Baptiste Cottier

DIENS David Pointcheval

Security Analysis of Improved EDHOC Protocol

Keywords:

Ephemeral Diffie-Hellman Over COSE (EDHOC) aims at being a very compact and lightweight authenticated Diffie-Hellman key exchange with ephemeral keys. It is expected to provide mutual authentication, forward secrecy, and identity protection, with a 128-bit security level.

A formal analysis has already been proposed at SECRYPT '21, on a former version, leading to some improvements, in the ongoing evaluation process by IETF. Unfortunately, while formal analysis can detect some vulnerabilities in the protocol, it cannot evaluate the actual security level. In this paper, we study the protocol as it appeared in version 15. Without complete breaks, we anyway exhibit attacks in 2 64 operations, which contradict the expected 128-bit security level. We thereafter propose improvements, some of them being at no additional cost, to achieve 128-bit security for all the security properties (i.e. key privacy, mutual

Introduction

A key agreement is under analysis by IETF [SMP22], under the name Ephemeral Diffie-Hellman Over COSE (EDHOC). EDHOC aims at being a very compact and lightweight authenticated Diffie-Hellman key exchange with ephemeral keys. It is expected to provide mutual authentication, forward secrecy, and identity protection, with a 128-bit security level.

This protocol is deeply inspired from SIGMA [Kra03] and OPTLS [KW16] and targets constrained devices over low-power IoT radio communication technologies. For this reason, very aggressive parameters are proposed to minimize the communications. This paper follows a request from the LAKE working group to study the computational security of the EDHOC protocol with such agressive parameters.

Related Work

A formal analysis of the May 2018 version has already been proposed by Bruni et al. in [BSJGPS18] and later completed and updated by [NSB21,CJKK22,JKKR23], leading to some improvements. But such a formal analysis, when successful, does not give any insight about the actual security level, in terms of time complexity of the best possible attack. While our computational analysis covers the MACbased authentication method, other ongoing works cover other authentication methods based on signatures.

Contributions

In this paper, we analyse the August 2022 version of EDHOC proposal [SMP22]. We are able to prove the three expected security properties in the random oracle model, under a Diffie-Hellman assumption and with secure encryption primitives. However, because of the aggressive settings, we exhibit attacks in 2 64 operations, against authentication, which is not acceptable for a 128-bit security level.

We thereafter propose some improvements to get better security, at no communication cost. Firstly, adding more inputs to some hash value allows to speedup the simulator when searching in some tables. Secondly, one converts an authenticated encryption scheme into a simple one-time secure encryption scheme, for hiding the identity of the Initiator, and sends a larger tag together with the External Authorization Data, in plaintext. We convert an authenticated ciphertext into a smaller ciphertext encrypting only a part of the message, and the remaining of the message is sent as plain values rather than encrypted, but with better authentication. This conversion globally has no communication impact, but increases from 64 to 128-bit security level for initiator-authentication. Last, we confirm that a fourth message provides a 128-bit security level for responderauthentication.

Preliminaries

Computational Assumptions

For security analysis in the computational setting, we rely on some computational assumptions: the Gap Diffie-Hellman problem and some properties of symmetric encryption.

Gap Diffie-Hellman (GDH). The Gap Diffie-Hellman problem aims to solve a Diffie-Hellman instance (U = g u , V = g v), in a group G with generator g, where u, v $ ← Z p , by computing g uv , with access to a Decisional Diffie-Hellman oracle DDH returning 1 if a tuple-query (g a , g b , g c) is a Diffie-Hellman tuple, and 0 otherwise. We define the advantage Adv gdh G (t, q ddh), as the maximum advantage over all algorithms A in outputting g uv , with time-complexity at most t and making at most q ddh queries to the DDH oracle.

One-Time Pad Encryption. We will use several symmetric encryption schemes, such as the one-time pad: given a random key sk ∈ {0, 1} k , the encryption of the message m ∈ {0,

1} k is c = E(sk, m) ← m ⊕ sk, while the decryption just consists in m = D(sk, c) ← c ⊕ sk. It satisfies the injective property: ∀sk, m 0 , m 1 ∈ {0, 1} k , E(sk, m 0) = E(sk, m 1) =⇒ m 0 = m 1 .
It also guarantees perfect privacy: for a random secret key sk, c does not leak any information about the plaintext. We stress this is of course for a one-time use only, as there is no additional oracle access.

Authenticated Encryption with Associated Data (AEAD). We will also use an Authenticated Encryption with Associated Data scheme Π ′ = (E ′ , D ′), with a key sk and initialisation vector IV. For a message m ∈ M and some associated data a ∈ A, the ciphertext is c = E ′ (sk, IV; m; a)1 , while the decryption process provides m = D ′ (sk, IV; c; a) in case of valid ciphertext c with respect to sk, IV, and a, or ⊥ otherwise. Two security properties are expected from such an AEAD.

