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Abstract
The spin transition materials are known to exhibit a rich variety of behaviours under several

stimuli, among which the pressure leads to major changes in their electronic and elastic properties.

From the experimental point of view, thermal spin transitions under isotropic pressure showed

transformations from (i) hysteretic to continuous transformations where the hysteresis width van-

ishes beyond some threshold pressure value; that is the conventional case. In several other cases

very pathological and unexpected behaviours emerged, like (ii) persistent hysteresis under pres-

sure; (iii) non uniform behavior of the thermal hysteresis width which first increases with pressure

and then decreases and vanishes at higher pressures; (iv) also double step transitions induced by

pressure are also often obtained, where the pressure triggers the appearance of a plateau during the

thermal transition, leading to two-step transitions, and finally (v) other non-conventional re-entrant

transitions, where the thermal hysteresis vanishes at some pressure and then reappears at higher

pressure values are also observed. In the present theoretical study, we investigate this problem

with an electro-elastic description of the spin-crossover phenomenon by solving the Hamiltonian

by Monte Carlo technique. The pressure effect is here introduced directly in the lattice parameters,

the elastic constants and ligand field energy. By considering spin state-dependence compressibil-

ity’s, we demonstrate that a large panel of experimental observations can be qualitatively described

with this model. Among them, we quote (i) the conventional pressure effect decreasing the hystere-

sis width, (ii) the unconventional cases with pressure causing a non-monotonous behaviour of the

hysteresis width, (iii) re-entrant, as well as (iv) double step transitions accompanied with various

types of spin state self-organization in the plateaus regions.
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I. INTRODUCTION

Spin-crossover (SCO) materials are extensively studied due to their exceptional potential

applications as sensor devices, molecular memories, displays, switches, etc [1–6] as well as

for their fascinating fundamental aspects related to the coupling between their electronic

and elastic structures. Such spin transition materials have been commonly investigated in

iron(II) complexes with 3d6 configuration in octahedral symmetry. Their magnetic prop-

erties exhibit two kind of electronic configuration : paramagnetic high-spin state (HS) at

high-temperature and diamagnetic low-spin state (LS) at low-temperature with their re-

spective total spin, S=2 and S=0. From the optical and elastic point of view, the switching

between HS and LS states, which is achieved by light [7–11], temperature [7, 8, 10, 12, 13],

magnetic [14] or electric field [15], pressure [16–23] etc, is accompanied by a change of color

which couples to a significant variation of the bond lengths between Fe and N atoms, which

vary from ∼ 2.00 Å in the LS state to ∼ 2.2 Å in the HS state [7, 8, 10], leading to abrupt

expansion by around 30% of the molecular volume of the coordination sphere [24]. In con-

trast, the expansion of the unit cell volume is ∼ 3-5 % which is [25], very small compared to

that of the coordination sphere. This important difference of volume change results from the

molecular crystal structure which absorbs a large part of the molecular volume expansion

in the form of reorientations of the ligands and others local degrees of freedom which do not

affect the unit cell volume [26]. In cooperative spin-crossover solids, the nucleation and the

growth of the spin states during the spin transition arise from local volume expansions taking

place at several regions in the lattice and their propagation is caused by their interference

in the whole lattice (due to the long-range character of the emerging elastic interactions)

resulting in a global volume expansion accompanied by significant deformation of the crystal

lattice, which produces inhomogeneous mechanical stresses inside the system leading in some

extreme cases to the breakdown of the crystals at the transition. From the experimental

point of view, the investigations on the SCO molecular complexes benefited from a large

panel of techniques, like x-ray diffraction, optical microscopy, colorimetry, Mössbauer and

uv-visible spectroscopies, reflectively, photoluminescence [22, 24, 27–39] etc showing many

features in the thermal properties of these materials such as gradual transition which follows

the Boltzmann statistics, first-order transition with hysteresis, incomplete spin transitions

with residual HS fraction at low-temperature, two-and multi-step transitions characterized

3



by intermediate plateaus in which the spin states are self-organized [40–48] etc. Theoret-

ically, the mechanism behind all these behaviors are often investigated using macroscopic

or microscopic descriptions such as the regular solutions model [49, 50] based on a thermo-

dynamical approach where the interaction parameters related to the weak intermolecular

interactions in iron(III) compounds are introduced in a phenomenological way, continuous

medium model [51] which do not explicitly describe the particular micro-organization of

the HS and the LS domains, and also Ising-like models [52–55] which propose a qualitative

microscopic origin to the SCO phenomenon. Among the Ising-like models, we distinguish

the vibrational models such as spin-phonon model [56] accounting for the coupling between

spins and lattice phonons, which discard the macroscopic deformation of the lattice, and

the models with anharmonic potentials such as Lennards-Jones pair potential [57] which

contain a repulsive short-range and attractive long-range contributions or Morse potential

[58], as well as mechanoelastic model [59], harmonic electroelastic model [60, 61] accounting

for the deformation of the lattice. All these models are based on the interactions (short-and

long-range) between the SCO neighbors atoms whose forces (weak or strong) evidence the

degree of cooperativity of these systems. Indeed, in the electroelastic model [60, 62], the

spin and the sites positions degree of freedom, which account for the lattice deformation

during the spin transition, are combined to study the spatiotemporal and thermodynamics

features of spin-crossover solids. This model reproduces many SCO behaviors and offers

many extensions.

In the present investigations, we aim to study the effects of an isotropic applied pressure

on the thermal spin transition and to analyze how does pressure impacts the spatiotemporal

properties of 2D SCO systems modelled using the genuine electroelastic model. Experi-

mental studies conducted on the spin-crossover materials under applied pressure gave a rich

variety of behaviors, among which the more frequent one is the case where the hysteresis

width decreases with increasing pressure causing its vanishing beyond a threshold pressure

value, thus leading to a gradual transition, a situation which can be easily demonstrated

from theory [26, 63–68]. The other case, still under debate, which can be considered as

an anomalous behavior corresponds to that where the thermal hysteresis width increases

when the pressure increases. This behavior was first reported experimentally by König et al.

[69] more than 40 years ago. Later, others groups [26, 63, 70–72] reported this anomalous

(non-conventional) behavior and another variety of behaviors, such as an hysteresis under
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pressure which shifts at constant width to higher temperatures [71, 73], or vanishing small

hysteresis which reappears at higher pressure [71, 74], which could be described as a reen-

trant phenomenon. Others spin transition behaviors with applied pressure can be found in

the literature such as pressure-induced two-step transition [22, 75–77] but also the pressure

can induce possible crystallographic transitions which then alters the intermolecular pack-

ing, or which even lead to symmetry breaking [76, 78–80], although most of the induced

transformations are isostructural. However, all these behaviors under pressure are charac-

terized by a common trend : the shift upwards of the transition temperature towards the

higher values of temperature, due to the increase of the local ligand field strength and the

compression of the molecular volume induced by the applied pressure. From a general point

view, one may easily imagine the latter producing an inhomogeneous internal stresses inside

the SCO lattice, acting locally on the bond lengths, and the elastic constants by promoting

the local stabilization of the LS state from the electronic point of view, while the complex

long-range elastic effects may generate elastic frustration inside the lattice .

Thus, to examine the interplay between the electronic and the elastic properties of the

SCO materials under pressure, we investigated in this work the effect of the pressure on the

general electro-elastic model using an original method. The pressure effect is directly put

in the equilibrium bond lengths, in the elastic constants and in the ligand field in a linear

way. Several situations are considered among which, the case of isotropic, and anisotropic

pressure effect along the bond lengths. By monitoring the compressibilities parameters, we

could reproduce a large part of the experimental observations cited above.

