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For sums Sn = n k=1 X k , n ≥ 1 of independent random variables X k taking values in Z we prove, as a consequence of a more general result, that if (i) For some function 1 ≤ φ(t) ↑ ∞ as t → ∞, and some constant C, we have for all n and ν ∈ Z,

then (ii) There exists a numerical constant C1, such that for all n such that Bn ≥ 6, all h ≥ 2, and µ = 0, 1, . . . , h -1,

P Sn ≡ µ (mod h) - 1 h ≤ 1 √
2π Bn + 1 + 2C/h φ(Bn) 2/3 + C1 e -(1/16)φ(Bn) 2/3 .

Assumption (i) holds if a local limit theorem in the usual form is applicable, and (ii) yields a strenghtening of Rozanov's necessary condition. Assume in place of (i) that ϑj = k∈Z P{Xj = k}∧P{Xj = k+1} > 0, for each j and that νn = n j=1 ϑj ↑ ∞. We prove strenghtened forms of the asymptotic uniform distribution property. (iii) Let α > α > 0, 0 < ε < 1. Then for each n such that (iv) Let 0 < ρ < 1 and 0 < ε < 1. The sharper uniform bound 2e -2 2 νn + e -((1-)νn) ρ is also proved (for a corresponding d-region of divisors), for each n such that

|x| ≤ 1 2 2 ((1 -)νn) 1-ρ 1/2 ⇒ sin x x ≥ √ 1 -ε.
1. Local limit theorem and asymptotic uniform distribution.

Let X = {X i , i ≥ 1} be a sequence of independent variables taking values in Z, and let S n = n k=1 X k , for each n. The sequence X is said to be asymptotically uniformly distributed with respect to lattices of span d, in short a.u.d.(d), if for m = 0, 1, . . . , d -1, we have Equivalenty for m = 0, 1, . . . , d -1, we have

(1.2) lim n→∞ P{d|S n -m} = 1 d .
The sequence X is asymptotically uniformly distributed, in short a.u.d., if (1.1) holds true for any d ≥ 2 and m = 0, 1, . . . , d -1.

Dvoretsky and Wolfowitz [START_REF] Dvoretsky | Sums of random integers reduced mod m[END_REF] proved the following characterization. Assume that X is composed with independent random variables taking only the values 0, 1, . . . , h -1.

In order that the partial sums {S n , n ≥ 1} be a.u.d.(h), it is necessary and sufficient that This notion plays an important role in the study of the local limit theorem. Let us assume that the random variables X k take values in a common lattice L(v 0 , D), namely defined by the sequence v k = v 0 + Dk, k ∈ Z, v 0 and D > 0 being reals, and are square integrable, and let (1.5) M n = E S n , B 2 n = Var(S n ) → ∞.

We say that the local limit theorem (in the usual form) is applicable to X if

(1.6) sup N =v 0 n+Dk B n P{S n = N } - D √ 2π e - (N -Mn) 2 2B 2 n = o(1), n → ∞.
When the random variables X i are identically distributed, (1.6) reduces to (1.7) sup

N =v 0 n+Dk σ √ n P{S n = N } - D √ 2π e -(N -nµ) 2 2nσ 2 = o(1)
,

where µ = E X 1 , σ 2 = Var(X 1 )
. By Gnedenko's Theorem [START_REF] Gnedenko | On a local limit theorem in the theory of probability[END_REF], see also [START_REF] Petrov | Sums of Independent Random Variables[END_REF], p. 187, [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF], Th. 1.4, (1.7) holds if and only if the span D is maximal (there are no other real numbers v 0 and D > D for which P{X ∈ L(v 0 , D )} = 1). Note that the transformation (1.8)

X j = X j -v 0 D ,
allows one to reduce to the case v 0 = 0, D = 1.

Remark 1.1. Note that the series (in k)

(1.9)

N =v 0 n+Dk P{S n = N } - D √ 2πB n e - (N -Mn) 2 2B 2 n
, is obviously convergent, whereas nothing can be deduced concerning its order from the very definition of the local limit theorem. Further by using Poisson summation formula the series associated to the second summand verifies (1.10)

N =v 0 n+Dk D √ 2πB n e - (N -Mn) 2 2B 2 n = ∈Z e 2iπ { v 0 n-Mn D }- 2π 2 2 B 2 n D 2
, and so is 1 + O(D/B n ), whereas the one associated to the first is 1. Therefore (1.11)

N =v 0 n+Dk P{S n = N } - D √ 2πB n e - (N -Mn) 2 2B 2 n = O(D/B n ).
When a strong local limit theorem with convergence in variation holds we have the more informative result (1.12) lim

n→∞ N =v 0 n+Dk P{S n = N } - D √ 2πB n e - (N -Mn) 2 2B 2 n = 0.
The following result is well-known.

