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Risk-Aware Guidance of a Fixed-Wing UAV using Neural Network
Model Predictive Control*

Paul Bérard1, Sylvain Bertrand1, Baptiste Levasseur1

Abstract— This paper presents a guidance algorithm for
fixed-wing Unmanned Aerial Vehicles (UAVs) that accounts for
risk wrt people at ground in case of failure of the vehicle.
Model Predictive Control is used along with neural networks
to predict online the ground risk probability associated to future
trajectories. Guidance inputs are computed in this way for
the UAV to follow a reference path while ensuring a given
level of safety for the mission, despite flight conditions that
may differ from mission preparation (wind, altitude, speed).
Computation time concerns are accounted for in the design of
the algorithm with the objective to facilitate a possible future
implementation on board of an UAV. More precisely, neural
networks are used for fast risk prediction, as well as systematic
search for resolution of the MPC problem corresponding to the
risk avoidance component of the control. Simulation results are
proposed to illustrate the proposed approach.

I. INTRODUCTION

Fixed-wing Unmanned Aerial Vehicles (UAVs) can be
used for long range operations such as linear infrastructure
inspection, surveillance or delivery. These missions involve
flights beyond visual line of sight for which a strong attention
in their preparation must be payed, especially regarding risks
that may be caused to third parties. Especially, there is a
major concern regarding flights close to populated areas, that
require a high level of safety to be ensured, both for the
vehicle and the mission.
Methods have been proposed in the literature to be able to
evaluate the risk induced by an UAV mission in a quantitative
way. More specifically, probabilistic risk assessment is one
of the most commonly adopted method by now for which
dedicated models have been proposed [1][2][3]. A tool has
been recently developed by the authors [4] that integrates
such models for probabilistic risk evaluation wrt people [5]
and road networks [6]. It has been used in the preparation
of several UAV missions to assess the risks associated
to given flight plans. In this mission preparation process,
modifications of the flight plans are done by the operator to
account for the results of the risk evaluation and define a
new plan that satisfies the requirements.
Automatic computation or adaptation of a flight plan could be
done by path planning approaches that have been developed
in the literature and adapted to UAVs [7]. Classical path
planning methods aim at finding a path or a trajectory
in a constrained environment accounting for the presence
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of obstacles. Extensions of these methods have been more
recently proposed to account for risk in the generation of a
path or a reference trajectory.
The work of [8] proposes a path generation method based
on the construction of visibility graphs on binary grid maps
defined from geographical images to account for risk wrt
to people and ground elevation. A Dijkstra algorithm is
then used on the visibility graph to produce the path. In
[9] a 3D path planning method is proposed by developing
a risk-based A* algorithm. Different types of risks are
considered, for people at ground, road vehicles, buildings, as
well as a societal aspect (noise). Corresponding risk maps are
generated and integrated in the evaluation of the cost function
of the path planning algorithm. In [10], risk evaluation relies
on the computation of a circular area that englobes possible
impact points at ground. Influence of altitude and wind speed
is taken into account to set the radius of this disk and the
width of a corridor around a flight trajectory determined to
avoid zones at risks (populated, no-fly zones, etc.). A RRT#

path planner with 3D Dubin curves is proposed in [11] to
handle the trajectory generation problem while accounting
for risks at ground. The risk evaluation accounts for ground
impact probability distributions that may depend on the flight
altitude and attitude angles of the vehicle. The algorithm is
evaluated on the example of a take-off trajectory for a fixed-
wing UAV. A RRT∗ algorithm is also proposed in [12] to
generate risk-aware paths by considering different risk maps
corresponding to populations, no-fly zones and obstacles.
In most of the existing approaches1, maps of population
density or risk maps are generated first and used as static
inputs of the path finding or trajectory generation algorithm.
A major issue is that the risk strongly depends on flight
conditions. For instance, the size of the ground impact area
and the probability distribution inside are strongly affected
by the flight speed and altitude of the drone and by wind
speed and direction (eg. see [13]). If during the flight these
conditions remain the same as the ones assumed for path
planning during mission preparation, then the expected level
of safety will be guaranteed. But in practice, aerological
conditions may strongly change during the flight and differ
from the ones expected during mission preparation. Trajec-
tory variations may also occur during the flight, eg. due to
a reaction to unexpected events (return-to-home in straight
line from current position, need to enter in a wait pattern,

