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On Abel’s problem and Gauss congruences

É. Delaygue and T. Rivoal

September 7, 2022

Abstract

A classical problem due to Abel is to determine if a differential equation y′ = ηy
admits a non-trivial solution y algebraic over C(x) when η is a given algebraic function
over C(x). Risch designed an algorithm that, given η, determines whether there exists
an algebraic solution or not. In this paper, we adopt a different point of view when η
admits a Puiseux expansion with rational coefficients at some point in C∪{∞}, which
can be assumed to be 0 without loss of generality. We prove the following arithmetic
characterization: there exists a non-trivial algebraic solution of y′ = ηy if and only
if the coefficients of the Puiseux expansion of η at 0 satisfy Gauss congruences for
almost all prime numbers. We then apply our criterion to hypergeometric series: we
completely determine the equations y′ = ηy with an algebraic solution when xη(x) is
an algebraic hypergeometric series with rational parameters, and this enables us to
prove a prediction Golyshev made using the theory of motives. We also present three
other applications, in particular to diagonals of rational fractions and to directed
two-dimensional walks.

1 Introduction

Given an algebraic function η over C(x), the problem of Abel, as mentionned by Boulanger
in [10, p. 93], consists in determining if the differential equation

y′ = ηy (1.1)

admits a non-trivial solution y algebraic over C(x). This problem naturally occurs in
procedures to decide in a finite number of steps if all solutions of a linear differential
equation with polynomial coefficients are algebraic over C(x), see [4, 29]. A decision
procedure to solve Abel’s problem was first given by Risch [26] and later independently by
Baldassarri and Dwork [4, Section 6].

In this paper, we are interested in the restriction of Abel’s problem to the functions
η algebraic over C(x) that admit a Puiseux expansion with rational coefficients at some
point δ in C ∪ {∞}.
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Obviously the above mentioned decision procedures also apply in this context but we
demonstrate an arithmetic criterion based on Gauss congruences for η that proves effective
in applications. It is stated as Theorem 1 in Section 1.1, where we use in particular a
consequence of Grothendieck’s conjecture proved in rank one by Chudnovsky and Chud-
novsky [12].

Secondly, we apply our criterion to give in Section 1.3 a complete resolution – Theo-
rem 2 – of Abel’s problem when xη(x) is an algebraic hypergeometric series with rational
parameters, by the way giving a criterion – Theorem 4 – for a globally bounded (1) hyper-
geometric series with rational parameters to satisfy Gauss congruences. This enables us to
confirm a prediction attributed to Golyshev by Zagier in [31, p. 757].

Finally in Sections 2.1 and 2.2, we briefly study the case when η is a rational func-
tion and we apply our criterion to various examples issued from diagonals of multivariate
rational fractions and random walks in the quarter plane.

1.1 An arithmetic criterion via Gauss congruences

Given a prime number p, we set Z(p) := {r ∈ Q : vp(r) ≥ 0}, where vp(r) is the p-adic
valuation of r. In other words, Z(p) is the ring of rational numbers the denominator of
which is not divisible by p (recall that vp(0) = +∞ by convention). We consider the
following congruences.

Definition 1. Let p be a prime number. We say that a sequence (an)n∈Z of rational
numbers satisfies Gauss congruences for the prime p if anp−an ∈ npZ(p) for all integers n.

This is equivalent to amps+1 − amps ∈ ps+1Z(p) for all integers m ∈ Z and s ≥ 0, a
property that often appears in this form in the literature. These congruences hold for a
sequence (an)n≥0 and for all prime numbers if and only if, for all n ≥ 0, we have∑

d|n

µ(n/d)ad ≡ 0 mod n, (1.2)

where µ is the Möbius function. The congruence (1.2) was first proved by Gauss when
an = rn and r is a prime number, and was later generalized to all integers r ∈ Z. We
refer to [32] for a survey of these congruences and to [8, 9, 24] for recent results on Gauss
congruences for multivariate rational fractions.

Following [8], when a sequence satisfies Gauss congruences for almost all prime numbers
p (2), we say that it has the Gauss property. In the particular situation that an = 0 for all
n < r for some r ∈ Z (in particular r = 0), we shall simply say that the sequence (an)n≥r
satisfies Gauss congruences.

1A series f(x) ∈ Q[[x]] is said to be globally bounded if it has a non-zero radius of convergence and if
there exists C ∈ Q \ {0} such that f(Cx) ∈ Z[[x]].

2We say that a property holds for almost all prime numbers p when it holds for all but finitely many
prime numbers p.
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We work in C, so that we can (and shall) use analytic arguments and not just algebraic
ones. In particular, Puiseux expansions below define analytic functions in a slit disk of
center 0, with a cut defined by a chosen branch of log, whose precise definition may change
for each example and is irrelevant for our purpose.

Let η be an algebraic function over C(x). Let δ ∈ C, respectively δ =∞, and consider
the Puiseux expansion of η at δ given respectively by

∞∑
n=r

pn(x− δ)n/d and
∞∑
n=r

pnx
−n/d, (1.3)

where r and d ≥ 1 are both integers. We call (pn)n∈Z the sequence of the coefficients of the
Puiseux expansion of η at δ, where pn = 0 for n < r. We say that the Puiseux expansion
is rational if pn ∈ Q for all n.

Our arithmetic criterion, which is proved in Section 3, is the following.

Theorem 1. Let η be an algebraic function over C(x) which has a rational Puiseux ex-
pansion at δ ∈ C with coefficients (pn)n∈Z. Then the differential equation y′ = ηy admits a
non-trivial solution y algebraic over C(x) if and only if (pn−1)n∈Z has the Gauss property.

If η has a rational Puiseux expansion at ∞ with coefficients (pn)n∈Z as in (1.3), then
the algebraic function η(x) := −x2η(1/x) has a rational Puiseux expansion at 0 with
coefficients (−pn−2d)n∈Z. In addition, the differential equation y′ = ηy admits a non-trivial
algebraic solution if and only if y′ = ηy admits a non-trivial algebraic solution. This leads
to the following result at ∞.

Corollary 1. Let η be an algebraic function over C(x) which has a rational Puiseux ex-
pansion at ∞ with coefficients (pn)n∈Z as in (1.3). Then the differential equation y′ = ηy
admits a non-trivial solution y algebraic over C(x) if and only if (pn−2d−1)n∈Z has the Gauss
property.

As a direct consequence, Theorem 1 and Corollary 1 show that the Gauss property is
somehow independent of the point where η admits a rational Puiseux expansion.

Corollary 2. Let η be an algebraic function over C(x). Let δ1 ∈ C ∪ {∞} and δ2 ∈ C
be two points where η admits rational Puiseux expansions the coefficients of which being
respectively given by (pn)n∈Z and (qn)n∈Z as in (1.3). Set p′n = pn if δ1 ∈ C and p′n = pn−2d
if δ1 = ∞. Then (p′n−1)n∈Z has the Gauss property if and only if (qn−1)n∈Z has the Gauss
property.