Theorem 1.2 (Rozanov). Let X = {X i , i ≥ 1} be a sequence of independent variables taking values in Z, and let S n = n k=1 X k , for each n. The local limit theorem is applicable to X only if X satisfies the a.u.d. property.

Remark 1.3. In Petrov [START_REF] Petrov | Sums of Independent Random Variables[END_REF], Lemma 1,p. 194, also in Rozanov's [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF] Lemma 1, p. 261, Theorem 1.2 is stated under the assumption that a local limit theorem in the strong form holds, which is not necessary.

We will in fact prove the following stronger result providing an explicit link between the local limit theorem and the a.u.d. property, through a quantitative estimate of the difference P{S n ≡ m (mod h)} -1/h. Theorem 1.4. Let X = {X i , i ≥ 1} be a sequence of independent variables taking values in Z, and let S n = n k=1 X k , for each n. Assume that for some function 1 ≤ φ(t) ↑ ∞ as t → ∞, and some constant C, we have for all n (1.13) sup m∈Z

B n P S n = m - 1 √ 2π e - (m-Mn) 2 2B 2 n ≤ C φ(B n ) .
Then there exists a numerical constant C 1 , such that for all 0 < ε ≤ 1, all n such that B n ≥ 6, and all h ≥ 2, sup µ=0,1,...,h-1 Proof. By assumption,

P S n ≡ µ (mod h) - 1 h ≤ 1 √ 2π B n + 2C h √ ε φ(B n ) + P |S n -M n | B n > 1 √ ε + C 1 e -1/(16ε
P S n ≡ µ (mod h) - 1 h ≤ H n , (1.14) with H n = 1 √ 2π B n + 1 + 2C/h φ(B n ) 2/3 + C 1 e -(1/16)φ(Bn)
B n P S n = m - 1 √ 2π e - (m-Mn) 2 2B 2 n ≤ C φ(B n ) ,
for all m and n. Let ε > 0. We have

P S n ≡ m (mod h) - |k-Mn|≤Bn/ √ ε k≡m (h) P S n = k} ≤ P |S n -M n | B n > 1 √ ε , |k-Mn|≤Bn/ √ ε k≡m (h) P S n = k}- 1 √ 2πB n |k-Mn|≤Bn/ √ ε k≡m (h) e - (k-Mn) 2 2B 2 n ≤ C B n φ(B n ) |k-Mn|≤Bn/ √ ε k≡m (h) 1 ≤ 2C h √ ε φ(B n ) .
Letting z n = M n , we have

k∈Z |k-Mn|>Bn/ √ ε e - (k-Mn) 2 2B 2 n ≤ Z∈Z |Z-zn|>Bn/ √ ε e - (Z-zn) 2 2B 2 n . Now using the elementary inequality (a + b) 2 ≤ 2(a 2 + b 2 ) for reals a, b, we have |Z -z n | ≤ √ 2(|Z| + |z n |) and |Z -z n | 2 ≥ |Z| 2 /2 -z 2 n .
We can thus continue as follows

≤ Z∈Z √ 2(|Z|+|zn|)>Bn/ √ ε e - (Z-zn) 2 2B 2 n ≤ e 1 2B 2 n Z∈Z |Z|>(Bn/ √ 2ε)-1 e -Z 2 4B 2 n . Assume that B n ≥ max(1/ √ 2, 4 √ 2ε), then Bn √ 2ε -2 ≥ Bn 2 √
2ε . In particular |Z| ≥ 1 in the previous series, and so we have the estimates

≤ 2 e 1 2B 2 n Z>(Bn/2 √ 2ε)+1 e -Z 2 4B 2 n ≤ 2 e Z>(Bn/2 √ 2ε)+1 Z Z-1 e -t 2 4B 2 n dt ≤ 2 e ∞ Bn/2 √ 2ε e -t 2 4B 2 n dt (t = √ 2B n u) = 2 √ 2eB n ∞ 1/4 √ ε e -u 2 2 du ≤ 2 √ 2eB n π 2 e -1/(16ε) = 2e √ πB n e -1/(16ε) , since e x 2 /2 ∞ x e -t 2 /2 dt ≤ π 2 , for any x ≥ 0. Therefore P S n ≡ m (mod h) - 1 √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n ≤ P |S n -M n | B n > 1 √ ε + 2C h √ ε φ(B n ) + C 1 e -1/(16ε) , (1.16) with C 1 = 2e √ π.
Recall Poisson summation formula:

for x ∈ R, 0 ≤ δ ≤ 1, (1.17) ∈Z e -( +δ) 2 πx -1 = x 1/2 ∈Z e 2iπ δ-2 πx . Write k = m + lh, M n = M n -m, (1.18) 
(k -M n ) 2 2B 2 n = (lh -M n ) 2 2B 2 n = (l -M n /h + {M n /h}) 2 2B 2 n /h 2 = ( + {M n /h}) 2 2B 2 n /h 2 , letting = l -M n /h . By applying it with x = 2B 2 n π/h 2 , δ = {M n /h}, we get (1.19) k≡m (h) e - (k-Mn) 2 2B 2 n = ∈Z e - ( -{M n /h}) 2 2B 2 n /h 2 = √ 2πB n h ∈Z e -2iπ {M n /h}-2π 2 B 2 n 2 /h 2 . Whence (1.20) h √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n -1 ≤ | |≥1 e -2π 2 B 2 n 2 /h 2 .
But for any positive real a,

(1.21) ∞ H=1 e -aH 2 ≤ √ π 2 min( 1 √ a , 1 a ). 
Therefore

with a = 2π 2 B 2 n /h 2 , h √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n -1 ≤ √ π min( h √ 2πB n , h 2 2π 2 B 2 n ) ≤ h √ 2π B n .
We have thus obtained the explicit bound

(1.22) 1 √ 2πB n k≡m (h) e - (k-Mn) 2 2B 2 n - 1 h ≤ 1 √ 2π B n .
By carrying it back to (1.16), we get for any ε > 0, all n such that

B n ≥ max(1/ √ 2, 4 √ 2ε), and all h ≥ 2, sup µ=0,1,...,h-1 P S n ≡ µ (mod h) - 1 h ≤ 1 √ 2π B n + 2C h √ ε φ(B n ) + P |S n -M n | > B n √ ε + C 1 e -1/(16ε) . (1.23)
This is fulfilled if we choose 0 < ε ≤ 1, and n such that B n ≥ 6, whence the claimed estimate.

Local limit theorem in the strong form

There are easy examples of sequences X for which the fulfilment of the local limit theorem depends on the behavior of the first members of X. Hence it is reasonable to introduce the following definition due to Prohorov [START_REF] Prohorov | On a local limit theorem for lattice distributions[END_REF]. A local limit theorem in the strong form (or in a strengthened form) is said to be applicable to X, if a local limit theorem in the usual form is applicable to any subsequence extracted from X, which differs from X only in a finite number of members.

This definition can be made a bit more convenient, see Gamkrelidze [START_REF] Gamkrelidze | On a local limit theorem in strong sense[END_REF].

Let (2.1) S k,n = X k+1 + . . . + X k+n , A k,n = E S k,n , B 2 
k,n = Var(S k,n ). The local limit theorem in the strong form holds if and only if

(2.2) P S k,n = m = D B k,n √ 2π e - (m-A k,n ) 2 2B 2 k,n + o 1 B k,n ,
uniformly in m and every finite k, k = 0, 1, 2, . . ., as n → ∞ and B k,n → ∞.

Rozanov's necessary condition states as follows.

Theorem 2.1 ([23], Th. I). Let X = {X j , j ≥ 1} be a sequence of independent, square integrable random variables taking values in

Z. Let b 2 k = Var(X k ), B 2 n = b 2 1 + . . . + b 2 n . Assume that (2.3) B n → ∞ as n → ∞.
The following condition is necessary for the applicability of a local limit theorem in the strong form to the sequence X,

(2.4) ∞ k=1 max 0≤m<h P X k ≡ m (mod h) = 0 for any h ≥ 2.
Condition (2.4) is also sufficient in some important examples, in particular if X j have stable limit distribution, see Mitalauskas [START_REF] Mitalauskas | Local limit theorems for stable limit distributions[END_REF]. We briefly indicate how Theorem 2.1 is proved. If the local limit theorem in the strong form is applicable to the sequence X, then (2.5)

∞ k=1 P X k ≡ 0 (mod h) = ∞, for any h ≥ 2.
Indeed, otherwise given h ≥ 2, by the Borel-Cantelli lemma, on a set of measure greater than 3/4, X k ≡ 0 (mod h) for all k ≥ k 0 , say. The new sequence X defined by 

X k = 0 if k < k 0 , X k = X k unless,
P X k ≡ m (mod(h)
also appears in the study of local limit theorems with arithmetical sufficient conditions. The approaches used (Freiman, Moskvin and Yudin [START_REF] Freiman | Structural theory of set addition, and local limit theorems for independent lattice random variables[END_REF], Mitalauskas [START_REF] Mitalauskas | On multidimensional local limit theorem for lattice distributions[END_REF], Raudelyunas [START_REF] Raudelyunas | On multidimensional local limit theorem[END_REF] and later Fomin [START_REF] Fomin | An arithmetical method of proof of a local theorem for series of independent integer random vectors (in Russian)[END_REF], for instance) require the random variables to do not overly much concentrate in a particular residue class m (mod h) of Z, and impose arithmetical conditions of type: For all h ≥ 2

(2.6) max 0≤m<h P{X k ≡ m (mod h)} ≤ 1 -α k ,
for all k, where α k is some specific sequence of reals decreasing to 0. In addition, one generally have that k α k = ∞. Although the simple form of local limit theorem is here considered, for obvious reasons, condition (2.4) brings nothing more in this context.

