

A Novel Packaging with Direct Dielectric Liquid Cooling for High Voltage Power Electronics

Amin Al-Hinaai Till Huesgen Cyril Butty Eric Vagnon

Daniela Mayer Richard Zeitker

26.08.2022

Motivation: HVDC Converter

- * HVDC converters for high-voltage direct current transmission over long distances
- Transmission losses significantly reduced by high-voltage direct current transmission

- Connect fewer modules in series:
 - \rightarrow Lower operating costs
 - → Fewer materials
 - → Less complexity

- Problem No packaging solution for high voltage modules (>10kV) yet.
- This presention introduces a novel cooling packaging solution for high voltage power modules

Outline

- Motivation
- Power module packaging
- Selection of dielectric coolant
- CFD procedure and packaging design
- CFD results
- > Experimental results
- Conclusion and future work

power module packaging

Advantage:

- Reducing the layers and materials.
- Reducing the complexity of packaging.
- Reducing in the thermal path.

Challenges:

- Finding a di-electric fluid with good thermal properties.
- Finding a cooling design for efficient cooling.

A <u>dielectric fluid</u> is needed for the <u>insulation</u> and <u>cooling</u>

Goal of the work

> Demonstrate a novel approach with simplified single-chip.

Select a dielectric coolant:

- Thermal performance
- Good insulation
- Environmental properties

> Optimize thermal performance

- Using CFD calculations
- Changing the design parameters
- Trade-off between pumping power and thermal resistance

This presentation focuses on thermal performance.

Thermal and electrical requirement

Coolants

		Sp. heat dyn. Viscosity Coductivity Boiling/Flash Permittivity Diel. Strength Resistivity GV							GWP			
			Tulu	$c_p [{\rm W}/({\rm kgK})]$	$\eta [\mathrm{mPas}]$	$\lambda [{ m W}/({ m mK})]$	$T_b[^{\circ}\mathrm{C})]$	$\varepsilon[-]$	[kV]	$[M\Omega m]$	[-]	
1-	٢	-	Novec 7100	1213	0.47	0.0659	61	7.4	28	33	297	<u>Selected fluid:</u> - <u>Novec 7500</u>
			Novec 7200	1241	0.3625	0.0661	76	7.3	32	4	59	
			Novec 7300	1166	0.92	0.0625	98	6.1	26.7	10^3	210	
			Novec 7500	1151	0.98	0.0625	128	5.8	35	2	100	
			Novec 7600	1319	2.4	0.071	131	6.4	pprox 40	10	700	
	L	_	Novec 7700	1045.8	2.83	0.0624	167	6.7	35	5×10^3	420	
			MIVOLT DF7	1907	15	0.129	> 194	3.2	> 75	$> 9 \times 10^4$	< 1	
2			MIVOLT DFK	1902	72.6	0.147	> 250	3.2	> 75	$> 9 \times 10^4$	< 1	
			Alpha-6	2203	25.265	0.1561	246	2.11	58	?	< 1	
			Alpha-4	2206	15.38	0.1470	220	2.10	58	?	< 1	
			Alpha-2	2205	4	0.1358	160	≈ 2	58	?	< 1	
		_	OptiCool-H	2206	3	0.1346	> 135	2.12	53	10^{6}	< 1	
	27		OptiCool PH5	2203	4.9	0.1363	> 151	2.12	53	10^{6}	< 1	
	_		EC-120	2212	4	0.1359	157	2.1 60	$> 10^{6}$	$^{6} < 1$		
			BIO ELECTRA	1970	36	0.1691	> 250	3.1	65	74	< 1	
		_	$\operatorname{BitCool}$	2054	6.64	0.1396	> 130	-	-	-	-	
		S	Silicon Transormer	1510	48	0.151	> 300	> 300 2.7	50	10^{6}	< 1	
	L	F	Panolin Trafosynth	n 2040	11.7	0.13	< 240	-	-	-	-	
			Water/Glycol	3420	2.45	0.404	110	-	-	-	-	
			Water	4135	0.65	0.63	100	-	-	-	-	

- Meets the Requirements
- Near to the Requirements
- Very far from the Requirements

CAD geometry and optimisation parameters

(b) Cross section in middle of the channel under the chip (Jet impingement)

TABLE IV: Geometry parameters of the pin-fin structures

Design parameter	Interval			
Diameter d in mm	$1 \geq d \leq 2$			
Length h in mm	$2\geq h\leq 6$			
Diameter d_{jet} in mm	$5 \ge d_{jet} \le 8$			
AlN thickness t in mm	$1 \geq t \leq 5$			
Volumetric flow \dot{V} in l/min	$1 \ge \dot{V} \le 5$			

(b) Cross section in middle of the channel under the chip (Channel flow)

Procedure for the CFD simulation

- The simulation were carried out using the "ANSYS CFD".
- Every simulation takes between 10 and 30 minutes depending on the parameter.
- Hundreds of simulations are done.

Numerical Mesh

- Finer mesh at the fluid-solid interface because of higher temperature and velocity gradient there.
- The mesh layers (inflations) deliver a better resolution of the velocity and the temperature gradient at the boundary.

CFD Results (Novec 7500)

Fabrication of the coolers

- 1) Two ceramic parts (a flat bottom and a top) are joined together to form a single unit cooler
- Copper metallizations (for the chip interconnects) and a brass fitting (forming the inlet) are then attached to the ceramic cooler

Fabrication of the coolers

- 3) 9.1 x 9.1 mm² IGBTs (heat source) are sintered on the copper pad
- 4) Thick AI wire-bonding between the copper pads and chip
- 5) connectors are soldered on the metal pads for the electrical connection to the outside world

IGBTs sintering and Al wire-bonding

coonector soldering

final prototypes

Test setup

A photograph of the test setup (Phase 12B, Analysis Tech)

Schematic test setup

Channel flow

Jet impingement

Calibration the temperature-sensitive electrical parameter used for junction temperature monitoring

CFD vs Experiment

- In general, a good agreement between the CFD und experimental results.
- The thermal requirement was achieved by reaching a junction temperature of less than 100 C.

Channel flow vs jet impingement

- > By the jet impingement concept a higher velocity could be achieved
- A similar temperature distribution by both concepts. However jet impingement has much lower pumping power

Conclusion

- A single-chip cooling novel structure is optimized using CFD simulation
- Simulation and experimental results are in good agreement, and show that the demanding requirements ($R_{th} < 0.48 K/W$ for a 125 W power dissipation over a 9.1 × 9.1 mm² chip area) can be met.
- Because of its lower pressure drop and higher fluid velocity the jet impingement structure is found to be more efficient than the channel flow structure.
- A thick ceramic layer (up to 3 mm) is found to be beneficial because of the increased heat spreading effect it offers.

Future work

➢ Build a multi-dies "20kV" module

Velocity (v) in m/s

Velocity in the middle of the system (3l/min)

Temperature distribution in the system (3l/min)

- Mixture of in-line and staggered pins
- > Better temperature distribution (dT < 3° C)

Hochschule Kempten University of Applied Sciences

The Authors would like to thank the BMBF and ANR for the financial support of this work through the grant ARCHIVE

Thank you for your attention

