
HAL Id: hal-03772082
https://hal.science/hal-03772082v1

Preprint submitted on 7 Sep 2022 (v1), last revised 23 Nov 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of the EDHOC protocol
Baptiste Cottier, David Pointcheval

To cite this version:
Baptiste Cottier, David Pointcheval. Security Analysis of the EDHOC protocol. 2022. �hal-
03772082v1�

https://hal.science/hal-03772082v1
https://hal.archives-ouvertes.fr

Security Analysis of the EDHOC protocol

Baptiste Cottier and David Pointcheval

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

Abstract. Ephemeral Diffie-Hellman Over COSE (EDHOC) aims at be-
ing a very compact and lightweight authenticated Diffie-Hellman key
exchange with ephemeral keys. It is expected to provide mutual authen-
tication, forward secrecy, and identity protection, with a 128-bit security
level.
A formal analysis has already been proposed at SECRYPT ’21, on a
former version, leading to some improvements, in the ongoing evaluation
process by IETF. Unfortunately, while formal analysis can detect some
misconceptions in the protocol, it cannot evaluate the actual security
level.
In this paper, we study the last version. Without complete breaks, we
anyway exhibit attacks in 264 operations, which contradict the expected
128-bit security level. We thereafter propose improvements, some of them
being at no additional cost, to achieve 128-bit security for all the secu-
rity properties (i.e. key privacy, mutual authentication, and identity-
protection).

1 Protocol Description

Ephemeral Diffie-Hellman over COSE [Sch16] (EDHOC) aims to provide a com-
mon session key to two parties potentially running on constrained devices over
low-power IoT radio communication technologies. EDHOC protocol can be in-
stantiated with several settings:

– Authentication Method : Each party (Initiator and Responder) can use an
authentication method: either with a signature scheme (SIG), or with a static
Diffie-Hellman key (STAT).

Value Initiator Responder
0 SIG: Signature SIG: Signature
1 SIG: Signature STAT: Static DH
2 STAT: Static DH SIG: Signature
3 STAT: Static DH STAT: Static DH

– Cipher Suites: Ordered set of protocol security settings. Initial paper offers
many possible suites, but we focus on the most aggressive cipher suites set-
ting the MAC length to 8 bytes, i.e. Cipher Suites 0 and 2 which share the
following parameters:

(Application) AEAD Hash MAC len
AES-CCM-16-64-128 SHA-256 8

The difference between Cipher Suites 0 and 2 is the Elliptic Curve used:
X25519 in suite 0 and P-256 in suite 2.

– Connection Identifiers. Data that may be used to correlate between messages
and facilitate retrieval of protocol state in EDHOC and application.

– Credentials and Identifiers. They are used to identify and optionally trans-
port the authentication keys of the Initiator and the Responder.

We suppose both the Initiator and the Responder are aware that the authenti-
cation method is 3, the STAT/STAT. Also, as said before, the difference between
Cipher Suite 0 and Cipher Suite 2 is the choice of the Elliptic Curve. As both
curves provide the same security guarantee and are more an implementation con-
cern, we do not include the Cipher Suite ID Suites_I (as it appears in [SMP22])
in the first message of the protocol.

Extract and Expand. In the EDHOC Key-Schedule defined below, the pseudo-
random keys (PRK) are derived using an extraction function. In our context, as
we study cipher suites 0 and 2, our hash algorithm is set as SHA-256. Therefore
Extract(salt, IKM) = HKDF-Extract(salt, IKM) is defined with SHA-256, where
IKM holds for Input Keying Material (in our context, this will be some Diffie-
Hellman keys) and Expand(PRK, info, len) = HKDF-Expand(PRK, info, len) where
info contains the transcript hash (TH2, TH3 or TH4), the name of the derived
key and some context, while len denotes the output length.

Key Schedule. During the key exchange, several cryptographic computations oc-
cur. The keying material, including MAC Keys (as we study STAT/STAT method),
Encryption Keys and Initialisation Vectors result from a key schedule, adapted
from Norrman et al. [?]. In Fig. 1, purple boxes denote Diffie-Hellman shared se-
crets (gxeye , gysxe , gxsye), where xe and ye denote the ephemeral DH keys, while
xs and ys are the long-term static DH keys. From those Diffie-Hellman shared
secrets, we extract the pseudo random keys PRK2e,PRK3e2m and PRK4e3m, in
light blue. Those keys are then expanded to compute the encryption material
(keys and IV), in red, and the authentication tags t2 and t3, in yellow. Keys
PRK2e and PRK3e2m are also used to compute the salts salt3e2m and salt4e3m
respectively, in grey, used in the HKDF-Extract function. The final session key
PRKout, backgrounded in green, is computed calling HKDF-Expand on PRK4e3m.
Transcript hashes, denoted THi, are used as input to the HKDF-Expand function.
More precisely, with SHA-256 as H, we have:

TH2 = H(Ye,CR,H(m1)) TH3 = H(TH2,m2) TH4 = H(TH3,m3)

where m1 is the first message sent by the Initiator, m2 and m3 respectively are
the plaintexts respectively encrypted in the message 2 and message 3.

Authenticated Encryption with Associated Data (AEAD). As said above, the
cipher suites we work on both use AES-CCM-16-64-128. We detail this Authen-
ticated Encryption scheme:

2

gxeye

gysxe

gxsye

Extract

Extract

Extract

PRK2e

PRK3e2m

PRK4e3m

PRKout

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

salt3e2m

salt4e3m

TH2

TH3

TH3

TH4

TH4

CTX2

CTX3

sk2

t2

sk3

IV3

IV4

t3

sk4

IV4

Fig. 1. Key Derivation (for the STAT-STAT Method) from [NSB21].

– AES-CCM: CCM, for Counter with CBC-MAC is an AES mode providing
both encryption and authentication. CCM mode combines the CBC-MAC
and the CTR (counter) mode of encryption. The first step consists in cal-
culating a tag T , then, encrypt the message and the tag using the counter
mode.

– 16: messages length is limited to 216 bytes long (64KiB). Therefore, the
nonce is 13 bytes long allowing 213×8 possibles values of the nonce without
repeating

– 64: Tag is 64 bits long.
– 128: Key is 128 bits long.

Connection Identifiers (from [SMP22]). Connection identifiers (CI and CR) may
be used to correlate EDHOC messages and facilitate the retrieval of protocol
state during EDHOC protocol execution or in a subsequent application protocol.
The connection identifiers do not have any cryptographic purpose in EDHOC.

EDHOC-Exporter and EDHOC-KeyUpdate. At the end of the protocol, the Ini-
tiator and the Responder compute TH4. This value can be used in case an appli-
cation need to export the EDHOC session key. Also, in case the key needs to be

3

updated, the Initiator and the Responder rerun HKDF-Extract, with PRK4e3m

as input, together with a random nonce agreed upon by the Initiator and the
Responder.