1excepted from [10] and [11] where influence of a subset of the flight
parameters is considered on the ground impact area or probability distribu-
tion.



change in the altitude to avoid communication issues with
ground control station, etc.). In case of such changes during
the mission, the level of safety defined and verified in mission
preparation may also not be guaranteed anymore.
A first solution would consist in re-planning a new trajectory
for the UAV accounting for changes in these flight conditions
and updates in the risk maps. Nevertheless, this solution may
be time consuming and not efficient to account for short term
changes and must be combined to a more reactive layer, as it
is usually the case for classical obstacle avoidance problems.
Therefore, this paper aims at proposing a guidance algorithm
for a fixed-wing UAV accounting for risk in a reactive
manner during the flight. It can be used as an additional
safety layer embedded on board of the UAV to ensure
a given level of safety, in addition to a risk-aware path
planning algorithm. Model Predictive Control (MPC) has
been naturally chosen to design this guidance algorithm,
due to its ability to account for predictions and constraints
in the control computation. MPC has been already used in
the literature to design guidance algorithms for fixed-wing
UAVS, eg. [14][15][16][17].
The main contributions of this work are the following. A
nonlinear Model Predictive Controller is proposed for risk-
aware guidance of a fixed wing UAV. Probability of the risk
for people at ground is accounted for in the formulation
of the MPC problem. Computation of predictions of this
risk probability is done online by using neural networks
designed in previous works by the authors [13][18]. More
precisely, these neural networks enable accurate and fast
computation of the probability of ground impact by also
taking into account the influence of altitude and speed of
the UAV, as well as wind direction and speed. The structure
of the proposed guidance algorithm accounts for computation
time concerns to facilitate future implementation on a UAV.

The paper is structured as follows. The next section
provides some background on probabilistic evaluation of
ground risk. Section III presents the proposed MPC guidance
algorithm. Use of neural networks to predict the risk is
detailed in Section IV. Before concluding remarks, Section
V provides some simulation results and analysis, as a proof
of concept of the proposed approach.

II. BACKGROUND ON GROUND RISK
EVALUATION

The risk considered in this paper is the one of getting
casualties for people at ground due to the fall of a fixed-
wing UAV after some critical failure during its flight. More
precisely, loss of on-board power is considered in this paper
as the most probable and first hazardous event that will lead
to a non controlled descent to the ground of the vehicle. In
case of presence of people inside the possible ground impact
area, a collision between the vehicle and someone may occur,
and this collision may lead to some (lethal) injury.
To assess the probability of the risk, a classical decomposi-
tion into these four conditional events is adopted: loss of
control due to power failure, impact at ground, collision
with someone, (fatal) injury to someone. The corresponding

evaluation formula of the risk probability, introduced in early
works such as [1] and now commonly used in the literature
is therefore the following:

Pr{casualty} = Pr{loss}.Pr{impact}.Pr{collision}
.Pr{injury}

(1)
To assess the risk associated to a mission, this probability
must be evaluated at each time instant of the flight, and
for all locations inside possible ground impact areas. More
information on the way to evaluate all the terms of (1) can
be found eg. in [1][5].
In this paper, we are interested in developing a guidance
algorithm to ensure that the risk encountered during the
flight remains acceptable, that is to compute online guidance
orders to be applied to the vehicle to possibly make the
probability of risk decrease and remain below some pre-
defined threshold. With this objective in mind, the risk
equation (1) can be simplified.
Its first term, the probability of loss, is usually computed
from a safety analysis of the vehicle, and may be considered
constant during the mission. It is therefore assumed in this
paper that the guidance algorithm will have no effect on this
term, and without loss of generality it will be assumed for
the rest of the paper that Pr{loss} = 1.
The last term, the probability of getting (fatal) injury for
someone, is often computed from a lethality model depend-
ing on the kinetic energy at impact [19], and therefore on the
terminal velocity of the vehicle. For the sake of simplicity,
a worst case scenario will be assumed in this paper, that is
Pr{injury} = 1.
Therefore, with these two assumptions, the following sim-
plified risk equation will be used in this paper instead of (1):