Observe that it is enough to prove Theorem 1 when δ = 0. Indeed, let η be an algebraic
function over C(x) which has a rational Puiseux expansion at some δ ∈ C with coefficients
(pn)n∈Z. We set η(x) := η(x+δ) which is algebraic over C(x) and admits a rational Puiseux
expansion at 0 with coefficients (pn)n∈Z. Since the differential equation y′ = ηy admits a
non-trivial algebraic solution if and only if y′ = ηy admits a non-trivial algebraic solution,
Theorem 1 can be reduced to the case δ = 0. So we shall from now on focus on the case
when η admits a rational Puiseux expansion at δ = 0.
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For y′ = ηy to have a non-trivial algebraic solution, η must admit a Puiseux expansion
at 0 of the form (see Section 3.2 for details)

η(x) =
∞∑
n=0

anx
n/d−1 ∈ C((x1/d)). (1.4)

Then the sequence of coefficients of the Puiseux expansion of xη(x) at 0 reads (an)n≥0 and
a non-trivial solution of (1.1) is given by

y(x) := xa0 exp

(
d
∞∑
n=1

an
n
xn/d

)
=: xa0g(x) ∈ xa0C((x1/d)). (1.5)

We shall also use the less precise notation y := exp
∫
η with the meaning of (1.5). By an

immediate adaptation of Lemma 7.2 in [1], an algebraic function over C(x) which admits
a Puiseux expansion at a rational point with rational coefficients is necessarily algebraic
over Q(x). In particular, η as given in (1.4) with an ∈ Q is algebraic over Q(x), and thus
satisfies a linear differential equation over Q(x) (this is based on the fact that η′ ∈ Q(x, η),
see [13]). Similarily, when y given by (1.5) is algebraic over C(x), it is automatically
algebraic over Q(x); observe that y is algebraic over Q(x) if and only if g is too.

Remarks. Let us make a few remarks on Theorem 1.
• Any example of an algebraic function y with d ≥ 2 reduces through the transformation

y(xd)1/d to an example with d = 1.
•When y is algebraic over Q(x), Theorem 1 shows that, for all but finitely many prime

numbers p, the sequence (an)n≥0 defined by (1.4) satisfies Gauss congruences for p. When
d = 1, this bound on p will be made more precise in the proof: Gauss congruences hold at
least for any p that does not divide the smallest positive integer λ such that g(λx) ∈ Z[[x]].
•When d = 1, the assertion g ∈ Z[[x]] has a well-known interpretation in formal group

theory, see [6, 21].
• When y is algebraic over Q(x), we have η ∈ Q(x, y) because y′ ∈ Q(x, y) (see above)

and η = y′/y. It is also easy to prove that y is algebraic over Q(x) if and only if there
exists a positive integer m such that mη is the logarithmic derivative of an element of
Q(x, η), which yields ym ∈ Q(x, η). A procedure to determine in a finite number of steps
whether mη is the logarithmic derivative of an element of Q(x, η) for some m is given in [4,
Section 6]. It would be interesting to bound m and so the degree of y in terms of η. The
case η ∈ Q(x) already shows that it is not always true that m = 1 works (see Section 1.2).
• Our applications are mainly to prove that y is algebraic, but this criterion can also

be used to easily prove Gauss congruences. For instance with η(x) = r/(1 − rx) for any
given integer r, we have y(x) = 1/(1 − rx) ∈ Z[[x]]. With the precision coming from the
second remark, this implies that (rn)n≥0 satisfies Gauss congruences for all prime numbers
and thus Equation (1.2). The same approach with algebraic integers instead of r yields
[32, Theorem 1] : the sequence of the traces of powers of integer matrices (Tr(Mn))n≥0
satisfies (1.2).
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• As another application, for every r ∈ Q∗ and a ∈ Q \ {−1}, the Taylor coefficients of
η(x) := r(1− rx)a do not have the Gauss property, because exp((1− rx)a+1− 1) is not an
algebraic function.

1.2 When η(x) is a rational fraction

If η belongs to Q(x), then the non-trivial algebraic solutions of y′ = ηy are arithmetic
Nilsson-Gevrey series of order 0 (see [19] for the definition which is not essential here). By
[19, Proposition 3], we obtain that

y(x) = c
∏
i∈I

(x− λi)si and η(x) =
∑
i∈I

si
x− λi

, (1.6)

where c ∈ Q∗, I is a finite set, λi ∈ Q and si ∈ Q for all i ∈ I.
In our context, we are interested in the particular case η ∈ Q(x). Applying (1.6) in

this case yields the equivalence: there is a non-trivial algebraic solution to y′ = ηy with
η ∈ Q(x) if and only if we have

y(x) = c
∏
i∈I

ui(x)si and η(x) =
∑
i∈I

si
u′i(x)

ui(x)
,

where c ∈ Q∗, I is a finite set, ui ∈ Z[x] and si ∈ Q for all i ∈ I. Combining this equivalence
with our criterion Theorem 1, we retrieve the following recent result of Minton.

Theorem A (Minton [24]). A rational fraction f ∈ Q(x) has the Gauss property (at 0) if
and only if f(x) is a Q-linear combination of terms xu′(x)/u(x) with u ∈ Z[x].

Here we implicitly say that f ∈ Q(x) has the Gauss property at 0 when the coefficients
of the Laurent expansion f(x) =

∑
n∈Z anx

n, with an = 0 for large negative integers n,
defines a sequence (an)n∈Z with the Gauss property.

1.3 The hypergeometric case and Golyshev’s predictions

In this section, we state our results which give a complete resolution of the case when
xη(x) is an algebraic hypergeometric series with rational parameters. In particular, such
a hypergeometric series is algebraic over Q(x).

Let α := (α1, . . . , αr) and β := (β1, . . . , βs) be tuples of rational numbers in Q \ Z≤0.
The generalized hypergeometric series with rational parameters [30] is defined by

rFs

[
α1, . . . , αr
β1, . . . , βs

;x

]
:=

∞∑
n=0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

xn

n!
,
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where (α)n is the Pocchammer symbol defined by (α)n := α(α+1) · · · (α+n−1) for n ≥ 1
and 1 if n = 0. We discard the case when xη(x) is a polynomial, already considered in
Section 1.2, by assuming αi /∈ Z≤0 for all i. We set

Qα,β(n) :=
(α1)n · · · (αr)n
(β1)n · · · (βs)n

and Fα,β(x) :=
∞∑
n=0

Qα,β(n)xn,

so that

Fα,β(x) = r+1Fs

[
α1, . . . , αr, 1
β1, . . . , βs

;x

]
,

which has a finite positive radius of convergence if and only if r = s. Hence, in the rest of
this section, we assume that r = s.