The paper is organized as follows: in Sec. II, we present the extended version of the 2D

electro-elastic model for spin crossover solids by considering the distance parameters and

elastic constants depending on the spin states and pressure. Then, from this model, we

deduce the homogeneous electro-elastic model equivalent to Ising model combining long-

range ferroelastic and short-range antiferroelastic interactions. Sec. III is devoted to the

presentation and the discussion of the various thermal dependencies of HS fractions and

spatiotemporal organizations emerging from the simulations under pressure. In Sec. IV, we

conclude and outline the possible extensions of the present work.
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II. THE MODEL

The spin-crossover solids are described well by the electro-elastic model which takes into

account for the electronic and elastic properties in a 2D square lattice of total number sites,

N × N , depicted in Fig. 1. Here, each SCO molecule representing a lattice site is associated

with a fictitious spin state, Si = ± 1, where Si = +1 and Si = −1 define the HS state and

LS state, respectively. In this 2D SCO lattice, every site is connected to its four neighbors

by harmonic springs where the elastic constants and the equilibrium distances depend on

the spin states highlighting the local elastic field distortion which accompanies the local

variation of the molecular volume during the spin conversion. The Hamiltonian describing

such 2D system is given by,

H =
∑

i

(∆ − kBT ln g)Si

+
∑
i,j

A(Si, Sj)[rij − R(Si, Sj)]2

+
∑
i,k

B(Si, Sk)[dik − d(Si, Sk)]2

(1)

Figure 1: Left: 2D elastic configuration lattice with nearest neighbors and next-nearest

neighbors atoms linked by harmonic springs. Right : schematic view of the lattice interac-

tions of a SCO atom in the center with its four nn atoms and four nnn atoms.

The first term of Eq. (1) is the effective temperature–dependent energy gap between the
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LS and HS states. It contains the effective ligand field energy, ∆ − kBT ln g contribution,

arising from the difference of ligand fields, ∆, in the HS and LS states at T=0 K and,

the entropic contribution originating from the electronic and vibrational degeneracy ratio,

g = gHS/gLS, between the HS and LS states. The second and the third terms describe

the elastic interactions between the nearest (nn) and next-nearest neighbors (nnn) of SCO

units, respectively.By considering two nn (nnn) nodes of the 2D discretized lattice, connected

by springs and located at sites (i, j) and (i′, j′), their respective instantaneous distance rij

(rik) is r(i, j|i′, j′) = |r⃗(i′, j′) − r⃗(i, j)| [r(i, k|i′, k′) = |r⃗(i′, k′) − r⃗(i, k)|], whose indexes are

i′ = i, j′ = j ± 1 and i′ = i ± 1, j′ = j (i′ = i ± 1, k′ = k ± 1). The equilibrium bond length

between two nn (resp. nnn) atoms which interact via elastic springs is denoted R0(Si, Sj)

(resp. d0(Si, Sk) =
√

2R0(Si, Sk). Let us denote by, RHH
0 , RHL

0 and RLL
0 , the equilibrium

distances between nn HS-HS, HS-LS and LS-LS sites, we then have R(+1, +1) = RHH
0 ,

R(+1, −1) = R(−1, +1) = RHL
0 and R(−1, −1) = RLL

0 . In the same way, we consider that

the elastic constant of a spring linking two nn (resp. nnn) atoms depends on their spin

states. So, for HS-HS, HS-LS and LS-LS configurations, AHH , AHL and ALS (resp. BHH ,

BHL and BLS) represent the nn (resp. nnn) elastic constants. It is straightforward to derive

the general expressions of the nn (resp. nnn) equilibrium bond lengths, R0(Si, Sj) (resp.

d0(Si, Sk)) and the nn (resp. nnn) elastic constants, A(Si, Sj) (resp. B(Si, Sk)), as function

of the spin states Si and Sj under the following forms:

R0(Si, Sj) = RHL
0 + δR

4 (Si + Sj) (2)

A0(Si, Sj) = A0 + A1(Si + Sj) + A2SiSj (3)

B0(Si, Sk) = B0 + B1(Si + Sk) + B2SiSk (4)

where, the parameters Ai(i=0, 1, 2) and Bi(i=0, 1, 2) write under the general form:

X0 = XHH + XLL + 2XHL

4 ,

X1 = XHH − XLL

4 = δX

4 ,

X2 = XHH + XLL − 2XHL

4 ,

(5)

and RHL
0 = RHH

0 +RLL
0

2 with δR0 = RHH
0 − RLL

0 is the lattice misfit between the HS and

LS phases. Owing to the square symmetry of the lattice, the bond length of nnn sites

are obtained by multiplying the latter by
√

2 which gives d0(Si, Sk) =
√

2R0(Si, Sk). In
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general, the Hamiltonian (1) can be re-written under the form of an Ising-like model (see

ref. [52]) containing long-range effective field-like contribution and exchange-like interactions

mixing local short-and long-range contributions. Next, we will consider how to introduce

the pressure effect in this Hamiltonian.

A. Derivation of the electroelastic model under pressure

In this section, we investigate the effect of an external pressure on the elastic thermo-

dynamics and spatiotemporal properties of the present 2D system. The expression of the

Hamiltonian under an applied isotropic pressure is given by,

Helas =
∑

i

(∆ − kBT ln g) Si

+
∑
i,j

A(Si, Sj) [rij − R(Si, Sj)]2

+
∑
i,k

B(Si, Sk) [dik − d(Si, Sk)]2 + PV

(6)

where in the last term the quantity, V , represents the system’s ”volume”. To anticipate the

results of Monte Carlo simulations and to understand how the pressure affects the equilib-

rium lattice parameters, we first solve the problem in the context of homogeneous lattice, by

considering a uniform bond length through the network. Thus, the instantaneous distances,

rij between nn and dik between nnn become x and x
√

2, respectively. The minimization of

the total elastic energy of the Hamiltonian (6) in the 3D case, where V = Nx3, with respect

to the variable x, by solving the equation, ∂Helas

∂x
=0 leads at mechanical equilibrium, for

relatively low-pressure, to the following general expression of the equilibrium bond length

with pressure,

xeq(P ) = x0
eq(1 − βP ), (7)

where the calculations details and the expressions of the equilibrium bond length for zero

pressure, x0
eq, and the compressibility, β, are given in Sec. A of the Appendix.

It is worth to mention that the derived linear pressure-dependence of xeq expression (7)

is in fair agreement with several experimental results of literature, which showed a linear

decrease of the lattice parameters in the limit of reasonably low-pressure values, typically

less than 1 GPa for SCO materials [18, 22, 63, 81, 82]. On the other hand, the compressibility

factor, for a lattice spacing a, defined as β = −d ln [a]
dP

, has been estimated for SCO materials
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by Laisney et al. [22] at ∼ 0.003 kbar−1. As will be seen later, the used β values in the

simulations are in fair agreement with these experimental data.

We note in passing, for the reader interested in the homogeneous elastic model and its

possible isomorphism with an Ising-like Hamiltonian combining competitive long- and short-

range interactions, that we provide in Sec. B of the Appendix the detailed expressions of

the interactions parameters as well as those of the effective field with respect to pressure in

the case of pressure-independent nn and nnn elastic constants.