Indistinguishability. (A) over all A with time-complexity at most t. We stress that c only aims at protecting the messageprivacy, but does not provide any security for the associated data. Thanks to multiple queries, we are in the chosen-plaintext setting, and not a one-time security as before.

Π ′ = (E ′ , D ′)
Authentication. An AEAD scheme is also expected to guarantee some unforgeability property (UF-CMA, for Unforgeability under Chosen-Message Attacks), also for the associated data (not encrypted). More precisely, we consider the Experiment Exp uf-cma Π ′ (A) in which A is given access to the encryption oracle E ′ (sk, •; •; •), for a random secret key sk. The Experiment returns 1 if A outputs some data a, an initialisation vector IV and a ciphertext c accepted with respect to IV and a, which means that D ′ (sk, IV; c; a) ̸ = ⊥, while c has not been obtained as the output of an encryption query to E ′ (sk, •; •; •). We define the advantage of A in violating UF-CMA security of Π ′ as Adv uf-cma

Π ′ (A) = Pr[Exp uf-cma Π ′ (A) = 1]
and the advantage function Adv uf-cma Π ′ (t) as the maximum value of Adv uf-cma Π ′ (A) over all A with time-complexity at most t.

Brief Description of EDHOC

As with any key exchange protocol, EDHOC aims to provide a common session key to two parties. We briefly sketch the key elements of the EDHOC protocol. Due to the page limitations, we refer the reader to [SMP22] for a detailed description. EDHOC protocol can be instantiated with several settings:

-Authentication Method : Each party (Initiator and Responder) can use an authentication method: either with a signature scheme (SIG), or with a static Diffie-Hellman key (STAT). -Cipher Suites: Ordered set of protocol security settings. Initial paper offers many possible suites, but we focus on the most aggressive cipher suites set- ting the MAC length to 8 bytes, while still using SHA-256 as a hash function, with 256-bit outputs.

-Connection Identifiers: Data that may be used to correlate between messages and facilitate retrieval of protocol state in EDHOC and application. -Credentials and Identifiers: They are used to identify and optionally transport the authentication keys of the Initiator and the Responder.

We suppose both the Initiator and the Responder are aware that the authentication method is STAT/STAT. Also, we ignore the Cipher Suite ID Suites_I (as it appears in [SMP22]) in the first message of the protocol.

Extract and Expand. In the EDHOC Key-Schedule, recalled in Figure 1 (ignoring the vertically hatched patterns for the initial protocol), the pseudorandom keys (PRK) are derived using an extraction function. In our context, Extract(salt, IKM) = HKDF-Extract(salt, IKM) is defined with SHA-256, where IKM holds for Input Keying Material (in our context, this will be some Diffie-Hellman keys) and Expand(PRK, info, len) = HKDF-Expand(PRK, info, len) where info contains the transcript hash (TH 2 , TH 3 or TH 4), the name of the derived key and some context, while len denotes the output length. Transcript hashes, denoted TH i , are used as input to the HKDF-Expand function. More precisely, with SHA-256 as H, we have:

TH 2 = H(Y e , C R , H(m 1)) TH 3 = H(TH 2 , m 2) TH 4 = H(TH 3 , m 3 [, m ′ 3])
where m 1 is the first message sent by the Initiator, m 2 and m 3 (possibly concatenated to m ′ 3 in our improvement, to preserve the authentication property) respectively are the plaintexts respectively encrypted in the message 2 and message 3. More notations are provided in Figure 2.

Protocol. The detailed description of the initial protocol is given in Fig 3, ignoring the gray highlights which will be for our improvements. The final session key is SK = PRK out .

Our Improvements

We here make some remarks on the initial protocol, with some improvements, that appear in gray highlights in Figure 3, and to the removed/additional hatched patterns in Figure 1.

On Mutual Authentication

The encryption key sk 3 , used by the initiator to encrypt its second message m 3 , is computed by calling HKDF-Expand on PRK 3e2m . However, even an adversary that plays in the name of a non-corrupted user, is able to compute PRK 3e2m , when knowing the Initiator ephemeral key x e , as PRK 3e2m does not depend on x s , the long term secret key of the Initiator. In order to break the Initiator authentication, with respect to a Responder, an adversary can play on behalf of any user as an Initiator. It will be able to compute sk 3 , but not t 3 , for which value it will need some luck, but this is only 64-bit long! Which is not enough for a 128-bit security.