We say that Fα,β is factorial if there exists a non-zero rational constant C and tuples
of positive integers e = (e1, . . . , eu) and f = (f1, . . . , fv) such that

Fα,β(Cx) =
∞∑
n=0

(e1n)!(e2n)! · · · (eun)!

(f1n)!(f2n)! · · · (fvn)!
xn. (1.7)

Because r = s, we necessarily have
∑

j ej =
∑

j fj; this property will be implicit below.
We shall denote the series on the right hand side of (1.7) by Fe,f (x) and we also set

Qe,f (n) :=
(e1n)!(e2n)! · · · (eun)!

(f1n)!(f2n)! · · · (fvn)!
.

The series Fα,β is factorial if and only if α and β are R-partitioned in the sense of [15,
§7], see Section 4 for more details.

According to Zagier [31, p. 757], Golyshev has predicted, based on an argument about
extensions of motives, that

ye,f (x) := exp

∫
Fe,f (x)

x
dx = x exp

( ∞∑
n=1

Qe,f (n)

n
xn
)

is always algebraic over Q(x) when Fe,f is itself algebraic over Q(x). He has also predicted
that ye,f ∈ Q(x, Fe,f ) and that ye,f is an algebraic unit over Z[1/x].

By ad hoc explicit computations, Zagier proved in [31, pp. 757-759] that Golyshev’s
predictions (3) hold when Qe,f (n) is one of(

en

fn

)
,

(6n)!n!

(3n)!(2n)!2
or

(10n)!n!

(5n)!(4n)!(2n)!
,

with e ≥ f ≥ 1. Zagier also mentionned that Bloch had sketched to him a proof when
the algebraic curve defined by Fe,f (x) is rational, but that the general case seemed to be

3Zagier did not explicitely prove that ye,f ∈ Q(x, Fe,f ), but the indications he gave on the degrees of
ye,f and Fe,f prove this fact in the cases he considered, using the fourth remark made after Theorem 1.
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open. In passing, let us mention that the algebraicity of the function ye,f associated to(
en
fn

)
naturally appears in subjects pertaining to physics; see for instance [14, §1, Eq. (1.2)]

and [22, §7.5].
By characterizing the globally bounded hypergeometric series with rational parameters

having the Gauss property, we prove that the first part of Golyshev’s predictions are true
and optimal within the class of algebraic hypergeometric series with rational parameters.

Theorem 2. Let α and β be tuples of parameters in Q \ Z≤0 such that Fα,β is algebraic
over Q(x). Then the function

exp

∫
Fα,β(x)

x
dx

is algebraic over Q(x) if and only if Fα,β is factorial.

Remarks. Let us make two comments on the last part of Golyshev’s predictions.
• In the algebraic and factorial case, by the remarks that follows Theorem 1, Fe,f ∈

Q(x, ye,f ) and there exists a positive integer m such that yme,f ∈ Q(x, Fe,f ). According to
Zagier, Golyshev has predicted that m = 1 and that ye,f is a unit over Z[1/x]. In particular,
it would follow that ye,f and Fe,f are algebraic functions of the same degree over Q(x).
•We observe that in very similar but not exactly hypergeometric situations, none would

be true. Consider for instance f(x) = 1 + x
2(1−x) : we have

exp

∫
f(x)

x
dx =

x√
1− x

/∈ Q(x, f) = Q(x)

and it is not an integer over Z[1/x] because its minimal polynomial is (1−x)T 2−x2. This
example shows that, if true, the remaining parts of Golyshev’s predictions are probably
quite specific to algebraic hypergeometric series, and also that a proof of them could not
be based only on the fact that the analytic continuations of such series have exactly one
finite singularity.

When Fα,β is algebraic over Q(x) but not factorial, Theorem 2 shows that

yα,β := exp

∫
Fα,β(x)

x
dx

is transcendental over Q(x). But it turns out that the interlacing criterion of Beukers
and Heckman [7] naturally produces algebraic hypergeometric series associated with Fα,β

whose product of the corresponding series yα,β is always algebraic. Let us be more precise.
Let {·} stand for the fractional part function and consider the slight modification of {·}
given, for all real numbers x, by 〈x〉 = {x} if x is not an integer and 1 otherwise (instead
of 0). We define 〈·〉 on tuples component-wise, that is 〈(α1, . . . , αr)〉 = (〈α1〉, . . . , 〈αr〉).

Theorem 3. Let α and β be disjoint tuples of rational numbers in (0, 1] such that Fα,β

is algebraic over Q(x). Let d ≥ 1 be the least common multiple of the exact denominators
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of the αi’s and βj’s. Then the function

d∏
k=1

gcd(k,d)=1

exp

∫ F〈kα〉,〈kβ〉(x)

x
dx (1.8)

is algebraic over Q(x).

Remarks. Let us make few remarks on Theorem 3.
•When Fα,β is factorial, then for every k ∈ {1, . . . , d} coprime to d, we have 〈kα〉 = α

and 〈kβ〉 = β so that each term of the product (1.8) is equal to yα,β. It follows that when
Fα,β is algebraic and factorial, then Theorem 3 also gives the conclusion of Theorem 2:
yα,β is algebraic over Q(x).
• A contrario, when F〈α〉,〈β〉 is not factorial, then none of the F〈kα〉,〈kβ〉’s is factorial.

But as explained in Section 4.2, the interlacing criterion of Beukers and Heckman gives
that, for every k ∈ {1, . . . , d} coprime to d, fk := F〈kα〉,〈kβ〉 is algebraic over Q(x). By
Theorem 2, each yk := exp

∫
fk is transcendental over Q(x). It turns out, by Theorem 3,

that the product of the yk’s is algebraic over Q(x).
• The series Fkα,kβ are also algebraic over Q(x) but the normalization of the parameters

in (0, 1] done by 〈·〉 is useful (if not necessary) to obtain the Gauss property for the sum
of the fk’s.

Theorems 2 and 3 relie on our criterion Theorem 1 and the following characterization
of globally bounded hypergeometric series with rational parameters which have the Gauss
property.

Theorem 4. Let Fα,β be a globally bounded hypergeometric series. Then Fα,β has the
Gauss property if and only if it is factorial. Furthermore, in the latter case, if Fα,β(Cx) =
Fe,f (x) for some non-zero C ∈ Q, then Fe,f satisfies Gauss congruences for all prime
numbers p.

Let us discuss two examples to illustrate the above theorems.

• The sequence of coefficients

Qe,f (n) =
(30n)!n!

(15n)!(10n)!(6n)!
∈ Z

was used by Chebyshev in his work on the distribution of prime numbers. According to
Rodriguez-Villegas [27], they define an algebraic hypergeometric series Fe,f with a surpris-
ingly large degree over Q(x): 483, 840. By Theorem 2, the function

exp

∫
Fe,f (x)

x
dx

is also algebraic over Q(x). We do not know its degree over Q(x) but according to Goly-
shev’s prediction, it is also 483, 840.