From now, we re-express the Hamiltonian (6) by introducing directly the pressure-

dependence in the ligand field energy (∆eff ), the equilibrium bond lengths (R) as well

as in the elastic constants (A and B). By so doing, we consider only the mechanical equilib-

rium states, which means that we assume that, under pressure, the structure relaxes faster

than the spin states. Including these ingredients, leads to the electroealstic Hamiltonian

(8), which will be solved by MC simulations. It should be recalled, in passing, that in this

model where all molecules are connected by springs, in the HS and LS states, all the springs

are unstressed : the elastic energy is then equal to zero and the distance between two nn

molecules (HS-HS or LS-LS) corresponds to equilibrium bond lengths. When the SCO lat-

tice undergoes a thermal spin transition from HS (resp. LS) to LS (resp. HS), a compression

(resp. expansion) of the molecular volume leading to a shortening (resp. stretching) of the

bond lengths due to the local displacements of the nodes, takes place. The expression of the

effective Hamiltonian of the 2D elastic square lattice under the effect of an external pressure

is given as follows,

H =
∑

i

(∆ + αP − kBT ln g)Si

+
∑
i,j

A(Si, Sj, P )[rij − R(Si, Sj, P )]2

+
∑
i,k

B(Si, Sk, P )[dik − d(Si, Sk, P )]2.

(8)

In Eq. (8), the effect of the pressure leads to the renormalization of the effective ligand

field as we have already explained, which shifts the equilibrium temperature towards higher

temperatures following the Clausius-Clapeyron relation, dT
dp

= ∆V
∆S

. From the effective ligand

field, ∆eff = ∆ + αP − kBT ln g, the new expression of the transition temperature writes,

Teq(P ) = T 0
eq + αP

kB ln g
, (9)
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where T 0
eq = ∆

kB ln g
is the equilibrium temperature at zero applied pressure.

B. The expressions of the elastic constants and bond lengths under pressure

From the pressure-dependence of the relaxed lattice parameter given in (7), we could

derive the general expressions of the equilibrium nn bond lengths between the HS-HS, HS-

LS and LS-LS neighbours, which write,

RHH = RHH
0 (1 − βHH

nn P ), RHL = RHL
0 (1 − βHL

nn P ), RLL = RLL
0 (1 − βLL

nn P ), (10)

and we define those of nnn as,

dHH =
√

2R′
HH , dHL =

√
2R′

HL, dLL =
√

2R′
LL. (11)

It is quite easy to demonstrate that the general expressions of the nn (resp. nnn) pressure-

dependence of the bond lengths, R(Si, Sj, P ) (resp. d(Si, Sk, P )), and elastic constants,

A(Si, Sj, P ) (resp. B(Si, Sk, P )), appearing in Hamiltonian (8), whatever their spin states ,

can be re-written using the previous zero-pressure expressions (2)-(4) as follows,

R(Si, Sj, P ) = R0(Si, Sj)[1 − βnn(Si, Sj)P ], (12)

d(Si, Sk, P ) = d0(Si, Sk)[1 − βnnn(Si, Sk)P ] (13)

and

A(Si, Sj, P ) = A0(Si, Sj)[1 + γnn(Si, Sj)P ], (14)

B(Si, Sk, P ) = B0(Si, Sk)[1 + γnnn(Si, Sk)P ], (15)

where, βnn (resp. βnnn) and γnn (resp. γnnn) stand for the nn (resp. nnn) bond and elastic

constant compressibilities, respectively.

C. A predictive analytical elastic approach

As a first-step for understanding of the pressure effect on the different contributions

of the model, we re-express (8) under the form of an Ising-like model. By considering a

homogeneous instantaneous bond length between nn (rij = x) and nnn (rik = x
√

2) SCO,

we find after some simple development

H = h(P )
N∑
i

Si + Jnn(P )
∑
ij

SiSj + Jnnn(P )
∑
ik

SiSk + C(P ), (16)
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where, C(P ) = Ecohesion + C0 is the cohesion energy, whose expression is given in Sec. B of

the Appendix.

The exchange-like parameters, Jnn(P ), Jnnn(P ) and the field-like contribution h(P ) write

as follows

Jnn(P ) = Jnn
0 + Jnn

1 (x − RHL) + Jnn
2 (x − RHL)2, (17)

Jnnn(P ) = Jnnn
0 + Jnnn

1 (x − R′
HL) + Jnnn

2 (x − R′
HL)2, (18)

where,

Jnn
0 = 2 [A0(P ) + A2(P )]

(
δR

4

)2

,

Jnn
1 = −4A1(P )

(
δR

4

)
,

Jnn
2 = A2(P )

(19)

and,

Jnnn
0 = 4 [B0(P ) + B2(P )]

(
δR′

4

)2

,

Jnnn
1 = −8B1(P )

(
δR′

4

)
,

Jnnn
2 = 2B2(P ).

(20)

Eqs. (17) and (18) clearly show that the local exchange-like interactions, Jnn(P ) and

Jnnn(P ), which are globally positive, thus favoring antiferroelastic interactions, contain

short-range terms, Jnn
0 and Jnnn

0 , inducing intrinsic frustration along the nn and nnn lattice

parameters and additional elastic contributions having linear and quadratic forms. On the

other hand, the local field-like term, h(P ), writes as follows,

h(P ) = (∆ + αP − kBT ln g) + h0,1 + h0,2 + h1,1(x − RHL) + h1,2(x − RHL)2

+ h2,1(x − R′
HL) + h2,2(x − R′

HL)2,
(21)

where,

h0,1 = 4zA1(P )
(

δR

4

)2

, h0,2 = 8zB1(P )
(

δR′

4

)2

, (22)
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h1,1 = −2z[A0(P ) + A2(P )]
(

δR

4

)
, h2,1 = −4z[B0(P ) + B2(P )]

(
δR′

4

)
, (23)

h1,2 = zA1(P ), h2,2 = 2zB1(P ), (24)

where, z is the lattice coordination number.

The parameter, h(P ) also contains two parts, which are the effective field contribution

including the effect of the pressure and an additional field-like elastic contribution, which

stabilize the HS or LS state due to their long-range nature. We notice that the elastic part

of h(P ) has a linear and quadratic contribution too.

The minimization of the elastic energy (8) with respect to x in order to get the mechanical

equilibrium is done by solving the equation ∂Eelas

∂x
=0 leading to the general expression of the

equilibrium bond length:

xeq =
∑

i,j A(Si, Sj, P )R(Si, Sj, P ) + 2∑i,k B(Si, Sk, P )R′(Si, Sk, P )∑
i,j A(Si, Sj, P ) + 2∑i,k B(Si, Sk, P ) . (25)

This analytical approach, which merits to be studied for its own, show the complexity of this

model, although the pressure is introduced in a simple way into the Hamiltonian, by injecting

it in the expressions of the lattice parameter and elastic constants. This development allows

a mean-field analysis of Hamiltonian (16) combining nn and nnn interactions, which is out

the scope of the present work. In the next section, we will solve exactly Hamiltonian (8),

combined with Eqs. (10)-(15), using a Monte Carlo procedure running on spins and lattice

positions.

