
HAL Id: hal-03771786
https://hal.science/hal-03771786

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison Between Equivalent Architectures of
Complex-valued and Real-valued Neural Networks -

Application on Polarimetric SAR Image Segmentation
José Agustín Barrachina, Chengfang Ren, Christèle Morisseau, Gilles

Vieillard, Jean-Philippe Ovarlez

To cite this version:
José Agustín Barrachina, Chengfang Ren, Christèle Morisseau, Gilles Vieillard, Jean-Philippe Ovarlez.
Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks
- Application on Polarimetric SAR Image Segmentation. Journal of Signal Processing Systems, 2022,
�10.1007/s11265-022-01793-0�. �hal-03771786�

https://hal.science/hal-03771786
https://hal.archives-ouvertes.fr

Comparison Between Equivalent Architectures of Complex‑valued
and Real‑valued Neural Networks ‑ Application on Polarimetric SAR
Image Segmentation

José Agustín Barrachina1,2 · Chengfang Ren2 · Christèle Morisseau1 · Gilles Vieillard1 · Jean‑Philippe Ovarlez1,2

Abstract
We present an in-depth statistical comparison among several Complex-Valued Neural Network (CVNN) models on
the Oberpfaffenhofen Polarimetric Synthetic Aperture Radar (PolSAR) database and compare them against Real-Valued
Neural Network (RVNN) architectures. The necessity to define the equivalence between the models emerges in order to
compare both networks fairly. A novel definition for an equivalent-RVNN in terms of real-valued trainable parameters
that maintain the aspect ratio is extended for convolutional layers based on previous work Barrachina et al. (2021 IEEE
31st International Workshop on Machine Learning for Signal Processing (MLSP), 2021). We illustrate that CVNN
obtains better statistical performance for classification on the PolSAR image across a range of architectures than a
capacity equivalent-RVNN, indi-cating that this behavior is likely independent of the model itself.

Keywords Complex-Valued Neural Network · Real-Valued Neural Network · Polarimetric Synthetic Aperture Radar

1  Introduction

For PolSAR applications, RVNN is widely employed in the
literature [2–4], which are generally acquired in complex-
valued format thanks to radar I-Q channels. Hence, these
networks are forced to transform these data through their
absolute values, real parts, or isomorphic representations
(concatenation of real and imaginary parts, absolute value
and phase, etc.). In all cases, these transforms can lead to

the loss of important phase information contained in each
PolSAR pixels.

As a result, the signal processing community is more inter-
ested in investigating strategies for dealing with complex-valued
data [5], the most common signal type in radar applications.
Because the action performed at each layer of CVNNs may be
understood as complex filtering, they appear to be a suitable
candidate for processing and learning from this complex-valued
information. These networks are better at extracting phase infor-
mation [6], which might be helpful for retrieving Doppler fre-
quency in radar signals, categorizing PolSAR data [7, 8], and
radiofrequency signal processing in wireless communications,
among other things [5].

CVNN has only recently been introduced to PolSAR
images applications [9]. Reference [7] was one of the first
to implement a Complex-Valued MultiLayer Perceptron
(CV-MLP) for PolSAR applications. Although a compari-
son was made against Real-Valued MultiLayer Perceptron
(RV-MLP), no confidence interval was given, which pre-
vents asserting CV-MLP merits. Furthermore, a different
input representation was used for each model, making it an
unfair comparison. Later on, the same authors suggested
giving the same input representation to get a more precise
comparison between the models [10]. References [11] and
[12] also used CV-MLP on a PolSAR database but did not

 * Jean‑Philippe Ovarlez
jean-philippe.ovarlez@onera.fr

José Agustín Barrachina
jose-agustin.barrachina@centralesupelec.fr

Chengfang Ren
chengfang.ren@centralesupelec.fr

Christèle Morisseau
christele.morisseau@onera.fr

Gilles Vieillard
gilles.vieillard@onera.fr

1	 DEMR, ONERA, Université Paris-Saclay, 91120 Palaiseau,
France

2	 SONDRA, CentraleSupélec, Université Paris-Saclay,
91192 Gif‑sur‑Yvette, France

http://orcid.org/0000-0002-2139-514X
http://orcid.org/0000-0001-8438-4539
http://orcid.org/0000-0001-8056-4196
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01793-0&domain=pdf

provide a comparison with RV-MLP. Ref. [13] did compare
CV-MLP against a RV-MLP but even though CV-MLP per-
formed better than RV-MLP, confidence intervals intersect,
leaving room for doubt about CV-MLP outperformance.

Works using Complex-Valued Convolutional Neural Net-
work (CV-CNN) have been published for PolSAR applica-
tions. Ref. [14] compares a CV-CNN with real-valued mod-
els but lacks confidence intervals. Other recent works [8,
15–17] use a CV-CNN for PolSAR applications but without
comparing its result with a real-valued model.