8



• Let α and β be such that

Fα,β(x) =
∞∑
n=0

(1/4)n(11/12)n
(1/2)nn!

xn.

The interlacing criterion of Beukers and Heckman amounts to comparing the elements of
〈kα〉 and 〈kβ〉 for every k ∈ {1, . . . 12} coprime to 12, that is k = 1, 5, 7 or 11. The
interlacing condition is easily verified and we obtain four algebraic hypergeometric series:
f1, f5, f7 and f11 which are respectively defined by their Taylor coefficients:

(1/4)n(11/12)n
(1/2)nn!

,
(1/4)n(7/12)n

(1/2)nn!
,

(5/12)n(3/4)n
(1/2)nn!

and
(1/12)n(3/4)n

(1/2)nn!
.

Since none of those series is factorial, Theorem 2 implies that, for all i ∈ {1, 5, 7, 11}, the
function

yi(x) = exp

∫
fi(x)

x
dx

is transcendental over Q(x). But Theorem 3 shows that the product y1y5y7y11 is algebraic
over Q(x).

Acknowledgements. Both authors have partially been funded by the ANR project De
Rerum Natura (ANR-19-CE40-0018) for this research. The first author has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No 648132.

2 Applications of Theorem 1

We give three further applications of Theorem 1 in three different directions.
First, we show that diagonals of rational fractions provide a wide variety of examples of

algebraic series η with the Gauss property, then leading, by Theorem 1, to the algebraicity
of y = exp

∫
η.

Secondly, we use Theorem 1 in combination with the work of Banderier and Flajolet [5]
to prove that the numbers of directed two-dimensional bridges satisfy Gauss congruences
for all prime p.

Finally, we derive from Theorem 1 a necessary condition for the equation y′ = ηy to
admit a non-trivial algebraic solution when η has a Puiseux expansion at the origin with
coefficients in a quadratic number field.

2.1 Diagonals of rational fractions

We present a way to produce examples of algebraic functions η in Q((x)) such that y is
also algebraic: when η is the diagonal of a bivariate rational fraction. To that end, for
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every positive integers r and s, we consider the diagonal operator ∆r,s defined for every
bivariate series f(x, z) =

∑
n,m≥−1 an,mx

nzm ∈ (xz)−1C[[x, z]] by

∆r,s(f)(x) :=
∞∑

n=−1

arn,snx
n,

where arn,sn = 0 if either rn < −1 or sn < −1. When r = s = 1, the operator preserves
only the coefficients on the main diagonal and we simply write ∆ for ∆1,1.

By a result of Furstenberg [20], diagonals of bivariate rational fractions are algebraic.
In particular, if f(x, z) ∈ Q(x, z) admits an expansion in (xz)−1Q[[x, z]], then its corre-
sponding diagonal ∆(f) is algebraic over Q(x).

Another related way to produce algebraic series was found earlier by Pólya [25]: if ϕ
and ψ are algebraic functions regular at the origin, then

f(x, z) :=
ψ(z)

1− xϕ(z)
(2.1)

admits an expansion as a bivariate power series and, for every positive integers r and s,
∆r,s(f) is algebraic. We will use this result in the particular case when both ϕ and ψ are
rational functions.

Let f(x, z) be a bivariate rational fraction in (xz)−1Q[[x, z]], and r, s two positive
integers such that

η(x) := ∆r,s(R)(x) =
∞∑
n=0

anx
n−1

is algebraic. By Theorem 1, y := exp
∫
η is also algebraic if and only if (an)n≥0 has the

Gauss property. To study when does the latter occur, we follow [8] and extend Definition 1
of Gauss congruences to several variables.

Definition 2. Let p be a prime number. We say that a family (an)n∈Zk of rational numbers
satisfies Gauss congruences for the prime p if amps+1 − amps ∈ ps+1Z(p) for all m ∈ Zk and
all s ∈ Z≥0.

We retrieve Definition 1 by setting k = 1. When a family satisfies Gauss congruences
for almost all prime p, we also say that it has the Gauss property.

We shall consider Gauss congruences for rational fractions below and they have to be
understood as follows. As explained in [8, Section 2], a rational fraction f = P/Q has
Laurent series associated with each vertex of the Newton polytope (4) of Q. It is proved in
[8, Proposition 3.4] that one of these Laurent series has the Gauss property if and only if
all Laurent series have the Gauss property. In this case, we also say that f has the Gauss
property.

4If f(x) =
∑k

i=1 fix
αi is a Laurent polynomial in x1, . . . , xn with fi ∈ Q for all i, where we use the

vector notation xe = xe11 · · ·xenn , then the The Newton polytope ∆ ⊂ Rn of f is the convex hull of its
support {αi : fi 6= 0}.
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Gauss congruences are stable by any diagonalization ∆r,s. That is, if (an,m)(n,m)∈Z2 has
the Gauss property then it is also the case for (arn,sn)n∈Z. Hence we are interested in Gauss
congruences for multivariate rational fractions. The following two recent results produce
examples of rational fractions with the Gauss property.

Theorem B (Beukers–Houben–Straub [8]). Let m ≤ n and let f1, . . . , fm ∈ Q(x) be
non-zero. Then the rational fraction

x1 · · ·xm
f1 · · · fm

det

(
∂fj
∂xi

)
1≤i,j≤m

has the Gauss property.

Theorem C (Beukers–Vlasenko [9]). Let f be a Laurent polynomial with integer coeffi-
cients such that lattice points in its Newton polytope ∆ ⊂ Rn are vertices. Let g be a
Laurent polynomial with integer coefficients and support in ∆. Then g/f has the Gauss
property.

Applying Theorems B and C with dimension n = 2 produces bivariate rational fractions
with the Gauss property. Then taking their principal diagonal and applying the result of
Furstenberg together with Theorem 1, we obtain algebraic functions η such that y is also
algebraic. For example, the central Delannoy numbers

D(n) =
n∑
k=0

(
n

k

)(
n+ k

k

)
,

are the numbers of S-walks from (0, 0) to (n, n) with steps S = {(1, 0), (0, 1), (1, 1)} (see
Section 2.2 for a definition). They are also given by the algebraic diagonal

∞∑
n=0

D(n)xn = ∆

(
1

1− x− y − xy

)
=

1√
1− 6x+ x2

.

By Theorem C, the sequence (D(n))n≥0 has the Gauss property, so that

y(x) = x exp

∫ x

0

(
1√

1− 6t+ t2
− 1

)
dt

t

is also algebraic. Of course, this could be checked directly without first proving that
(D(n))n≥0 has the Gauss property, because an antiderivative of the integrand is

−arctanh
(
(1− 3x)/

√
1− 6x+ x2

)
− log(x).