Initiator Responder xs, Xs = g xs ys, Ys = g ys InitRun1(IDI) xe $ ← Zp, Xe ← g xe ; CI $ ← {0, 1} ℓC m1 ← (Xe∥CI∥EAD1) m1 RespRun1(IDR, ys, m1) Parse m1 as (Xe∥c∥EAD1) ye $ ← Zp, Ye ← g ye ; CR $ ← {0, 1} ℓC sid ← (CI, CR, Xe, Ye) PRK2e ← HKDF-Extract("" | TH2 , Xe ye) TH2 ← H(Ye, CR, H(m1)) sk2 ← HKDF-Expand(PRK2e, 0, TH2, ℓ2) salt3e2m ← HKDF-Expand(PRK2e, 1, TH2, ℓhash) PRK3e2m ← HKDF-Extract(salt3e2m, Xe ys) CTX2 ← (IDR∥TH2∥Ys∥EAD2) t2 ← HKDF-Expand(PRK3e2m, 2, CTX2, ℓmac) InitRun2(IDI, xs, Ys, (Ye, c2, CR)) Ye, c2, CR m2 ← (IDR∥t2∥EAD2); c2 ← E(sk2, m2) PRK2e ← HKDF-Extract("" | TH2 , Ye xe) TH2 ← H(Ye, CR, H(m1)) sk2 ← HKDF-Expand(PRK2e, 0, TH2, ℓ2) Set m2 ← D(sk2, c2); parse as (IDR∥t2∥EAD2) CTX2 ← (IDR∥TH2∥Ys∥EAD2) salt3e2m ← HKDF-Expand(PRK2e, 1, TH2, ℓhash) PRK3e2m ← HKDF-Extract(salt3e2m, Ys xe) t ′ 2 ← HKDF-Expand(PRK3e2m, 2, CTX2, ℓmac) if t ′ 2 ̸ = t2 : return ⊥ TH3 ← H(TH2, m2) sk3 ← HKDF-Expand(PRK3e2m, 3, TH3, ℓkey | ℓid) IV3 ← HKDF-Expand(PRK3e2m, 4, TH3, ℓiv) | ∅ salt4e3m ← HKDF-Expand(PRK3e2m, 5, TH3, ℓhash) PRK4e3m ← HKDF-Extract(salt4e3m, Ye xs) accepted ← 1 CTX3 ← (IDI∥TH3∥Xs∥EAD3) t3 ← HKDF-Expand(PRK4e3m, 6, CTX3, ℓmac | κsec) m3 ← (IDI ∥t3∥EAD3) | IDI , m ′ 3 ← (t3∥EAD3) c3 ← E ′ (sk3, IV3; m3; "") | E(sk3, m3) c3, m ′ 3 RespRun2(ID, st, peerpk, c3) TH3 ← H(TH2, m2) sk3 ← HKDF-Expand(PRK3e2m, 3, TH3, ℓkey | ℓid) IV3 ← HKDF-Expand(PRK3e2m, 4, TH3, ℓiv) | ∅ m3 ← D ′ (sk3, IV3; c3; "") | D(sk3, c3) parse m3 as (IDI ∥t3∥EAD3) | IDI and m ′ 3 as (t3∥EAD3) Xs ← peerpk[IDI] salt4e3m ← HKDF-Expand(PRK3e2m, 5, TH3, ℓhash) PRK4e3m ← HKDF-Extract(salt4e3m, Xs ye) accepted ← 1 CTX3 ← (IDI∥TH3∥Xs∥EAD3) t ′ 3 ← HKDF-Expand(PRK4e3m, 6, CTX3, ℓmac | κsec) if t ′ 3 ̸ = t3 : return ⊥ TH4 ← H(TH3, m3, m ′ 3) sk4 ← HKDF-Expand(PRK4e3m, 8, TH4, ℓkey) IV4 ← HKDF-Expand(PRK4e3m, 9, TH4, ℓiv) m4 ← "", m ′ 4 ← EAD4 TH4 ← H(TH3, m3, m ′ 3) c4, m ′ 4 c4 ← E ′ (sk4, IV4; m4; m ′ 4) sk4 ← HKDF-Expand(PRK4e3m, 8, TH4, ℓkey) IV4 ← HKDF-Expand(PRK4e3m, 9, TH4, ℓiv) if D ′ (sk4, IV4; c4; m ′ 4) = ⊥ : return ⊥ PRKout ← HKDF-Expand(PRK4e3m, 7, TH4, ℓhash) PRKout ← HKDF-Expand(PRK4e3m, 7, TH4, ℓhash) terminated ← 1 terminated ← 1 SK ← PRKout SK ← PRKout
To get around this issue, we suggest to modify the construction of Initiator's second message as follows:

Initial message m 3 = (ID I ∥t 3 ||EAD 3) is split as m 3 ← (ID I) and m ′ 3 ← (t 3 ||EAD 3) 2 .
Thus, m 3 is encrypted using sk 3 (with a one-time pad encryption scheme Π = (E, D), under sk 3 still depending on PRK 3e2m) into c 3 . Then m ′ 3 does not need to be encrypted. We introduce the value κ sec , always set as the expected bit-security parameter, independently of the ℓ mac value. Then, we set the length of t 3 to be κ sec , as it already authenticates CTX 3 = (ID I ∥TH 3 ∥X s ∥EAD 3). Concretely, the second message sent by the initiator to the responder is:

c 3 ∥m ′ 3 , where c 3 = E(sk 3 , m 3), m ′ 3 = t 3 ||EAD 3 . Once the Responder receives (c 3 , m ′
3), he first decrypts c 3 , retrieves X s using m 3 , computes PRK 4e3m and is then able to verify the tag t 3 , allowing to check the authenticity of ID I , as well as all the other values is CTX 3 = ID I ∥TH 3 ∥X s ∥EAD 3 . The extra required length for the tag t 3 is perfectly compensated by the absence of the tag jointly sent when using Authenticated Encryption, and the plaintext length of m 3 is the same as the encryption of m 3 . Therefore, this does not impact the communication cost of the protocol, until κ sec ≤ 2 × ℓ mac , but improves to κ sec -bit security for Initiator-Authentication.

About the Responder-Authentication, t 2 also provides a 64-bit security level only: by guessing it, any active adversary can make the initiator terminate, and thus breaking the responder-authentication, if one does not wait for the fourth flow c 4 , m ′ 4 . However, with this fourth flow, we can show the 2 × ℓ mac -bit security level is achieved.

On Reduction Efficiency

After analysis, we also notice another improvement: the key PRK 2e is computed according to g xeye only, as the salt used in HKDF-Extract is an empty string. When considering several parellels sessions, this allows an adversary to find a collision with any of the session making a single call to HKDF-Extract. Therefore, we replace the empty string used as salt with TH 2 that depends on the session variables and is different for each session. Thus, an adversary has to make a call to HKDF-Extract with a chosen TH 2 , linked to a specific session. This makes the reduction cost of the key-privacy game independent of the number of sessions.

Security Analysis

Security Goals. The security goals of an authenticated key exchange protocol are:

-Key Privacy: Equivalent to Implicit Authentication. At most both participants know the final session key, which should remain indistinguishable from random to outsiders. With additional Perfect Forward Secrecy, by compromising the long-term credential of either peer, an attacker shall not be able to distinguish past session keys from random keys. In our context, this will rely on a Diffie-Hellman assumption. -Mutual Authentication: Equivalent to explicit authentication. Exactly both participants have the material to compute the final session key. -Identity Protection: At most both participants know the identity of the Initiator and the Responder. While the identity of the Initiator should be protected against active adversaries, the identity of the Responder should be protected against passive adversaries only.

Random Oracle Model. For the security analysis, we model Hash and Key Derivation Functions as random oracles. Respectively, the random oracles RO T and RO P will model HKDF-Extract and HKDF-Expand functions as perfect random functions.

Key Privacy

We describe in Figure 4 the security game introduced in [DG20] following the framework by Bellare et al.

[BR06]. After initializing the game, the adversary A is given multiple access to the following queries:

-NewUser: Generates a new user by generating a new pair of keys.

-Send: Controls activation and message processing of sessions -SessionKeyReveal: Reveals the session key of a terminated session.

-LongTermKeyReveal: Corrupts a user and reveals its long term secret key.

-Test: Provides a real-or-random challenge on the session key of the queried session.

Then, the adversary makes a single call to the Finalize algorithm, which returns the result of the predicate [b ′ = b], where b ′ is the guess of A and b is the challenge bit, after succeeding through the Sound and Fresh predicates. The advantage of an adversary A against the key privacy is its bias in guessing b, from the random choice: Adv kp-ake (A) = Pr[b ′ = b] -1/2. For the reader's convenience, we give a formalized description of the EDHOC protocol in Figure 6, in the Appendix. It is compliant with the security game made in Figure 4. The protocol is analyzed in the random oracle model, therefore, HKDF can be substituted by respective random oracles.

Theorem 1. The above EDHOC protocol satisfies the key privacy property under the Gap Diffie-Hellman problem in the Random Oracle model. More precisely, with q RO representing the global number of queries to the random oracles, N the number of users, and ℓ hash the hash digest length, Adv kp-ake EDHOC (t; q RO , N) is upper-bounded by