Protocol. The detailed description of the protocol is given in Fig 3. The final
session key is SK = PRKout

G =< g > Cyclic group generated by g

p Size of the group G
H Hash function SHA-256 (256 bits digest)

Xe, xe Initiator Ephemeral DH Public and Secret Key
Xs, xs Initiator Static DH Public and Secret Key
Ye, ye Responder Ephemeral DH Public and Secret Key
Ys, ys Responder Static DH Public and Secret Key
EAD External Authorized Data
sk Secret key
E ,D One-time Encryption and Decryption
E ′,D′ Authenticated Encryption and Decryption with Associated Data
⊥ Protocol abortion
TH Transcript Hash
t2, t3 MAC tags
CR,CI Connection Identifiers
ℓmac MAC output length
ℓ2 Plaintext length of the first message send by the responder
ℓhash Hash length

ℓkey, ℓiv Key and IV length

Fig. 2. Notations

2 Security Concerns

Security Goals. The security goals of an authenticated key exchange protocol
are:

– Key Privacy : Equivalent to Implicit Authentication. At most both partici-
pants know the final session key, which should remain indistinguishable from
random to outsiders. With additional Perfect Forward Secrecy, by compro-
mising the long-term credential of either peer, an attacker shall not be able
to distinghuish past session keys from random keys. In our context, this will
rely on a Diffie-Hellman assumption.

– Mutual Authentication: Equivalent to explicit authentication. Exactly both
participants have the material to compute the final session key.

– Identity Protection: At most both participants know the identity of the Ini-
tiator and the Responder.

4

Initiator Responder
Xs = gxs static keys Ys = gys

InitRun1(IDI)

xe
$← Zp, Xe ← gxe

CI
$← {0, 1}nl

m1 ← (Xe∥CI∥EAD1)
m1 RespRun1(IDR, ys,m1)

Parse m1 as (Xe∥c∥EAD1)

ye
$← Zp, Ye ← gye

CR
$← {0, 1}nl

sid← (CI,CR, Xe, Ye)
PRK2e ← HKDF-Extract(””, Xe

ye)
TH2 ← H(Ye,CR,H(m1))
sk2 ← HKDF-Expand(PRK2e, 0,TH2, ℓ2)
salt3e2m ← HKDF-Expand(PRK2e, 1,TH2, ℓhash)
PRK3e2m ← HKDF-Extract(salt3e2m, Xe

ys)
CTX2 ← (IDR∥TH2∥Ys∥EAD2)
t2 ← HKDF-Expand(PRK3e2m, 2,CTX2, ℓmac)
m2 ← (IDR∥t2∥EAD2)

InitRun2(IDI, xs, Ys, (Ye, c2,CR))
Ye, c2,CR c2 ← E(sk2,m2)

PRK2e ← HKDF-Extract(””, Ye
xe)

TH2 ← H(Ye,CR,H(m1))
sk2 ← HKDF-Expand(PRK2e, 0,TH2, ℓ2)
Set m2 ← D(sk2, c2)
Parse m2 as (IDR∥t2∥EAD2)
CTX2 ← (IDR∥TH2∥Ys∥EAD2)
salt3e2m ← HKDF-Expand(PRK2e, 1,TH2, ℓhash)
PRK3e2m ← HKDF-Extract(salt3e2m, Ys

xe)
t′2 ← HKDF-Expand(PRK3e2m, 2,CTX2, ℓmac)
if t′2 ̸= t2 : return ⊥
TH3 ← H(TH2,m2)
sk3 ← HKDF-Expand(PRK3e2m, 3,TH3, ℓkey)
IV3 ← HKDF-Expand(PRK3e2m, 4,TH3, ℓiv)
salt4e3m ← HKDF-Expand(PRK3e2m, 5,TH3, ℓhash)
PRK4e3m ← HKDF-Extract(salt4e3m, Ye

xs)
accepted← 1
CTX3 ← (IDI∥TH3∥Xs∥EAD3)
t3 ← HKDF-Expand(PRK4e3m, 6,CTX3, ℓmac)
m3 ← (IDI∥t3∥EAD3)
c3 ← E ′(sk3, IV3,m3)

c3 RespRun2(ID, st, peerpk, c3)
TH3 ← H(TH2,m2)
sk3 ← HKDF-Expand(PRK3e2m, 3,TH3, ℓkey)
IV3 ← HKDF-Expand(PRK3e2m, 4,TH3, ℓiv)
Set m3 ← D′(sk3, IV2, c3)
if m3 = ⊥ : return ⊥
Parse m3 as (IDI∥t3∥EAD3)
Xs ← peerpk[IDI]
salt4e3m ← HKDF-Expand(PRK3e2m, 5,TH3, ℓhash)
PRK4e3m ← HKDF-Extract(salt4e3m, Xs

ye)
accepted← 1
CTX3 ← (IDI∥TH3∥Xs∥EAD3)
t′3 ← HKDF-Expand(PRK4e3m, 6,CTX3, ℓmac)
if t′3 ̸= t3 : return ⊥

TH4 ← H(TH3,m3) TH4 ← H(TH3,m3)
PRKout ← HKDF-Expand(PRK4e3m, 7,TH4, ℓhash) PRKout ← HKDF-Expand(PRK4e3m, 7,TH4, ℓhash)
terminated← 1 terminated← 1
SK← PRKout SK← PRKout

Fig. 3. EDHOC (draft-ietf-lake-edhoc-15) in the STAT/STAT Authentication Method

5

Random Oracle Model. For the security analysis, we model Hash and Key Deriva-
tion Functions as random oracles. Respectively, the random oracles ROT and
ROP will model HKDF-Extract and HKDF-Expand functions as perfect random
functions.

Computational Diffie-Hellman Assumption (CDH). The CDH assumption in a
group G states that given gu and gv, where u, v were drawn at random from Zp,
it is hard to compute guv. This can be defined more precisely by considering an
Experiment ExpCDH

G (A), in which we select two values u and v in Zp, compute
U = gu and V = gv, and then give both U and V to A. Let Z be the output of
A. Then, the Experiment ExpCDH

G (A) outputs 1 if Z = guv and 0 otherwise. We
define the advantage of A in violating the CDH assumption as AdvCDH

G (A) =
Pr[ExpCDH

G (A) = 1] and the advantage function of the group, AdvCDH
G (t), as

the maximum value of AdvCDH
G (A) over all A with time-complexity at most t.

Gap Diffie-Hellman (GDH). The Gap Diffie-Hellman problem aims to solve a
CDH instance (g, U = gu, V = gv), as above, with access to a Decisional Diffie-
Hellman oracle DDH returning 1 if a tuple (g, ga, gb, gc) is a Diffie-Hellman tuple,
and 0 otherwise. We define the advantage function of the group AdvGDH

G (t, qDDH),
as the maximum value of AdvCDH

G (A) over all A with time-complexity at most
t and making at most qDDH queries to the DDH oracle.

Symmetric Encryption. In the following, we will use several symmetric encryp-
tion schemes, such as Π = (E ,D) with keys in K and messages in M, with
various properties:

Injectivity. Π = (E ,D) is injective if

∀k ∈ K, E(k,m1) = E(k,m2) =⇒ m1 = m2.