III. MONTE CARLO SIMULATIONS

The Monte Carlo procedure used to investigate the thermodynamic properties of the

2D square lattice under isotropic applied pressure is performed on the spin and the lattice

positions. Here, we consider a 2D square lattice of size N ×N = 30×30, with free boundary

conditions, where each site of spin Si is elastically connected by springs to its nearest and

next-nearest neighbors. The system is initially prepared in the HS phase by fixing all spins

to Si = +1 and all nn lattice bond lengths to RHH
0 . Simulations based on the Metropolis

algorithm are performed as follows: (i) we randomly select a site i and update its spin state

following the Metropolis criterion. (ii) Whatever the result, accepted or rejected spin flip,
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we perform another MC process by displacing each lattice position randomly with a small

quantity (typically δx ≃ 0.05, δy ≃ 0.05) compared to the lattice parameter distance (≃ 1)

in order to minimize the system’s elastic energy. We update all lattice positions by MC 10

times in order to reach the mechanical equilibrium. Then, we call randomly another spin

site and we repeat this sequential procedure until visiting all spin sites. When all spin sites

have been visited once, we call this 1 MC step (MCS). To determine the thermal properties

of the system, we first cool down from the higher temperatures to 1 K and then warmed up

to the initial temperature, with 1 K increment. At each temperature, we perform 103 MCS

to reach the equilibrium state and we use 103 other MCS for the statistics.

A. Model parameters

The Monte Carlo simulations are realized using, as much as possible, realistic values for

the model parameters. Thus, the ligand-field energy is taken as ∆ = 450 K for the ligand field

energy, the degeneracy ratio is set to g = 150 (ln g = 5) leading to an entropy change at the

transition ∆S ≃ 41 J.K−1.mol−1 in good agreement with experimental data of heat capacity

measurements [83]. The transition temperature is easily deduced as, T 0
eq = ∆

kB ln g
= 90 K.

The values of the nn equilibrium bond lengths are taken equal to RHH
0 = 1.2 nm between

two HS sites and RLL
0 = 1.0 nm between two LS sites and so RHL

0 = RHH
0 + RLL

0
2 = 1.1 nm.

For the elastic part, the average elastic constants were fixed to 1.5 × 104 − 2 × 104 K/nm2

(see Table I) leading to an estimated average bulk modulus, G ≃ A/ < R >∼ 8 GPa (< R >

is the average lattice parameter), which is in fair agreement with available experimental data

of Brillouin scattering performed on the single crystal of [Fe(ptz)6](ClO4)2 estimating the

bulk modulus in the range 5 − 20 GPa [71, 84].

The set of used parameter values is summarized in Table I, which in addition to the values

of the equilibrium bond lengths, elastic constants, also includes the bond-compressibility

coefficients used along the numerical simulations.
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Table I: Nearest neighbors (nn) and next-nearest neighbors (nnn) equilibrium bond lengths,

elastic constants and compressibility coefficients values used in the Monte Carlo simulations

for the different electronic configurations. The values of the compressibility of the nnn bond

length is changed along the studies related with the thermal properties under pressure.

Spin state configurations HH HL LL

nn distances (nm) RHH
0 =1.2 RHL

0 =1.1 RLL
0 =1.0

nnn distances (nm) RHH
0

√
2 RHL

0
√

2 RLL
0

√
2

nn elastic constants (×104K/nm2) AHH
0 =0.9 AHL

0 =1.46 ALL
0 =2.0

nnn elastic constants (×104K/nm2) BHH
0 =1.1 BHL

0 = BHH
0 BLL

0 = BHH
0

nn Bond length compressibility (kbar−1) βHH
nn =0.1 βHL

nn = βHL
nn +βLL

nn
2 βLL

nn =0.05

nnn Bond length compressibility (kbar−1) βHH
nnn βHL

nnn = βHL
nnn+βLL

nnn
2 βLL

nnn

nn elastic constant compressibility (kbar−1) γHH
nn =0.1 γHL

nn = γHH
nn +γLL

nn
2 γLL

nn =0.2

nnn elastic constant compressibility (kbar−1) γHH
nnn = γHH

nn γHL
nnn = γHH

nnn+γLL
nnn

2 = γHL
nn γLL

nnn = γLL
nn

IV. RESULTS AND DISCUSSIONS

In this section, we present the results of the thermal investigations on a 2D square lattice

of size N × N = 30 × 30 with free boundary conditions under various values of the isotropic

applied pressure. We consider here the case of small applied pressures between 0 and 5

kbar with α = 30 K/kbar. We initially prepare the lattice in the HS state by putting all

spins Si = +1 and fixing all nn distances equal to RHH
0 . Then, we monitor the pressure

during the thermal transition for various values of the nnn bond length compressibility. Dif-

ferent thermal and pressure-dependence behaviors are then found according to βnnn values.

Among them conventional and non-conventional pressure effects that have been reported in

experimental literature are found. All the others simulation parameters are given in the Sec.

III A.
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A. Conventional pressure effect on spin crossover hysteresis

The first case we consider here is that of the thermal spin transition with hysteresis width

vanishing as the pressure increases. This conventional case is obtained by considering the

HS phase more compressible than the LS phase. For that, we set the nnn bond length

compressibilities βHH
nnn = 0.04, βLL

nnn = 0.03, and βHL
nnn = 0.035 kbar−1, which assumes that

the HS state is softer than the LS. We depict in Figs. 2a and 2b the thermal-dependence

of the HS fraction and nn bond length for different values of applied pressure. Figure 2a

shows that, for P = 0, the system undergoes an usual first-order transition at Teq ∼ 84

K(< T 0
eq = 90) accompanied with a thermal hysteresis of width ∆T ∼ 38 K. Increasing the

pressure decreases the width of the hysteresis which vanishes at P = 3 kbar, leading to a

gradual spin transition which persists until P=5 kbar. This disappearance of the thermal

hysteresis width is accompanied with a shift of the transition temperature towards higher

temperatures due to the increase of the effective ligand field energy. One can also remark

that the shape of nHS(T ) becomes less sharper. Figure 2b shows that when the pressure

increases, an important drop of the nn bond lengths of the HS state (from 1.2 to 0.85 nm)

and those of the LS state (from 1.0 to 0.8 nm) takes place. This reduction in the bond length

changes between the LS and the HS states is at the origin of the weakening of the strength

of elastic interactions which are proportional to the elastic energy, (A + 2B)(rHS − rLS)2,

resulting from the lattice parameter misfit.
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(a)

(b)

Figure 2: Thermal-dependence of the (a) HS fraction and (b) the average bond length

for different applied pressure values ranging from 0 to 5 kbar for nnn compressibilities,

βHH
nnn = 0.04, βLL

nnn = 0.03, and βHL
nnn = 0.035 kbar−1 (for nn compressibilities see Table (I).

Under pressure, the first-order transition transforms a gradual one beyond the threshold

value of pressure P ∗ ≃ 2.5 kbar.