(2N + 1) • Adv GDH G (t, q RO) + q RO 2 + 4
vealed. We say a party/session is non-corrupted if no query to LongTermKeyReveal has been made before the time of acceptance t acc , where we consider each block (InitRun1, InitRun2, RespRun1, RespRun2) as atomic. Then corruptions can only happen between two calls to simulated players. Game G 1 . In this game, we simulate the random oracles by lists that are empty at the beginning of the game. As RO T and H always return a digest of size ℓ hash , we simply use the simulation oracle SO T and SO H respectively. However, RO P may return values of several lengths. We thus define a simulation oracle by digest size: SO size P , for size in {ℓ 2 , ℓ id , ℓ hash , ℓ key , ℓ iv , ℓ mac , κ sec } The simulation oracles SO P and SO H work as the usual way of simulating the answer with a new random answer for any new query, and the same answer if the same query is asked again. For the simulation oracles SO T , the oracle consists in a list that contains elements of the form (str, Z, (X, Y); λ), where when first set, either Z or (X, Y) is non-empty. Indeed, when making a call to a random oracle, the official query is of the form (str, Z), where str is any bit string, that can be empty or a pseudo-random key, and Z is a Diffie-Hellman value. Then, the simulator checks in the list for an entry matching with (str, Z, * ; λ). If such an element is found, one outputs λ, otherwise one randomly set λ $ ← {0, 1} κ and append (str, Z, ⊥; λ) to the list. But later, the simulator will also ask queries of the form (str, (X, Y)), where (X, Y) is a pair of group elements. Then one checks in the list for an entry matching with either (str, * , (X, Y); λ) or (str, Z, * ; λ) such that DDH(g, X, Y, Z) = 1. If such an element is found, one outputs λ, otherwise one randomly set λ $ ← {0, 1} κ and append (str, ⊥, (X, Y); λ) to the list. When such new kinds of elements exist in the list, for the first kind of queries (str, Z), one checks in the list for an entry matching with either (str, Z, * ; λ) as before, or (str, * , (X, Y); λ) such that DDH(g, X, Y, Z) = 1. Thanks to the DDH oracle, this simulation is perfect, and is thus indistinguishable to the adversary:

Pr[Succ 1] = Pr[Succ 0]. Game G 2 .
In order to prevent collisions in the future PRK generation, we modify the simulation oracles SO T , SO ℓ hash P and SO H , such that if a collision occurs, the simulator stops. From the birthday paradox bound, we have:

Pr[Succ 2] -Pr[Succ 1] ≤ q SO T 2 + q SO ℓ hash P 2 + q SO H 2 2 ℓ hash +1 .
Game G 3 . One can note that thanks to the above simulation of the random oracles, the simulator does not need anymore to compute Diffie-Hellman values. Then, for every simulated player, the simulator generates X e or Y e at random in the group, and the simulation is still performed as in the previous game. As corruption queries only reveal long-term secret, still known to the simulator, the view of the adversary is perfectly indistinguishable of the previous game and we have: and salt 3e2m are different from the values obtained by a possibly simulated responder, thanks to the absence of collisions as they are respectively computed using SO H and SO ℓ hash P . Otherwise, sk 2 is not modified. So if the ciphertext c 2 is forged, thanks to the injective property of the one-time pad encryption scheme (E, D) when the key is fixed, m 2 , then TH 3 and salt 4e3m are different from the values obtained by a possibly simulated responder. In order to detect the inconsistency of PRK 3e2m with respect to the public oracle answer, the adversary must have asked SO T on the correct Diffie-Hellman value X e ys . We denote the event F 1 , that query X e ys is asked whereas y s is the long-term secret key of a non-corrupted user and X e has been generated by the simulator. If this event happens (which can easily be checked as the simulator knows y s), one stops the simulation:

Pr[Succ 3] = Pr[Succ 2]. Game G 4 . In
| Pr[Succ 4] -Pr[Succ 3]| ≤ Pr[F 1].
Game G 4 ′ . We now provide an upper-bound on Pr[F 1]: given a GDH challenge (X = g x , Y = g y), one simulates all the X e as X e = X • g r , for random r $ ← Z p , but chooses one user to set Y s = Y . Even if y s is therefore not known, simulation is still feasible as the simulator can make query to the SO T oracle with input (X e , Y s). Then, one can still answer all the corruption queries, excepted for that user. But anyway, if F 1 happens on that user, this user must be non-corrupted at that time: one has solved the GDH problem, and one can stop the simulation. If the guess on the user is incorrect, one can also stop the simulation:

Pr[F 1] ≤ N • Adv GDH G (t, q RO),
where N is the number of users in the system. Game G 5 . In this game, when simulating any responder receiving a forged message m 1 from the adversary in the name of a non-corrupted user, still non-corrupted when sending c 3 to RespRun2, one simulates PRK 4e3m thanks to a private oracle SO PRK4e3m , which makes it perfectly unpredictable to the adversary. Since m 1 is forged, thanks to the absence of collisions, TH 2 ,TH 3 , and salt 4e3m are different from the values obtained by a possibly simulated responder. In order to detect the inconsistency of PRK 4e3m with respect to the public oracle answer, the adversary must have asked SO T on the correct Diffie-Hellman value Y e xs . We denote the event F 2 , that query Y e xs is asked whereas x s is the long-term secret key of a non-corrupted user and Y e has been generated by the simulator. If this event happens, as above, one stops the simulation:

| Pr[Succ 5] -Pr[Succ 4]| ≤ Pr[F 2].
Game G 5 ′ . We now provide an upper-bound on Pr[F 2]: given a GDH challenge (X = g x , Y = g y), one simulates all the Y e as Y e = Y • g r ′ , for random r ′ $ ← Z p , but chooses one user to set X s = X. Then, one can still answer all the corruption queries, excepted for that user. But anyway, if F 2 happens on that user, this user must be non-corrupted at that time: one has solved the GDH problem, and one can stop the simulation. If the guess on the user is incorrect, one can also stop the simulation:

Pr[F 2] ≤ N • Adv GDH G (t, q RO).
Game G 6 . In this game, we simulate the key generation of PRK 2e , for all the passive sessions (m 1 received by a simulated responder comes from a simulated initiator, or (Y e , c 2 , C R) received by a simulated initiator comes from a simulated responder, and both used the same m 1 as first message), thanks to a private oracle SO PRK2e , acting in the same vein as SO T , but not available to the adversary. This makes a difference with the previous game if the key PRK 2e has also been generated by asking SO T on the correct Diffie-Hellman value Z = g xeye . We denote by F 3 the latter event, and stop the simulation in such a case:

| Pr[Succ 6] -Pr[Succ 5]| ≤ Pr[F 3]. Game G 6 ′ .
We now provide an upper-bound on Pr[F 3]. Given a GDH challenge (X = g x , Y = g y), one simulates all the X e as X e = X • g r , for random r $ ← Z p , and all the Y e as Y e = Y •g r ′ , for random r ′ $ ← Z p . As the key PRK 2e now depends on the session context, any query Z to the SO T oracle can make F 3 occurs on a single pair (X e = X • g r , Y e = Y • g r ′). Hence, q RO DDH-oracle queries might be useful to detect]. Game G 9 . In this game, when simulating any responder receiving c 3 , from the adversary in the name of a non-corrupted user, one simulates PRK 4e3m thanks to the private oracle SO PRK4e3m . This makes a difference with the previous game only if this is not a passive session, in which case PRK 2e is unpredictable, and thus different from the public one excepted with probability 2 -ℓ hash . As there are no collisions, salt 3e2m , PRK 3e2m , and salt 4e3m are different from the values obtained by a possibly simulated responder. In order to detect the inconsistency of PRK 4e3m with respect to the public oracle answer, the adversary must have asked SO T on the correct Diffie-Hellman value Y xs e , which is not possible as event F 2 already stops the simulation:

F 3 on an input Z = CDH(X e , Y e) = g xy • X r ′ • Y r • g rr ′ , solving the GDH challenge (X, Y): Pr[F 3] ≤ Adv GDH G (t, q RO). Game G 7 .
| Pr[Succ 9] -Pr[Succ 8]| ≤ 2 -ℓ hash .
Game G 10 . In this game, for any fresh session, one simulates PRK out thanks to the private oracle SO PRKout . A session being fresh means that no corruption of the party or of the partner occurred before the time of acceptance: the initiator is not corrupted before receiving (Y e , c 2 , C R) and the responder is not corrupted before receiving c 3 . By consequent, they are not corrupted before PRK 4e3m was computed. We have seen above that in those cases, the key PRK 4e3m is generated using the private oracle SO PRK4e3m : it is unpredictable.

The use of the private oracle SO PRKout can only be detected if the query PRK 4e3m is asked to SO P : | Pr[Succ 10] -Pr[Succ 9]| ≤ q SO ℓ hash P × 2 -ℓ hash . Globally, one can note that the gap between the initial and the last games is upper-bounded by

(2N + 1) • Adv GDH G (t, q RO) + q SO T 2 + q SO ℓ hash P 2 + q SO H 2 2 ℓ hash +1 + 2 + q SO ℓ hash P 2 ℓ hash ≤ (2N + 1) • Adv GDH G (t, q RO) + q RO 2 + 4 2 ℓ hash +1
Eventually, for all the fresh sessions, in the real case (b = 0), the private oracle is used, and outputs a random key, while in the random case (b = 1), the session key is random too: Pr[Succ 10] = 1/2. This concludes the proof.

Explicit Authentication

Explicit authentication (or mutual authentication) aims to ensure each participant has the material to compute the final session key (accepts) when the partner terminates. In the EDHOC protocol, this means the responder (resp. the initiator) owns the private long-term key y s (resp x s) associated to the long-term public key Y s (resp. X s), and the private ephemeral keys, when the partner terminates. To do so, the responder uses y s in RespRun1 to compute PRK 3e2m used for the tag t 2 and the key sk 3 . In the same way, the initiator uses x s to compute PRK 4e3m , used for the tag t 3 . Furthermore, they both have to use their ephemeral keys to compute PRK 2e , used for sk 2 .

π i u .status = terminated π i u .tacc < revltk π i u .peerid , ∃π j v s.t.              π i u .peerid = v π j v .peerid = u π i u .sid = π j v .sid π i u .role ̸ = π j v .role π j v .status = accepted
Responder Authentication. Consider a simulated initiator receiving a forged message (Y e , c 2 , C R) from the adversary in the name of a non-corrupted user. In such a case, consider the modifications made in the key privacy proof up to the game G 7 . Hence, we have replaced the generation of PRK 3e2m with a private oracle. Then the advantage of the adversary in breaking the explicit authentication of the responder in this game is bounded by 2 -ℓmac , added to the gap induced by the modifications made up to the game G 7 . This leads to the following theorem:

In both cases, we consider the modifications made in the key privacy proof up to the game G 7 , making PRK 2e and PRK 3e4m random, and by consequent, so are sk 2 and sk 3 .