As a consequence of the quantitative formulation of the a.u.d. property obtained in Theorem 1.4, we have the following result.

Theorem 2.2. Under the assumptions of Theorem 2.1, assume further that the local limit theorem is applicable to a sequence X.

Then (i) lim sup h→∞ ∞ k=1 max 0≤m<h P{X k ≡ m (mod h)} = 0.
(ii) There exists a function

1 ≤ φ(t) ↑ ∞ as t → ∞, such that n k=1 max 0≤m<h P{X k ≡ m (mod h)} 1 -max 0≤m<h P{X k ≡ m (mod h)} ≥ -log 1 h + H n ,
where

H n = 1 √ 2π Bn + 1+2C/h φ(Bn) 2/3 + C 1 e -(1/16
)φ(Bn) 2/3 , and C, C 1 are absolute constants. Proof. We purpose a direct argument. Consider a sequence Y where

Y k = X k -m k , m k are integers, for all k ≥ 1. Let h ≥ 2 be fixed. Choose m k so that max 0≤m<h P X k ≡ m mod(h) = P X k ≡ m k mod(h) = P Y k ≡ 0 mod(h) ,
and let µ n = n k=1 m k . Note that n k=1 Y k = S n -µ n , Var( n k=1 Y k ) = Var(S n ) = B 2 n .
As the local limit theorem is applicable to the sequence X, condition (1.13) is satisfied for some function 1 ≤ φ(t) ↑ ∞ as t → ∞, namely we have for all n,

sup ν∈Z B n P S n = ν - 1 √ 2π e - (ν-Mn) 2 2B 2 n ≤ C φ(B n ) .
Given n, letting ν = m + µ n and observing that P{ n k=1 Y k = m} = P{S n -µ n = m}, we get for m ∈ Z, n ≥ 1,

B n P n k=1 Y k = m - 1 √ 2π e - (m+µn-Mn) 2 2B 2 n ≤ C φ(B n ) .
Thus Y satisfies condition (1.13) with the same function φ(n).

Applying Remark 1.5 to the sequence Y , it follows that,

n k=1 max 0≤m<h P{X k ≡ m (mod h)} = n k=1 P{Y k ≡ 0 (mod h)} ≤ P n k=1 Y k ≡ 0 (mod h) ≤ 1 h + H n , (2.7)
where H n has the form given in the statement, and H n → 0 as n → ∞.

Letting n tend to infinity in (2.7) implies,

∞ k=1 max 0≤m<h P{X k ≡ m (mod h)} ≤ 1 h . (2.8)
This being true for each h, h ≥ 2, letting now h tend to infinity in (2.8) yields,

lim sup h→∞ ∞ k=1 max 0≤m<h P{X k ≡ m (mod h)} = 0. (2.9)
We also have by using the elementary inequality log(1

-x) ≥ -x/(1 -x), 0 ≤ x < 1, n k=1 P{Y k ≡ m (mod h)} = n k=1 1 -P{Y k ≡ m (mod h)} = e n k=1 log(1-P{Y k ≡ m (mod h)}) ≥ e -n k=1 P{Y k ≡ m (mod h)}/(1-P{Y k ≡ m (mod h)}) .
Thus by Remark 1.5,

n k=1 max 0≤m<h P{X k ≡ m (mod h)} 1 -max 0≤m<h P{X k ≡ m (mod h)} = n k=1 P{Y k ≡ m (mod h)} 1 -P{Y k ≡ m (mod h)} ≥ -log 1 h + H n .
Remark 2.3. (i) Note that the bound used in (2.7) is very weak since

n k=1 P{Y k ≡ m (mod h)} = P ∀J ⊂ [1, n], k∈J Y k ≡ m (mod h) .
One can replace individuals Y k by sums over blocks according to any partition of {1, . . . , n}.

(ii) Sets of multiples serve as good test sets for the applicability of the local limit theorem because addition is a closed operation. What can be derived when testing the applicability of the local limit theorem with other remarkable sets of integers (squarefree numbers, primes numbers, power numbers, geometric growing sequences, . . . ) is unknown. Concerning the squarefree integers, namely having no squared prime factors, we note the bound

(2.10) 2 -n j squarefree C j n - 6 π 2 ≤ C 1 e -C 2 (log n 3/5 /(log log n) 1/5 .
We refer to [START_REF] Diaconis | Some tauberian theorems related to coin tossing[END_REF].