Fig. 3a depicts the evolutions with respect to pressure of the square of the lattice misfit

between the HS state and the LS state, < ∆r >2= (< rHS > − < rLS >)2, and the thermal

hysteresis width, ∆T , and in Fig. 3b that of the equilibrium temperature, Teq. Figure

3a shows that when the pressure increases, the hysteresis width, ∆T , and ∆r2 decrease

and become null beyond some threshold pressure value. When the pressure increases ∆T

decreases linearly until P ∗ ≃ 2.5 kbar beyond which it cancels, while < ∆r >2 which is

correlated to ∆T decreases slightly until P ∼ 4.6 kbar and becomes null for higher pressures
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values. On can notice in Fig. 3b that the thermal transition increases with pressure following

a parabolic law. This non-linearity of the transition temperature with respect to pressure

is due to the contribution of the elastic part (nn and nnn elastic interactions) leading to a

behavior quite different from the usual one where the thermal transition increases linearly

with the pressure following the Clausius-Clapeyron relation. Indeed, the decrease of the

hysteresis width, ∆T , leading to the appearance of the gradual transition is related to the

lowering of the cooperativity of the system. In fact, the increase of the pressure shortens

the distances which weakens the strength of the elastic interactions through the decrease

of the elastic energy barrier between the HS and LS states. A simple explanation of the

P 2-dependence of Teq can be obtained from Eq. (21). Considering the simple assumption

based on that the equilibrium temperature of the system results from the average value of

the ligand field, the thermal transition is obtained by setting h = 0 in Eq. (21),

Teq = T 0
eq + αP

kB ln g
+ 1

kB ln g
[h0,1 + h0,2 + h1,1(xeq − RHL) + h1,2(xeq − RHL)2

+ h2,1(xeq − R′
HL) + h2,2(xeq − R′

HL)2]
(26)

where, xeq = xHS
eq +xLS

eq

2 . At the first-order, Teq depends linearly on pressure. At the second

order, the contributions (xeq − RHL)2 come into play by adding P 2 terms.
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(a)

(b)

Figure 3: (a) Pressure-dependence of the hysteresis width, ∆T (K), and the HS/LS lattice

misfit, < ∆r >2= (< rHS > − < rLS >)2, derived from the data of Fig. 2b showing a

decreasing of these two quantities. (b) Pressure-dependence of the equilibrium temperature,

Teq, resulting from the MC data of the Fig. 2a showing an increase of the thermal transition

following parabolic law. The values of the compressibility parameters as well as the others

parameters used for the simulations are the same as those of the Fig. 2.

The inspection of the spatial distribution of the spin states depicted in the Figs. 4a,

4b, 4c shows the existence of different types of organizations. For P = 0 and P = 2,

for which we got the first-order transitions, the corresponding snapshots denote domain

nucleation from the four corners and a propagation inside the lattice on cooling. On heating

a similar behavior is obtained, although the nucleation starts preferentially from the surface

for P = 2 kbar. For P = 3.5 (Fig. 4c), the nucleation starts everywhere under the form of
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”multidoplet” or ramified structure on cooling and as well as on heating. The absence of the

spin domains is related to the lowering of the strength of the elastic interactions compared

to the magnitude of the effective ligand field energy which is significantly enhanced by the

pressure effects. As a result, the system becomes weakly cooperative (see corresponding

gradual transition in Fig. 2) which prevents the appearance of macroscopic spin domains at

the transition. On the other hand, this spatial disorder of the spin states is associated to the

non-homogeneous decrease of the nn and nnn bond lengths along the x−and y−directions

and the diagonals. Indeed, the rate of change of the nn bond lengths under pressure is greater

than that of the nnn bond lengths due to the weak values of the βnnn compressibility. We

also remark that the spatial organization of the spin states is correlated to deformations and

twisting of the lattice which are associated with the large misfit between HS and LS ∼ 20%

and to the choice of the compressibilities of the nnn elastic constants.
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(a)

(b)

(c)

Figure 4: Selected snapshots showing the self-organisation of the spin states (red=HS,

blue=LS) along the thermal transitions of Fig. 2 for the pressure values P = 0 (a); P = 2

(b) and P = 3.5 kbar (c). See text for more explanations.

20



B. A thermal hysteresis surviving to pressure effects

The second step of the present investigations concerns the case of SCO systems undergoing

a first order-transitions with hysteresis loops shifting upwards and slowly vanishing when the

pressure increases. This behavior corresponds to a non-conventional case which is obtained

here by considering negative compressibilities associated to the nnn HS and LS bond lengths,

βHH
nnn = βLL

nnn = −0.03. All others parameters values are kept unchanged and are the same

as those used in the previous cases. Figs. 5a and 5b summarize the thermal evolution of

the HS fraction and the average lattice spacing under pressure up to 5 kbar, respectively.

Figure 5a shows that although the thermal hysteresis width decreases with pressure, it

does not disappear even for P = 5 kbar. The main reason of this behavior is found in

Fig. 5b which shows a slight change of the HS and LS lattice parameter under pressure,

which then only slightly reduces the strength of the elastic interactions which depend on

(< rHS > − < rLS >)2 . Compared to the case of Fig. 2a, where the hysteresis totally

vanished at P = 3 kbar, here the chosen compressibility values allow a bigger amplitude

of hysteretic behavior under pressure, as observed experimentally in some SCO materials

[71, 85].
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(a)

(b)

Figure 5: Thermal-dependence of the (a) HS fraction, nHS, and (b) the average bond length,

< r >, for different applied pressure values ranging from 0 to 5 kbar for the values of the

nnn compressibilities, βHH
nnn = −0.03, βLL

nnn = −0.03, and βHL
nnn = −0.03. Under pressure,

the first-order transition with hysteresis survives towards the higher temperatures. All the

others simulation parameters are the same as Fig. 2 except those of the nnn compressibilities

and are given in the Table I.

We represent in Fig. 6a and Fig. 6b the pressure-dependence of the respective thermal

hysteresis width and the square difference of the average distance between HS and LS,

< ∆r >2= (< rHS > − < rLS >)2, as well as the transition temperature, Teq. Fig. 6a shows

the presence of two regimes for ∆T and < ∆r >2 when the pressure increases. For small P

values (P < 1.5 kbar) ∆T and < ∆r >2 remain almost constant while beyond 2 kbar both
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quantities decrease with pressure in a correlated way, which confirms the fact that < ∆r >2,

which represents the square of the lattice misfit squared is one of the relevant parameters

describing the strength of the elastic interactions.

(a)

(b)

Figure 6: Pressure-dependence of (a) hysteresis width, ∆T (K) (red dots), and square of the

lattice misfit, < ∆r >2= (< rHS > − < rLS >)2 (blue dots), showing a parabolic decrease of

both parameters and (b) the equilibrium temperature, Teq also showing a parabolic increase.

All these data are derived from those of Fig. 5a and Fig. 5b.

C. Pressure-induced reentrant phase transition

Among the various behaviors induced by the effect of the applied pressure in SCO solids,

the case of the reentrance phenomenon reported in some experimental investigations [86]
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is interesting and puzzling. This phenomenon is studied in physics of phase transition,

particularly in magnetism and ferroelectricity [67] and is generally characterized by the non-

monotonous behavior of the order parameter. In SCO materials, reentrance effects induced

by an applied pressure might be attributed to the existence of a pressure-induced structural

phase transition. Usually, this transition is triggered beyond some threshold pressure value,

which leads to a significant change in the material properties. In the present study, we

do not include any structural phase transition induced by pressure. In contrast, we look

for reentrant effects by adapting the pressure-dependence of the lattice compressibilities. At

this end, we set the following relations between the nn and nnn compressibilities in the three

spin configurations: βHH
nnn = βHH

nn , βHL
nnn = βHL

nn and βLL
nnn = βLL

nn with βHH
nnn > βHL

nnn > βLL
nnn

. Figures 7a and 7b depict the respective thermal-dependences of the high spin fraction,

nHS, and average distance, < r >, for different values of pressure. In Fig. 7a, we represent

the curves in 3D axis only for three values of the pressure for helping the reader to better

see the reentrance effect as function of the pressure. For P = 0 and 1 kbar (low pressure),

the SCO system undergoes a first-order transition with hysteresis which transforms into

a gradual transition for 2 and 3 kbar while the hysteresis reappears again for P = 4 − 5

kbar. This reentrant thermal transition is directly related to the thermal dependence of