Lately, [13] achieved state-of-the-art performance using
a Complex-Valued Fully Convolutional Neural Network
(CV-FCNN) model architecture. This model can adapt more
naturally to the task at hand as it performs semantic segmen-
tation by design.

All previously mentioned works, however, use different
loss functions and different methods for pre-processing from
a simple random flip data augmentation to an Autoencoder
to extract features that are then fed to the network; this
makes it impossible to compare the performance between
models directly as the input representation might strongly
impact on the model performances.

This paper implements several CVNN models with the
same input representation providing a thorough analysis
involving several independent trials for each network to infer
appropriate errors and statistics. We also implement all the
equivalent-RVNN extending the real-equivalent definition
presented in [1] for the convolutional layers as well. This
definition asserts the same quantity of real-valued trainable
parameters for both complex- and real-valued models, main-
taining the aspect ratio for each hidden layer.

We then show which model architecture is best suited for
PolSAR applications and prove that using a Complex-Valued
model is desirable regardless of the chosen architecture as
long as the data format is complex-valued and its phase infor-
mation matters.

The following section briefly introduces the CVNN
framework to then develop the mathematics for creating
a real-valued equivalent model in the next section. Sec-
tions 4 and 5 explains the models and dataset used for the
experiments respectively whose results are then discussed in
Sect. 6. The conclusion can be found last in Sect. 7.

2 Complex‑Valued Neural Network
framework

CVNN, as opposed to conventional RVNN, possess complex-
valued input, which allows working with imaginary data with-
out any pre-processing to cast its values to real. Each layer of
the complex network operates analogously to a real-valued
layer with the difference that its operations are on the com-
plex domain (addition, multiplication, convolution, etc) with

trainable parameters being complex-valued (weights, bias,
kernels, etc.).

Activation functions are also defined on the complex
domain so that f ∶ ℂ → ℂ . Reference [18] proposes two
types of complex activation functions:

• Type-A: �A(f) = �ℜ(ℜf) + j �ℑ(ℑf),
• Type-B: �B(f) = �r(|f |) ej ��(�(f)),

where f ∶ ℂ → ℂ is a complex function and �ℜ, �ℑ, �r, ��
are all real-valued functions.

The loss function definition must be real-valued as the
notion of ordered comparison is not present for complex
numbers, Sect. 4 describes how this is achieved. As the loss
is real-valued, the optimizer can be the same as the one used
for real-valued networks. Wirtinger Calculus [19] is used
for computing the gradient allowing to minimize the loss
function with respect to complex-valued variables, even if
this function is not holomorphic. We already have shown
the interest of CVNN over RVNN for non circular data in
reference [20].

3 � Real Equivalent Network

A Real-Valued equivalent network is necessary to assess
whether a CVNN is actually of interest. Most parameters are
naturally transformed into the complex plane. That is true,
for example, loss functions, optimizers, which are equal, as
explained in Sect. 2, or activation functions, where a Recti-
fied Linear Unit (ReLU) can be converted to the complex
plane using ℂReLU as explained in [18] and further devel-
oped on Sect. 4. However, if we keep the same amount of
neurons (for fully-connected layers) or kernels (for convo-
lutional layers), it will result in the CVNN having higher
capacity than their opposed RVNN as we can consider that
the complex plane ℂ is isomorphic to ℝ2 meaning that one
complex-valued parameter ( p

ℂ
 ) is equivalent to two real-

valued parameters ( p
ℝ

 ) so that p
ℂ
= 2 p

ℝ
 . The superscript

ℂ and ℝ indicate whether it corresponds to the CVNN or
RVNN respectively.

3.1 � Multilayer Perceptron

To preserve the same amount of real-valued neuron param-
eters (np) per layer on MLP architectures, it will suffice to
double the neurons of each hidden layer within the RV-
MLP with respect to CV-MLP [11, 21, 22]. However, as
reference [23] points out, this design leads to a bigger num-
ber of real-valued trainable parameters (tp) for the RVNN.
Indeed, ignoring the layer biases that are generally added
at the end, a CVNN with two consecutive hidden layers of
size 10 each will result in 10 × 10 = 100 complex-valued

weights for connecting them, which is equivalent to a total
of tp

ℂ
≜ 200 real-valued trainable parameters. Using the

described technique, an equivalent-RVNN will have two
consecutive hidden layers of size 20 each, needing a total
of 20 × 20 = 400 real-valued weights to connect them and,
therefore, tp

ℝ
≜ 400 . Leading to the latter having poten-

tially a higher capacity if this method is followed.
The global number of tp for a generic CV-MLP and RV-

MLP with K hidden layers is provided by the formula [23]:

where Ni is the number of neurons for layer i ∈ 1, ..., K . N0
corresponds to the number of features or input size and NL
to the output size.