Pr{casualty} = Pr{impact}.Pr{collision}
= Pr{impact}.Scol.ρpop

(2)

where Scol is the collision surface between the UAV and
one person (assumed to be constant) [5], and ρpop the
population density at the location at ground where the risk
is evaluated.
Once again, this simplified formula is adopted in this
paper for the sake of the design of a risk-aware guidance
algorithm and therefore considers the terms with the highest
sensitivity to online modification of the trajectory of the
UAV.
It is also worth mentioning that the guidance algorithm
under consideration aims at controlling the vehicle during
its ”nominal” flight, i.e. when there is no failure, although
accounting for a prediction of what would happen in case
of failure thanks to (2). Since loss of power is considered as
failure, it is assumed that guidance and control of the UAV
are not effective anymore during its descent to the ground.

The next section is devoted to the formulation of the
control problem and of the proposed guidance algorithm
accounting for risk prediction.



III. MPC GUIDANCE

A. UAV Dynamics

In this paper, the guidance problem of a fixed-wing UAV
is considered. It is assumed that a low level controller is used
for inner-loop attitude control. Attitude dynamics of the UAV
are therefore not accounted for in this work and a simplified
4-degrees-of-freedom model will be considered to represent
the dynamics of the drone.
Let define by p = [px py pz]

⊤ the position of the drone in a
local NED reference frame, V its airspeed, γ its flight path
angle, ϕ its bank angle and χ its heading angle.
As in [16], it is assumed that the horizontal part of the motion
of the drone can be decomposed into segments with constant
curvature and that the vehicles performs steady horizontal
turns with zero sideslip and small values of γ. A nonlinear
discrete-time model is used, assuming constant speed, flight
path angle and bank angle over a sampling period Ts:

pxk+1 = pxk + Ts
Vk cos γk

κk
(sin(κk + χk)− sinχk) (3)

pyk+1 = pyk + Ts
Vk cos γk

κk
(cos(κk + χk)− cosχk) (4)

pzk+1 = pzk − TsVk sin γk (5)
χk+1 = χk + κk (6)

where k denotes the time-index and

κk = Ts
g tanϕk

Vk
(7)

For κk close to zero (i.e. ϕk close to zero, eg. straight line
motion), the following equations are used instead:

pxk+1 = pxk + TsVk cos γk cosχk (8)
pyk+1 = pyk + TsVk cos γk sinχk (9)

pzk+1 = pzk − TsVk sin γk (10)
χk+1 = χk + κk (11)

The system dynamics will be summarized as xk+1 =

f(xk, uk) with the state vector xk = [pxk pyk pzk χk]
⊤

and the control input vector uk = [Vk γk κk]
⊤.

B. Definition of the control problem

Following [16], the reference path to be tracked is assumed
to be defined as a set of reference positions pri , i ∈ N
organized in a succession of different line segments. Let rk
be the first point of the current reference path segment and
prk the current point to be tracked on this segment at time
index k (see [16] for more details).
To represent the error between the position pk of the UAV
and prk a lateral error vector is defined as

ϵlatk = nr
k × (pk − rk) (12)

with the unit vector

nr
k = (pk − rk)/ ∥pk − rk∥ (13)

and a longitudinal algebraic error is defined as

ϵlongk = (nr
k)

⊤
(pk − prk) (14)

The objective of the path tracking controller is to drive these
errors to zero.
For the sake of simplicity, perturbations due to wind are not
explicitly considered in the guidance algorithm presented in
this paper. It is assumed that the low level controller is able
to estimate wind disturbances and compensate their effects
on the UAV trajectory. Nevertheless, in this work, wind is
taken into account at the guidance level in the prediction of
the risk at ground since, after a failure leading to a descent of
the drone to the ground, wind compensation by the autopilot
may not be guaranteed anymore.
The next section presents the proposed Model Predictive
Control algorithm for risk-aware guidance.