But this example illustrates the possibilities and is reminiscent of that of directed two-
dimensional walks, that we briefly describe below.
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2.2 Directed two-dimensional walks

Fix a finite set of vectors S = {(a1, b1), . . . , (am, bm)}. A S-walk is a sequence v =
(v1, . . . , vn) such that each vj ∈ S. The geometric realization of a walk (v1, . . . , vn) is
the sequence of points (P0, P1, . . . , Pn) such that P0 = (0, 0) and Pj = Pj−1 + vj. The
integer n is referred to as the size of the walk. In the rest of this section, we assume
that a1 = · · · = am = 1. In this case, S is said simple and a S-walk is a directed
two-dimensional lattice path.

A bridge is a walk whose end-point Pn lies on the x-axis. An excursion is a bridge
that lies in the quarter plane Z≥0 × Z≥0. We set B(x), respectively E(x), the generating
function of the number of bridges, respectively of excursions. That is

B(x) :=
∞∑
n=0

Bnx
n and E(x) :=

∞∑
n=0

Enx
n,

where Bn and En are respectively the numbers of bridges and excursions of size n (in this
simple case the size is equal to the length of a walk).

Banderier and Flajolet [5] proved that B and E are algebraic series over Q(x) satisfying

E ′(x) =
B(x)− 1

x
E(x).

By a direct application of Theorem 1, we obtain that the sequence of the number of bridges
satisfies Gauss congruences for all prime p.

Proposition 1. For all prime numbers p and every non-negative integers m and s, we
have

Bmps+1 ≡ Bmps mod ps+1.

Banderier and Flajolet also gave in [5] an expression for B as the diagonal of a rational
fraction. To state this result, we introduce the characteristic polynomial of S which is the
Laurent polynomial P (z) :=

∑m
i=1 z

bi . We write c for the integer such that zcP (z) is a
polynomial with constant term 1. We assume that c ≥ 1, otherwise there is no bridge nor
excursion. Then B is the diagonal ∆1,c of the rational fraction

1

1− xzcP (z)
∈ Q[[x, z]]. (2.2)

The algebraicity of B follows by the above result of Pólya. But Theorem C of Beukers and
Vlasenko does not apply when 3 or more steps are allowed in S. Indeed, in this case, the
Newton polytope of 1− xzcP (z) contains at least one lattice point which is not a vertice.

2.3 Abel’s problem over quadratic number fields

It is natural to wonder to which extent Theorem 1 can be generalized to algebraic functions
η with Puiseux coefficients in a number field. When the number field is quadratic, the

12



following proposition gives a necessary condition for the equation y′ = ηy to admit a
non-trivial algebraic solution; it is in fact a consequence of Theorem 1 itself.

In this section, we fix a rational number r such that
√
r /∈ Q. We write K := Q(

√
r)

and we consider an algebraic function

η(x) :=
∞∑
n=0

(an + bn
√
r)xn−1 ∈ K((x)),

where (an)n≥0 and (bn)n≥0 are both sequences of rational numbers.

Proposition 2. With the above notations, if the equation y′ = ηy admits a non-trivial
algebraic solution, then (an)n≥0 has the Gauss property, while (bn)n≥0 does not have it
provided bn 6= 0 for at least one n. The converse property does not hold.

In the setting of Proposition 2, let us further assume that an 6= 0 for at least one n as
well. Then a consequence of the proposition is the following: if y′ = ηy admits a non-trivial
algebraic solution, then y′ =

√
rηy does not admit any.

Proof. Set ρ :=
√
r and ω(x) :=

∑∞
n=0(an − bn

√
r)xn−1 ∈ K((x)). The functions η and ω

are both algebraic over K(x) and the equations y′ = ηy and y′ = ωy both admit algebraic
solutions given by y1 := exp

∫
η and y2 := exp

∫
ω. Indeed, the algebraicity of ω and y2 is

a consequence of that of η and y1, and of the fact that −
√
r is Galois conjugated to

√
r.

Note that the algebraic functions

η + ω

2
=
∞∑
n=0

anx
n−1 and

η − ω
2ρ

=
∞∑
n=0

bnx
n−1

are both in Q((x)). Clearly,

y3 :=
√
y1y2 = xa0 exp

( ∞∑
n=1

an
n
xn
)

and y4 :=
√
y1/y2 = xb0ρ exp

(
ρ
∞∑
n=1

bn
n
xn
)

are also algebraic (and this forces b0 = 0). Let y5 := y
1/ρ
4 = exp(

∑∞
n=1 bnx

n/n): if bn 6= 0
for at least one n, this function is not algebraic because ρ /∈ Q and y4 6= 1.

Now, y3 is an algebraic solution of y′ = 1
2
(η + ω)y, hence by Theorem 1, the sequence

(an)n≥0 has the Gauss property. On the other hand, if bn 6= 0 for at least one n, then y5
is a transcendental solution of y′ = 1

2ρ
(η − ω)y, hence by Theorem 1 again, the sequence

(bn)n≥0 does not have the Gauss property.

Let us now prove with an example that the converse property is not true. For instance,
the algebraic function η(x) :=

√
2 =

∑∞
n=0(an + bn

√
2)xn−1 is such that (an)n≥0 has the

Gauss property, (bn)n≥0 does not have it but the general solution of y′ = ηy given by
y = c exp(

√
2x) (c ∈ C) is algebraic only when c = 0.

We don’t know if it is possible to completely generalize Proposition 2 to other number
fields than Q(

√
r) because the rationality of the coefficients of η and ω in the linear com-

binations (η + ω)/2 and (η − ω)/2 (ensuring that y3 and y4 are algebraic) is crucial in our
argument.
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3 Proof of the arithmetic criterion

This section is devoted to the proof of Theorem 1.

3.1 The Dieudonné-Dwork Lemma

A fundamental tool for studying arithmetic properties of exponentials is the following.

Lemma 1 (Dieudonné-Dwork). Let F (x) ∈ 1 + xQ[[x]] and p a prime number. Then
F (x) ∈ 1 + xZ(p)[[x]] if and only if F (xp)/F (x)p ∈ 1 + pxZ(p)[[x]].

In our context, we aim at studying g(x) = exp(s(x)) where s(x) ∈ xQ[[x]] and this
lemma says

Corollary 3. Let s(x) ∈ xQ[[x]] and p a prime number. Then exp(s(x)) ∈ 1 + xZ(p)[[x]]
if and only if s(xp)− ps(x) ∈ pxZ(p)[[x]].

This lemma is a particular case of [17, Lemma 1], another proof of which can be found
in [6].

3.2 Proof of Theorem 1

By the comments made after Corollary 2 in the Introduction, we can assume without loss
of generality that δ = 0, so that η admits a rational Puiseux expansion at 0.

Let η and y be two non-zero algebraic functions over C(x) satisfying y′ = ηy. By
the Newton-Puiseux theorem [28, p. 68, Proposition 8], y admits a convergent Puiseux
expansion in a slit disk of center 0:

y(x) =
∞∑
n=r

bnx
n/d = xr/d

∞∑
n=0

bn+rx
n/d ∈ C((x1/d)),

for some integers r and d ≥ 1 and with br non-zero. On this disk, we also have

y′(x) =
1

d

∞∑
n=r

nbnx
n/d−1 =

xr/d−1

d

∞∑
n=0

(n+ r)bn+rx
n/d.