The task to solve directly determines the input and output
sizes of the real network so that N0 = Nℝ

0
= 2 Nℂ

0
 and

(1)

tp
ℂ
= 2 Nℂ

0
Nℂ

1
+ 2

K−1∑

i=1

Nℂ

i
Nℂ

i+1
+ 2 Nℂ

K
Nℂ

L
,

tp
ℝ
= Nℝ

0
Nℝ

1
+

K−1∑

i=1

Nℝ

i
Nℝ

i+1
+ Nℝ

K
Nℝ

L
,

Reference [23] argues that a real-valued equivalent model
must have the same tp capacity as the complex one:
tp

ℂ
= tp

ℝ
= tp . To accomplish this, they propose to alter-

nate between doubling or not the number of neurons of the
real-valued model hidden layers with respect to the complex-
valued model. However, this strategy only works when the
number of hidden layers is even for classification tasks and
an odd number for regressions tasks. To address this prob-
lem, we propose designating one hidden layer as:

Another proposition in [23] is to make all layers the same
size. Nevertheless, this solution will not maintain the same
aspect ratio for both CVNN and RVNN models. As exem-
plified in Fig. 1a and c, performing classification with a
CV-MLP with two hidden layers of sizes 10 and 5 will be

(2)NL = Nℝ

L
=

{
2 Nℂ

L
, regression task

Nℂ

L
, classification task

.

(3)Nℝ

i
= 2

Nℂ

i−1
+ Nℂ

i+1

Nℝ

i−1
+ Nℝ

i+1

Nℂ

i
.

Figure 1   Real equivalent MLP
models example. Figures gener-
ated usingalexl​enail.

(a) (b)

(c) (d)

https://alexlenail.me/NN-SVG/

converted to a RV-MLP where both hidden layer sizes are
10. This means converting a network where the first hidden
layer doubles the size of the second to one where both hid-
den layers are the same size.

In this paper, we propose to maintain the same aspect
ratio for each hidden layer, i.e. the amount of hidden layer
neurons of RVNN is proportional to the one of RVNN,
which leads to the following equation:

with r a positive constant real value. Replacing (4) in (1)
we obtain the following second-order polynomial equation
in the variable r:

Since r should be positive as well as all parameters tp, Nℝ

i
 ,

NL and N0 , the only possible solution to our problem is
therefore:

where a =

K−1∑

i=1

Nℂ

i
Nℂ

i+1
 , b = N0 Nℂ

1
+ Nℂ

k
NL.

In conclusion, there are two possible definitions for an
equivalent-RV-MLP. Either by setting the same real-valued
trainable parameters (tp) or by its real-valued neuron param-
eters (np) per hidden layer (Fig. 1b). The former can be done
by creating a RV-MLP where each hidden layer size is given
by Eq. (4) with r being defined by (6); this will result in
an equivalent-RV-MLP in terms of the real-valued train-
ing parameters that maintain the same aspect ratio that the
CVNN hidden layers (Fig. 1d).

If we assume r < 1,

where tp = 2 a + � with b ≤ 𝛽 = 2 Nℂ

0
Nℂ

1
+ 2 Nℂ

k
Nℂ

L
< 2 b

(Eq. (1)). As both a and b are positive, Eq. (7) is absurd,
which is expected as it implies that real-valued models will
never have fewer neurons than the complex-valued models.
On the other hand, for r ≥ 1:

Again, as a and b are positive, Eq. (8) is absurd if r ≥ 2 .
Because of inequalities (7) and (8), we conclude that
1 ≤ r < 2 , meaning that the equivalent-RVNN should have
at least the same dimension as CVNN and at most double. In
particular, r = 2 corresponds to the case for the same value

(4)Nℝ

i
= r Nℂ

i
, ∀i ∈ 1, ..., K

(5)tp = r N0 Nℂ

1
+

K−1∑

i=1

r2 Nℂ

i
Nℂ

i+1
+ r Nℂ

K
NL .

(6)r =
−b +

√
b2 − 4 a (−tp)

2 a
,

(7)
a r2 + b r − tp = 0 < r a + r b − tp,

⇒ 0 < r a + r b − 2 a − 𝛽 ≤ a (r − 2) + b (r − 1),

(8)
a r2 + b r − tp = 0 ≥ r a + r b − tp,

⇒ 0 ≥ a (r − 2) + b r − 𝛽 > a (r − 2) + b (r − 2) .

of np. Proving that it is not possible to reach both condi-
tions simultaneously and one must choose between setting
an equal value for np or tp.

For single hidden layer models, a = 0 and therefore, r
will be:

As it can be derived from (9), r = 1 for regressions tasks
while for classifications tasks, 1 < r < 2 depending on the
relationship between N0 and NL . Finally, as the number of
hidden neurons gets bigger with respect to the input and
output, or in other words, a ≫ b , it will tend r →

√
2.

Note that, the extra terms 2
K∑

i=1

Nℂ

i
and

K∑

i=1

Nℝ

i
 should be

added to Eq. (1) in order to take into account the bias. This
extra term will lead to a slight variation of r by changing the
value of b but does not change its boundary 1 ≤ r < 2.

