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Abstract
Clustering is a usual unsupervised machine learning technique for grouping the data points into

groups based upon similar features. We focus here on unsupervised clustering for contaminated data,
i.e in the case where K-medians algorithm should be preferred to K-means because of its robustness.
More precisely, we concentrate on a common question in clustering: how to chose the number of
clusters? The answer proposed here is to consider the choice of the optimal number of clusters as
the minimization of a penalized criterion. In this paper, we obtain a suitable penalty shape for our
criterion and derive an associated oracle-type inequality. Finally, the performance of this approach
with different types of K-medians algorithms is compared on a simulation study with other popular
techniques. All studied algorithms are available in the R package Kmedians on CRAN.

Keywords: Clustering, K-medians, Robust statistics

1 Introduction
Clustering is unsupervised machine learning technique which is defined as the algorithm for grouping
the data points into a collection of groups based upon similar features. Clustering is generally used for
data compression in image processing, which is also known as vector quantization (Gersho and Gray,
2012). There is a vast literature on clustering techniques and general references regarding clustering may
be found in Spath (1980); Jain and Dubes (1988); Mirkin (1996); Jain et al. (1999); Berkhin (2006);
Kaufman and Rousseeuw (2009). Classification methods can be categorized as hard clustering (K-means,
K-medians and hierarchical clustering) and soft clustering (Fuzzy K-means (Dunn, 1973; Bezdek, 2013)
and Mixture Models). In Hard clustering methods, each data point belongs to only one group, while for
soft ones, a probability or likelihood of a data point to be in the cluster is assigned. Then, each data
point can be a member of more than one group.
We focus here on hard clustering methods. The most popular partitioning clustering methods are the
non sequential (Forgy, 1965) and the sequential (MacQueen, 1967) versions of the K-means algorithms.
The aim of the K-means algorithm is to minimize the sum of squared distances between the data points
and their respective cluster centroid. More precisely, considering X1, ...,Xn be random vectors taking
values in Rd, the aim is to find k centroids {c1, ..., ck} minimizing the empirical distortion

1
n

n∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥2 . (1)

Nevertheless, in many real-world applications, collected data are contaminated by noise with heavy-tailed
distribution and might contain outliers of large magnitude and K-means methods are very sensitive to the
presence of these outliers. It is then necessary to apply methods which produce reliable robust outcomes.
The K-medians clustering is proposed to get more robust clustering algorithms; it was suggested by
MacQueen (1967) and developed by Kaufman and Rousseeuw (2009). K-medians clustering is a variant
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of K-means clustering where instead of calculating the mean of each cluster to determine its centroid, we
calculate instead the geometric median. It consists in considering criteria based on least norms instead
of least squared norms. More precisely, considering the same sequence of i.i.d copies X1, ...,Xn, the
objective of K-medians clustering is to minimize the empirical L1-distortion :

1
n

n∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥ .

In practical applications, the number of clusters k is unknown. In this paper, we will focus on the choice of
optimal number of clusters for robust clustering. Several methods for determining the optimal number of
clusters have been studied for K-means algorithms and can be easily adapted for K-medians. In practice,
one of the most used method for determining the optimal number of clusters is elbow method. Other
methods often used are the Silhouette (Kaufman and Rousseeuw, 2009) and the Gap Statistic (Tibshirani
et al., 2001). The silhouette coefficient of a sample is the difference between the within-cluster distance
between the sample and other data points in the same cluster and the inter-cluster distance between the
sample and the nearest cluster. The Silhouette method suggests to take the value of k which maximizes
the average of silhouette coefficient of all data points. The silhouette score is generally calculated with the
help of Euclidean or Manhattan distance. Concerning Gap Statistic, the idea is to compare the within-
cluster dispersion to its expectation under an appropriate null reference distribution. The reference data
set is generated via Monte Carlo simulations of the sampling process.

In Fischer (2011), the aim is to minimize the empirical distortion defined in (1) as a function of k to find
the right number of clusters. But if we separate all the data points in a cluster, the empirical distortion
will be minimal. A penalty function has been introduced to avoid choosing too large k. It was shown that
the penalty shape is

√
k
n in the case of K-means clustering and by finding the constant of the penalty

with the data-based calibration method, one can obtain better results than by using usual other methods.
The data-driven calibration algorithm is a method proposed by Birgé and Massart (2007) and developed
by Arlot and Massart (2009) , to find the constant of penalty function. Theoretical properties on this
data-based penalization procedures have been studied by Birgé and Massart (2007); Arlot and Massart
(2009); Baudry et al. (2012). The aim of this paper is to adapt these methods for K-medians algorithms.
We first provide the shape of the penalty function, before using the slope heuristic method to calibrate
the constant and build a penalized criterion for selecting the number of clusters for K-medians algorithms.

The paper is organized as follows. In Section 2, we recall two different methods for estimating the
geometric median before introducing three K-median algorithms (”Online,”, ”Semi-online” and ”Offline”).
In section 3, we give a penalty shape for the proposed penalized criterion and we give an upper bound
for the expectation of the distortion at empirically optimal codebook with size of optimal number of
clusters which ensure our penalty function. We illustrate the proposed approach with some simulations
and compare it with several methods in section 4. Finally, the proofs are gathered in section 5. All the
proposed algorithms are available in the R package Kmedians on CRAN https://cran.r-project.org/
package=Kmedians.