C. Model Predictive Controller for Risk-Aware Guidance

At time index k, the control input applied for UAV
guidance is decomposed into two components

uk = u∗
k + 1risk

k ∆u∗
k (15)

The first component u∗
k will ensure path tracking without

considering risk, while the control deviation ∆u∗
k is com-

puted and applied only if the predicted probability of casualty
(see Section IV-B for its computation) becomes greater than
a given threshold:

1risk
k =

{
1 if Pr{casualty}k ≥ δrisk

0 else
(16)

The component u∗
k is obtained as the first term of the optimal

control sequence {u∗}k+N−1
k = {u∗

k, u
∗
k+1, . . . , u

∗
k+N−1}

solution to the following MPC problem Ptrack
k for path

tracking:

min
{u}k+N−1

k

J track
k (17)

s.t. x̄k+i+1 = f(x̄k+i, uk+i), i = 0, .., N − 1 (18)
x̄k = xk, x̄k+i+1 ∈ X (19)
uk+i ∈ U, (uk+i+1 − uk+i) ∈ ∆U (20)

The cost function J track
k is decomposed as

J track
k = J lat

k + J long
k + Ju

k (21)

J lat
k =

N∑
i=1

(
ϵlatk+i

)⊤
Qlatϵlatk+i (22)

J long
k =

N∑
i=1

qlong
(
ϵlongk+i

)2

(23)

Ju
k =

N−1∑
i=1

(uk+i − uk+i−1)
⊤
R (uk+i − uk+i−1) (24)

where Qlat and R are positive definite weighting matrices
and with qlong > 0.

From the solution {u∗}k+N−1
k =

{u∗
k, u

∗
k+1, . . . , u

∗
k+N−1} of Ptrack

k the corresponding
predicted trajectory {x̄∗}k+N

k = {x̄∗
k, x̄

∗
k+1, . . . , x̄

∗
k+N} is

computed using (18) starting from x̄∗
k = xk.



The probability Pr{casualty}k is computed to evaluate
the risk along this predicted trajectory, with the method
explained in Section IV-B. As previously mentioned, if
this probability exceeds some threshold (16), the second
component ∆u∗

k of (15) is computed by considering a second
MPC problem Prisk

k :

min
{∆u}k+N−1

k ∈S∆u

J track
k + Jrisk

k (25)

s.t. x̄k+i+1 = f(x̄k+i, uk+i), i = 0, .., N − 1
(26)

uk+i = u∗
k+i +∆uk+i (27)

x̄k = xk, x̄k+i+1 ∈ X (28)
uk+i ∈ U, (uk+i+1 − uk+i) ∈ ∆U (29)

From the solution {∆u∗}k+N−1
k , only the first value ∆u∗

k is
retained for (15). The cost Jrisk

k is chosen as

Jrisk
k = qriskPr{casualty}k (30)

with qrisk > 0 and where the predicted probability of
getting casualties is computed along the predicted trajectory
of the UAV, as described in Section IV-B.

Note that the minimization of (25) is done by considering
a systematic search over a finite set S∆u of predefined
control sequences {∆u}k+N−1

k . This set is pre-computed
in advance to enable deviations with respect to a nominal
trajectory. This systematic search procedure enables to
reduce and bound the computation time. Indeed, a classical
optimization could be time prohibitive when considering
here the computation of the predicted risk in the cost
evaluation, even while using neural networks with fast
computation time as proposed in this work.

Remark: The final objective of a risk-aware guidance al-
gorithm is to ensure that the probability of getting casualties
does not exceed some threshold (eg. equivalent level of safety
compared to manned aviation). This specification should be
formalized as a constraint on the predicted probability into
the MPC problem formulation. In this paper, a penalty in
the cost function (25) has been chosen instead to avoid hard
constraints that could lead to infeasibility of the optimization
problem. This is a practical approach, for this first proof
of concept of a risk-aware guidance algorithm, and MPC
formulation with constraint on the predicted probability will
be considered in future work.

