factors

	N o.	Data	Resolution U nit Link
	1	Conus	30	m	0.92
	2	Slope	270	m	0.92
	3	T ree	100	m	0.92
	4	Grass	100	m	0.92
	5	V egHeight	30	m	0.92
	6 V egDensity	300	m	0.92
	7	Biomass	30	m	0.92

Table 5 :

 5 Training metrics for data ensembles and CNN EcologicalF actors Loss M AE V alLoss ValMAE F ireOnly 3.3089 1.2802 88.9082 6.5023 Slope/T ree/Grass 4.5675 1.3534 102.5675 7.3453 Slope/BGB/Grass 4.2354 1.2456 95.5675 7.2343 Slope/BGBT ree 3.9243 1.2345 90.6547 7.1454 In a corresponding figure 8 we compare a subset of best performing CNN based data ensembles with ecological features alongside single fire parameter performances for our autoencoder/ random forest ensemble. Concurrently our implementation of the wildwood model performs slightly worse than the general random forest. Although with Random Forest saw a spike on prediction around the 15-20 day mark for each.
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