2 Framework
2.1 Geometric Median
In what follows, let us consider a random variable X taking values in Rd for some d ≥ 1. Remark that it
is well-known that the standard mean of X is not robust to corruptions. This is why the median should
be prefered to the mean in robust statistics. The geometric median m, also called L1-median or spatial
median, of a random variable X ∈ Rd is defined by Haldane (1948):

m = arg min
u∈Rd

E [‖X − u‖] .
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For the 1-dimensional case, the geometric median coincides with the usual median in R. As Euclidean
space Rd is strictly convex, the geometric median m exists and is unique if the points are not concentrated
around a straight line (Kemperman, 1987). The geometric median is known to be robust and to have a
breakdown point at 0.5.
Let us now consider a sequence of i.i.d copies X1, ...,Xn of X. In this paper, we focus on two methods
to determine the geometric median. The first one is iterative and consists in considering the fix point
estimates (Weiszfeld, 1937; Vardi and Zhang, 2000)

m̂t+1 =

∑
i∈Xt

Xi
‖Xi−m̂t‖∑

i∈Xt
1

‖Xi−m̂t‖

with a initial point m̂0 ∈ Rd chosen arbitrarily such that it does not coincide with any of the Xi and
Xt = {i,Xi 6= m̂t}. The Weiszfeld algorithm can be an almost flexible technique, but there are many
difficulties of implementation for massive data in high dimensional spaces.
An alternative and simple estimation algorithm which can be seen as a stochastic gradient algorithm
(Robbins and Monro, 1951; Ruppert, 1985; Duflo, 1997; Cardot et al., 2013) and is defined as follows

mj+1 = mj + γj
Xj+1 −mj∥∥Xj+1 −mj

∥∥
with a starting point, m0 is arbitrarily chosen and suppose the steps γj are such that ∀j ≥ 1, γj >
0,
∑
j≥1 γj = ∞ and

∑
j≥1 γ

2
j < ∞. Its averaged version (ASG), which is effective for large samples of

high dimension data, introduced by Polyak and Juditsky (1992) and adapted by Cardot et al. (2013), is
defined by

mj+1 = mj +
1

j + 1 (mj+1 −mj).

One can speak about averaging since mj =
1
j

∑j
i=1 mi. Remark that under suitable assumptions, both

m̂t and mn are asymptotically efficient (Vardi and Zhang, 2000; Cardot et al., 2013).

2.2 K-medians
For a positive integer k, a vector quantizer Q of dimension d and codebook size k is a (measurable)
mapping of the d-dimensional Euclidean Rd into a finite set of points {c1, ..., ck} (Linder, 2000). More
precisely, the points ci ∈ Rd, i = 1, ..., k are called the codepoints and the vector composed of the code
points {c1, ..., ck} is called codebook, denoted by c. Given a d-dimensional random vector X admitting
a finite first order moment, the L1-distortion of a vector quantizer Q with codebook c = {c1, ..., ck} is
defined by

W (c) := E

[
min

j=1,..,k

∥∥X − cj∥∥] .

Let us now consider X1, ...,Xn random vectors ∈ Rd i.i.d with the same law as X. Then, one can define
the empirical L1-distortion as :

Wn(c) :=
1
n

n∑
i=1

min
j=1,..,k

∥∥Xi − cj
∥∥ .

In this paper, we consider two types of K-medians algorithms : sequential and non sequential algorithm.
The non sequential algorithm uses Lloyd-style iteration which alternates between an expectation (E) and
maximization (M) step and is precisely described in Algorithm 1:
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Inputs : D = {x1, ...,xn} datapoints, k number of clusters
Output: A set of k clusters : C1, ...,Ck
Randomly choose k centroids : m1, ...,mk.
while the clusters change do

for 1 ≤ i ≤ n do
r = arg min1≤j≤k

∥∥xi −mj

∥∥
Cr ← xi

end
for 1 ≤ j ≤ k do

mj = arg minm
∑
i,xi∈Cj ‖xi −m‖

end
end

Algorithm 1: Non Sequential K-medians Algorithm .
For 1 ≤ j ≤ k,mj is nothing but the geometric median of the points in the cluster Cj . As mj is not
explicit, we will use Weiszfeld (indicated by ”Offline”) or ASG (indicated by ”Semi-online”) to estimate it.
The Online K-median algorithm proposed by Cardot et al. (2012) based on an averaged Robbins-Monro
procedure (Robbins and Monro, 1951; Polyak and Juditsky, 1992) is described in Algorithm 2:

Inputs : D = {x1, ...,xn} datapoints, k number of clusters, cγ > 0 and α ∈ (1/2, 1)
Output: A set of k clusters : C1, ...,Ck
Randomly choose k centroids : m1, ...,mk.
mj = mj ∀ 1 ≤ j ≤ k
nj = 1 ∀ 1 ≤ j ≤ k
for 1 ≤ i ≤ n do

r = arg min1≤j≤k
∥∥xi −mj

∥∥
Cr ← xi
mr ← mr +

cγ
(nr+1)α

xi−mr
‖xi−mr‖

mr ← nrmr+mr
nr+1

nr ← nr + 1
end

Algorithm 2: Online K-medians Algorithm .
The non-sequential algorithms are effective but the computational time is huge compared to the sequential
(”Online”) algorithm, which is very fast and only requires O(knd) operations, where n is the sample size,
k is the number of clusters and d is dimension. Furthermore, in case of large samples, Online algorithm
is expected to estimate the centers of the clusters as well as the non-sequential algorithm Cardot et al.
(2012). Then, in case of large sample size, Online algorithm should be preferred and vice versa.