3.2 � Convolutional Neural Networks

For convolutional layers, the equation of the real-valued
trainable parameters is defined by:

with C the channels presented on the input of the convolu-
tional layer, W and H the filter width and height respectively
and F the amount of filters or kernels of the layer.

There are a few options for convolutional layers on how to
maintain the same amount of real-valued trainable param-
eters, either by extending the kernel sizes or increasing the
number of kernels. The second method may seem more
logical as the transformation from the complex to the real
plane does not change the resolution of the image to justify
changing the kernel size. By adopting the second method
then Hℂ

i
= Hℝ

i
 and Wℂ

i
= Wℝ

i
 . By definition, Ci = Fi−1 with

F0 the input image channel dimension. To achieve the same
real-valued trainable parameters, we need to solve Eq. (11)
for r ∈ ℝ in order to have Fℝ

i
= r Fℂ

i
 , ∀i ≥ 1.

From above equation, the solution for r is:

(9)r =
�

b
= 2

Nℂ

0
+ Nℂ

L

N0 + NL

.

(10)

tp
ℂ
= 2

K∑

i=1

Cℂ

i
Wℂ

i
Hℂ

i
Fℂ

i
,

tp
ℝ
=

K∑

i=1

Cℝ

i
Wℝ

i
Hℝ

i
Fℝ

i
,

(11)

tp = 2

K∑

i=1

Fℂ

i−1
Wi Hi Fℂ

i
= 2rFℂ

0
W1 H1 Fℂ

1
+ r2

K∑

i=2

Fℂ

i−1
Wi Hi Fℂ

i
.

(12)r =
−b

2 a
+

√
2 +

b

a
+

b2

4 a2
,

with b = 2Fℂ

0
W1 H1 Fℂ

1
 and a =

∑K

i=2
Fℂ

i−1
Wi Hi Fℂ

i
 . The

extreme case of a single convolutional layer makes r = 1 .
Similarly as for MLP, r →

√
2 when a >> b , which can

occur, for example, with deep the convolutional neural net-
works (see Fig. 2).

If taking into account the bias, Eq. (10) changes to:

With these variations, Eq. 12 changes to

where a is as before but b is now b = 2Fℂ

0
W1 H1 Fℂ

1
+
∑

i=1 Fi

.

4 � Model Architectures

To this date, difficulties in implementing CVNN models in
practice have slowed down the field from growing further
[23]. An open-sourced and well-documented tool has been
developed, which enables and facilitates the implementation
of CVNNs [24] for the community to exploit further. This
tool also allows generating from a complex-valued network
model its real-equivalent model as described in Sect. 3. All
implementations were done using this software library. The
code that contains the exact model used for this paper simu-
lations can be found in [24].

MLP [7], CNN [14] and FCNN [13] model architectures
were implemented both on the complex and real domain,
respecting the equivalence definitions discussed in Sect. 3.
However, some minor modifications were made to update
some of those models with state-of-the-art parameters not
popular or known at the time of those publications.

References [7] and [14] use Stochastic Gradient Descent
(SGD) as an optimizer, whereas reference [13] uses a more
modern optimizer known as Adam [25], which might allow
models to find a lower optimal minimum. Adam was,

(13)

tp
ℂ
= 2

K∑

i=1

(
Cℂ

i
Wℂ

i
Hℂ

i
+ 1

)
Fℂ

i
,

tp
ℝ
=

K∑

i=1

(
Cℝ

i
Wℝ

i
Hℝ

i
+ 1

)
Fℝ

i
.

(14)r =
−b

2 a
+

�

2 +
b

a
+

b2

4 a2
+

∑
i=1 Fi

a
,

therefore, used as the optimizer for all models. Learning
rate and momentum were tweaked experimentally for each
model independently, as were the epochs for each model.

Although [7] use tanh activation function for the MLP
model, we decided in this work to use ReLU (Type-A ReLU
also known as). Indeed, both activation functions were tested
for the MLP architecture showing an interesting increase in
performance when using ReLU. This small optimization,
plus using the Adam optimizer, made the MLP architecture
go from a median average accuracy per class (based on 15
iterations) of 83.75 ± 0.13% to 85.25 ± 0.05% for the com-
plex model and from 83.31 ± 0.11% to 84.38 ± 0.16% for
the real model. For the output layer, the softmax activation
function [26] has been used. For the complex-valued mod-
els, Type A activation functions were used.

A Normal weight initialization by He et al. in [27] was
used and the bias was initialized as zero. The adaptation for
complex-valued weights initialization is described in [28,
p. 6], which has to be done with care to keep the benefits of
the He et al. initialization on the complex domain.

Categorical cross-entropy loss function was used for all
models. The loss is computed twice for complex models,
using first the real part and then the imaginary part as the
prediction result. An average of the two error values is then
calculated to be optimized.