Semantic Security. Π = (E ,D) is semantically secure if, for chosen mes-
sages m0,m1 ∈M, an adversary cannot distinguish E(k,m0) and E(k,m1) with a
negligible advantage for a random key k ∈ K. This can be defined more precisely
by considering the Experiment Expind

Π (A), for indistinguishability, in which A
selects and gives us two messages m0 and m1, then we choose b ∈ {0, 1} and
k ∈ K, compute and send c = E(k,mb) to A. Let b′ ∈ {0, 1} be the out-
put of A. Then, the Experiment Expind

Π (A) outputs 1 if b′ = b and 0 other-
wise. We define the advantage of A in violating the semantic security of Π as
Advind

Π (A) = Pr[Expind
Π (A) = 1] and the advantage function Advind

Π (t), as the
maximum value of Advind

Π (A) over all A with time-complexity at most t.
Authenticated Encryption (with Associated Data). In addition, to

semantic security (possibly with access to an encryption/decryption oracle), we
require an unforgeability property (uf − cma, for Unforgeability under Chosen
Message Attacks). More precisely, let Π = (E ,D) be an Authenticated En-
cryption scheme. Consider the Experiment Expuf−cma

Π (A) in which A is given
access to an encryption oracle E(k, ·) and a decryption oracle D(k, ·), for a ran-
dom key k ∈ K. The Experiment returns 1 if A outputs a valid ciphertext

6

c, which means that D(k, c) ̸= ⊥ while c has not been obtained as the out-
put of an encryption query to E(k, ·). We define the forger’s advantage of A as
Advuf−cma

Π (A) = Pr[Expuf−cma
Π A = 1] and the advantage function Advuf−cma

Π (t)

as the maximum value of Advuf−cma
Π (A) over all A with time-complexity at most

t.
In the above game of basic semantic security, the adversary has no access

to any encryption/decryption oracle, which is a very weak security notion, also
known as one-time privacy, as the key is used once only. The One-Time Pad
satisfies this property. Note that the One-Time Pad is also injective.

3 Key Privacy

An authenticated key exchange protocol AKE can be defined using three algo-
rithms:

– KeyGen(ID) takes an identity ID as input and samples a long term pair of
keys (pk, sk). Key pairs are associated to that user with identity ID, and the
public key is added to the list peerpk.

– Activate(ID, role) takes as input a user identity ID and its role ∈ {initiator,
responder}. Activate returns a state st and a message m′.

– Run(ID, sk, peerpk,m) delivers m to the session of user ID with secret key sk
and state st. Run update the state st and returns the response message m′

Algorithm Run takes as implicit argument a state st, that contains some in-
formations, denoted in typewriter font, about the actual session. A value
peerid ∈ N used to identify the intended partner identity of the session, a
role, either initiator or responder, defining the role played by the session. The
state also contains the status of the actual session. Either the session status is
running, meaning the session has been activated, accepted, meaning that a party
has all the material to compute the session key or terminated when the session
key is computed and the protocol is ended. We also consider a rejected flag in
case the session meets a mistake in the verification phase. The final session key
is stored in SK and set as ⊥ until defined by the key schedule. Finally, sid stores
the session identifier used to define partnered session in the security model.

We describe in Figure 4 the security game introduced in [DG20] following the
framework by Bellare et al. [BR06]. After initializing the game, the adversary A
is given multiple access to the following queries:

– NewUser: Generates a new user by generating a new pair of keys.
– Send: Controls activation and message processing of sessions
– SessionKeyReveal: Reveals the session key of a terminated session.
– LongTermKeyReveal: Corrupts a user and reveals its long term secret key.
– Test: Provides a real-or-random challenge on the session key of the queried

session.

Then, the adversary makes a single call to the Finalize algorithm, which returns
the result of the predicate [b′ = b], where b′ is the guess of A and b is the challenge
bit, after succeeding through the following predicates:

7

Sound: ensures at most two sessions share the same sid. Once a couple of
sessions is detected, the predicate checks if both of them have their status
accepted, one session user ID is the peerid of the other session, with different
role and the same final session key SK. If one of these property is not verified,
the adversary breaks the soundness.

Fresh: detects trivially attacked sessions. First, it ensures that neither the
session key is revealed or any of the peers of the session is corrupted before
the acceptance time tacc. In a second time, the Fresh predicate ensures that the
partnered session is neither tested or revealed. If such a session is detected, we
set the answer bit b′ as 0.

The advantage of an adversaryA against the key privacy is its bias in guessing
b, from the random choice: Advkp−ake(A) = Pr[b′ = b] − 1/2. Therefore, in
Figure 5 we give a formalized description of the EDHOC protocol compliant
with the security game made in Figure 4. The protocol is analyzed in the random
oracle model, therefore, HKDF can be substituted by respective random oracles.

Theorem 1. The above EDHOC protocol satisfies the key privacy property under
the Gap Diffie-Hellman problem in the Random Oracle model, and the injectivity
of (E ,D). More precisely, with qRO representing the global number of queries to
the random oracles, nσ the number of running sessions, N the number of users,
and ℓhash the hash digest length, we have Advkp−ake

EDHOC(t; qRO, nσ, N) upper-bounded
by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +
qRO

2 + 4

2ℓhash+1

Game G0. This game is the key privacy security game Gkp−ake
AKE,A (defined in Fig-

ure 4) played by A using the KeyGen, Activate and Run algorithms (defined
in Figure 5). The KeyGen algorithm generates a long term pair of key, call-
ing Activate with an user with identity u, A creates its i-th session with u,
denoted πi

u.
Pr[Succ0] = Pr[Gkp−ake

AKE,A],

where the event Succ means b′ = b.
We stress that in this security model, with Perfect Forward Secrecy, we use
the weak definition of corruption, meaning that a query to LongTermKeyRe-
veal only reveals the long-term key, while the ephemeral key remains unre-
vealed. We say a party/session is non-corrupted if no query to LongTermKeyRe-
veal has been made before the time of acceptance tacc, where we consider each
block (InitRun1, InitRun2, RespRun1, RespRun2) as atomic. Then corruptions
can only happen between two calls to simulated players.

Game G1. In this game, we simulate the random oracles by lists that are empty
at the beginning of the game. As ROT and H always return a digest of
size ℓhash, we simply use the simulation oracle SOT and SOH respectively.
However, ROP may return values of several lengths: ℓ2 for the one-time
key encrypting the responder first message, ℓhash for the salt values and the
session key, ℓkey and ℓiv for the AEAD key length and Initialisation Vector

8

Initialize ()

1 : time← 0
2 : users← 0
3 : b←$ {0, 1}

NewUser ()

1 : users← users + 1
2 : (pkusers, skusers)←$ KGen
3 : revltkusers ←∞
4 : peerpk[users]← pkusers
5 : return pkusers

LongTermKeyReveal(u)

1 : time← time + 1
2 : revltku ← time
3 : return sku

SessionKeyReveal(u, i)

1 : if π
i
u = ⊥ or

π
i
u.status ̸= accepted :

2 : return ⊥
3 : π

i
u.revealed← true

4 : return π
i
u.SK

Finalize(b′)

1 : if ¬Sound :
2 : return 1
3 : if ¬Fresh :

4 : b
′ ← 0

5 : return [b = b
′
]

Send(u, i,m)

1 : if π
i
u = ⊥ :

2 : (peerid, role)← m

3 : (π
i
u,m

′
)←$ Activate(u, sku, peerid, peerpk, role)

4 : π
i
u.tacc ← 0

5 : else :

6 : (π
i
u,m

′
)←$ Run(u, sku, π

i
u, peerpk, role)

7 : if π
i
u.status = accepted :

8 : time← time + 1

9 : π
i
u.tacc ← time

10 : return m
′

Test(u, i)

1 : if π
i
u = ⊥ or

π
i
u.status ̸= accepted or π

i
u.tested

2 : return ⊥
3 : π

i
u.tested← true

4 : T ← T ∪ {πi
u}

5 : k0 ← π
i
u.SK

6 : k1 ←$ KE.KS
7 : return kb

Sound

1 : if ∃ distinct π
i
u, π

j
v, π

k
w with π

i
u.sid = π

j
v.sid = π

k
w.sid :

2 : return false

3 : if ∃πi
u, π

j
v with

4 : π
i
u.status = π

j
v.status = accepted

5 : and π
i
u.sid = π

j
v.sid

6 : and π
i
u.peerid = u and π

j
v.peerid = v

7 : and π
i
u.role ̸= π

j
v.role, but π

i
u.SK ̸= π

j
v.SK

8 : return false

9 : return true

Fresh

1 : ∀πi
u ∈ T

2 : if π
i
u.revealed

or revltkπi
u.peerid < π

i
u.tacc :

3 : return false

4 : if ∃πj
v ̸= π

i
us.t.