< r >, given in the Fig. 7b, which shows that when the pressure increases, the nn average

distances of the HS (< rHS >) and LS (< rLS >) states, decrease with the same rate until

P = 3 kbar where < rHS >=< rLS >= 0.85 nm. Beyond this threshold value, < rHS >,

continues to decrease more than < rLS >, due to its stronger compressibility. When < rLS >

exceeds the value of < rHS >, the thermal hysteresis reappears again for a pressure value

located in the range 2.5 − 3 kbar. To well understand this behavior one must analyze the

dependence of the average value of the misfit parameter, < ∆r >=< rHS > − < rLS >

with respect to the pressure. Considering a linear dependence with pressure, the misfit

parameter < ∆r >= ∆0
R − (RHH

0 βHH
nn − RLL

0 βLL
nn )P , where ∆0

R = (RHH
0 − RLL

0 ) = 0.2 nm,

one can see that for the small pressure values < ∆r >> 0 while for the higher values of the

pressure < ∆r >< 0. Thus, the pressure induces in this case a change of the sign of < ∆r >

beyond the threshold value of the pressure, Pth = ∆0
R

(RHH
0 βHH

nn −RLL
0 βLL

nn ) ≃ 2.86 kbar obtained by

setting < ∆r >= 0 in the previous expression. This value is in excellent agreement with the

obtained one from MC simulations in Fig. 8a, where ∆T vs P is reported. Above P = 3.5

kbar the hysteresis reappears as shown in Fig. 8a, where the width, ∆T , is here also well

24



correlated with < ∆r >2.

(a)

(b)

Figure 7: Thermal-dependence of the (a) HS fraction, nHS, and (b) the average bond length,

< r >, for different values of the applied pressure showing a reentrant phase transition.

The values of the nnn distance compressibilities of the HH, HL and LL, are βHH
nnn = 0.1,

βLL
nnn = 0.05, and βHL

nnn = 0.075. All other parameters including the nn compressibilities are

the same as those of Fig. 2.

Interestingly the pressure-dependence of the transition temperature, Teq(P ), given in Fig.

8b shows a linear behavior which contrasts with the results of Fig. 6. Indeed, by constraining

βHH
nn = βLL

nnn, βLL
nn = βLL

nnn, and βHL
nn = βLL

nnn, the nonlinear elastic part of the thermal
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transition in Eq. (26) cancels and the transition temperature becomes, Teq(P ) = T 0
eq + αP

kB ln g
,

where T 0
eq is the initial temperature at P = 0, and α = 30 K/kbar. For higher pressure values,

the situation could change and one can except an appearance of nonlinear effects.

(a)

(b)

Figure 8: (a) Pressure-dependence of the width, ∆T (K), (in red dots) of the thermal hys-

teresis and < ∆r >2= (< rHS > − < rLS >)2, derived from the Fig. 7b, showing a

close correlation between them. (b) Pressure-dependence of the transition temperature, Teq,

showing a linear behaviour. All results are, derived from Fig. 7a.

Selected snapshots showing the spatial organization of the spin states on cooling and

on heating along the thermal hysteresis of Fig. 7a are summarized in the supplemental

material (SM) as Figs. SM1, SM2 and SM3. For P = 0 (Fig. SM1), we notice the usual

formation of the domains from the corners related to the effective ligand field, h, which
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has a long-range ferroelastic character. When the pressure increases from 0 to 3 kbar, the

self-organization changes due to the weak cooperative character of the system imposed by

the pressure. Thus, for P = 2 kbar (Fig. SM2), a random nucleation of the LS states inside

the HS states (”multidoplets”) is obtained. For P = 5 kbar (Fig. SM3), on cooling and

heating the nucleation starts from the edges and corners and evolves under the form of single

domains which grow and propagate inside the lattice.

D. Pressure-induced two-step transition

Here, we investigate, the case where the pressure induces two-step spin transitions as

often observed in experimental literature [75–77]. The values of the nnn bond compressibility

parameters of the HH, LL and HL states used to obtain this behavior are : βHH
nnn = 0.04,

βLL
nnn = 0.05, and βHL

nnn = 0.045 kbar−1. We depict in Figs. 9a and 9b the thermal-dependence

of the HS fraction, nHS, and average bond length, < r >, at different pressure values. Figure

9a shows a clear transformation of a first-order transition to a two-step transition when the

pressure is increased. The crossover between the two behaviours takes place at P = 2.3

kbar to which corresponds two hysteretic spin transitions with equilibrium temperatures,

Teq = 120 K and Teq = 110 K, separated by a small intermediate plateau around nHS = 0.5.

Increasing the applied pressure up to P = 4 kbar, transforms the previous two ”hysteretic”

first-order transitions to two gradual spin- transitions (for P = 3.5 K, for example) located

at Teq = 160 and 200 K, with an enlarged intermediate plateau width. Figure 9b shows the

corresponding thermal behavior of the nn average distance, < r >, which contracts as the

pressure increases. To understand the physical origin of this two-step transition, one has

to focus on the chosen compressibility values. Indeed, in the present case, we considered

a nnn bond compressibility of LS state bigger than that of HS state, while we have the

opposite tendency for the nn bonds. Thus, when the pressure is applied to a square HS

unit cell, nn distances decrease under pressure with a slope βHH
nn = 0.1, while that of nnn,

less compressible, decrease with a slope βHH
nnn ≃ 0.04. These ”antagonist” effects produce a

frustration in the system which stabilizes intermediate antiferro-like states. Figures 10a and

10b summarize the pressure-dependence of the average nn bond lengths in HS (< rHS >)

and LS (< rLS >) and that of the equilibrium temperature, Teq, respectively. We see that

< rHS > and < rLS > linearly decrease as function of P from 1.2 nm to 0.96 nm (HS)
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and from 1.0 nm to 0.8 nm (LS) with a greater slope for the HS state which has a stronger

compressibility. On the other hand, the transition temperature, Teq first linearly increases in

the pressure range 0-1 kbar corresponding to the region of one-step transition and then splits

into two linear branches denoted T up
eq and T down

eq corresponding to the two-step transition

region. Here, the slope of the curve T up
eq (P ) is bigger than that of T dwn

eq (P ) due to the

difference of compressibilities between the HS and LS states. Overall, this linear increase of

thermal transition under the applied pressure is in agreement with the Clapeyron relation.

(a)

(b)

Figure 9: Thermal-dependence of the (a) HS fraction and (b) average nn bond length for

different values of the applied pressure with the nnn fixed compressibilities values, βHH
nnn =

0.04, βLL
nnn = 0.05, and βHL

nnn = 0.045 kbar−1, showing the occurrence of a double step

transition with two ”hysteretic” transitions for P = 2.3 kbar which become two gradual

ones for stronger pressure values. All others parameters are the same as those of Fig. 2.
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(a)

(b)

Figure 10: (a) Evolution of the average nn lattice parameter in HS and LS states showing

a linear decreasing behavior with the pressure. (b) Pressure-dependence of the transition

temperatures of Fig. 9a showing the regions of one step and two-step transitions. The

results of both panels are derived from Fig. 9.

To analyze the spatial distribution of the HS and LS states in the case of two-step

transitions, we plot in Figs. 11a and 11b some selected snapshots along the thermal transition

curves of Fig. 9 for P = 2.3 and 3.5 Kbar. The case P = 0 is not shown here, because it

is the same as those of previous figures where spin domains started from the corners. For

P = 2.3 and 3.5 Kbar, clear self-organizations of the spin states around the plateau regions

are obtained. On cooling from HS, small LS chains emerge from the borders, whose lengths
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increase as we approach the center of the plateau region, forming a macroscopic complex

structure made of alternating HS and LS stripes along x−and y−directions for nHS ≃ 0.5.