The MLP models presented some overfitting for what
dropout with 50% rate was used which ameliorated the per-
formance. Both architectures had two hidden layers. For the
CV-MLP, 96 and 180 neurons were used for the first and
second hidden layer respectively, as presented in [13]. The
hidden layers sizes of the RV-MLP were dimensioned to
have the same amount of real-valued training parameters
with the same aspect ratio as explained in Sect. 3 (Fig. 1d).

Throughout literature, CV-CNN are the most popular
CVNN architectures. All references [8, 14–17] identically
dimensioned the model with the same amount of layers and
kernels. Therefore, we decided to use the same architecture,
presenting two convolutional layers with 6 and 12 kernels
each for the complex model. All kernels are of size 3 × 3 .
The real model was dimensioned as explained in Sect. 3.
Average-pooling was used between both convolutional lay-
ers whose extension to the complex domain is evident. The
model presents a fully connected layer to perform the clas-
sification at the end.

Figure 2 Real equivalent con-
volution example of a middle
hidden layer. Figures generated
using alexl enail.

(a) (b) (c)

https://alexlenail.me/NN-SVG/

Finally, CV-FCNN (Fig. 3) was implemented as described
in [13]. Which is composed of the downsampling or feature
extraction part and the upsampling part. The downsampling
part presents several blocks (B1, B2, B3, B4, B5 and B6).
Each block presents two sub-modules represented in Fig. 3
in green and red colors. The upsampling part presents blocks
B7, B8, B9, B10 and B11, which, in term, are a combination
of other two sub-modules, the second one being the same
green sub-module present in the downsampling section. The
first sub-module (yellow) is a max-unpooling module, as
explained in [29].

The green sub-module is a combination of a convolu-
tion layer, a BatchNormalization (BN) (complex adaptations
explained in [30], Sections 3.2 and 3.5) and ReLU. The con-
volutional filter present on each layer was of size 3 × 3 and
the number used for each layer is represented in Fig. 3 for
the complex model. As usual, the definition in Sect. 3 was
used to dimension the real-valued model.

The red sub-module is a max-pooling layer whose main
objective is to shrink the image into smaller ones by keeping
only the maximum value within a small window, in our case,
of size 2 × 2 . For the complex case, the absolute value of the
complex number is used for comparison as proposed in [14].
This layer complements the max-unpooling sub-module
(yellow), which receives the locations where the maximum
value was found. The max-unpooling layer enlarges the input
image by placing pixels according to the maxed locations
received from the corresponding max-pooling layer [29].

The last blocks of the downsampling and upsampling
parts (B6 and B11) have some differences with respect to

the other blocks. B6 removes the max-pooling layer (red)
completely. B11, on the other hand, replaces the ReLU acti-
vation function with a softmax activation function to be used
for the output layer.

Each model was evaluated over 50 Monte-Carlo trials to
be able to extract statistics analysis.

5 � PolSAR image

PolSAR images are acquired from single look complex data
measured in the horizontal (H) and vertical (V) transmit/
receive polarimetric channels known as the Sinclair scat-
tering matrix:

For each pixel of the Synthetic Aperture Radar (SAR) image,
the four components are usually expressed in Pauli basis as
one complex vector k ∈ ℂ

3 [31], so that:

The Hermitian so-called coherency matrix is then formally
built according to

(15)� =

�
SHH ,

√
2 SHV , SVV

�T

.

(16)k =
1
√

2

�
SHH + SVV , SHH − SVV , 2 SHV

�T
.

(17)T =
1

n

n∑

j

kj k
H
j

,

Figure 3   Complex-Valued Fully
Convolutional Neural Network
diagram.

128

12
8

12

64

64

12

64

64

24

32

32

24

32

32

48

16

16

48

16

16

96

8

8

96

8

8

192

4

4

192

4

4

192

4

4

192

8

8

96

16

16

96
16

16

48

32

32

48

32

32

24

64

64

24

64

64

12

128
12
8

12

128

12
8

classes

B1 B1

B2 B2

B3 B3

B4 B4

B5 B5 B7 B7

B8 B8

B9 B9

B10 B10

B11 B11

B6

Skip Connection

Skip Connection

Skip Connection

Skip Connection

Complex Conv2D + Complex Batch Normalization + Complex ReLU Max pooling Max unpooling

where the operator H stands for complex conjugate operation
and where n is the number of neighboring pixels chosen in a
boxcar around the considered one. The coherency matrix is
then used as input to the networks. For the real-valued net-
work, both real and imaginary parts are injected separately
into the network.