3 The choice of k
In this section, we adapt the results that have been shown for K-means in Fischer (2011) to K-medians
clustering. In this aim, let X1, ...,Xn random vectors with the same law as X, and we assume that ‖X‖ ≤
R almost surely for some R > 0. Let Sk denote the countable set of all {c1, ..., ck} ∈ Qk, where Q is some
grid over Rd. A codebook ĉk is said empirically optimal codebook if we have Wn(ĉk) = minc∈SkWn(c).
Let ĉk be a minimizer of the criterion Wn(c) over Sk. Our aim is to determine k̂ minimizing a criterion
of the type

crit(k) = Wn(ĉk) + pen(k)
where pen : {1, ...,n} → R+ is a penalty function described later. The purpose of penalty method is
to convert constrained problems into unconstrained problems by introducing a penalty to the objective
function.
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In this section, we will give an upper bound for the expectation of the distortion at empirically optimal
codebook with size of optimal number of clusters which is based on a general non asymptotic upper
bound for

E

[
sup
c∈Sk

{W (c)−Wn(c)}

]
.

Theorem 3.1. Let X a random vector taking values in Rd such that ‖X‖ ≤ R almost surely for some
R > 0. Then for all 1 ≤ k ≤ n,

E

[
sup
c∈Sk

{W (c)−Wn(c)}

]
≤ 48R

√
kd

n
.

This theorem shows that the maximum difference of the distortion and the expected empirical distortion
of any vector quantizer is of order n−1/2.

Theorem 3.2. Consider nonnegative weights {xk}1≤k≤n such that
∑n
k=1 e

−xk = Σ. Suppose that ‖X‖ ≤
R almost surely and that for every 1 ≤ k ≤ n

pen(k) ≥ R
(

48
√
kd

n
+ 2
√
xk
2n

)
.

Then:
E [W (c̃)] ≤ inf

1≤k≤n

{
inf
c∈Sk

W (c) + pen(k)
}
+ ΣR

√
π

2n
where c̃ = ĉk̂ minimizer of the penalized criterion.

We remark the presence of the weights {xk}1≤k≤n in penalty function and Σ which is depend on the
weights in upper bound for the expectation of the distortion at c̃. The larger the weights {xk}1≤k≤n,
the smaller the value of Σ. So, we have to make a compromise between these two terms. Let us indeed
consider the simple situation where one can take {xk}1≤k≤n such that xk = Lk for some positive constant
L and Σ =

∑n
k=1 e

−xk ≤ 1. If we take

pen(k) = R

(
48
√
kd

n
+ 2
√
Lk

2n

)
= R

√
k

n

(
48
√
d+ 2

√
L

2

)

we deduce that the penalty shape is a
√

k
n where a is a constant.

Proposition 3.1. Let X be a d-dimensional random vector such that ‖X‖ ≤ R almost surely. Then for
all 1 ≤ k ≤ n,

inf
c∈Sk

W (c) ≤ 4Rk−1/d.

If for every 1 ≤ k ≤ n

pen(k) = aR

√
k

n

where a is an absolute constant depending only on the dimension d such that a ≥
(

48
√
d+ 2

√
L
2

)
, we

have :

E [W (c̃)] ≤ R

(
inf

1≤k≤n

{
4k−1/d + a

√
k

n

}
+ Σ

√
π

2n

)
.
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Minimizing the term on the right hand side of previous inequality leads to k of the order n
d
d+2 and

E [W (c̃)] = O(n−
1
d+2 ).

This section concludes that our penalty shape is a
√

k
n where a is a constant. In Birgé and Massart (2007),

a data-driven method has been introduced to calibrate such criteria whose penalties are known up to a
multiplicative factor: the ”slope heuristics”. This method consists of estimating the constant of penalty
function by the slope of the expected linear relation of −Wn(ĉk) with respect to the penalty shape values
penshape(k) =

√
k
n .

Let denote c∗ = arg minc∈SW (c) and ck = arg minc∈SkW (c) where S any linear subspace of Rd and Sk
set of predictors (called a model). It was shown in Birgé and Massart (2007); Arlot and Massart (2009);
Baudry et al. (2012) that under conditions, the optimal penalty verifies for large n

penopt(k) = aoptpenshape(k) ≈ 2(Wn(c
∗)−Wn(ĉk)).

This gives
aopt

2 penshape(k)−Wn(c
∗) ≈ −Wn(ĉk).

The term −Wn(ĉk) with respect to the penalty shape behaves like a linear function for a large k. The
slope Ŝ of the linear regression of −Wn(ĉk) on penshape(k) is estimated by aopt

2 . Finally, we obtain

pen(k) = 2Ŝpenshape(k).

4 Simulations
This whole method is implemented in R and all these studied algorithms are available in the R package
Kmedians https://cran.r-project.org/package=Kmedians. In what follows, the centers initialization
are generated from robust hierarchical clustering algorithm with genieclust package (Gagolewski et al.,
2016).