These labyrinths stripes disappear when the system approaches the HS or the LS state. This

labyrinth formation can be understood by the fact that there is no anisotropy effect taken

into account in the model, since the compressibility parameters along x−and y−directions

are equivalents although different from those along the diagonals. In this case the system has

tendency to stabilize HS and LS stripes along x−and y−directions simultaneously causing

this irregular (disordered) spin state organization in the lattice, which is enhanced by the

contribution of the diagonals since the nnn compressibility of the HS state is lower than that

of the LS state leading to the frustration of the system.
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(a)

(b)

Figure 11: Spatial organization of the HS (red) and LS (blue) states during the thermal

transition of Fig. 9a showing the occurrence of self-organization for (a) P = 2.3 and (b)

P = 3.5 kbar, stabilizing a macroscopic structure under the form of labyrinths made of

alternating HS and LS stripes in the plateau region.

E. Anisotropy-induced stripes phases along x− or y−directions

Until know we considered the same compressibility parameters between the nn bond

lengths along the x− and y−directions. To investigate the effect of the anisotropy on

thermal and spatiotemporal properties in the case of pressure-induced double step transition

(Fig. 9), we set different nn compressibility values, βX
nn and βY

nn along x− and y−directions,

respectively. All other parameters used in the simulations are the same as those of Fig. 9.
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In first case, βX
nn > βY

nn, we consider the values of the nn compressibility in the HH, HL

and LL states along x−direction, βX,HH
nn = 0.1, βX,LL

nn = 0.05, and βX,HL
nn = 0.075, greater

than those along y−direction, βY,HH
nn = 0.03, βY,LL

nn = 0.01, and βY,HL
nn = 0.02. The MC

simulations lead in this cases to two-step thermal dependence of the HS fraction of Fig.

12a, obtained for the applied pressure P = 3.5 kbar. Two ”hysteretic” first-order transitions

centered around at T +
eq = 127 K and T −

eq = 75 K separate a large plateau of ∼ 50 K width at

nHS ∼ 0.5. Selected snapshots along the thermal hysteresis depicted in Fig. 12b show well

organized successive HS, LS stripes perfectly organized along y−direction with the presence

of defects at the surface. When we consider exactly the opposite case (βY
nn > βX

nn), we

obtain the results of Fig. 12c and the corresponding snapshots given in Fig. 12d which

exhibits a perfect stripes ordering along x− direction. Thus, by considering different nn

compressibilities along x− and y− directions, βX
nn > βY

nn (or βY
nn > βX

nn), we obtained a total

disappearance of the labyrinths observed in Figs. 11a and 11b, at the benefit of perfect

stripes, which means that we left the degeneracy between these two directions. In fact, for

βX
nn > βY

nn (resp. βY
nn > βX

nn), the nn bond lengths are more compressible in the x− direction

(resp. y−direction) than in the y− direction (resp. x−direction) with βX,HH
nn > βX,LL

nn

(βY,HH
nn > βY,LL

nn ) . In contrast, the compressibilities of the nnn bond lengths along the

diagonals are taken so as to have βHH
nnn < βLL

nnn. The 2D system will be then frustrated and

the minimization of the elastic energy excess results in the stabilization of alternate of 1D

HS and LS strings along the y− direction or x−direction only.
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(a) (b)

(c) (d)

Figure 12: Thermal-dependence of the HS fraction, nHS, for an applied pressure P = 3.5

kbar showing a two-step behavior made of first-order transitions obtained for βX
nn > βY

nn

(a) and βY
nn > βX

nn (c). Corresponding selected snapshots in the plateau region showing a

perfect self-organization of successive HS and LS stripes along y− (b) and x−directions (d)

at nHS = 0.5. The other parameter values (except βX
nn and βY

nn) are the same as those of

Fig. 9.

V. ISOTHERMAL PIEZO-SWITCHING

Here, we investigate the effect of the pressure on a SCO system in isothermal conditions.

The idea is to control the spin transition by pressure and to look for the condition of

baro-switching as well as for the lattice transformation along this transitions triggered by

an istropic pressure. At this end, several situations are tested for different temperatures,
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corresponding to the various behaviours obtained in the previous sections.

A. Conventional pressure effect on spin crossover hysteresis

We start with the situation of Fig. 2, where the applied pressure only shifts the spin-

crossover transition to higher temperatures and gradually decreases the width of the thermal

hysteresis. The simulations are performed by starting from the HS phase of Fig. 2 for P = 0

at fixed temperature T = 90 K exactly situated in the bistable region (the middle of the

thermal hysteresis) and another one located in the monostable HS phase region (T = 200

K). The obtained results are summarized in Fig. 13 for the case T = 90 K and Fig. 14 for

T = 200 K, where in both figures we included the pressure-dependence of the HS fraction

and that of the average nn bond length, < r >. Figure 13 exhibits a sharp baroswitching

reflecting the first-order transition and the bistable nature of the lattice at T = 90 K, while

a gradual and continuous baroswitching is obtained at T = 200 K, in agreement with the

stable nature of the initial HS state at P = 0. On the other hand, the linear dependence of

the lattice parameters in Fig. 13b and Fig. 14b from both sides of the pressure-induced spin

transition region, results from the simple assumption of Eq. (10). In agreement with the first-

order and gradual pressure-induced transitions of Figs. 13 and 14, their corresponding lattice

configurations along the transitions, given in 13c and 14c, show clear domain nucleation for

the first-order transition and ramified growth for the gradual one similarly with the previous

domain growth in thermally-induced phase transitions. It is interesting to remark the sharp

character of the pressure-induced transition of Fig. 13a without presence of an hysteresis

while the latter is present in the thermal transition of Fig. 2. The main reason of the

absence (or very small value of) the hysteresis width is related to the change of the average

lattice parameter, < r >, at the transition (see Fig. 13b). Due to the linear dependence of

the equilibrium lattice distances on pressure, and to the difference of compressibilities of HS

and LS states, the average HS lattice parameter is significantly decreased by pressure while

that of LS state is less affected (lower compressibility). As a result the lattice misfit ∆r

in the lattice spacing (∼ 0.15 nm) is significantly lowered compared to that of the thermal

transition (0.2 nm) which then causes the reduction of the hysteresis width.

34



(a) (b)

(c)

Figure 13: Pressure-dependence of the (a) HS fraction, nHS, and (b) average distance, < r >,

at constant temperature T = 90 K showing a first-order HS → LS transition. (c) Selected

snapshots showing a formation of LS (blue area) domains inside the HS (red area) phase

along the pressure-induced spin transition. The parameter values (except T ) are the same

as those of Fig. 2. The absence of hysteresis loops is due to the decrease of the lattice misfit

at the transition between HS and LS states.
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(a) (b)

(c)

Figure 14: Pressure-dependence of the (a) high-spin fraction, nHS, and the (b) average

distance, < r >, at constant temperature T = 200 K showing a gradual spin transition. (c)

Selected snapshots showing a ramified structure of the spatial organization of the HS (red

dots) and LS (blue dots) sites along the pressure-induced spin transition. The parameter

values (except T ) are the same as those of Fig. 2

.