It follows that η = y′/y admits a Puiseux expansion of the form

η(x) =
∞∑
n=0

anx
n/d−1 ∈ C((x1/d)). (3.1)

Since by assumption the Puiseux coefficients of η are rational numbers, the an are in Q
and η is in fact algebraic over Q(x).
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It remains to prove the arithmetic criterion for the sequence (an)n≥0. We write

y(x) := xa0 exp

(
d

∞∑
n=1

an
n
xn/d

)
=: xa0g(x),

which is a posteriori in xa0Q[[x1/d]]. As mentioned above, y is algebraic over C(x) if and
only if g is too, and when they are algebraic they are in fact over Q(x). We write

f(x) :=
∞∑
n=1

anx
n/d−1 and F (x) := d

∞∑
n=1

an
n
xn/d,

so that g = exp(F ) and g′ = fg. Since η is algebraic over Q(x), f(x) = η(x)− a0/x is too.

We prove Theorem 1 in three steps. First we prove the theorem when f belongs to
Z[[x]]. Then we use this result to prove the case when f ∈ Q[[x]], which is the d = 1 case.
Finally, we use the latter result to prove the general case, i.e. when f admits a Puiseux
expansion f ∈ Q((x1/d)) for some d ≥ 1.

3.2.1 When f ∈ Z[[x]]

In this section we assume that d = 1 and that the sequence (an)n≥1 is integer-valued and
we prove Theorem 1 in this particular case, that is: y is algebraic over Q(x) if and only if
(an)n≥0 has the Gauss property.

Proof of the if part. We assume that (an)n≥0 has the Gauss property and show that y is
algebraic over Q(x). We prove this implication in two steps. First we show that there
exists a positive integer λ such that g(λx) ∈ Z[[x]]. Then we apply a result of Chudnovsky
and Chudnovsky to conclude.

The sequence (an)n≥0 satisfies Gauss congruences for all prime numbers p ≥ N , for some
integer N . By Corollary 3, the assertion g ∈ 1 + xZ(p)[[x]] is equivalent to the assertion
F (xp) − pF (x) ∈ pxZ(p)[[x]]. This in turn is equivalent to the two following assertions
together:

∀n ∈ N∗ : p - n⇒ pan
n
∈ pZ(p), (3.2)

∀n ∈ N∗ :
an − anp

n
∈ pZ(p). (3.3)

In our situation, (3.2) holds because 1/n ∈ Z(p) when p - n and an ∈ Z, and (3.3) holds as
well for p ≥ N by assumption. Therefore, g ∈ Z(p)[[x]] for all p ≥ N .

Moreover, we have

g(x) = exp
(
F (x)

)
=
∞∑
k=0

1

k!

(
∞∑
n=1

an
n
xn

)k

= 1 +
∞∑
n=1

σnx
n,
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where

σn :=
n∑
k=1

1

k!

∑
m1+···+mk=n

mj≥1

am1am2 · · · amk

m1m2 · · ·mk

.

We have m1m2 · · ·mk | n! for all integers m1, . . . ,mk ∈ {1, . . . , n} such that
∑k

j=1mj = n
because

n!

m1m2 · · ·mk

=
(m1 + · · ·+mk)!

m1! · · ·mk!
· (m1 − 1)! · · · (mk − 1)! ∈ Z.

Consequently, for all n ≥ 1, n!2σn ∈ Z because am ∈ Z for all m ≥ 1. For all primes p and
all n ≥ 1, we have

vp
(
n!2
)

= 2
∞∑
k=1

⌊
n

pk

⌋
≤ 2n

p− 1
≤ 2n,

and we deduce that p2nσn ∈ Z(p). Letting λ :=
∏

p<N p
2, it follows that g(λx) ∈ Z(p)[[x]]

for all primes p < N . Since g(x) ∈ Z(p)[[x]] for all primes p ≥ N , we conclude that
g(λx) ∈ Z[[x]].

We are now in position to apply a fundamental result due to Chudnovsky and Chud-
novsky in [12]: if h ∈ Z[[x/µ]] (for some µ ∈ Q∗) is such that h′/h is algebraic over
Q(x), then h is itself algebraic over Q(x) (see also [3, §3], as well as a generalization in [2,
pp. 123–124] where h is only assumed to be a G-function). We can apply this with h := g
and µ := λ defined above, and deduce that g is algebraic over Q(x).

Proof of the only if part. We assume that y is algebraic over Q(x) and we prove that
(an)n≥0 has the Gauss property. Since g ∈ Q[[x]] is algebraic over Q(x), there exists a posi-
tive integer λ such that g(λx) ∈ Z[[x]] by Eisenstein’s theorem. Hence, g ∈ 1+xZ(p)[[x]] for
any p that does not divide λ. By Corollary 3, this implies that F (xp)−pF (x) ∈ pxZ(p)[[x]]
for any p that does not divide λ. Hence, by (3.3), we have anp − an ∈ npZ(p) for all n ≥ 1
and any p that does not divide λ. Then (an)n≥0 has the Gauss property.

This completes the proof of Theorem 1 in the particular case f ∈ Z[[x]].

3.2.2 When f ∈ Q[[x]]

In this section we assume that d = 1 and that an ∈ Q for n ≥ 0. We prove Theorem 1 in
this particular case, that is: y is algebraic over Q(x) if and only if (an)n≥0 has the Gauss
property.

We first remark that for any integer r 6= 0, f(x) := r/(1 − rx) ∈ Z[[x]] is such that
g(x) = 1/(1− rx) ∈ Z[[x]], so that by the proven case of Theorem 1, the sequence (rn)n≥0
satisfies Gauss congruences for all prime p; this well-known generalization of Fermat’s little
theorem will be used below.
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Proof of Theorem 1 when d = 1. By Eisenstein’s theorem, there exists an integer λ ≥ 1
such that

λf(λx) =
∞∑
n=1

λnanx
n−1 ∈ Z[[x]]

and remains algebraic over Q(x). We can thus apply the proven case of Theorem 1 to

η(x) :=
a0
x

+ λf(λx) and y(x) := xa0 exp

( ∞∑
n=1

λn
an
n
xn
)
.

It follows that y is algebraic over Q(x) if and only if, for all n ≥ 0 and large enough p, we
have

λnpanp − λnan ∈ npZ(p).

Now, the algebraicity of y is equivalent to that of xa0 exp
(∑∞

n=1
an
n
xn
)
. Moreover for

any n ∈ N and any p that does not divide λ, we have

λnpanp − λnan = λnp(anp − an) + (λnp − λn)an

≡ λnp(anp − an) mod npZ(p),

because λnp − λn ∈ npZ(p) by the remark above with r = λ and an ∈ Z(p) as λnan ∈ Z.
Since λ is invertible in Z(p), we obtain the following equivalence.