Responder Identity Protection The responder's identity has to be protected against passive adversaries only. To distinguish Exp ID-resp-0 EDHOC and Exp ID-resp-1 EDHOC , one must distinguish between an encryption of ID R0 and ID R1 , as sk 2 is random, this implies breaking the injective property and the indistinguishability of Π = (E, D), both being perfect with the one-time pad.

Initiator Identity Protection The initiator's identity has to be protected against active adversaries. However, if the adversary plays in the name of a responder, he will be detected with high probability with the tag t 2 before reaching game G 7 . Therefore, distinguish between Exp ID-init-0 EDHOC and Exp ID-init-1 EDHOC also implies breaking the injective property and the indistinguishability of Π = (E, D), both being perfect with the one-time pad.

Theorem 4. The above EDHOC protocol protects Initiator and Responder's Identity under the Gap Diffie-Hellman problem in the Random Oracle model. More precisely, with q RO representing the global number of queries to the random oracles, N the number of users, and ℓ hash the hash digest length, both advantages Adv ID-init-b EDHOC (t; q RO , N) and Adv ID-resp-b EDHOC (t; q RO , N) are upper-bounded by

(2N + 1) • Adv GDH G (t, q RO) + q RO 2 + 2 2 ℓ hash +1 .

Conclusion

Our computational analysis proved the EDHOC protocol instantiated with the STAT-STAT authentication method, with ℓ mac = 64 and κ sec = 128, provides nearly a 128-bit security level for key privacy and identity protection for both the responder and the initiator. In a three-flow scenario, Initiator Authentication reaches a 128-bit security level, using our improvements without extra-cost in our settings, but only a 64-bit security level for the responder. However, as suggested in their documentation, a fourth message using authenticated encryption (AEAD) from the responder to the initiator increases this security up to a 128-bit level. Hence, our improvement of EDHOC, at no communication cost, provides a global 128-bit security level.

 should protect message-privacy (IND-CPA, for Indistinguishability under Chosen-Plaintext Attacks). More precisely, we consider the Experiment Exp ind-cpa Π ′ (A) in which we randomly choose b ∈ {0, 1} and a secret key sk, A can ask multiple queries (IV, a, m 0 , m 1), all with different IV, and for each we compute and send c = E ′ (sk, IV; m b ; a) to A. Let b ′ ∈ {0, 1} be the output of A. Then, the Experiment Exp ind-cpa Π ′ (A) outputs 1 if b ′ = b and 0 otherwise. We define the advantage of A in violating IND-CPA security of Π ′ as Adv ind-cpa Π ′ (A) = Pr[Exp ind-cpa Π (A) = 1] and the advantage function Adv ind-cpa Π ′ (t), as the maximum value of Adv ind-cpa Π ′

Fig. 1 .

 1 Fig. 1. Key Derivation (for the STAT-STAT Method) from [NSB21]. Green vertical hatchs denote additions and red horizontal hatchs denote removals compared to the initial version.

Fig. 3 .

 3 Fig. 3. Optimized EDHOC with four messages in the STAT/STAT Authentication Method. Our modifications compared to [SMP22] (draft-ietf-lake-edhoc-15) are represented by previous | new and additions by gray highlights

Finalize

Fig. 5 .

 5 Fig. 5. Finalize Function for the Explicit Authentication Security Game

 Cyclic group generated by g, of size p H Hash function SHA-256 (256 bits digest) Xe, xe Initiator Ephemeral DH Public and Secret Key Xs, xs Initiator Static DH Public and Secret Key Ye, ye Responder Ephemeral DH Public and Secret Key Ys, ys Responder Static DH Public and Secret Key EAD

		External Authorization Data	
	E, D	One-time Pad Encryption and Decryption
	E ′ , D ′ AEAD Encryption and Decryption
	sk	Secret key	t2, t3 MAC tags
	TH	Transcript Hash	⊥	Protocol abortion
	C R , C I Connection Identifiers	κsec	Expected bit-security
		Lengths	
	ℓ			

G =< g > C

Connection Identifiers ℓmac, ℓ hash MAC and Hash output ℓ2, ℓ id m2 and ID ℓ key , ℓ iv Key and IV Fig.