B. The Case of two-step baro-switching

When the pressure is applied in the HS phase of Fig. 9a which showed a thermal two-step

transition under a constant applied pressure, one may expect to achieve a two-step baro-

switching transition at constant temperature. At this end, we performed the simulations for

one temperature value, T = 135 K where it is expected from Fig. 9a to observe a plateau for

pressures 2 ≤ P ≤ 3 kbar. The pressure-dependence of the HS fraction, nHS, and average

nn distance, < r >, are summarized in Figs. 15a and 15b respectively. The associated spin
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state configurations along the baro-switching are displayed in Fig. 15c. Figures 15a and

15b clearly exhibit the existence of a double step pressure-induced spin state transition with

switching pressure values P − = 2 and P + = 2.5 kbar.

Both transitions are of first-order, although we do not observe the occurrence of a hys-

teresis, for the same reasons as those developed for Fig. 13 and also for the slow MC kinetics.

Furthermore, the corresponding snapshots, given in Fig. 15c clearly show the presence of a

highly organized structure in the form of labyrinth structure leading to the coexistence of

HS and LS phases in the plateau region, which are also reminiscent of the patterns obtained

in Fig. 11.

(a) (b)

(c)

Figure 15: Pressure-dependence of (a) the high-spin fraction, nHS, and (b) average lattice

spacing, < r >, at constant temperature T = 135 K showing the occurrence of two-step

transitions. (c) Spatial organization of the HS (red) and LS (blue) states reflecting an

alternation of HS and LS stripes along x− and y− directions forming a labyrinth structure.

The parameter values (except T ) are the same as those Fig. 9.
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VI. CONCLUSION

In summary, we used the general genuine electroelastic model to investigate the effect

of isotropic applied pressure on the thermodynamic properties of a 2D square lattice. To

clarify the consequences of pressure effect on model parameters, we first, propose an analyt-

ically treatment of the model in a homogeneous medium allowing to identify the pressure-

dependence of equilibrium bond length, the ligand filed energy and elastic constants. Then

an effective Hamiltonian is built up by considering the link existing between the distances,

elastic constants with the spin states. The find Hamiltonian is solved used Monte Carlo

simulations. By monitoring the values of nnn bond length compressibility we could re-

cover almost all the behaviors of HS fraction under pressure, observed experimentally. We

analyzed the pressure effect on the elastic interaction parameters and the ligand field contri-

bution as well as on the spatiotemporal behaviors for different cases. When the pressure is

null, the usual first-order transitions with single domains nucleation process is obtained as a

result of long-range ferroelastic interactions. The formation of the domains takes place from

the corners and their propagation to the center of the lattice is accompanied by a distortion

of the latter. When applied pressure is non-zero several cases are obtained according to the

ratio and the sign between nnn and nn bond compressibilities. The most simple case is one

where the hysteresis width vanishes as the pressure increases leading to gradual transition

due to the reduction of cooperativity caused by the pressure which prevents the lattice ex-

pansion. The second case is that of thermal hysteresis surviving under pressure thanks a

subtle competition between the long-and short-range elastic interactions. The snapshots of

the self-organized spin states in this case show the formation of domains growing from all

corners which turns into a single domain formation from one corner. In the third case, the

hysteresis width disappears and reappears once again under pressure exhibiting a reentrant

phenomenon which is caused by the non-monotonous behaviour of the elastic interactions.

The corresponding spatial distribution of spin sates shows a formation of domains for weak

pressure values which disappear beyond threshold pressure value giving rise to a random

distribution of spin states and reappear again for strong pressures. The final case con-

cerns the pressure-induced two step transition which is found to be related to the existence

of elastic frustration of long-range nature caused by antagonist behaviours of the nn and

nnn bond compressibilities. The organization of the spin states in the plateaus showed an
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alternation of HS and LS stripes along the longitudinal and vertical directions forming a

labyrinth structure which transforms into perfect 1D HS, LS stripes along x-or y−directions

when one considers anisotropic compressibilities along the previously quoted directions. In

addition to the sharp thermal transitions and the rearrangement of the topology of the net-

work interactions induced by the pressure, all these cited behaviors are accompanied by a

linear increase of the thermal transition with pressure in good agreement with the available

data of literature. Next, the model will be extended to take into account for the effects of

the difference in the surface and bulk responses to pressure which will enrich the panoramas

of behaviours. Investigations on the 3D systems are also necessary to build more realistic

models.

VII. APPENDIX

A. Derivation of the pressure-dependence of the equilibrium distances.

The homogeneous Hamiltonian in cubic symmetry, where for simplicity we only consider

nn and nnn interactions, to reduce the number of elastic constants, which themselves are

considered as pressure-independent, writes

Helas = A
∑
i,j

[x − R(Si, Sj)]2 + B
∑
i,k

[
x
√

2 − d(Si, Sk)
]2

+ N × Px3 (27)

We minimize Helas with respect to x variable, which leads to the following equation,

6(A + 4B)x − 6(A < R > +4B < d >) + 3Px2 = 0, (28)

where,

< R >= ⟨R(Si, Sj⟩ = RHL
0 + δR

2 m

< d >= ⟨d(Si, Sk⟩ =
√

2(RHL
0 + δR

2 m)
(29)

with m =< Si > is the net ”magnetization”. Solving the equation of second degree

(28) and expanding the solution up to second order in P , by considering the quantity
(A<R>+2B<d>)P

(A+2B)2 ≪ 1, leads to the final expression of the lattice parameter distance, xeq,

at mechanical equilibrium,

xeq = x0
eq (1 − β × P ) , (30)
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where

x0
eq = (A < R > +2B < d >)

(A + 2B) (31)

is the lattice distance at zero pressure and

β = (A < R > +2B < d >)
4 (A + 2B)2 (32)

is the bond compressibility.

B. Expressions of the interacting parameters in Ising version:

It is interesting to remark that the Hamiltonian (27) with homogeneous bond lengths

can be developed and re-written under the form of a special Ising model. Replacing the

instantaneous distance rij by xeq, given in equation (30) and inserting the expressions of

the lattice bond lengths (2), leads after some longer calculations to the following Ising-like

model,

H = h(P )
N∑
i

Si + Jnn(P )
∑
ij

SiSj + Jnnn(P )
∑
ik

SiSk + C(m, P ). (33)

The parameters h(P ), Jnn(P ) and Jnnn(P ) as well as the constant C(m, P ) depend on

pressure and their expressions are given below. One can remark in the expression of the

effective ligand field, h(P ), the ligand field energy is renormalized by the pressure term αP .

As a result, the pressure increases the energy gap between the LS and HS states, which

is also enhanced by additional elastic field energy contribution resulting from the pressure

field created by the nn and nnn sites.

Jnn(P ) = 2A(δR

4 )2 (34)

Jnnn(P ) = 4B(δR

4 )2, (35)

h(P ) = (∆ + αP − kBT ln g) − δR

2 (A + 2B)(x0
eq − RHL

0 ), (36)

where,

α = 2x0
eqβ(A + 2B)

[(
δR

4

)
− (x0

eq − RHL
0 )

]
. (37)
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C(m, P ) = zN

2

(
A + 2B

)(x0
eq)2β2P 2 + (x0

eq − RHL
0 )2 + 2

(
δR

4

)2
+ NP

[
x0

eq (1 − β)
]3

(38)

C(P ) = 1
2 (NnnA0(P ) + 2NnnnB0(P )) (x − RHL)2

−δR′

2 [NnnA1(P ) + 2NnnnB1(P )] (x − R′
HL) + C0.

(39)
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