π
i
u.sid = π

i
u.sid and

(π
j
v.tested or π

j
v.revealed) :

5 : return false

6 : return true

Fig. 4. Authenticated Key Exchange Key Privacy Security Game Gkp−ake
AKE,A

9

KeyGen()

1 : sk
$← Zp

2 : pk← g
Zp

3 : return (pk, sk)

Activate(ID, role)

1 : role← role
2 : status← running
3 : if role = initiator :
4 : m

′ ← InitRun1(ID)

5 : else m
′ ← ⊥

6 : return m

InitRun1(IDI)

1 : xe
$← Zp

2 : Xe ← g
xe

3 : CI
$← {0, 1}nl

4 : st← (CI, Xe, xe)
5 : m1 ← (CI∥Xe∥EAD1)
6 : return m1

InitRun2(IDI, xs, (Ye, c2,CR))

1 : PRK2e ← ROT (””, Ye
xe)

2 : TH2 ← H(Ye,CR,H(m1))
3 : sk2 ← ROP (PRK2e, 0,TH2, ℓ2)
4 : m2 ← D(sk2, c2)
5 : (IDR∥t2∥EAD2)← m2

6 : CTX2 ← (IDR∥TH2∥Ys∥EAD2)
7 : salt3e2m ← ROP (PRK2e, 1,TH2, ℓhash)

8 : PRK3e2m ← ROT (salt3e2m, Ys
xe)

9 : t2 ← ROP (PRK3e2m, 2,CTX2, ℓmac)

10 : if t
′
2 ̸= t2 :

11 : status← rejected
12 : return ⊥
13 : TH3 ← H(TH2,m2)
14 : sk3 ← ROP (PRK3e2m, 3,TH3, ℓkey)
15 : IV3 ← ROP (PRK3e2m, 4,TH3, ℓiv)
16 : salt4e3m ← ROP (PRK3e2m, 5,TH3, ℓhash)

17 : PRK4e3m ← ROT (salt4e3m, Ye
xs)

18 : status← accepted
19 : CTX3 ← (IDI∥TH3∥Xs∥EAD3)
20 : t3 ← ROP (PRK4e3m, 6,CTX3, ℓmac)
21 : m3 ← (IDI∥t3∥EAD3)

22 : c3 ← E′(sk3, IV3,m3)
23 : TH4 ← H(TH3,m3)
24 : PRKout ← ROP (PRK4e3m, 7,TH4, ℓhash)
25 : status← terminated
26 : SK← PRKout
27 : return c3

Run(ID, sk, peerpk,m)

1 : if status ̸= running :
2 : return ⊥
3 : if role = initiator :
4 : m

′ ← InitRun2(ID, sk,m)
5 : elseif sid = ⊥ :

6 : m
′ ← RespRun1(ID, sk,m)

7 : else :

8 : m
′ ← RespRun2(ID, peerpk,m)

9 : return m

RespRun1(IDR, ys,m1 = (Xe,CI,EAD1))

1 : ye
$← Zp

2 : Ye ← g
ye

3 : CR
$← {0, 1}nl

4 : sid← (CI,CR, Xe, Ye)

5 : PRK2e ← ROT (””, Xe
ye)

6 : sk2 ← ROP (PRK2e, 0,TH2, ℓ2)
7 : salt3e2m ← ROP (PRK2e, 1,TH2, ℓhash)

8 : PRK3e2m ← ROT (salt3e2m, Xe
ys)

9 : TH2 ← H(Ye,CR,H(m1))
10 : CTX2 ← (IDR∥TH2∥Ys∥EAD2)
11 : t2 ← ROP (PRK3e2m, 2,CTX2, ℓmac)
12 : m2 ← (IDR∥t2∥EAD2)
13 : c2 ← E(sk2,m2)
14 : return (Ye, c2,CR)

RespRun2(IDR, peerpk, c3)

1 : TH3 ← H(TH2,m2)
2 : sk3 ← ROP (PRK3e2m, 3,TH3, ℓkey)
3 : IV3 ← ROP (PRK3e2m, 4,TH3, ℓiv)

4 : m3 ← D′
(sk3, IV3, c3)

5 : if m3 = ⊥ :
6 : status← rejected
7 : return ⊥
8 : (IDI∥t3∥EAD3)← m3

9 : Xs ← peerpk[IDI]
10 : salt4e3m ← ROP (PRK3e2m, 5,TH3, ℓhash)

11 : PRK4e3m ← ROT (salt4e3m, Xs
ye)

12 : status← accepted
13 : CTX3 ← (IDI∥TH3∥Xs∥EAD3)

14 : t
′
3 ← ROP (PRK4e3m, 6,CTX3, ℓmac)

15 : if t
′
3 ̸= t3 :

16 : status← rejected
17 : return ⊥
18 : TH4 ← H(TH3,m3)
19 : PRKout ← ROP (PRK4e3m, 7,TH4, ℓhash)
20 : status← terminated
21 : SK← PRKout
22 : return ⊥

Fig. 5. Formalized description of the EDHOC protocol

10

respectively, and ℓmac for the tags. We thus define a simulation oracle by
digest size: SOsize

P , for size in {ℓ2, ℓhash, ℓkey, ℓiv, ℓmac}
The simulation oracles SOP and SOH work as the usual way of simulating
the answer with a new random answer for any new query, and the same
answer if the same query is asked again. For the simulation oracles SOT , the
oracle consists in a list that contains elements of the form (str, Z, (X,Y);λ),
where when first set, either Z or (X,Y) is non-empty. Indeed, when making
a call to a random oracle, the official query is of the form (str, Z), where str is
any bit string, that can be empty or a pseudo-random key, and Z is a Diffie-
Hellman value. Then, the simulator checks in the list for an entry matching
with (str, Z, ∗;λ). If such an element is found, one outputs λ, otherwise one
randomly set λ $← {0, 1}κ and append (str, Z,⊥;λ) to the list. But later, the
simulator will also ask queries of the form (str, (X,Y)), where (X,Y) is a pair
of group elements. Then one checks in the list for an entry matching with
either (str, ∗, (X,Y);λ) or (str, Z, ∗;λ) such that DDH(g,X, Y, Z) = 1. If such
an element is found, one outputs λ, otherwise one randomly set λ $← {0, 1}κ
and append (str,⊥, (X,Y);λ) to the list. When such new kinds of elements
exist in the list, for the first kind of queries (str, Z), one checks in the list
for an entry matching with either (str, Z, ∗;λ) as before, or (str, ∗, (X,Y);λ)
such that DDH(g,X, Y, Z) = 1. We detail in Figure 6 the functioning of those
oracles, and the modifications made to the simulation.
Thanks to the DDH oracle, this simulation is perfect, and is thus indistin-
guishable to the adversary:

Pr[Succ1] = Pr[Succ0]

Game G2. In order to prevent collisions in the future PRK generation, we
modify the simulation oracles SOT ,SO