Random sequences satisfying the a.u.d. property

It has some interest to relate the a.u.d. property for Bernoulli sums to the one of sets having Euler density, in this particular case here, arithmetic progressions. A subset A of N is said to have Euler density λ with parameter (in short E density λ) if lim n→∞ j∈A

C j n j (1 -) n-j = λ.
By a result due to Diaconis and Stein, we have the following characterization.

Theorem 3.1 ([2], Th. 1). For any A ⊂ N, and ∈]0, 1[ the following assertions are equivalent:

(i)

A has E density λ,

(ii) lim t→∞ e -t j∈A t j j! = λ, (iii) for all ε > 0, lim n→∞ #{j ∈ A : n ≤ j < n + ε √ n} ε √ n = λ.
Applying (iii) with ρ = Theorem 3.3. Let X = {X j , j ≥ 1} be a sequence of independent random variables taking values in Z. Assume that ϑ X j > 0 for each j. Further assume that the series ∞ j=1 ϑ X j diverges. Then X is a.u.d., the conclusion holds in particular if the X j are i.i.d. and ϑ X 1 > 0.

Note that no integrability condition is required, whereas square integrability is required in order that the local limit theorem be applicable. We prove in the next section that if the series ∞ j=1 ϑ X j diverges, much more is in fact true. Under the assumption made, each X j admits a Bernoulli component. This is the principle of a coupling method (the Bernoulli part extraction) introduced by McDonald [14], Davis and McDonald [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF] in the study of the local limit theorem. See Weber [START_REF] Weber | A sharp correlation inequality with an application to almost sure local limit theorem[END_REF] for an application of this method to almost sure local limit theorem, and Giuliano and Weber [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF] where this method is used to obtain approximate local limit theorems with effective rate.

Before passing to the proof, we briefly recall some facts and state an auxiliary Lemma. Let L(v 0 , D) be a lattice defined by the sequence v k = v 0 + Dk, k ∈ Z, v 0 and D > 0 being real numbers. Let X be a random variable such that P{X ∈ L(v 0 , D)} = 1, and assume that

ϑ X > 0. Let f (k) = P{X = v k }, k ∈ Z. Let also 0 < ϑ ≤ ϑ X . Associate to ϑ and X a sequence {τ k , k ∈ Z} of non-negative reals such that (3.3) τ k-1 + τ k ≤ 2f (k), k∈Z τ k = ϑ. For instance τ k = ϑ ν X (f (k) ∧ f (k + 1)
) is suitable. Next define a pair of random variables (V, ε) as follows:

P{(V, ε) = (v k , 1)} = τ k , P{(V, ε) = (v k , 0)} = f (k) - τ k-1 +τ k 2 . (∀k ∈ Z) (3.4) Lemma 3.4.
Let L be a Bernoulli random variable which is independent of (V, ε), and let

Z = V + εDL. Then Z D = X.
Proof of Theorem 3.3. We apply Lemma 3.4 with D = 1 to each X j , and choose 0 < ϑ j ≤ ϑ X j so that the series ∞ j=1 ϑ j diverges. One can associate to them a sequence of independent vectors (V j , ε j , L j ), j = 1, . . . , n such that

V j + ε j L j , j = 1, . . . , n D = X j , j = 1, . . . , n . (3.5)
Further the sequences {(V j , ε j ), j = 1, . . . , n} and {L j , j = 1, . . . , n} are independent. For each j = 1, . . . , n, the law of (V j , ε j ) is defined according to (3.4) with ϑ = ϑ j . And {L j , j = 1, . . . , n} is a sequence of independent Bernoulli random variables. Set (3.6)

W n = n j=1 V j , M n = n j=1 ε j L j , B n = n j=1 ε j .
Denoting again X j = V j + ε j L j , j ≥ 1, we have

P{d|S n + u} = E (V,ε) P L d| n j=1 ε j L j + W n + u . (3.7)
As n j=1 ε j L j D = Bn j=1 L j , we have

P L d| n j=1 ε j L j + W n + u = P L d| Bn j=1 L j + W n + u .
In view of the dominated convergence theorem, it suffices to prove that for each d ≥ 2,

P L d| Bn j=1 L j + (W n + u) → 1 d ,
as n → ∞, P (V,ε) almost surely. But the set (compare with (3.1))

A = {(W n + u) + kd, k ≥ 1},
now depends on W n , thus on n, which is complicating things. However we can write

χ d Bn j=1 L j + (W n + u) = 1 d d-1 j=0 e 2iπ j d (Wn+u) e 2iπ j d Bn j=1 L j .
By integrating with respect to P L we get,

P L d| Bn j=1 L j + W n + u = 1 d + 1 d d-1 j=1 e 2iπ j d (Wn+u) cos πj d Bn .
By the assumption made, B n tends to infinity P (V,ε) almost surely, ((8.3.5) in [START_REF] Weber | Dynamical Systems and Processes[END_REF] for instance).