4.1 Visualization of results with the package Kmedians

In Section 3, we proved that the penalty shape is a
√

k
n where a is a constant to calibrate. To find

the constant a, we will use the data-based calibration algorithm for penalization procedures that is
explained at the end of section 3. This data-driven slope estimation method is implemented in CAPUSHE
(CAlibrating Penalty Using Slope HEuristics) (Brault et al., 2011) which is available in the R package
capushe https://cran.r-project.org/package=capushe. This proposed slope estimation method is
made to be robust in order to preserve the eventual undesirable variations of criteria.
In what follows, we consider a random variable X following a Gaussian Mixture Model with k = 6 classes
where the mixture density function is defined as

p(x) =
k∑
j=1

πjN (x|µj , Id)

with, πj = 1
k ∀1 ≤ j ≤ k, µj ∼ U10 where U10 is the uniform law on the sphere of radius 10

N (x|µ, Id) =
1√
(2π)d

exp
(
−1

2‖x− µ‖
2
)

In what follows, we consider n = 3000 i.i.d realizations of X. We first focus on some visualization of our
slope method.
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(ŝ
m
)

The regression line is computed with 21 points

1 2 3 4 5 7 9 11 13 15 17 19 21 25 29 33 38

35
0

45
0

Successive slope values

Number of points (penshape(m),− γn(ŝm)) for the regression
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Figure 1: Evolution of −Wn(ĉk) with respect to k (on the left), Slope values as function of the number
of points used to estimate the slope (upper right) and selected number of clusters for each number of
points used to estimate the slope (bottom right).
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Figure 2: Evolution of Wn(ĉk) (on the left) and crit(k) (on the right) with respect to k.

As can be seen in figure 1 (left), the last 21 points are used to estimate the regression slope since it
behaves like an affine function when k is large. Figure 2 (left) shows that there are two possible elbow of
this curve so, the elbow method suggests taking 5 or 6 as the number of clusters. In this case, the elbow
method is not ideal. In Figures 3 to 5, in order to visualize data points in dimensions higher than 3,
we represent data as curves that we call ”profiles”, gathered it by cluster, and represented the centers of
the groups in red. We also represent the 2 first principal components of the data using robust principal
component analysis components (RPCA) (Cardot and Godichon-Baggioni, 2017). In Figure 3, we focus
on the clustering obtained with K-medians algorithm (”Offline” version) for non contaminated data. In
each cluster, the curves are close to each other and also close to the median, and the profiles differ from
one cluster to another, meaning that our method separated well the 6 groups. In order to visualize
the robustness of the proposed method, we consider contaminated data with the law Z = (Z1, ...,Z5)
where Zi are i.i.d, with Zi ∼ T1 where T1 is a Student law with 1 degree of freedom. Applying our
method for selecting the number of clusters for K-medians algorithms, we selected the corrected number
of clusters. Furthermore, the obtained groups, up to the presence of some outliers in each clusters, is
coherent. Nevertheless, in the case of K-means clustering, the method found non homogeneous clusters,
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i.e. the method assimilates some far outliers as single clusters (see Figure 5. Note that in the case of
contaminated data (Figures 4 and 5), we only represented 95% of the data in order to better visualize
them. Then, in Figure, 5, Clusters 5, 7, 8, 11 and 12 are not visible since they are ”far” outliers.
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Figure 3: Profiles (on the left) and clustering via K-medians represented on the first two principal
components (on the right) without contaminated data.

4 5 6

1 2 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

−10

−5

0

5

10

−10

−5

0

5

10P
ro

fi
le

−10

−5

0

5

−10 −5 0 5 10
First Principal Componant

S
e

c
o

n
d

 P
ri

n
c
ip

a
l 
C

o
m

p
o

n
a

n
t
K

1

2

3

4

5

6

Figure 4: Profiles (on the left) and clustering via K-medians algorithm represented on the first two
principal components (on the right) with 5% of contaminated data.
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Figure 5: Profiles (on the left) and clustering via K-means algorithm represented on the first two
principal components (on the right) with 5% of contaminated data.
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Simulations S1 S2 S3
Algorithms N k̄ N0.1 k̄0.1 N k̄ N0.1 k̄0.1 N k̄ N0.1 k̄0.1

Sl
op

e Offline 50 1 49 1.04 50 4 50 4 50 5 50 5
Semi-Online 46 1.1 44 1.7 50 4 49 4.02 50 5 46 5.1

Online 43 1.6 49 1.1 48 4 42 4 50 5 40 5.2
K-means 18 1.6 0 7 50 4 1 7.9 50 5 2 6.7

G
ap

Offline 50 1 50 1 6 1.7 0 1 47 4.8 2 1.2
Semi-Online 50 1 50 1 7 1.7 0 1 47 4.8 2 1.2

Online 50 1 50 1 8 2.4 0 1 47 4.8 2 1.2
K-means 50 1 50 1 0 1.2 0 1.2 12 2 0 1.3

Si
lh

ou
et

te Offline 0 6.4 0 2 0 3 0 2.9 24 4.4 1 3.5
Semi-Online 0 5.8 0 2 0 3 0 2.9 24 4.4 1 3.5

Online 0 2.1 0 2.1 0 3 2 3.2 27 4.5 2 4.5
K-means 0 7.9 0 2.1 0 3 7 3.2 27 4.5 0 6.7

Table 1: Comparison of the number of times we get the right value of clusters and the averaged selected
number of clusters obtained with the different methods without contaminated data and with 10% of
contaminated data.

4.2 Comparison with Gap Statistic and Silhouette
In what follows, we focus on the choice of the number of clusters and compare our results with different
methods. For this, we generated some basic data sets in three different scenarios (see Fischer (2011)) :
(S1) A single cluster in dimension 10 : We consider 2000 points uniformly distributed over the
unit hypercube in dimension 10.
(S2) 4 clusters in dimension 3 : The data are generated by Gaussian mixture centered at (0, 0, 0),
(0, 2, 3), (3, 0,−1), and (−3,−1, 0) with variance equal to the identity matrix. Each cluster contains 500
data points.
(S3) 5 clusters in dimension 4 : The data are generated by Gaussian mixture centered at (0, 0, 0, 0),
(3, 5,−1, 0), (−5, 0, 0, 0), (1, 1, 6,−2) and (1,−3,−2, 5) with variance equal to the identity matrix. Each
cluster contains 500 data points.