ℓhash
P and SOH, such that if a collision

occurs, the simulator stops. We therefore need to determine the probabil-
ity of a collision, to bound the probability for an adversary to distinguish
this game from the previous one. To do so, we rely on the birthday para-
dox. By denoting qSOT

, q
SO

ℓhash
P

, qSOH the amount of queries made to oracles

SOT ,SO
ℓhash
P ,SOH respectively, the birthday paradox bound gives:

Pr[Succ2]− Pr[Succ1] ≤
qSOT

2 + q
SO

ℓhash
P

2 + qSOH
2

2ℓhash+1

Game G3. One can note that thanks to the above simulation of the random
oracles, the simulator does not need anymore to compute Diffie-Hellman
values. Then, for every simulated player, the simulator generates Xe or Ye at
random in the group, and the simulation is still performed as in the previous
game. As corruption queries only reveal long-term secret, still known to the
simulator, the view of the adversary is perfectly indistinguishable of the
previous game and we have:

Pr[Succ3] = Pr[Succ2]

11

SOT (str, input)

1 : if len(input) = 1 :
2 : Z ← input
3 : if ∃(str, Z, ∗;λ) ∈ SOT :
4 : return λ
5 : else :
6 : if ∃(str,⊥, (X,Y);λ) ∈ SOT

s.t. DDH(X,Y, Z) = 1 :
// update SOT

7 : SOT
−1

[λ]← (str, Z, (X,Y);λ)
8 : return λ
9 : else :

10 : λ
$← {0, 1}κ

11 : SOT ← SOT ∪ {(str, Z,⊥;λ)}
12 : return λ
13 : else :

// input = (X,Y), only by the simulator
14 : (X,Y)← input
15 : if ∃(str, ∗, (X,Y);λ) ∈ SOT :
16 : return λ
17 : else :
18 : if ∃(str, Z,⊥;λ) ∈ SOT

s.t. DDH(X,Y, Z) = 1 :

19 : SOT
−1

[λ]← (str, Z, (X,Y);λ)
20 : return λ
21 : else :

22 : λ
$← {0, 1}κ

23 : SOT ← SOT ∪ {(str,⊥, (X,Y);λ)}
24 : return λ

RespRun1(IDR, ys,m)

5 : PRK2e ← SOT (””, Xe
ye)

6 : sk2 ← SOP (PRK2e, 0,TH2, ℓ2)
7 : salt3e2m ← SOP (PRK2e, 1,TH2, ℓhash)

8 : PRK3e2m ← SOT (salt3e2m, Xe
ys)

9 : TH2 ← SOH(Ye,CR, SOH(m1))
..

11 : t2 ← SOP (PRK3e2m, 2,CTX2, ℓmac)

InitRun2(IDI, xs,m)

1 : PRK2e ← SOT (””, Ye
xe)

2 : TH2 ← SOH(Ye,CR, SOH(m1))
3 : sk2 ← SOP (PRK2e, 0,TH2, ℓ2)

..

7 : salt3e2m ← SOP (PRK2e, 1,TH2, ℓhash)

8 : PRK3e2m ← SOT (salt3e2m, Ys
xe)

9 : t2 ← SOP (PRK3e2m, 2,CTX2, ℓmac)
..

13 : TH3 ← SOH(TH2,m2)
14 : sk3 ← SOP (PRK3e2m, 3,TH3, ℓkey)
15 : IV3 ← SOP (PRK3e2m, 4,TH3, ℓiv)
16 : salt4e3m ← SOP (PRK3e2m, 5,TH3, ℓhash)

17 : PRK4e3m ← SOT (salt4e3m, Ye
xs)

..

20 : t3 ← SOP (PRK4e3m, 6,CTX3, ℓmac)
..

23 : TH4 ← SOH(TH3,m3)
24 : PRKout ← SOP (PRK4e3m, 7,TH4, ℓhash)

RespRun2(IDR, peerpk, c3)

1 : TH3 ← SOH(TH2,m2)
2 : sk3 ← SOP (PRK3e2m, 3,TH3, ℓkey)
3 : IV3 ← SOP (PRK3e2m, 4,TH3, ℓiv)

..

10 : salt4e3m ← SOP (PRK3e2m, 5,TH3, ℓhash)

11 : PRK4e3m ← SOT (salt4e3m, peerpk[IDI]
ye)

..

14 : t
′
3 ← SOP (PRK4e3m, 6,CTX3, ℓmac)

..

18 : TH4 ← SOH(TH3,m3)
19 : PRKout ← SOP (PRK4e3m, 7,TH4, ℓhash)

Fig. 6. Description of SOT list queries and modifications to the simulation

Game G4. In this game, when simulating any initiator receiving a forged tu-
ple (Ye, c2,CR) from the adversary in the name of a non-corrupted user,
one simulates PRK3e2m thanks to a private oracle SOPRK3e2m

, which makes
it perfectly unpredictable to the adversary. If the pair (Ye,CR) is forged, TH2

and salt3e2m are different from the values obtained by a possibly simulated
responder, thanks to the absence of collisions as they are respectively com-
puted using SOH and SOℓhash

P . Otherwise, sk2 is not modified. So if the cipher-
text c2 is forged, thanks to the injective property of the encryption scheme
(E ,D) when the key is fixed, m2, and by consequent TH3 and salt4e3m are
different from the values obtained by a possibly simulated responder. In or-
der to detect the inconsistency of PRK3e2m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Xe

ys . We denote the event F1, that query Xe
ys is asked whereas ys is

the long-term secret key of a non-corrupted user and Xe has been generated

12

by the simulator. If this event happens (which can easily be checked as the
simulator knows ys), one stops the simulation:

|Pr[Succ4]− Pr[Succ3]| ≤ Pr[F1].

Game G4′ . We now provide an upper-bound on Pr[F1]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, but chooses one user to set Ys = Y . Even if ys is therefore not
known, simulation is still feasible as the simulator can make query to the
SOT oracle with input (Xe, Ys). Then, one can still answer all the corruption
queries, excepted for that user. But anyway, if F1 happens on that user, this
user must be non-corrupted at that time: one has solved the GDH problem,
and one can stop the simulation. If the guess on the user is incorrect, one
can also stop the simulation: Pr[F1] ≤ N ·AdvGDH

G (t, qRO), where N is the
number of users in the system.

Game G5. In this game, when simulating any responder receiving a forged
message m1 from the adversary in the name of a non-corrupted user, still
non-corrupted when sending c3 to RespRun2, one simulates PRK4e3m thanks
to a private oracle SOPRK4e3m

, which makes it perfectly unpredictable to the
adversary. Since m1 is forged, thanks to the absence of collisions, TH2,TH3,
and salt4e3m are different from the values obtained by a possibly simulated
responder. In order to detect the inconsistency of PRK4e3m with respect to
the public oracle answer, the adversary must have asked SOT on the correct
Diffie-Hellman value Ye

xs . We denote the event F2, that query Ye
xs is asked

whereas xs is the long-term secret key of a non-corrupted user and Ye has
been generated by the simulator. If this event happens (which can easily be
checked as the simulator knows xs), one stops the simulation:

|Pr[Succ5]− Pr[Succ4]| ≤ Pr[F2].