2

. Notations

 this game, when simulating any initiator receiving a forged tuple (Y e , c 2 , C R) from the adversary in the name of a non-corrupted user, one simulates PRK 3e2m thanks to a private oracle SO PRK3e2m , which makes it perfectly unpredictable to the adversary. If the pair (Y e , C R) is forged, TH 2

 In this game, when simulating any initiator receiving the second message (Y e , c 2 , C R), from the adversary in the name of a non-corrupted user, one simulates PRK 3e2m thanks to a private oracle SO PRK3e2m . This makes a difference with the previous game only if this is a passive session, in which case PRK 2e is unpredictable, and thus different from the public one excepted with probability 2 -ℓ hash . As there are no collisions, salt 3e2m is different from the value obtained by a possibly simulated responder. In order to detect the inconsistency of PRK 3e2m with respect to the public oracle answer, the adversary must have asked SO T on the correct Diffie-Hellman value X ys e , which is not possible as event F 1 already stops the simulation. Hence, we just have| Pr[Succ 7] -Pr[Succ 6]| ≤ 2 -ℓ hash . Game G 8 . Inthis game, when simulating any initiator receiving the second message (Y e , c 2 , C R), from the adversary in the name of a non-corrupted user, one simulates PRK 4e3m thanks to a private oracle SO PRK4e3m . In this case, PRK 3e2m is unpredictable, as well as salt 4e3m and PRK 4e3m : Pr[Succ 8] = Pr[Succ 7

We use semicolons here to distinguish keying material, message and Additional Data.

One can move EAD3 in m3, if privacy is required. It is still secure with any one-time secure encryption, but increasing the key size in the particular case of one-time pad.

Acknowledgments

This work was supported in part by the French ANR Project Crypto4Graph-AI.

Send(u, i, m)

(peerid, role) ← m 3 :

(π i u , m ′) ←$ Activate(u, sku, peerid, peerpk, role) Game G 0 . This game is the key privacy security game G kp-ake AKE,A (defined in Figure 4) played by A using the KeyGen, Activate and Run algorithms(defined in Figure 6). The KeyGen algorithm generates a long term pair of key, calling Activate with an user with identity u, A creates its i-th session with u, denoted π i u .

Pr[Succ 0] = Pr[G kp-ake AKE,A], where the event Succ means b ′ = b. We stress that in this security model, with Perfect Forward Secrecy, we use the weak definition of corruption, meaning that a query to LongTermKeyReveal only reveals the long-term key, while the ephemeral key remains unre-Theorem 2. The above EDHOC protocol satisfies the responder-authentication property under the Gap Diffie-Hellman problem in the Random Oracle model. More precisely, with q RO representing the global number of queries to the random oracles, N the number of users, ℓ hash the hash digest length and ℓ mac the MAC digest length, we have Adv auth-resp EDHOC (t; q RO , N) is upper-bounded by

Optimal Reduction. One cannot expect more after these three flows, as the adversary can play the role of the responder with known y e . Without knowing y s , it just gets stuck to compute PRK 3e2m and thus t 2 . But it can guess it (with probability 2 -ℓmac), breaking authentication. But it will not know SK. However, by waiting for the fourth message containing an authenticated encryption c 4 , as said in the documentation, this will add a factor Adv uf-cma Π ′ (t) ≈ 2 -ℓmac to the Responder Authentication security: Adv auth-resp EDHOC (t; q RO , N) is upper-bounded by

Initiator Authentication. We now consider any responder receiving a forged message c 3 from the adversary in the name of a non-corrupted user. As above, considering the modifications made in the key privacy proof up to the game G 8 , we have replaced the generation of PRK 4e3m with a private oracle. Then the advantage of the adversary in breaking the explicit authentication of the initiator in this game is bounded by 1 2 κsec . Added to the gap induced by the modifications made up to the game G 7 . This leads to the following theorem:

Theorem 3. The above EDHOC protocol satisfies the initiator-authentication property under the Gap Diffie-Hellman problem in the Random Oracle model. More precisely, with q RO representing the global number of queries to the random oracles, N the number of users, ℓ hash the hash digest length and κ sec the expected bit-security, we have Adv auth-init EDHOC (t; q RO , N) upper-bounded by

Identity Protection

Let us now consider anonymity, with identity protection. More precisely, we want to show that the initiator's identity (ID I) is protected against active adversaries, while responder's identity (ID R) is protected only against passive adversaries.

The values ID I and ID R are the authentication credentials containing the public authentication keys of the Initiator and the Responder, respectively.

Both those values are sent to the other respective party using One-Time Pad encryption, that perfectly protects the privacy. Then, in one hand we have ID R that is part of CTX 2 used to compute t 2 and in the other hand, we have ID I that is part of CTX 3 used to compute t 3 . We thus define the similar responder and initiator identity protection experiment as follows:

status ← rejected 12 :

return ⊥ 13 : TH3 ← H(TH2, m2) 14 : sk3 ← RO P (PRK3e2m, 3, TH3, ℓ id) 15 : IV3 ← RO P (PRK3e2m, 4, TH3, ℓ iv) 16 : salt4e3m ← RO P (PRK3e2m, 5, TH3, ℓ hash) 17 : PRK4e3m ← RO T (salt4e3m, Ye