IV. GROUND RISK PREDICTION USING NEURAL
NETWORKS

A. Neural networks for ground impact probability computa-
tion

For a given time instant, the computation of ground impact
probabilities must be done at each possible impact location
inside the ground impact area. This computation may be done
by assuming simple distributions such as Gaussian ones, but
to the cost of a strong lack of accuracy. Previous works done

Fig. 1. Ground impact probability maps generated by Monte Carlo
simulations (left column) and neural networks (right column) [18]

by the authors have investigated the use of a six degrees-of-
freedom flight mechanics model to generate non controlled
descent trajectories after failure and resulting ground impact
probability maps by Monte Carlo (MC) simulations, account-
ing for the effect of wind. As presented in [13][18] these
maps strongly depend on the flight altitude h0 of the UAV
at the instant of failure, on its speed V0 and on the wind
speed Vw and direction (angle) θw. Very different multimodal
distributions result from different values of these parameters.
An example of two maps taken from [18] are given in the left
column of Fig. 1 for h0 =150m, V0 =20m.s−1, without wind
(top), and for a wind with Vw =5m.s−1 and θw = 3π/5rad
(bottom).
This generation process of ground impact probability maps
by MC simulations is accurate but computationally time
prohibitive2 for an online use by a guidance algorithm.
Neural networks have therefore been developed in [18] by
the authors as surrogate models for fast computation. Two
corresponding examples of maps obtained by these neural
networks are given on the right column of Fig. 1.
A first neural network enables to compute the ”boundaries”
of the impact probability maps (pxmin, p

x
max, p

y
min, p

y
max) =

fNN
1 (h0, V0, Vw, θw) in a local reference frame associated

to the UAV. A second neural network can be used to
compute Pr{impact} = fNN

2 ((x, y), (h0, V0, Vw, θw)) at
any location (x, y) inside the boundaries.
These neural networks enable fast computation and they are
used for evaluation of Pr{impact} and then prediction of

2or memory prohibitive if trying to embed on the UAV computer all the
maps that could correspond to possible encountered flight conditions.



Fig. 2. Notations regarding predicted ground impact areas

Pr{casualty} by the guidance algorithm, as described in
the next section.

B. Risk prediction

Let Ak+i be the ground impact area at time index k + i,
i = 0, . . . , N , corresponding to a failure of the UAV from
the predicted position pk+i. Assume that each area can be
approximated by a partition of ni elementary cells cjk+i, j =
1, . . . , ni, corresponding to the resolution of the population
density data (see Fig. 2):

Ak+i =

ni⋃
j=1

cjk+i (31)

For each prediction index i, i = 0, . . . , N , the probability (2)
is evaluated for each cell cjk+i of Ak+i: Pr{casualty}(cjk+i).
Let denote by Āk the predicted ground impact area devel-
oped along the predicted trajectory, that is

Āk =

N⋃
i=0

Ak+i (32)

Let us denote by c̄jk the set of n̄k cells that define a partition
of Āk:

Āk =

n̄k⋃
j=1

c̄jk (33)

As one cell c̄jk may correspond to several cells cjk+i of Ak+i

for different indexes i (impact areas along the predicted
positions may overlap) the maximum value of the probability
will be retained as a worst case

Pr{casualty}(c̄jk) = max
i

{Pr{casualty}(clk+i)|

i = 0, . . . , N,

l = 1, . . . , ni,

clk+i = c̄jk}

(34)

Finally the predicted probability used in the cost func-
tion (30) is computed as the mean probability over the
predicted ground impact area Āk:

Pr{causalty}k =
1

n̄k

n̄k∑
j=1

Pr{casualty}(c̄jk) (35)

Note that a max value can also be used as a worst case, if
preferable, instead of the mean value.