Game G5′ . We now provide an upper-bound on Pr[F2]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Ye as Ye = Y · gr′ , for random
r′

$← Zp, but chooses one user to set Xs = X. Then, one can still answer all
the corruption queries, excepted for that user. But anyway, if F2 happens on
that user, this user must be non-corrupted at that time: one has solved the
GDH problem, and one can stop the simulation. If the guess on the user is
incorrect, one can also stop the simulation: Pr[F2] ≤ N ·AdvGDH

G (t, qRO).
Game G6. In this game, we simulate the key generation of PRK2e, for all the

passive sessions (m1 received by a simulated responder comes from a simu-
lated initiator, or (Ye, c2,CR) received by a simulated initiator comes from a
simulated responder, and both used the same m1 as first message), thanks to
a private oracle SOPRK2e

, acting in the same vein as SOT , but not available
to the adversary. This makes a difference with the previous game if the key
PRK2e has also been generated by asking SOT on the correct Diffie-Hellman
value Z = gxeye . We denote by F3 the latter event, and stop the simulation
in such a case:

|Pr[Succ6]− Pr[Succ5]| ≤ Pr[F3]

13

Game G6′ . We now provide an upper-bound on Pr[F3]. Given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, and all the Ye as Ye = Y ·gr′ , for random r′
$← Zp. As the key PRK2e

does not depend on the session context, any query Z to the SOT oracle can
make F3 occurs on any of the passive session pairs (Xe = X ·gr, Ye = Y ·gr′),
we upper-bound the number by nσ. Hence, qRO DDH-oracle queries might
be useful to detect F3 on an input Z = CDH(Xe, Ye) = gxy ·Xr′ · Y r · grr′ ,
solving the GDH challenge (X,Y):

Pr[F3] ≤ AdvGDH
G (t, nσ · qRO).

Game G7. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK3e2m thanks to a private oracle SOPRK3e2m

. This
makes a difference with the previous game only if this is a passive session,
in which case PRK2e is unpredictable, and thus different from the public
one excepted with probability 2−ℓhash . As there are no collision, salt3e2m is
different from the value obtained by a possibly simulated responder. In order
to detect the inconsistency of PRK3e2m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Xys

e , which is not possible as event F1 stops the simulation:

|Pr[Succ7]− Pr[Succ6]| ≤
1

2ℓhash
.

Game G8. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK4e3m thanks to a private oracle SOPRK4e3m . In this
case, PRK3e2m is unpredictable, as well as salt4e3m and PRK4e3m:

Pr[Succ8] = Pr[Succ7].

Game G9. In this game, when simulating any responder receiving c3, from
the adversary in the name of a non-corrupted user, one simulates PRK4e3m

thanks to the private oracle SOPRK4e3m
. This makes a difference with the

previous game only if this is not a passive session, in which case PRK2e is
unpredictable, and thus different from the public one excepted with proba-
bility 2−ℓhash . As there are no collision, salt3e2m, PRK3e2m, and salt4e3m are
different from the values obtained by a possibly simulated responder. In or-
der to detect the inconsistency of PRK4e3m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Y xs

e , which is not possible as event F2 stops the simulation:

|Pr[Succ9]− Pr[Succ8]| ≤
1

2ℓhash
.

Game G10. In this game, for any fresh session, one simulates PRKout thanks to
the private oracle SOPRKout . A session being fresh means that no corruption

14

of the party or of the partner occurred before the time of acceptance: the
initiator is not corrupted before receiving (Ye, c2,CR) and the responder is not
corrupted before receiving c3. By consequent, they are not corrupted before
PRK4e3m was computed. We have seen above that in those cases, the key
PRK4e3m is generated using the private oracle SOPRK4e3m

: it is unpredictable.
The use of the private oracle SOPRKout can only be detected if the query
PRK4e3m is asked to SOP :

|Pr[Succ10]− Pr[Succ9]| ≤
q
SO

ℓhash
P

2ℓhash
.

Globally, one can note that the gap between the initial and the last games
is upper-bounded by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO)

+
qSOT

2 + q
SO

ℓhash
P

2 + qSOH
2

2ℓhash+1
+

2 + q
SO

ℓhash
P

2ℓhash

≤ AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +
qRO

2 + 4

2ℓhash+1

Eventually, for all the fresh sessions, in the real case (b = 0), the private
oracle is used, and outputs a random key, while in the random case (b = 1),
the session key is random too:

Pr[Succ10] =
1

2
.

This concludes the proof.

4 Explicit Authentication

Explicit authentication (or mutual authentication) aims to ensure each partici-
pant has the material to compute the final session key (accepts) when the partner
terminates. In the EDHOC protocol, this means the responder (resp. the initia-
tor) owns the private long-term key ys (resp xs) associated to the long-term
public key Ys (resp. Xs), and the private ephemeral keys, when the partner
terminates.

To do so, the responder uses ys in RespRun1 to compute PRK3e2m used for
the tag t2 and the key sk3. In the same way, the initiator uses xs to compute
PRK4e3m, used for the tag t3. Furthermore, they both have to use their ephemeral
keys to compute PRK2e, used for sk2.

Responder Authentication. Consider a simulated initiator receiving a forged
message (Ye, c2,CR) from the adversary in the name of a non-corrupted user.
In such a case, consider the modifications made in the key privacy proof up
to the game G7. Hence, we have replaced the generation of PRK3e2m with a
private oracle. Then the advantage of the adversary in breaking the explicit

15

Finalize

1 : return :

∀πi
u s.t.

{
πi
u.status = terminated

πi
u.tacc < revltkπi

u.peerid
, ∃πj

v s.t.

πi
u.peerid = v

πj
v.peerid = u

πi
u.sid = πj

v.sid
πi
u.role ̸= πj

v.role
πj
v.status = accepted

Fig. 7. Finalize Function for the Explicit Authentication Security Game

authentication of the responder in this game is bounded by
1

2ℓmac
, added to the

gap induced by the modifications made up to the game G7. This leads to the
following theorem:

Theorem 2. The above EDHOC protocol satisfies the responder authentication
under the Gap Diffie-Hellman problem in the Random Oracle model, and the
injectivity of (E ,D). More precisely, with qRO representing the global number of
queries to the random oracles, nσ the number of running sessions, N the number
of users, and ℓhash the hash digest length, we have Advauth−resp

EDHOC (t; qRO, nσ, N)
upper-bounded by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +
qRO

2 + 2

2ℓhash+1
+

1

2ℓmac

Optimal Reduction. One cannot expect more after these three flows, as
the adversary can play the role of the responder with known ye. Without knowing
ys, it just gets stuck to compute PRK3e2m and thus t2. But it can guess it (with
probability 2−ℓmac), breaking authentication. But it will not know SK.

Initiator Authentication. We now consider any responder receiving a forged
message c3 from the adversary in the name of a non-corrupted user. As above,
considering the modifications made in the key privacy proof up to the game G8,
we have replaced the generation of PRK4e3m with a private oracle. Then the
advantage of the adversary in breaking the explicit authentication of the initiator

in this game is bounded by
1

2ℓmac
, added to the gap induced by the modifications

made up to the game G7. This leads to the following theorem:

Theorem 3. The above EDHOC protocol satisfies the initiator authentication
under the Gap Diffie-Hellman problem in the Random Oracle model, and the
injectivity of (E ,D). More precisely, with qRO representing the global number of
queries to the random oracles, nσ the number of running sessions, N the number
of users, and ℓhash the hash digest length, we have Advauth−init

EDHOC (t; qRO, nσ, N)
upper-bounded by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +
qRO

2 + 4

2ℓhash+1
+

1

2ℓmac

16

Optimal Reduction. One cannot expect more after these three flows, as
the adversary can play the role of the initiator with known xe. Without knowing
xs, it just gets stuck to compute PRK4e3m and thus t3. But it can guess it (with
probability 2−ℓmac) and encrypt it, as it knows sk3, breaking authentication. But
it will not know SK.