The experiments were run over the well-known Oberp-
faffenhofen database that can be downloaded from the Europ​
ean Space​ Agenc​y (ESA)​ websi​te. The coherency matrix is
provided as the representation of data. Because the diagonal
elements of the coherency matrix are real-valued, they have
been treated as a complex-valued number with the imaginary
part equal to zero. Since T is Hermitian symmetric, its lower
triangle, excluding the diagonal, has been discarded as it
provided no additional information; this finally led to a total
of 6 complex values per pixel. Figure 4a corresponds to the
Red-Green-Blue color composition of the diagonal elements
of T , while Fig. 4b shows the ground truth for three different
classes (built-up areas, woodland and open areas). These
labels were obtained from [14].

As the image is very large, previous works used a small
percentage of pixels for training to speed up training and val-
idation results. References [7] and [11] used about 2% of the
image pixels for training, whereas [3] and [32] used 5%. In
[33], the authors adopted 10%. Finally, reference [14] tested
different sampling rates and proposed, based on the results,
to use 10% sampling rate for both train and validation set
together. Therefore, we have chosen to use 8% as the training
set and only 2% as the validation set, which corresponds to
104928 and 26232 pixels respectively. The remaining 90%
was used for the test set. Both train and validation sets had
the same amount of examples per class as, regardless of the
class occurrences, the application does not prioritize one

class over another. This may result in different accuracies
for validation and test sets.

6 � Experimental Results

Statistical indicators of both the Overall Accuracy (OA),
which is the ratio of the number of correctly predicted pix-
els divided by the total number of pixels, and the Average
Accuracy (AA), which is an average of the accuracy for each
class independently are summarized in Table 1 for the six
experimental models.

The median error was computed as in [34]; if median
intervals do not overlap, there is a 95% confidence that their
values differ [35]. The confidence interval of the mean is
calculated for a confidence level of 99%.

Experiments were done with all np, alternate-tp and
ratio-tp real equivalent models. The models where based
on the Complex-Valued MultiLayer Perceptron (CV-MLP)
described in Sect. 4 under the same conditions as the simu-
lations presented on Sect. 6. Figure 5 shows the first 500
epochs for the validation loss value of these simulations.
It can be seen that both the np and alternate-tp models pre-
sented overfitting. In contrast, this was not present (or to
a very limited extent) in the ratio-tp and complex models.
Therefore, we can conclude that using the proposed ratio-tp
technique works best for this case of study, giving proof that
our method might be the one to be favored in these cases for
which we will only use this equivalent network definition for
the rest of our simulations.

From Table 1, it is evident that FCNN outperforms
CNN which, at the same time, outperforms MLP. CVNN
outperforms its real-valued equivalent model in both OA

Figure 4 PolSAR data of
Oberpfaffenhofen, Germany. A
Built-up Area; B Woodland; C
Open Area.

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets

and AA metrics for all three model architectures. The
highest accuracy was achieved by the CV-FCNN architec-
ture with an OA of 98.55% and an AA of 98.14% . Achiev-
ing the highest mean or median does not guarantee the
most performing trained model. Indeed, we can argue that
the maximum obtained value may be more important than
the average accuracy as, in most cases, the most perform-
ing model will be used for end-user applications. In this
case, CV-FCNN was also the model that obtained both the
upper 75% of cases and the maximum highest accuracy.

Unfortunately, the dataset is highly imbalanced, hav-
ing many more occurrences of class C (Open Areas) than
the other classes. In particular, class C always obtained a

significantly higher accuracy than class B (Woodland), as
it can be appreciated on Fig. 6, which caused the OA to
be higher than the AA. Because of application purposes,
it is usually desired that a model performs better on clas-
sifying classes equally without any preference regardless
of the class occurrences for what we decided to favor AA
over OA.

Figure 7 shows a randomly selected predicted image from
all models. The performance difference between FCNN,
CNN and MLP remains clear based on the predicted image.
However, the better generalization gained when using a
complex model is much harder to visualize, although the
difference can be seen in particular sections of the image.

Figure 5   Real-Valued Equivalent-
MLP comparison.

Table 1   Test accuracy results (%).

Overall Accuracy (OA)

median mean IQR range

FCNN CV ��.�� ± �.�� 98.42 ± 0.09 97.99 − 98.94 99.91 − 99.44

RV 98.23 ± 0.15 98.30 ± 0.08 98.02 − 98.69 96.83 − 99.28

CNN CV 96.45 ± 0.04 96.45 ± 0.02 96.36 − 96.52 96.21 − 96.68

RV 96.32 ± 0.04 96.32 ± 0.02 96.24 − 96.44 95.89 − 96.65

MLP CV 88.87 ± 0.03 88.86 ± 0.02 87.78 − 88.93 88.61 − 89.13

RV 88.03 ± 0.13 87.94 ± 0.06 87.64 − 88.24 86.90 − 88.91

Average Accuracy (AA)