C. Reducing computation time

Evaluation of the cost function Jrisk
k involves the compu-

tation of the probabilities of casualty over the ground impact
area developed along the predicted trajectory. Although neu-
ral networks enable a fast computation of ground impact
probabilities, a huge number of evaluations at different
possible impact locations, for different flight conditions, is
still required and may result in non negligible computation
load.
Parallel computing of the predictions is one practical solution
to this problem (see eg. [20]). In this paper, final implemen-
tation concerns are not addressed but some assumptions have
been made with this goal in mind to reduce the computation
load.
First, it is assumed that the wind can be considered con-
stant (both in magnitude and direction) over the prediction
horizon. Second, it is assumed that the same ground impact
probability map can be used for altitude and speed variations
of the UAV ”small enough”. A study on the influence of
altitude and speed has been made to determine variation
thresholds, respectively of 10m and 0.1ms−1, resulting in
a maximum error of 10% on the probability map.
These assumptions enable to reduce the number of compu-
tations of different ground impact maps (and corresponding
loads in memory of several different neural networks).

V. SIMULATION EXAMPLES

Preliminary results are presented in this section as a
proof of concept to illustrate the proposed approach. Lateral
avoidance is considered here, i.e. the control deviation used
in (15) is of the form ∆u∗

k = [0 0 ∆κ∗
k]

⊤. The set S∆u

is composed of 19 predefined candidate control sequences
{∆κ}k+N−1

k leading to trajectory deviations presented in
Fig. 3 in the case of an initial position at (0,0) and velocity
directed along the x-axis. The parameters used for the MPC

Fig. 3. Deviation trajectories resulting from application of candidate control
sequences {∆u}k+N−1

k ∈ S∆u.

guidance algorithm are presented in Table I. The constraint



sets U and ∆U are defined from the min-max bound vectors,
umin, umax, ∆umin, ∆umax given in Table I. No state
constraints have been considered for the simulations here.

N 15
Qlat diag(10, 1, 0.1)
qlong 0.1
R 20*diag(4.8, 7.28E2, 5.82E1)
qrisk 1E8
umin [15 − 0.15 − 0.2]⊤

umax [25 0.15 0.2]⊤

∆umin [−2.5 − 0.0524 − 0.131]⊤

∆umax [2.5 0.0524 0.131]⊤

TABLE I
PARAMETERS OF THE MPC GUIDANCE ALGORITHM

Regarding risk evaluation, the collision surface used in (2) is
chosen as Scol = 1m2, without loss of generality. Normalized
values are considered for the population density ρpop, i.e.
population density data is divided by its maximum value
over the region of the considered scenario to get values of
ρpop in [0, 1].

A. Unit scenario

A first unit scenario is considered here in Fig. 4, where
the UAV has to follow a linear reference path, at an altitude
of 130m, with an initial nominal speed V =20m.s−1 and
heading towards the x-axis. The reference path is represented
by a grey dotted lined. Some populated areas are located
in the vicinity of the reference path, and are represented
by areas with color depending on the normalized population
density.
In the case of no wind and no risk avoidance (δrisk > 1), the
trajectory of the UAV (in red, with initial position depicted by
a red dot) perfectly follows the reference path to be tracked
thanks to tracking component u∗

k computed by the MPC
guidance. The ground impact probability maps Ak developed
along the UAV trajectory is also plotted in Fig. 4, keeping
the maximum value of the probability over time for each
location at ground. In this case without wind one can notice
two modes with greater probabilities located at each side
of the UAV trajectory (as in Fig. 1, top part). As can be
noticed, the ground impact probability maps intersects areas
with ”high” population densities. It results in some peaks
for the predicted probability of casualty criterion (35), with
a maximum value close to 1.6E-6 (see Fig. 5).

Fig. 4. Trajectory without wind - no risk avoidance

Fig. 5. Pr{casualty} without wind - no risk avoidance

Let now consider the presence of a constant wind with
velocity Vw =5m.s−1 and direction θw = π/2 rad (wind
directed upwards along the y-axis). As previously mentioned,
wind compensation by the controller is out of the scope of
this paper and it is assumed that the trajectory of the UAV
is corrected. Nevertheless influence of wind is accounted for
in the evaluation of the ground impact area. Indeed, as can
be seen in Fig. 6, the distribution of the ground impact prob-
abilities is not symmetric anymore with respect to the UAV
trajectory, but areas with higher probabilities are now located
in the ”upper” side of the trajectory, due to wind. In this case,
if no risk avoidance is still considered (δrisk > 1), ground
impact areas with higher probabilities now intersect larger
parts of populated areas. As a consequence, Pr{casualty}
increases, with a maximum greater than 7E-5 (see Fig. 7).