Thus the latter sum tends to 0 as n → ∞, P (V,ε) almost surely. Therefore by the convergence argument invoked before, P{d|S n + u} tends to 1 d as n tends to infinity, for any d ≥ 2 and u ∈ N. Whence it follows that the sequence {S n , n ≥ 1} is a.u.d. .

4.

Random sequences satisfying a strenghtened a.u.d. property.

For Bernoulli sums, the a.u.d. property is only a rough aspect of the value distribution of divisors of B n + u, u ≥ 0 integer. Much more is known. 

1 d 0≤|j|<d e iπ(2u+n) j d e -n π 2 j 2 2d 2 = O (log n) 5/2 n -3/2 .
The special case u = 0 was proved in [31, Th. II]. Introduce the Theta function

(4.1) Θ u (d, n) = ∈Z e iπ(2u+n) d e -n π 2 2 2d 2 .
By Poisson summation formula

(4.2) Θ u (d, n) = d 2 πn ∈Z e -( +{ u+n/2 d }) 2 2d 2 n .
As a consequence of Theorem 4.1, we get Corollary 4.2. We have the uniform estimate

sup u≥0 sup 2≤d≤n P d|B n + u - Θ u (d, n) d ≤ C (log n) 5/2 n -3/2 .
Apart from this important but specific case, it seems that the speed of convergence in the limit (1.1) was not investigated, in particular when d and n are varying simultaneously.

Consider the independent case and assume as in Theorem 3.3, that ν n = n j=1 ϑ j ↑ ∞. The speed of uniform convergence over regions (in d and n) presents a singularity when d is getting too close to √ ν n . That quantity already appears in Davis and McDonald [START_REF] Davis | An elementary proof of the local central limit theorem[END_REF]. On the other hand when d is not close to √ ν n , in a sense that we shall make precise, we show that an explicit speed of convergence can be assigned, this under the sole divergence assumption of the series ∞ j=1 ϑ j . So, for this important class of independent sequences, the well-known a.u.d. necessary condition turns up to be a particularly weak requirement. Further one can show by using Poisson summation formula that in the Bernoulli case, the local limit theorem implies a weaker speed of convergence than the one obtained in Theorem 4.1.

The speed of uniform convergence problem for all d and n, n ≥ d ≥ 2, n → ∞, is more complicated and one must restrict to the i.i.d. case. In place of the limiting term 1/d appears a more complicated Theta elliptic function. See [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF]. For the independent case, the approach used becomes inoperant, due to appearance of integral products with interlaced integrants.

In fact, what will make possible to handle the independent case, is not just that d and √ ν n are not too close, but also that in background, symmetries properties of the Bernoulli model permitted to effect the necessary calculations in the first quadrant and not in the half-circle. This point is crucial for getting the uniform speed of convergence in Theorem 4.1. This is explained in [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF], see reduction Lemma 2.3. In short, when the Bernoulli extraction part applies, these symmetry properties allow one to get a speed of convergence. The proof in the Bernoulli case is transposable to other systems of random variables when such symmetries exist. This is not the case for the Hwang and Tsai model of the Dickman function [START_REF] Hwang | Quickselect and the Dickman function[END_REF], [START_REF] Giuliano | Almost Sure Local Limit Theorem for the Dickman distribution[END_REF], neither for the Cramér model of primes [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF].

We prove the following result.

Theorem 4.3. Assume that D = 1, ϑ X j > 0 for each j, and that the series

∞ j=1 ϑ X j diverges. Let α > α > 0, 0 < ε < 1. Then for each n such that |x| ≤ 1 2 2α log(1 -)ν n (1 -)ν n ⇒ sin x x ≥ (α /α) 1/2 ,
recalling that ν n = n j=1 ϑ j , we have

sup u≥0 sup d<π (1-)νn 2α log(1-)νn P{d|S n + u} - 1 d ≤ 2 e - 2 2 νn + (1 -)ν n -α .
For the proof we use the following Lemma. We also need the following result. 