5 Identity Protection

Let us now consider anonymity, with identity protection. More precisely, we want
to show that the initiator’s identity (IDI) is protected against active adversaries,
while responder’s identity (IDR) is protected only against passive adversaries.

The values IDI and IDR are the authentication credentials containing the
public authentication keys of I and R, respectively.

Responder’s Identity Protection. The value IDR is used in the computation of
CTX2 itself used to compute t2, which together with IDR constitute the first part
of m2 = (IDR∥t2∥EAD2) whose encryption is c2 under sk2. For the sake of clarity,
we set EAD2 ="" as EAD2 is independent from the identity of the responder and
has no cryptographic purpose. As a responder, the passive adversary can only
earn information about IDR using the ciphertext c2. We thus define the responder
identity protection experiment as follows:

expID−resp−b
EDHOC

1 : IDR0 , IDR1 ← A(peerid)
2 : m1 ← A(InitRun1(.))
3 : b← {0, 1}
4 : IDR ← IDRb

5 : ys ← skIDR

6 : (Ye, c2,CR)← RespRun1(IDR, ys,m1)
7 : b′ ← A(c2)
8 : return b = b′

We define the advantage AdvID−resp−b
EDHOC of the adversary in breaking the responder

mutual authentication of EDHOC by:

AdvID−resp−b
EDHOC (t) = |Pr[expID−resp−0

EDHOC = 1]− Pr[expID−resp−1
EDHOC = 1]|

Theorem 4. The above EDHOC protocol protects Responder’s Identity under
the Gap Diffie-Hellman problem in the Random Oracle model, the injectivity
and the semantic security of Π = (E ,D). More precisely, with qRO represent-
ing the global number of queries to the random oracles, nσ the number of run-
ning sessions, N the number of users, and ℓhash the hash digest length, we have
AdvID−resp−b

EDHOC (t; qRO, nσ, N) upper-bounded by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +Advind
Π (t) +

qRO
2 + 2

2ℓhash+1

17

Game G0. This game is expID−resp−0
EDHOC . The simulated initiator follows the pro-

tocol, computes c2 = E(sk2, (IDR∥t2)) and sends Ye, c2, CR to the adversary:

Pr[Succ0] = Pr[expID−resp−0
EDHOC = 1]

Game G1. In this game, we applied the modification made from G0 up to G6

in the key privacy proof.

|Pr[Succ1]− Pr[Succ0]| ≤ AdvGDH
G (t, nσ · qRO)

+ 2N ·AdvGDH
G (t, qRO) +

qRO
2

2ℓhash+1

Game G2. In this game, one simulates sk2 thanks to a private oracle, which
makes a difference only if the random PRK2e is asked to the public oracle:

|Pr[Succ2]− Pr[Succ1]| ≤
1

2ℓhash

Game G3. In this game, we replace the line 4 of the experiment by IDR ←
IDR1−b

, leading to the instanciation of expID−resp−1
EDHOC . As sk2 is chosen at ran-

dom, using the semantic security of the encryption scheme (E ,D), we thus
have

|Pr[Succ3]− Pr[Succ2]| ≤ Advind
Π (t)

Initiator’s Identity Protection. In this case, we expect an active security: we
consider the simulation of an initiator interacting with an adversary playing
in the name of a non-corrupted user with public long-term key Ys. We have
simulated PRK3e2m with a private oracle, which leads to a private random key
sk3, unless the query has been asked, with the same argument as above.

The value IDI is used in the computation of CTX3 itself used to compute t3,
which together with IDI constitute the first part of the message m3 = (IDR∥t2∥EAD2)
whose encryption is c3 under sk3. As above, for the sake of generality, we set
EAD3 ="". One can note that the first message m1 sent by the initiator is inde-
pendent of IDR. We therefore start the experiment after the adversary sent his
first message (Ye, c2,CR):

expID−init−b
EDHOC

1 : IDI0 , IDI1 ← A(peerid)
2 : (Ye, c2,CR)← A(RespRun1(.))
3 : b← {0, 1}
4 : IDI ← IDIb
5 : xs ← skIDI

6 : Ys ← peerpk[IDI]
7 : c3 ← InitRun2(IDI, xs, Ys, (Ye, c2,CR))
8 : b′ ← A(c3)
9 : return b = b′

18

We define the advantage AdvID−init−b
EDHOC of the adversary in breaking the responder

mutual authentication of EDHOC by:

AdvID−init−b
EDHOC (t) = |Pr[expID−init−0

EDHOC = 1]− Pr[expID−init−1
EDHOC = 1]|

Theorem 5. The above EDHOC protocol protects Initiator’s Identity under the
Gap Diffie-Hellman problem in the Random Oracle model, the injectivity of
(E ,D) and the semantic security of Π ′ = (E ′,D′). More precisely, with qRO
representing the global number of queries to the random oracles, nσ the number
of running sessions, N the number of users, and ℓhash the hash digest length, we
have AdvID−init−b

EDHOC (t; qRO, nσ, N) upper-bounded by

AdvGDH
G (t, nσ · qRO) + 2N ·AdvGDH

G (t, qRO) +Advind
Π′(t) +

qRO
2 + 2

2ℓhash+1

6 Improvements

We here make some remarks on the initial protocol, with some improvements that
appear in gray highlights in Figure 8, and to the removed/additional hatched
patterns in Figure 9.

6.1 On Mutual Authentication

The encryption key sk3, used by the initiator to encrypt its second message m3,
is computed by calling HKDF-Expand on PRK3e2m. However, even an adversary
that plays in the name of a non-corrupted user, is able to compute PRK3e2m,
when knowing the Initiator ephemeral key xe, as PRK3e2m does not depend on
xs, the long term secret key of the Initiator. In order to break the Initiator
authentication, with respect to a Responder, an adversary can play on behalf of
any user as an Initiator. It will be able to compute sk3, but not t3, for which
value it will need some luck, but this is only 64-bit long! Which is not enough
for a 128-bit security.

To get around this issue, we suggest to modify the construction of Initiator’s
second message as follows: Initial message m3 = (IDI∥t3||EAD3) is split as m3 ←
(IDI) and m′3 ← (t3||EAD3). Thus, m3 is encrypted using sk3 (with a one-time
pad encryption scheme Π = (E ,D), under sk3 still depending on PRK3e2m)
into c3. Then m′3 does not need to be encrypted. We introduce the value ℓsec,
always set as the expected bit-security parameter, independently of the ℓmac

value. Then, we set the length of t3 to be ℓsec, as it already authenticates CTX3 =
(IDI∥TH3∥Xs∥EAD3). Concretely, the second message sent by the initiator to the
responder is:

c3∥m′3, where c3 = E(sk3,m3),m
′
3 = t3||EAD3

Once the Responder receives (c3,m′3), he first decrypts c3, retrieves Xs using
m3, computes PRK4e3m and is then able to verify the tag t3, allowing to check the

19

authenticity of IDI, as well as all the other values is CTX3 = IDI∥TH3∥Xs∥EAD3.
The extra required length for the tag t3 is perfectly compensated by the absence
of the tag jointly sent when using Authenticated Encryption, and the plaintext
length of m3 is the same as the encryption of m3. Therefore, this does not impact
the communication cost of the protocol, until ℓsec ≤ 2 × ℓmac, but improves to
ℓsec-bit security for Initiator-Authentication.