median mean IQR range

FCNN CV ��.�� ± �.�� 97.68 ± 0.23 97.38 − 98.68 90.97 − 99.41

RV 97.79 ± 0.30 97.38 ± 0.22 96.93 − 98.31 91.54 − 99.00

CNN CV 95.69 ± 0.05 95.68 ± 0.02 95.57 − 95.81 95.27 − 96.00

RV 95.50 ± 0.06 95.47 ± 0.03 95.34 − 95.63 94.82 − 95.93

MLP CV 85.25 ± 0.05 85.24 ± 0.04 85.13 − 85.38 84.60 − 86.03

RV 84.38 ± 0.16 84.25 ± 0.08 83.92 − 84.62 82.59 − 85.42

Bold entries are the highest median and mean of AA and OA

7 � Conclusions

To provide a fair comparison between Complex-Valued
Neural Networks and Real-Valued Neural Networks, we
suggested a novel definition of an equivalent-Real-Valued
Neural Network. Despite this parity, the classification
performance of CVNN on the Oberpfaffenhofen PolSAR
database indicates a superiority over their equivalent-
RVNN. Although these differences may be considered
small, Complex-Valued Neural Network out-performance
is statistically justified as the confidence intervals remain
very far apart. The complex structure of the PolSAR data,
in which the phase information is relevant to enhance the
classification accuracy, can explain the merits of CVNN.

We also proved that Fully Convolutional Neural Net-
work generalizes better than Convolutional Neural Network
and MultiLayer Perceptron models for this application.

Acknowledgements  The authors would like to thank the Délégation
Générale de l’Armement (DGA) for funding and the Metz campus of
CentraleSupélec for providing the DCE cluster to run our simulations.

References

1. Barrachina, J. A., Ren, C., Vieillard, G., Morisseau, C., & Ovarlez,
J.-P. (2021). About the equivalence between complex-valued
and real-valued fully connected neural networks - application to

Figure 6 Accuracy per class for
all models. A Built-up Area; B
Woodland; C Open Area.

Figure 7   Comparison between
model predictions. A Built-up
Area; B Wood Land; C Open
Area.

(a) (b) (c)

(d) (e) (f)

Polinsar images. In 2021 IEEE 31st International Workshop on
Machine Learning for Signal Processing (MLSP) (pp. 1–6).

2. Chen, S., Wang, H., Xu, F., & Jin, Y.-Q. (2016). Target classifi-
cation using the deep convolutional networks for SAR images.
IEEE Transactions on Geoscience and Remote Sensing, 54(8),
4806–4817.

3. Hou, B., Kou, H., & Jiao, L. (2016). Classification of polarimetric
SAR images using multilayer autoencoders and superpixels. IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 9(7), 3072–3081.

4. Zhou, Y., Wang, H., Xu, F., & Jin, Y.-Q. (2016). Polarimetric
SAR image classification using deep convolutional neural net-
works. IEEE Geoscience and Remote Sensing Letters, 13(12),
1935–1939.

5. Bassey, J., Qian, L., & Li, X. (2021). A survey of complex-valued
neural networks. arXiv:​2101.​12249

6. Hirose, A., & Yoshida, S. (2012). Generalization characteristics of
complex-valued feedforward neural networks in relation to signal
coherence. IEEE Transactions on Neural Networks and learning
systems, 23(4), 541–551.

7.	 Hänsch, R., & Hellwich, O. (2009). Classification of polarimetric SAR
data by complex valued neural networks. In ISPRS Workshop High-
resolution Earth Imaging for Geospatial Information (vol. 38, pp. 4–7).

8.	 Zhao, J., Datcu, M., Zhang, Z., Xiong, H., & Yu, W. (2019). Contrastive-
regulated CNN in the complex domain: A method to learn physical
scattering signatures from flexible PolSAR images. IEEE Transac-
tions on Geoscience and Remote Sensing, 57(12), 10116–10135.

9. Hirose, A. (2013). Complex-valued neural networks: Advances
and applications. Hoboken, New Jersey: John Wiley & Sons.

	10. Hänsch, R. (2010). Complex-valued multi-layer perceptrons - an
application to polarimetric SAR data. Photogrammetric Engineer-
ing & Remote Sensing, 76(9), 1081–1088.

	11. Hänsch, R., & Hellwich, O. (2010). Complex-valued convolu-
tional neural networks for object detection in PolSAR data. In 8th
European Conference on Synthetic Aperture Radar (pp. 1–4).

	12. De, S., Bruzzone, L., Bhattacharya, A., Bovolo, F., & Chaudhuri,
S. (2017). A novel technique based on deep learning and a syn-
thetic target database for classification of urban areas in PolSAR
data. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 11(1), 154–170.

	13. Cao, Y., Wu, Y., Zhang, P., Liang, W., & Li, M. (2019). Pixel-wise
PolSAR image classification via a novel complex-valued deep
fully convolutional network. Remote Sensing, 11(22), 2653.

	14. Zhang, Z., Wang, H., Xu, F., & Jin, Y.-Q. (2017). Complex-valued
convolutional neural network and its application in polarimetric
SAR image classification. IEEE Transactions on Geoscience and
Remote Sensing, 55(12), 7177–7188.