λnpanp − λnan ∈ npZ(p) ⇐⇒ anp − an ∈ npZ(p).

This completes the proof of Theorem 1 in the case d = 1.

3.2.3 Proof of the general case

Now we return to the general case while assuming that there exists a positive integer d
such that

η(x) =
∞∑
n=0

anx
n/d−1 ∈ Q((x1/d)) and y(x) = xa0 exp

(
d

∞∑
n=1

an
n
xn/d

)
.

Proof of Theorem 1. The function y(x) is algebraic over Q(x) if and only if y(xd)1/d is (for
any choice of the d-th root). By applying Theorem 1 in the d = 1 case to

η̃(x) :=
∞∑
n=0

anx
n−1 and ỹ(x) := y(xd)1/d = xa0 exp

( ∞∑
n=1

an
n
xn
)
,

we obtain that y is algebraic over Q(x) if and only if (an)n≥0 has the Gauss property.
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4 The hypergeometric case

This section is devoted to the proofs of Theorems 2 and 3. By Theorem 1, this amounts
to studying Gauss congruences for hypergeometric series.

Throughout those proofs, we will make an intensive use of the notations of Section 1.3.
Furthermore, it is well-known that Fα,β is factorial if and only if α and β are tuples of
parameters in Q ∩ (0, 1] satisfying

(x− e2iπα1) · · · (x− e2iπαr)

(x− e2iπβ1) · · · (x− e2iπβs)
∈ Q(x),

which is equivalent to saying that α and β are R-partitioned in the sense of [15, §7]. In
this case, there exist tuples of positive integers e = (e1, . . . , eu) and f = (f1, . . . , fv) such
that

(x− e2iπα1) · · · (x− e2iπαr)

(x− e2iπβ1) · · · (x− e2iπβs)
=

(xe1 − 1) · · · (xeu − 1)

(xf1 − 1) · · · (xfv − 1)
.

We write |e| :=
∑u

i=1 ei and |f | :=
∑v

j=1 fj. Then we have r−s = |e|− |f | and Fα,β(Cx) =
Fe,f (x) with

C :=
ee11 · · · eeuu
f f11 · · · f

fv
v

. (4.1)

By Theorem 4 and Section 4.2.2 in [16], C is also the smallest positive rational number
such that Fα,β(Cx) ∈ Z[[x]].

4.1 Hypergeometric series and Gauss congruences

This section is devoted to the proof of Theorem 4. To that purpose, we need two lemmas on
congruences for hypergeometric terms. If α and β are tuples of non-zero rational numbers,
then we write dα,β for the least common multiple of the exact denominators of the αi’s
and βj’s.

Lemma 2. Let Fα,β be a globally bounded hypergeometric series. Let p > dα,β be a prime
number and k ∈ {1, . . . , dα,β} be such that kp ≡ 1 mod dα,β. Then, for all non-negative
integers m and s, we have

Qα,β(mps+1)−Q〈kα〉,〈kβ〉(mps) ∈ ps+1Z(p).

Proof. We write d for dα,β. Let p > d be fixed. For every α ∈ Z(p), there is a unique
element Dp(α) in Z(p) such that

pDp(α)− α ∈ {0, . . . , p− 1}.

The map α 7→ Dp(α) was used by Dwork in [18] (denoted there as α 7→ α′) to study the
p-adic valuation of Pocchammer symbols. By a result of Dwork [18, Lemma 1] applied
with a = µ = 0, if α ∈ Z(p), then for all non-negative integers m and s, we have

(α)mps+1

(Dp(α))mps
∈
(
(−p)psεps

)m (
1 + ps+1Z(p)

)
, (4.2)
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where εk = −1 if k = 2, and εk = 1 otherwise. By [16, Lemma 23] applied with ` = 1,
we have Dp(α) = 〈kα〉 where k ∈ {1, . . . , d} satisfies kp ≡ 1 mod d. Together with
Equation (4.2), it follows that

Qα,β(mps+1)

Q〈kα〉,〈kβ〉(mps)
∈ 1 + ps+1Z(p), (4.3)

where the term with εps disappeared because α and β are tuples of the same length. To
finish the proof of this lemma, it suffices to show that, for m ∈ Z≥0 and p > d, we have

Q〈kα〉,〈kβ〉(mps) ∈ Z(p). (4.4)

Let consider the total order � on R defined by

x � y ⇐⇒ (〈x〉 < 〈y〉 or (〈x〉 = 〈y〉 and x ≥ y)).

Christol proved in [11] that Fα,β is globally bounded if and only if α and β have the same
length and if, for every a ∈ {1, . . . , d} coprime to d and every x ∈ R, we have

ξα,β(a, x) := #{1 ≤ i ≤ r : aαi � x} −#{1 ≤ j ≤ r : aβj � x} ≥ 0.

Let k ∈ {1, . . . , d} coprime to d be fixed. By [16, Proposition 16], we also have
d〈kα〉,〈kβ〉 = d and, for every a ∈ {1, . . . , d} coprime to d and every x ∈ R, we have
ξ〈kα〉,〈kβ〉(a, x) ≥ 0. It follows by Christol’s criterion that F〈kα〉,〈kβ〉 is globally bounded.

Since 〈kα〉 and 〈kβ〉 are tuples of rational numbers in (0, 1], [16, Theorem 4] shows
that F〈kα〉,〈kβ〉 is a power series with coefficients in Z(p) for every prime p > d. It yields
(4.4) which, together with (4.3), gives

Qα,β(mps+1)−Q〈kα〉,〈kβ〉(mps) ∈ ps+1Z(p),

as expected.

Lemma 2 will be used to prove that a hypergeometric series has to be factorial to have
the Gauss property. This lemma is also sufficient to prove that a factorial hypergeometric
series Fα,β satisfies Gauss congruences for every prime p > dα,β. But we need the following
lemma, proved in [15, Lemme 10] (5), to prove that those congruences remain valid for
p ≤ dα,β.

Lemma 3 (Lemma 10 of [15]). Let e and f be tuples of positive integers such that |e| = |f |.
Then, for all prime numbers p, all s ∈ N, all c ∈ {0, 1, . . . , ps− 1} and all m ∈ N, we have

Qe,f (c)

Qe,f (cp)

Qe,f (cp+mps+1)

Qe,f (c+mps)
∈ 1 + ps+1Z(p).