P d|B n + u - 1 d ≤ n -α .
(ii) Let 0 < ρ < 1. Let also 0 < η < 1, and suppose n sufficiently large so that τ n ≥ √ 1 -η, where

τ n = sin ψ n /2 ψ n /2 ψ n = 2n ρ n 1/2 .
Then,

sup u≥0 sup d<(π/ √ 2)n (1-ρ)/2 P d|B n + u - 1 d ≤ e -(1-η) n ρ .
Proof of Theorem 4.3. We use the Bernoulli part extraction displayed at Lemma 3.4, (3.5), (3.6) as well as the notation introduced. Let

A n = B n ≤ (1 -ε)ν n . (4.3)
We deduce from Lemma 4.4 that P{A n } ≤ e - P{d|S n } -

1 d = E (V,ε) χ(A n ) + χ(A c n ) P L d| n j=1 ε j L j + W n - 1 d .
On the one hand, P{d|S n } -

E (V,ε) χ(A n ) P L d| n j=1 ε j L j + W n - 1 d ≤ 2P{A n } ≤ 2e -
1 d ≤ 2e - 2 2 νn + E (V,ε) χ(A c n ) • P L d| n j=1 ε j L j + W n - 1 d . Now on A c n , B n ≥ ( 1 
-)ν n , and since x/ log x is increasing on [e, ∞), we have 

(4.7) (1 -)ν n 2α log(1 -)ν n ≤ B n 2α log B n . Also (4.8) ϕ n = 2α log B n B n ≤ 2α log(1 -)ν n ( 1 
L j + W n + u - 1 d ≤ B -α n . Whence on A c n , sup u≥0 sup d<π (1-)νn 2α log(1-)νn P L d Bn j=1 L j + W n + u - 1 d ≤ sup u≥0 sup d<π Bn 2α log Bn P L d Bn j=1 L j + W n + u - 1 d ≤ B -α n ≤ (1 -)ν n -α . (4.9)
In view of (4.6) and (4.9), we get for all u ≥ 0 and d < π

(1-)νn 2α log(1-)νn , P{d|S n + u} - 1 d ≤ 2e - 2 2 νn + (1 -)ν n -α E (V,ε) χ(A c n ) ≤ 2e - 2 2 νn + (1 -)ν n -α . (4.10)
The next result shows a considerable variation of the speed of convergence when d is less close to √ ν n .

Theorem 4.6. Let 0 < ρ < 1 and 0 < ε < 1.Then for each n such that

|x| ≤ 1 2 2 ((1 -)ν n ) 1-ρ ⇒ sin x x ≥ √ 1 -ε we have sup u≥0 sup d<(π/ √ 2)((1-ε)νn) (1-ρ)/2
P{d|S n + u} -

1 d ≤ 2e - 2 2 νn + e -((1-)νn) ρ .
Proof. The proof is similar. We operate with the same set A n as in (4.3), and use the decomposition (4.4). Let 0 < ρ < 1 and 0 < ε < 1. By applying Proposition 4.5 with η = ε, we have P (V,ε) almost surely, for n such that τ n ≥ √ 1 -ε, where here

τ n = sin ψ n /2 ψ n /2 with ψ n = 2B ρ n B n 1/2 , sup u≥0 sup d<(π/ √ 2)B (1-ρ)/2 n P L d Bn j=1 L j + W n + u - 1 d ≤ e -(1-ε)B ρ n .
By using corresponding estimates to (4.7), (4.8), namely that on A c n , P{d|S n + u} - Remark 4.7. So far we only have considered necessary conditions for the validity of the local limit theorem, which are formulated in terms of a.u.d. property, as well as strenghtenings of this property yielding effective speed of convergence bounds. It is important to mention in that context, that in 1984, Mukhin found a remarkable necessary and sufficient condition for the validity of the local limit theorem. Let {S n , n ≥ 1} be a sequence of Z-valued random variables such that an integral limit theorem holds: there exist a n ∈ R and real b n → ∞ such that the sequence of distributions of (S n -a n )/b n converges weakly to an absolutely continuous distribution G with density g(x), which is uniformly continuous in R. The local limit theorem is valid if (4.12)

ψ n = 2 B 1-ρ n 1/2 ≤ 2 ((1 -ε)ν n ) 1-
1 d ≤ 2e - 2 2 νn + E (V,ε) χ(A c n ) e -(1-ε)B ρ n ≤ 2e -
P{S n = m} = B -1 n g m -A n B n + o(B -1 n ),
uniformly in m ∈ Z. Muhkin showed that the validity of the local limit theorem is equivalent to the existence of a sequence of integers v n = o(b n ) such that Revisiting the succint proof given in [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem (in Russian)[END_REF], we however could only prove rigorously a weaker necessary and sufficient condition, with a significantly different formulation, namely that a necessary and sufficient condition for the local limit theorem in the usual form to hold is by the integral limit theorem. This is the object of the Note [START_REF] Weber | On Mukhin's necessary and sufficient condition for the validity of the local limit theorem[END_REF], with remarks and references on general relations of type (4.13) therein. Mukhin wrote at this regard in [START_REF] Mukhin | Some necessary and sufficient conditions for the validity of the local limit theorem (in Russian)[END_REF]: "... getting from here more general sufficient conditions turns out to be difficult in view of the lack of good criteria. Working with asymptotic equidistribution properties are more convenient in this respect ".