About the Responder-Authentication, t2 also provides a 64-bit security level
only: by guessing it, any active adversary can make the initiator terminate, and
thus breaking the responder-authentication, if one does not wait for the fourth
flow c4,m

′
4. However, with this fourth flow, we can show the 2×ℓmac-bit security

level is achieved.

6.2 On Reduction Efficiency

After analysis, we also notice another improvement: the key PRK2e is computed
according to gxeye only, as the salt used in HKDF-Extract is an empty string.
When considering several parellels sessions, this allows an adversary to find a
collision with any of the session making a single call to HKDF-Extract. Therefore,
we replace the empty string used as salt with TH2 that depends on the session
variables and is different for each session. Thus, an adversary has to make a call
to HKDF-Extract with a chosen TH2, linked to a specific session. This makes
the reduction cost of the key-privacy game independent of nσ, the number of
sessions.

References

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidel-
berg, May / June 2006.

DG20. Hannah Davis and Felix Günther. Tighter proofs for the SIGMA and TLS 1.3
key exchange protocols. Cryptology ePrint Archive, Report 2020/1029, 2020.
https://eprint.iacr.org/2020/1029.

NSB21. Karl Norrman, Vaishnavi Sundararajan, and Alessandro Bruni. Formal
analysis of edhoc key establishment for constrained iot devices. In Pro-
ceedings of the 18th International Conference on Security and Cryptogra-
phy (SECRYPT ’21), pages 210–221. INSTICC, SciTePress, 2021. https:
//arxiv.org/abs/2007.11427.

Sch16. Jim Schaad. Cbor object signing and encryption (cose), 2016.
SMP22. Göran Selander, John Preuß Mattsson, and Francesca Palombini. Ephemeral

Diffie-Hellman Over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-
15, Internet Engineering Task Force, July 2022. https://datatracker.ietf.
org/doc/draft-ietf-lake-edhoc/.

20

https://eprint.iacr.org/2020/1029
https://arxiv.org/abs/2007.11427
https://arxiv.org/abs/2007.11427
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/

Initiator Responder
xs, Xs = gxs ys, Ys = gys

InitRun1(IDI)

xe
$← Zp, Xe ← gxe ; CI

$← {0, 1}nl

m1 ← (Xe∥CI∥EAD1)
m1 RespRun1(IDR, ys,m1)

Parse m1 as (Xe∥c∥EAD1)

ye
$← Zp, Ye ← gye ; CR

$← {0, 1}nl

sid← (CI,CR, Xe, Ye)

PRK2e ← HKDF-Extract(”” |TH2 , Xe
ye)

TH2 ← H(Ye,CR,H(m1))
sk2 ← HKDF-Expand(PRK2e, 0,TH2, ℓ2)
salt3e2m ← HKDF-Expand(PRK2e, 1,TH2, ℓhash)
PRK3e2m ← HKDF-Extract(salt3e2m, Xe

ys)
CTX2 ← (IDR∥TH2∥Ys∥EAD2)
t2 ← HKDF-Expand(PRK3e2m, 2,CTX2, ℓmac)

InitRun2(IDI, xs, Ys, (Ye, c2,CR))
Ye, c2,CR m2 ← (IDR∥t2∥EAD2); c2 ← E(sk2,m2)

PRK2e ← HKDF-Extract(”” |TH2 , Ye
xe)

TH2 ← H(Ye,CR,H(m1))
sk2 ← HKDF-Expand(PRK2e, 0,TH2, ℓ2)
Set m2 ← D(sk2, c2); parse as (IDR∥t2∥EAD2)
CTX2 ← (IDR∥TH2∥Ys∥EAD2)
salt3e2m ← HKDF-Expand(PRK2e, 1,TH2, ℓhash)
PRK3e2m ← HKDF-Extract(salt3e2m, Ys

xe)
t′2 ← HKDF-Expand(PRK3e2m, 2,CTX2, ℓmac)
if t′2 ̸= t2 : return ⊥
TH3 ← H(TH2,m ≎2)

sk3 ← HKDF-Expand(PRK3e2m, 3,TH3, ℓkey | ℓid)

IV3 ← HKDF-Expand(PRK3e2m, 4,TH3, ℓiv) | ∅
salt4e3m ← HKDF-Expand(PRK3e2m, 5,TH3, ℓhash)
PRK4e3m ← HKDF-Extract(salt4e3m, Ye

xs)
accepted← 1
CTX3 ← (IDI∥TH3∥Xs∥EAD3)

t3 ← HKDF-Expand(PRK4e3m, 6,CTX3, ℓmac | ℓsec)

m3 ← (IDI∥t3∥EAD3) | IDI , m′
3 ← (t3∥EAD3)

c3 ← E ′(sk3, IV3;m3; ””) | E(sk3,m3)
c3,m

′
3 RespRun2(ID, st, peerpk, c3)

TH3 ← H(TH2,m2)

sk3 ← HKDF-Expand(PRK3e2m, 3,TH3, ℓkey | ℓid)

IV3 ← HKDF-Expand(PRK3e2m, 4,TH3, ℓiv) | ∅

m3 ← D′(sk3, IV3; c3; ””) | D(sk3, c3)

parse m3 as (IDI∥t3∥EAD3) | IDI and m′
3 as (t3∥EAD3)

Xs ← peerpk[IDI]
salt4e3m ← HKDF-Expand(PRK3e2m, 5,TH3, ℓhash)
PRK4e3m ← HKDF-Extract(salt4e3m, Xs

ye)
accepted← 1
CTX3 ← (IDI∥TH3∥Xs∥EAD3)

t′3 ← HKDF-Expand(PRK4e3m, 6,CTX3, ℓmac | ℓsec)

if t′3 ̸= t3 : return ⊥
TH4 ← H(TH3,m3,m

′
3)

sk4 ← HKDF-Expand(PRK4e3m, 8,TH4, ℓkey)
IV4 ← HKDF-Expand(PRK4e3m, 9,TH4, ℓiv)
m4 ← ””, m′

4 ← EAD4

TH4 ← H(TH3,m3,m
′
3)

c4,m
′
4 c4 ← E ′(sk4, IV4;m4;m

′
4)

sk4 ← HKDF-Expand(PRK4e3m, 8,TH4, ℓkey)
IV4 ← HKDF-Expand(PRK4e3m, 9,TH4, ℓiv)
if D′(sk4, IV4; c4;m

′
4) = ⊥ : return ⊥

PRKout ← HKDF-Expand(PRK4e3m, 7,TH4, ℓhash) PRKout ← HKDF-Expand(PRK4e3m, 7,TH4, ℓhash)
terminated← 1 terminated← 1
SK← PRKout SK← PRKout

Fig. 8. Optimized EDHOC with four messages in the STAT/STAT Authentication
Method. Our modifications compared to [SMP22] (draft-ietf-lake-edhoc-15) are rep-
resented by previous | new and additions by gray highlights

21

gxeye

gysxe

gxsye

Extract

Extract

Extract

PRK2e

PRK3e2m

PRK4e3m

PRKout

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

Expand

salt3e2m

salt4e3m

TH2

TH2

TH3

TH3

TH4

TH4

CTX2

CTX3

sk2

t2

sk3

IV3

IV4

t3

sk4

IV4

Fig. 9. Key Derivation (for the STAT-STAT Method) from [NSB21]. Green vertical hatchs
denote additions and red horizontal hatchs denote removals compared to the initial
version.

22

	Security Analysis of the EDHOC protocol