We applied three different methods for determining the number of clusters : the proposed slope method,
Gap Statistic and Silhouette method. For each method, we use four clustering algorithms : K-medians
(”Online”, ”Semi-Online”, ”Offline”) and K-means. For each scenario, we contaminated our data with
the law Z = (Z1, ...,Zd) where Zi are i.i.d, with Zi ∼ T1 where T1 is a Student law with 1 degree of
freedom. Then, we evaluate our method for the different methods and scenarios by considering:

• N : number of times we get the right value of cluster in 50 repeated trials without contaminated
data.

• k̄ : average of number of clusters obtained over 50 trials without contaminated data.

• N0.1 : number of times we get the right value of cluster in 50 repeated trials with 10% of contami-
nated data.

• k̄0.1 : average of number of clusters obtained over 50 trials with 10% of contaminated data.

In case of well separated clusters as in the scenario (S3), the gap statistics method and silhouette method
give competitive results. Nevertheless, for closer clusters, the slope method works much better than gap
statistics and silhouette method as in the scenario (S2). The gap statistics method works well in scenario
1 in both cases but it works via bootstrapping so it is huge in terms of computation time. Remark
that the silhouette method is only defined as k ≥ 2, explaining partially the bad results for scenario 1.
Nevertheless, the silhouette method only works in scenario 3 and is globally not very competitive with
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the slope method, especially in case of contaminated data. In scenarios 2 and 3 with slope method,
Offline, Semi-Online, Online and K-means give better results but in case of contamination, K-means
crashes completely while the three other methods seem to be not too much sensitive.
In every scenario, Offline, Semi-Online, Online K-medians with the slope method give very competi-
tive results and in the case where the data are contaminated, they clearly over perform other methods
(especially the Offline method).

4.3 Contaminated Data
We now focus on the impact of contaminated data on K-means and K-medians clustering and on the
choice of the number of clusters. In this aim, we generate data with a Gaussian mixture model with 10
classes in dimension 5 (whose centers are generated randomly on the sphere of radius 10) and each class
contains 500 data points. The data are contaminated with the law Z = (Z1, ...,Z5) where Zi are i.i.d,
with 3 possible scenarios:

1. Zi ∼ T1

2. Zi ∼ T2

3. Zi ∼ U [−10, 10]

where Tm is the Student law with m degrees of freedom and U [a, b] is the continuous uniform distribution
on [a, b]. In what follows, let us denote by ρ the proportion of contaminated data. In order to compare
the different clustering results, we focus on the Adjusted Rand Index (ARI) (Rand, 1971; Hubert and
Arabie, 1985) which is a measure of similarity between two clusterings and which relies on taking into
account the right number of correctly classified pairs. We evaluate for each scenario the average of the
number of clusters obtained on 50 trials and the averaged ARI only evaluated on uncontaminated data.
Without contaminated data, the three K-medians algorithms as well as the K-means algorithm have
globally found the right number of clusters with an averaged ARI close to 0.99. Nevertheless, in the case
where the data are contaminated by Student’s law with 1 degree of freedom, the proposed slope method
for K-medians successfully found more or less the optimal number of clusters up to 28% contamination,
and so with competitive ARI, but with 50% contamination it fails to get out of it (logically, since it has a
breakdown point at 0.5). Concerning the K-means algorithm, the number of clusters as well as the ARI
quickly ”diverge” as the contamination increases, leading, for the case where respectively 2% and 16%
of the data are contaminated by a Student with 1 degree of freedom, to respectively 14 selected clusters
and an ARI close to 0.5.
In the other 2 cases of contamination, K-medians with slope heuristic manages well to find the right
number of clusters (fluctuating between 10 and 11 essentially) while for K-means, the selected number
of clusters fluctuates between 8 and 13. Note that in case of high contamination rate, we usually get 11
clusters, which is logical since most of the contaminated data forms a kind of new cluster around the
center of the sphere. In all scenarios, we obtain a better ARI compared to K-means clustering and in
terms of ARI, Offline, Semi-Online and Online K-medians algorithms have analogous performances.
We now define the empirical L1-error of the centroids estimation by:

k̂∑
j=1

min
j=1,..,k

∥∥ĉi − cj∥∥ (2)

with c = {c1, ..., ck} and ĉ =
{
ĉ1, ..., ĉk̂

}
where k̂ selected number of clusters. The empirical L1-error of

the centroid estimation and the selected number of clusters, for each algorithms, are given in Figure 6 and
7. In Figure 7 (left), only the K-medians algorithms is visible since the empirical L1-error of the centroid
estimation of K-means algorithm totally blows up and varies between the values 10000 and 30000 with a
median close to 15000. The K-means algorithm is clearly affected by the presence of outliers and both its
L1-error and its predicted number of clusters are now much larger than for the other algorithms. Other
three K-medians algorithms have analogous performances, even if Offline is slightly better.
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ρ 0 0.01 0.02 0.03 0.05 0.09 0.16 0.28 0.5

Z
i
∼
T 1

Offline

k̄

10 10 10.2 10.2 10.7 10.8 11.4 9.9 3.1
Semi-Online 10 10.1 10.2 10.7 11 11.2 12 10.6 3.2

Online 10 10.1 10.2 10.8 11.1 11.7 12.1 11.2 2.8
K-means 10.6 13.5 14 13.6 12.9 12.3 8.9 8.5 11.5
Offline

A
R

I

0.99 0.99 0.98 0.99 0.98 0.98 0.97 0.81 0.15
Semi-Online 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.91 0.19