2 P{d|Sn + u} - 1 d ≤ 2 e - 2 2

 22 νn + (1 -)νn -α .

h

  rS N = 0, (r = 1, . . . , h -1).

Lemma 3 . 2 .

 32 Let B n = β 1 + . . . + β n , where β i are i.i.d. Bernoulli random variables. Then {B n , n ≥ 1} is a.u.d.(d) for any d ≥ 2. Now consider the independent case and introduce the following characteristic. Let Y be a random variable with values in Z. Put ϑ Y = k∈Z P{Y = k} ∧ P{Y = k + 1}, (3.2) where a ∧ b = min(a, b). Note that 0 ≤ ϑ Y < 1.

Theorem 4 . 1 (

 41 [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF], Th. 2.1). We have the uniform estimate sup u≥0 sup 2≤d≤n P d|B n + u -

Lemma 4 . 4 (

 44 [START_REF] Macdiarmid | Concentration, Prob. Methods for Algorithmic Discrete Math[END_REF], Theorem 2.3). Let X 1 , . . . , X n be independent random variables, with 0 ≤ X k ≤ 1 for each k. Let S n = n k=1 X k and µ = E S n . Then for any > 0, (a) P S n ≥ (1 + )µ ≤ e -P S n ≤ (1 -)µ ≤ e -

Proposition 4 . 5 (

 45 [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF], Corollary 2.4). (i) For each α > α > 0 and n such that τ n ≥ (α /α)

ρ 1/ 2 ,L

 2 so that τ n ≥ √ 1 -ε, we deduce that on A c n j + W n + u -1 d ≤ e -(1-ε)B ρ n .

2 2

 2 νn + e -(1-ε) 1+ρ ν ρ n . (4.11)

( 4 .

 4 [START_REF] Macdiarmid | Concentration, Prob. Methods for Algorithmic Discrete Math[END_REF] sup m P{S n = m + v n -P{S n = m = o 1 b n .

  |m-k|≤max{1,[ √ ε n bn]} P{S n = m -P{S n = k = o 1 b n ,where (4.15)ε n := sup x∈R P S n -a n b n < x -G(x) → 0,

  ) . For all n such that B n ≥ 6, and all h ≥ 2, we have

	Corollary 1.6. sup		
	µ=0,1,...,h-1		
	Remark 1.5. It follows from the proof that C 1 = 2e	√	π is suitable.
	Choosing ε = φ(B n ) -2/3 and using Tchebycheff's inequality, we get the following

  this can be used to bring a contradiction with the fact that P{S n ≡ 0 (mod h)} should converge to 1/h.

	The arithmetical quantity
	max 0≤m<h

with partial sums S n , verifies P{S n ≡ 0 (mod h)} > 3/4 for all n large enough, and

Appendix A. LLT's with speed of convergence.

Let S n = X 1 + . . . + X n , n ≥ 1, where X j are independent random variables such that P{X j ∈ L(v 0 , D)} = 1.

Assume first that the random variables X j are identically distributed. Then we have the following characterization result.

Theorem A.1. Let F denote the distribution function of X 1 .

(i) ( [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF], Theorem 4.5.3) In order that the property

where 0 < α < 1, it is necessary and sufficient that the following conditions be satisfied:

Now consider the non-identically distributed case. Assume that (see

Let ν n = n j=1 ϑ j . Let ψ : R → R + be even, convex and such that ψ(x) x 2 and x 3 ψ(x) are non-decreasing on R + . We further assume that

.

The following result is Corollary 1.7 in Giuliano-Weber in [START_REF] Giuliano | Approximate local limit theorems with effective rate and application to random walks in random scenery[END_REF].

Theorem A.2. Assume that log νn νn ≤ 1/14. Then, for all κ ∈ L(v 0 n, D) such that

we have

And

, C E being an absolute constant arising from Berry-Esseen's inequality.

We pass to another speed of convergence result due to Mukhin. Consider the structural characteristic of a random variable X, introduced and studied by Mukhin in [START_REF] Mukhin | A relationship between local and integral limit theorems[END_REF] and [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF] for instance,

where α denotes the distance from α to the nearest integer, and X * is a symmetrization of X. Let ϕ X be the characteristic function X. The two-sided inequality

), (A.4) is established in the above references. See also Szewczak and Weber [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF] for more.

The following is the one-dimensional version of Theorem 5 in [START_REF] Mukhin | Local limit theorems for lattice random variables[END_REF], see also [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF] and is stated without proof, however.

Theorem A.3 (Mukhin). Let X 1 , . . . , X n have zero mean and finite third moments. Let