	15. Sun, Q., Li, X., Li, L., Liu, X., Liu, F., & Jiao, L. (2019). Semi-
supervised complex-valued GAN for polarimetric SAR image
classification. In IEEE International Geoscience and Remote
Sensing Symposium (IGARSS 2019) (pp. 3245–3248).

	16. Zhao, J., Datcu, M., Zhang, Z., Xiong, H., & Yu, W. (2019). Learn-
ing physical scattering patterns from PolSAR images by using
complex-valued CNN. In IEEE International Geoscience and
Remote Sensing Symposium (IGARSS 2019) (pp. 10019–10022).

	17. Qin, X., Zou, H., Yu, W., & Wang, P. (2021). Superpixel-oriented
classification of polsar images using complex-valued convolu-
tional neural network driven by hybrid data. IEEE Transactions
on Geoscience and Remote Sensing, 59(12), 10094–10111.

	18. Kuroe, Y., Yoshid, M., & Mori, T. (2003). On activation func-
tions for complex-valued neural networks: existence of energy
functions. Artificial Neural Networks and Neural Information Pro-
cessing, ICANN/ICONIP 2003 (pp. 985–992). Berlin, Heidelberg:
Springer.

	19. Wirtinger, W. (1927). Zur formalen theorie der funktionen von
mehr komplexen veränderlichen. Mathematische Annalen, 97(1),
357–375.

	20. Barrachina, J. A., Ren, C., Morisseau, C., Vieillard, G., & Ovarlez,
J.-P. (2021). Complex-valued vs. real-valued neural networks for
classification perspectives: An example on non-circular data. In
ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 2990–2994). https://
doi.​org/​10.​1109/​ICASS​P39728.​2021.​94138​14

	21. Hirose, A. (2012). Complex-valued neural networks (Vol. 400).
Tokyo, Japan: Springer.

	22. Hirose, A. (2009). Complex-valued neural networks: The merits
and their origins. In 2009 International Joint Conference on Neu-
ral Networks (pp. 1237–1244).

	23. Mönning, N., & Manandhar, S. (2018). Evaluation of complex-
valued neural networks on real-valued classification tasks. arXiv
preprint arXiv:​1811.​12351

	24. Barrachina, J. A. (2020). NEGU93/CVNN: Complex Valued Neu-
ral Networks (CVNN). Zenodo.

	25. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:​1412.​6980

	26. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
MIT Press, Genetic Programming and Evolvable Machines.

	27. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into
rectifiers: Surpassing human-level performance on imagenet clas-
sification. In Proceedings of the IEEE International Conference
on Computer Vision (pp. 1026–1034).

	28. Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian,
S., Santos, J. F., Mehri, S., Rostamzadeh, N., Bengio, Y., & Pal,
C. J. (2017). Deep complex networks. arXiv preprint arXiv:​1705.​
09792

	29. Zafar, I., Tzanidou, G., Burton, R., Patel, N., & Araujo, L.
(2018). Hands-on convolutional neural networks with tensorflow:
solve computer vision problems with modeling in tensorflow and
Python. Birmingham, UK: Packt Publishing Ltd.

	30. Trabelsi, C., Bilaniuk, A., Zhang, Y., Serdyuk, D., Subramanian,
S., Santos, J. F., Mehri, S., Rostamzadeh, N., Bengi, Y., & Pal, J.
C. (2018). Deep Complex Networks.

	31. Lee, J. S., & Pottier, E. (2017). Polarimetric radar imaging: from
basics to applications. Boca Raton: CRC press.

	32. Jiao, L., & Liu, F. (2016). Wishart deep stacking network for fast
polsar image classification. IEEE Transactions on Image Process-
ing, 25(7), 3273–3286.

	33. Guo, Y., Wang, S., Gao, C., Shi, D., Zhang, D., & Hou, B.
(2015). Wishart RBM based DBN for polarimetric synthetic radar
data classification. In 2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS) (pp. 1841–1844).

	34. McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of
box plots. The American Statistician, 32(1), 12–16.

	35. Chambers, J. M. (2018). Graphical methods for data analysis.
Florida, US: CRC Press.

http://arxiv.org/abs/2101.12249
https://doi.org/10.1109/ICASSP39728.2021.9413814
https://doi.org/10.1109/ICASSP39728.2021.9413814
http://arxiv.org/abs/1811.12351
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1705.09792
http://arxiv.org/abs/1705.09792

	Comparison Between Equivalent Architectures of Complex-valued and Real-valued Neural Networks - Application on Polarimetric SAR Image Segmentation
	Abstract
	1 Introduction
	2 Complex-Valued Neural Network framework
	3 Real Equivalent Network
	3.1 Multilayer Perceptron
	3.2 Convolutional Neural Networks

	4 Model Architectures
	5 PolSAR image
	6 Experimental Results
	7 Conclusions
	Acknowledgements
	References