Online 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.87 0.16
K-means 0.98 0.94 0.92 0.88 0.79 0.69 0.5 0.33 0.12

Z
i
∼
T 2

Offline

k̄

10 10 10.7 11 11 10.9 10.9 11.2 11.1
Semi-Online 10 10 10.9 11 11 10.9 10.9 11.2 11.1

Online 10 10.1 11.3 11 11 10.9 10.9 11.2 11.2
K-means 10.6 11.1 11.5 11.3 11.7 12.1 13 12.7 8
Offline

A
R

I

0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
Semi-Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96

Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
K-means 0.98 0.98 0.97 0.98 0.97 0.96 0.96 0.95 0.68

Z
i
∼
U
[−

10
,1

0]

Offline

k̄

10 10 10.1 10.1 10 10 10.5 11.9 10.8
Semi-Online 10 10 10.1 10.1 10 10 10.3 11.9 10.8

Online 10 10 10.1 10.1 10 10 10.5 11.1 11.2
K-means 10.6 10.7 11.1 11.2 12 11.6 11.8 11.3 9.2
Offline

A
R

I

0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
Semi-Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96

Online 0.99 0.99 0.97 0.98 0.97 0.98 0.98 0.97 0.96
K-means 0.98 0.97 0.97 0.98 0.97 0.96 0.96 0.92 0.79

Table 2: Comparison of the selected number of clusters and the averaged ARI obtained with the different
methods with respect to the proportion of contaminated data for Zi ∼ T1, Zi ∼ T2 and Zi ∼ U [−10, 10].
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Figure 6: Box plots reflect empirical L1-error (see (2)) of centroid estimation (on the left) and the
selected number of clusters k (on the right) for the ”Offline”, ”Semi-Online”, ”Online” and K-means
without contaminated data.
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Figure 7: Box plots reflect empirical L1-error (see (2)) of centroid estimation (on the left) and the
selected number of clusters k (on the right) for the ”Offline”, ”Semi-Online”, ”Online” and K-means with
28% of contaminated data.

4.4 Conclusion
Selecting the number of clusters for K-medians with the proposed penalized criterion calibrated with the
help of the slope heuristic method gives very competitive results, and so, even in the presence of outliers
(contrary to K-means algorithm). Furthermore, Offline, Semi-Online and Online K-medians algorithms
have generally analogous performances even if Offline is slightly better but in terms of computation time,
one could prefer Online K-medians in case of large sample. As mentioned in Section 2, one should use
the Offline algorithm in case of moderate sample size, the Semi-Online one for medium sample size and
finally the Online one for large sample size.

5 Proofs
The proof of the Theorem 1 is inspired by the proof of Theorem 3 in Linder (2000). Theorem 2 is an
adaptation of Theorem 8.1 in Massart (2007) and Theorem 2.1 in Fischer (2011).
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5.1 Proof of Theorem 3.1
Proof. For any c ∈ Sk, let T (c)

n = n
2 (W (c)−Wn(c)) =

1
2
∑n
i=1(E

[
minj=1,..,k

∥∥Xi − cj
∥∥]−minj=1,..,k

∥∥Xi − cj
∥∥).

So

E

[
sup
c∈Sk

(W (c)−Wn(c))

]
=

2
n

E

[
sup
c∈Sk

T
(c)
n

]
.

Let us first demonstrate that the family of random variables
{
T
(c)
n : c ∈ Sk

}
is subgaussian and sample

continuous in a suitable metric. For any c, c′ ∈ Sk define

p(c, c′) = sup
‖x‖≤R

{∣∣ min
j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

∥∥x− c′j∥∥ ∣∣}
and pn(c, c′) =

√
np(c, c′), pn is a metric on Sk. Since we have,∣∣T (c)

n − T (c′)
n

∣∣ = n

2
∣∣W (c)−W (c′) +Wn(c

′)−Wn(c)
∣∣

≤ n

2
(∣∣W (c)−W (c′)

∣∣+ ∣∣Wn(c
′)−Wn(c)

∣∣)
≤ np(c, c′) =

√
npn(c, c′)

and the family
{
T
(c)
n : c ∈ Sk

}
is then sample continuous in the metric pn. To show that

{
T
(c)
n : c ∈ Sk

}
is subgaussian in pn, let

Yi =
1
2

(
W (c)− min

j=1,..,k

∥∥x− cj∥∥)− 1
2

(
W (c′)− min

j=1,..,k

∥∥x− c′j∥∥) .

Then

T
(c)
n − T (c′)

n =
n∑
i=1

Yi

where Yi are independent, have zero mean, and∣∣Yi∣∣ ≤ 1√
n
pn(c, c′).

By Lemma 5.1, we obtain

E

[
eλ(T

(c)
n −T

(c′)
n )

]
≤ e

λ2pn(c,c′)2
2 .

So,
{
T
(c)
n : c ∈ Sk

}
is subgaussian in pn. As the family

{
T
(c)
n : c ∈ Sk

}
is subgaussian and sample con-

tinuous in pn, Lemma 5.2 gives

E

[
sup
c∈Sk

T
(c)
n

]
≤ 12

∫ diam(Sk)/2

0

√
lnNpn(Sk, ε)dε.