5As essentially all p-adic congruences of this type proved till 2015 (say) in the context of “integrality
of mirror maps”, the proof of Lemma 3 uses in particular p-adic congruences for Morita p-adic Gamma
functions proved by Lang [23, Chapter 14, Section 1, Lemma 1.1]. As it appeared later, Lang’s congruences
do not hold in one case (p = 2 and s = 2) and a corrected version is given in [16, §4.4]: a minus sign must
be introduced. It turns out that Lemma 3 is still correct when p = 2 and s = 2 because this minus sign
only contributes a harmless factor (−1)

∑
ej−

∑
fj = 1 in its proof.
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Remark 1. The proof of this lemma does not require that Qe,f (n) ∈ Z for all n ≥ 0.

Proof of Theorem 4. Let Fα,β be a globally bounded hypergeometric series. We write d
for dα,β and we recall that α and β have the same length.

• First, we assume that Fα,β is factorial. Let e and f be tuples of positive integers such
that Fα,β(Cx) = Fe,f (x) with C given by (4.1). By [16, Section 4.2.2] and [16, Theorem 4],
we have Fα,β(Cx) ∈ Z[[x]] so, for every n ∈ Z≥0, we have Qe,f (n) ∈ Z. We also have
|e| = |f | because α and β have the same length so we can apply Lemma 3 with c = 0. Let
m and s be non-negative integers and p a prime number. We write Q as a shorthand for
Qe,f . We obtain that

Q(mps+1)

Q(mps)
∈ 1 + ps+1Z(p),

which yields
Q(mps+1)−Q(mps) ∈ ps+1Q(mps)Z(p) ⊂ ps+1Z(p),

because Q(n) is an integer for all n ≥ 0. It follows that Fe,f satisfy Gauss congruences for
all prime p.

• Conversely, assume that Fα,β has the Gauss property. By definition, there exists a
constant c > d such that, for every prime p > c and all non-negative integers m and s, we
have

Qα,β(mps+1)−Qα,β(mps) ∈ ps+1Z(p). (4.5)

But, by Lemma 2, we also have

Qα,β(mps+1)−Q〈kα〉,〈kβ〉(mps) ∈ ps+1Z(p), (4.6)

where k ∈ {1, . . . , d} satisfies kp ≡ 1 mod d. Let a and k in {1, . . . , d} be such that ka ≡ 1
mod d. By subtracting Congruences (4.5) and (4.6) with s = 0, we obtain that, for every
prime p > c satisfying p ≡ a mod d and all non-negative integers m, we have

Qα,β(m)−Q〈kα〉,〈kβ〉(m) ∈ pZ(p).

By Dirichlet’s theorem, there are infinitely many prime numbers p > c satisfying p ≡ a
mod d so, for every m ∈ Z≥0, we have

Qα,β(m) = Q〈kα〉,〈kβ〉(m), (4.7)

this equation being valid for every k ∈ {1, . . . , d} coprime to d.
By [15, Proposition 1], Equation (4.7) implies that for every k ∈ {1, . . . , d} coprime

to d, we have α = 〈kα〉 and β = 〈kβ〉 up to a permutation within the tuples. In particular,
α and β are tuples of elements in (0, 1] and the polynomials

r∏
j=1

(
X − e2πiαj

)
and

r∏
j=1

(
X − e2πiβj

)
are left invariant by the action of every Galois automorphism σ ∈ Gal(Q/Q). Hence those
polynomials have integer coefficients and Fα,β is factorial.
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4.2 Abel’s problem for hypergeometric series

In this section, we prove Theorems 2 and 3. The combination of Theorems 1 and 4 easily
gives Theorem 2 as follows.

Proof of Theorem 2. Let α and β be tuples of parameters in Q \ Z≥0 such that Fα,β is
algebraic over Q(x). By Theorem 1, the function

exp

∫
Fα,β(x)

x
dx

is algebraic over Q(x) if and only if Fα,β has the Gauss property. Since Fα,β is algebraic,
it is globally bounded by Eisenstein’s theorem. Now Theorem 4 shows that Fα,β has the
Gauss property if and only if it is factorial, which ends the proof of Theorem 2.

Before proving Theorem 3, we recall the interlacing criterion of Beukers and Heckman.

Definition 3. Let aj = exp(2πiαj) and bj = exp(2πiβj), 1 ≤ j ≤ r, be two sets of numbers
on the unit circle in C. Suppose 0 ≤ α1 ≤ · · · ≤ αr < 1 and 0 ≤ β1 ≤ · · · ≤ βr < 1.
We say that the sets {a1, . . . , ar} and {b1, . . . , br} interlace on the unit circle if and only if
either

α1 < β1 < α2 < β2 < · · · < αr < βr or β1 < α1 < β2 < α2 < · · · < βr < αr.

Let α = (α1, . . . , αr) and β = (β1, . . . , βr) be tuples of rational numbers in (0, 1] such
that αi 6= βj for all i and j. Let d be the common denominator of the αi’s and βj’s and
write aj := exp(2πiαj) and bj := exp(2πiβj) for all j. By the criterion of Beukers and
Heckman [7, Theorem 4.8], the hypergeometric series Fα,β is algebraic over Q(x) if and
only if, for every k ∈ {1, . . . , d} coprime to d, the sets {ak1, . . . , akr} and {bk1, . . . , bkr} interlace
on the unit circle.

Proof of Theorem 3. Let α and β be disjoint tuples of rational parameters in (0, 1] such
that Fα,β is algebraic over Q(x). We write d for dα,β. For every k ∈ {1, . . . , d} coprime to
d, the tuples 〈kα〉 and 〈kβ〉 are disjoint and, by the above interlacing criterion, F〈kα〉,〈kβ〉
is algebraic over Q(x) and de facto globally bounded. Write

f :=
d∑

k=1
gcd(k,d)=1

F〈kα〉,〈kβ〉 and Q(n) :=
d∑

k=1
gcd(k,d)=1

Q〈kα〉,〈kβ〉(n).

It follows that f is algebraic over Q(x). By Lemma 2 applied with 〈kα〉 and 〈kβ〉 instead
of α and β respectively, we obtain that, for every prime p > d and all non-negative integers
m and s, we have

Q〈kα〉,〈kβ〉(mps+1)−Q〈a〈kα〉〉,〈a〈kβ〉〉(mps) ∈ ps+1Z(p), (4.8)
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where a ∈ {1, . . . , d} is such that ap ≡ 1 mod d. Since 〈a〈kα〉〉 = 〈akα〉 = 〈bα〉 for
b ∈ {1, . . . , d} satisfying ak ≡ b mod d, we have

d∑
k=1

gcd(k,d)=1

Q〈a〈kα〉〉,〈a〈kβ〉〉(n) =
d∑
b=1

gcd(b,d)=1

Q〈bα〉,〈bβ〉(n) = Q(n).

Together with (4.8), we obtain, that for every prime p > d and all non-negative integers
m and s, we have

Q(mps+1)−Q(mps) ∈ ps+1Z(p).

Hence f has the Gauss property. By Theorem 1, it follows that

exp

∫
f(x)

x
dx

is algebraic over Q(x) and Theorem 3 is proved.
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Éric Delaygue, Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard
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