Fig. 6. Trajectory in presence of wind - no risk avoidance

Consider now the same scenario with risk avoidance by
choosing δrisk =5.10−5. In that case, control deviations
∆u∗

k are computed and applied to the UAV to make the
risk decrease. The risk avoidance trajectory performed by the
UAV is presented on Fig. 8 resulting in a lateral deviation
close to 160m from the reference path, but enabling to
maintain the risk criterion below 5.10−5 (see Fig. 9). As can
be verified in Fig. 10 the control signals applied to the UAV
satisfy the constraints (black dashed lines) thanks to the MPC
formulation.
For this scenario with wind, maximum values of the lateral



Fig. 7. Pr{casualty} in presence of wind - no risk avoidance

Fig. 8. Trajectory in presence of wind - avoidance with δrisk = 5.10−5

deviation ∥ϵlat∥ with respect to the reference path are given
in Table II, as obtained by simulations for different values
of the probability threshold δrisk. As expected, the smaller
the probability threshold is, the greater must be the deviation
from the reference path.

B. More complex scenario

Simulation results corresponding to one another scenario
are presented here, in the case of a reference path composed
of two linear segments. The second segment leads to a
flight trajectory above a part of a populated area as can
be seen in Fig. 11. The right lateral mode of the ground
impact probability distribution intersects this part of the
populated area. As can be seen in the blue curve of Fig. 12,
it results in an increase of one order of magnitude in the risk
probabilities, as evaluated using (2), from ∼10−5 over non
populated areas to ∼1.4 10−4 over the populated area.
Assume a probability of failure Pr{loss} = 10−3 [5]
and a worst case assumption Pr{injury} = 1 regarding
possible injuries to someone in the case of collision with

δrisk 2e-5 3e-5 4e-5 5e-5 6e-5
maxk

∥∥ϵlatk

∥∥ (m) 237.3 212.6 180.9 163.2 127.6

TABLE II
MAXIMUM LATERAL DEVIATION FROM REFERENCE PATH, DEPENDING

ON RISK PROBABILITY THRESHOLD

Fig. 9. Pr{casualty} in presence of wind - avoidance with δrisk =
5.10−5

Fig. 10. Control inputs in presence of wind - risk avoidance with δrisk =
5.10−5

Fig. 11. Trajectory without risk avoidance

the UAV. If one is interested in ensuring an equivalent level
of safety of the order of magnitude of 10−7, using the full



Fig. 12. Comparison of Pr{casualty} without and with risk avoidance

risk equation (1) along with these assumptions leads to a
threshold δrisk = 10−4.
For this threshold, the proposed guidance algorithm makes
the UAV locally deviate from the reference path (Fig. 13)
enabling a risk probability below 10−4 (red curve on Fig. 12)
compliant with the 10−7 objective when considering the two
other terms of the full risk equation (1).

Fig. 13. Trajectory with risk avoidance

Deviations applied to control inputs for risk avoidance can
be visible in Fig. 14 as well as satisfaction of the constraints
depicted by the black dashed curves.

Fig. 14. Control inputs for the case with risk avoidance

VI. CONCLUSION

This paper has presented a risk-aware guidance algorithm
for a fixed-wing UAV based on model predictive control and

neural networks. It enables to predict online the ground risk
probability associated to future trajectories and account for
it in the computation of the guidance control inputs. The
main purpose of this algorithm is to ensure a given level of
safety during a mission despite flight conditions (wind speed
or direction, drone speed or altitude) that may change and
differ from mission preparation. Computation time concerns
have been considered for the development of the proposed
approach to facilitate a future real time implementation on-
board of a drone and serve as an additional layer of safety
for UAV operations close to populated areas.
Future work will focus on 3D avoidance and state con-
straints, wind compensation in the MPC guidance algorithm.
Evaluation on more complex scenarios, combined with a
mission preparation based on risk-evaluation, are also under
consideration.
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