By Lemma 5.4, we obtain

Npn(Sk, ε) ≤
(

4R
√
n

ε

)kd
and since diam(Sk) ≤

√
n2R

E

[
sup
c∈Sk

T
(c)
n

]
≤ 24

n

∫ √nR
0

√√√√ln
((

4R
√
n

ε

)kd)
dε

=
24
√
kd

n

∫ √nR
0

√
ln
(

4R
√
n

ε

)
dε.
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Considering x = ε
4R
√
n

, we obtain,

E

[
sup
c∈Sk

T
(c)
n

]
≤ 24

√
kd

n

∫ 1
4

0
4R
√
n

√
ln
(

1
x

)
dx.

Applying Jensen’s inequality to the concave function f(x) =
√
x :

E

[
sup
c∈Sk

T
(c)
n

]
≤ 24R

√
kd

n

√∫ 1
4

0
4 ln

(
1
x

)
dx

= 24R
√
kd

n

√
1 + ln 4

≤ 48R
√
kd

n

where we used that
∫

ln x = x ln x− x and ln 4 ≤ 3.
Thus,

E

[
sup
c∈Sk

{W (c)−Wn(c)}

]
≤ 48R

√
kd

n
.

5.2 Proof of Theorem 3.2
Proof. By definition of c̃, for all k, 1 ≤ k ≤ n and ck ∈ Sk, we have:

Wn(c̃) + pen(k̂) ≤Wn(ck) + pen(k)

W (c̃) ≤Wn(ck) +W (c̃)−Wn(c̃) + pen(k)− pen(k̂). (3)
Consider nonnegative weights {xl}1≤l≤n such that

∑n
l=1 e

−xl = Σ and let z > 0.
Applying Lemma 5.5 with f(x) = 1

n minj=1,..,l
∥∥x− cj∥∥, a = 0 and b = 2R

n for all l, 1 ≤ l ≤ n and all
εl > 0

P

[
sup
c∈Sl

(W (c)−Wn(c))−E

[
sup
c∈Sl

(W (c)−Wn(c))

]
≥ εl

]
≤ exp

(
−
nε2l
2R2

)
.

It follows that for all l, taking εl = 2R
√

xl+z
2n

P

[
sup
c∈Sl

(W (c)−Wn(c)) ≥ E

[
sup
c∈Sl

(W (c)−Wn(c))

]
+ 2R

√
xl + z

2n

]
≤ e−xl−z.

Thus, we have

P

[
n⋂
l=1

sup
c∈Sl

(W (c)−Wn(c)) ≤ E

[
sup
c∈Sl

(W (c)−Wn(c))

]
+ 2R

√
xl + z

2n

]

= 1−P
[
n⋃
l=1

sup
c∈Sl

(W (c)−Wn(c)) ≥ E

[
sup
c∈Sl

(W (c)−Wn(c))

]
+ 2R

√
xl + z

2n

]
≥ 1− Σe−z.

Considering Zl = E
[
supc∈Sl(W (c)−Wn(c))

]
, let us show if we have for all 1 ≤ l ≤ n,

sup
c∈Sl

(W (c)−Wn(c)) ≤ Zl + 2R
√
xl + z

2n

14



then,

W (c̃) ≤Wn(ck) + 2R
√

z

2n + pen(k).

We suppose that we have

sup
c∈Sl

(W (c)−Wn(c)) ≤ Zl + 2R
√
xl + z

2n ∀1 ≤ l ≤ n (4)

Particularly it’s true for l = k̂, we have also W (c̃)−Wn(c̃) ≤ supc∈Sk̂ (W (c)−Wn(c)) and
√
a+ b ≤

√
a+
√
b ∀a, b ≥ 0. By combining this result with (2) and (3), we get

W (c̃) ≤Wn(ck) + sup
c∈Sk̂

(W (c)−Wn(c)) + pen(k)− pen(k̂)

≤Wn(ck) + Zk̂ + 2R
√
xk̂
2n + 2R

√
z

2n + pen(k)− pen(k̂).

With the help of Theorem 3.2, we have Zk ≤ 48R
√

kd
n for all k, 1 ≤ k ≤ n and if we have pen(k) ≥

R

(
48
√

kd
n + 2

√
xk
2n

)

W (c̃) ≤Wn(ck) + 48R

√
k̂d

n
+ 2R

√
xk̂
2n + 2R

√
z

2n + pen(k)−R

48

√
k̂d

n
+ 2
√
xk̂
2n


= Wn(ck) + 2R

√
z

2n + pen(k)

which shows that
W (c̃) ≤Wn(ck) + 2R

√
z

2n + pen(k).

Thus

P

[
W (c̃) ≤Wn(ck) + 2R

√
z

2n + pen(k)
]

≥ P

[
n⋂
l=1

sup
c∈Sl

(W (µ, c)−W (µn, c)) ≤ E

[
sup
c∈Sl

(W (c)−Wn(c))

]
+ 2R

√
xl + z

2n

]
≥ 1− Σe−z.

We get

P

[
W (c̃)−Wn(ck)− pen(k) ≥ 2R

√
z

2n

]
≤ Σe−z

P

[√
2n

2R (W (c̃)−Wn(ck)− pen(k)) ≥
√
z

]
≤ Σe−z

or, setting z = u2,

P

[√
2n

2R (W (c̃)−Wn(ck)− pen(k)) ≥ u
]
≤ Σe−u

2

E

[√
2n

2R (W (c̃)−Wn(ck)− pen(k))+
]
=

∫ ∞
0
P

[√
2n

2R (W (c̃)−Wn(ck)− pen(k))+ ≥ u
]
du

≤
∫ ∞

0
P

[√
2n

2R (W (c̃)−Wn(ck)− pen(k)) ≥ u
]
du

≤ Σ
∫ ∞

0
e−u

2
du = Σ

√
π

2 .
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We get

E [(W (c̃)−Wn(ck)− pen(k))+] ≤ ΣR
√

π

2n .

Since E [Wn(ck)] = W (ck), we have :

E [W (c̃)] ≤W (ck) + pen(k) + ΣR
√

π

2n .

E [W (c̃)] ≤ inf
1≤k≤n,ck∈Sk

{W (ck) + pen(k)}+ ΣR
√

π

2n .

5.3 Proof of Proposition 3.1
Proof. If k ≤ 2d, we have 4Rk−1/d ≥ 4R2−1 = 2R. Thus, W (c) ≤ 2

√
d ≤ 4

√
dk−1/d for any vector

quantizer with codebook c.
Otherwise, let ε = 4Rk−1/d. Then ε ≤ 2R and by Lemma 5.3 there exists a set of points {y1, ..., yk} ⊂
S(0,R) that ε-covers S(0,R). A quantizer with the codebook c = {y1, ..., yk} verifies :

W (c) ≤ ε ≤ 4Rk−1/d

That concludes
inf
c∈Sk

W (c) ≤ 4Rk−1/d

5.4 Some definitions and lemma
These are some definitions and lemma that are useful to prove these theorems.

Definitions :

• Let (S,p) be a totally bounded metric space. For any F ⊂ S and ε > 0 the ε-covering number
Np(F , ε) of F is defined as the minimum number of closed balls with radius ε whose union covers
F.

• A Family {Ts : s ∈ S} of zero-mean random variables indexed by the metric space (S, p) is called
subgaussian in the metric p if for any λ > 0 and s, s′ ∈ S we have

E
[
eλ(Ts−Ts′ )

]
≤ e

λ2p(s,s′)2
2

• The Family {Ts : s ∈ S} is called sample continuous if for any sequence s1, s2..,∈ S such that
sj → s ∈ S we have Tsj → Ts with probability one.

Lemma 5.1 (Hoeffding (1994)). Let Y1, ..,Yn are independent zero-mean random variables such that
a ≤ Yi ≤ b, i = 1, ...,n, then for all λ > 0,

E
[
eλ(
∑n

i=1 Yi)
]
≤ e

λ2n(b−a)2
8

Lemma 5.2 (Cesa-Bianchi and Lugosi (1999), Proposition 3). If {Ts : s ∈ S} is subgaussian and sample
continuous in the metric p, then

E

[
sup
s∈S

Ts

]
≤ 12

∫ diam(S)/2

0

√
lnNp(S, ε)dε
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Lemma 5.3 (Bartlett et al. (1998), Lemma 1). Let S(0,r) denote the closed d-dimensional sphere of
radius r centered at x. Let ε > 0 and N(ε) denote the cardinality of the minimum ε covering of S(0, r),
that is, N(ε) is the smallest integer N such that there exist points {y1, ..., yN} ⊂ S(0, r) with the property

sup
x∈S(0,r)

min
1≤i≤N

‖x− yi‖ ≤ ε

Then, for all ε ≤ 2r we have

N(ε) ≤
(

4r
ε

)d
Lemma 5.4. For any 0 < ε < 2R and k ≥ 1, the covering number of Sk in the metric

p(c, c′) = sup
‖x‖≤R

{∣∣ min
j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

‖x− c′j‖
∣∣}

is bounded as

Np(Sk, ε) ≤
(

4R
ε

)kd
.

Proof of the Lemma 4 : . Let 0 < ε ≤ 2R by Lemma 3 there exists a ε-covering set of points
{y1, ..., yN} ⊂ S(0,R) with N ≤

(4R
ε

)d.
Since, we have Nk ways to choose k codepoints from a set of N points {y1, ..., yN}, that implies

Np(Sk, ε) ≤
(

4R
ε

)kd
.

For any codepoints {c1, ..., ck} which are contained in S(0,R), there exists a set of codepoints such that∥∥∥cj − c′j∥∥∥ ≤ ε for all j.
Let us first show

min
j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

∥∥x− c′j∥∥ ≤ ε.
In this aim, let us consider q ∈ arg minj=1,..,k

∥∥x− cj∥∥, then

min
j=1,..,k

∥∥x− c′j∥∥− min
j=1,..,k

∥∥x− cj∥∥ ≤ ∥∥x− c′q∥∥− ‖x− cq‖ ≤ ∥∥cq − c′q∥∥ ≤ ε.
In the same way, considering q′ ∈ arg minj=1,..,k

∥∥∥x− c′j∥∥∥ , we show

min
j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

∥∥x− c′j∥∥ ≤ ∥∥x− cq′∥∥− ∥∥∥x− c′q′∥∥∥ ≤ ∥∥∥cq′ − c′q′∥∥∥ ≤ ε.
So, ∣∣ min

j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

∥∥x− c′j∥∥ ∣∣ ≤ ε
for any codepoints {c1, ..., ck} which are contained in S(0,R), there exists a set of codepoints

{
c′1, ..., c′k

}
such that ∣∣ min

j=1,..,k

∥∥x− cj∥∥− min
j=1,..,k

∥∥x− c′j∥∥ ∣∣ ≤ ε.
Lemma 5.5 (McDiarmid et al. (1989), Massart (2007) : Theorem 5.3). If X1, ...Xn are independent
random variables and F is a finite or countable class of real-valued functions such that a ≤ f ≤ b for all
f ∈ F , the if Z = supf∈F

∑n
i=1(f(Xi)−E [f(Xi)]), we have, for every ε > 0,

P [Z −E [Z] ≥ ε] ≤ exp
(
− 2ε2

n(b− a)2

)
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