
HAL Id: hal-03771539
https://hal.science/hal-03771539

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Context-Aware Web Information System Based on
Web Services

Bouchra Soukkarieh, Florence Sèdes

To cite this version:
Bouchra Soukkarieh, Florence Sèdes. A Context-Aware Web Information System Based on Web
Services. 2nd International Conference on Research Challenge in Information Science (RCIS 2008),
Jun 2008, Marrakech, Morocco. pp.29-34, �10.1109/RCIS.2008.4632090�. �hal-03771539�

https://hal.science/hal-03771539
https://hal.archives-ouvertes.fr

Abstract— The increasing number of requirements for Web
Information Systems and the increasing need for making their
components interoperable ask for a new vision for the
architecture of such Systems.

We focus on two of these requirements: usability and
interoperability. We present, in this paper, our contribution that
aims at proposing a new architecture of Web Information
Systems, supporting adaptation to the user’s context and
providing the user with a list of Web Services adapted to his
context. This architecture is based on an extension of AHA!
architecture through an adaptation layer containing various
components dedicated to the context adaptation. So, our aim is to
build an Adaptive Web Information System based on Web
Services. Finally, we present an algorithm to build a user
contextual profile “Profile-Context-User (UCP)” containing only
the user’s preferences that can be satisfied with the context.

Index Terms— Web Information System, Web Service,
Adaptation, Context.

I. INTRODUCTION

 odern Web Information Systems need to fulfil a large
number of requirements. Among these requirements we
mention the ability of a WIS to deliver to the user

information that is not only adapted to his query, but also to
his context (device, environment, etc.). Therefore, the context
seems a promising idea in order to increase the usability of the
WIS. In our work, we base on “Adaptive Hypermedia
Architecture (AHA!)” that is regarded as a Web Information
System (WIS) [14]. However, AHA! does not support the
user’s mobility; it only takes into account his characteristics
(preferences, interests, etc.).
Today there is an increasing need for making WIS components
interoperable. An isolated WIS is not able to provide all the
information/computational power required by an organization.
Web services (WS) appear to be the most popular mechanism
to support application interoperability. Indeed, WIS is more
and more based on the usage of Web Services (WS). But, the
classical architecture of Web Services does not consider
context adaptation.
In order to integrate the concept of adaptation in WIS and
provide the user with a list of services adapted to his context,
we propose a simple and general architecture extending the

B. Soukkarieh, F. Sedes, IRIT, University Paul Sabatier, 118 Route de
Narbonne, F-31062 TOULOUSE, (phone:33-0661152562; fax: 33-5 61 55 62
58; e-mail: {sokarieh, sedes}@irit.fr)

AHA!’s one. In this architecture, we integrate the classical
Web Services architecture with the AHA! architecture adding
to these architectures an adaptation layer containing various
components dedicated to the context adaptation. So, our aim
is to build an Adaptive Web Information System based on
Web Services. The rest of this paper is as follows. In section
2, we present a state of the art about Adaptive Web
Information System, taking the AHA! system as an example,
and Web Services. In section 3, we detail our contribution
which aims to propose a new architecture of Web Information
System. This new architecture can, on one hand, support
adaptation to the user’s context and on the other hand,
provide the user with Web Services adapted to his context.
Then, we present an algorithm to build a user contextual
profile “Profile-Context-User (UCP)” containing only the
user‘s preferences that can be satisfied with the context.
Finally, we illustrated our work by an example. We conclude,
in section 4, by presenting our future works.

II. STATE OF THE ART

A. Adaptive Web Information System (AWIS)

A Web Information System (WIS) is Information System
first, and Web System second [3]. WIS uses the Web paradigm
and technologies to retrieve information from sources
connected to the Web, and present the information in a web to
the user.

Indeed, the usability, the performance and the maintenance
are the main measurements of the quality of WIS. Nowadays,
users can reach these WIS through various devices (e.g., PDA,
Smart Phone, PC, etc.). This heterogeneous, mobile and
changing environment requires that the information and
services, sent by the server, are adapted to precise conditions
of their use. Therefore, the context seems a promising idea in
order to increase the usability of the WIS.

In our research area “Context-aware applications”, the
context is used to provide relevant information and services to
the user [3]. The problem, in this case, is not only related to
adapt content to the user computational capabilities. Other
elements of the context, such as user’s behavior or preferences,
have to be considered in order to choose the most relevant
information and service for the user.

The first work in our research area is interested only in the
definition of the context, through a particularly limited vision.
Schilit and Theimer [6], for example, consider only the
localization of the user, the people who accompany him and

A Context-Aware Web Information System
Based on Web Services

B. Soukkarieh, F. Sedes, Member, IEEE

M

the objects which encounter him. Although the context is
regarded as true centre of interest for research works of
context-aware systems, we note that the first work remains
rather vague on the definition of context.

Recent work in this area starts to define the context in a
more general and clearer way. According to Lemlouma [17],
for example, the context is considered as “the set of all
information of the environment that can influence the
adaptation process and the transmission of contents towards
the end-user”.

A generalized notion of context has been proposed by Dey:
“context is any information that can be used to characterize the
situation of entities (i.e. whether a person, place or object) that
are considered relevant to the interaction between a user and
an application, including the user and the application
themselves. Context is typically the location, identity and state
of people, groups, computational and physical objects.” [5].

The first WIS taking into account the context are
applications that aim to deliver to the user (a tourist who visits
a city, a museum, etc) contents adapted to his localization and
to the tourist activity. For example, the GUIDES application
proposed by Cheverest [11] is a system designed to provide
visitors of a city, armed with mobile devices, tourist
information sensitive to the context. The main goal, in these
applications, is to deliver automatically information to the
user. The problems dealt by these applications are in
particular discovery of the localization and the adaptation of
the contents.

Other research work, like that of Schilit and that of
Lemlouma, rather concerns the adaptation of the presentation
of these contents delivered to the user according to physical
capacities of the user device. Schilit underlines the use of
various techniques for the adaptation of the presentation of the
Web pages.

In spite of the importance of concept of context, the most of
context-awareness systems have a limited use of this concept.
According to [16] several works are limited to analyzing
small quantities of contextual information and presents
solutions to very specific needs. The first work, such as [7]
considered only the user’s localization and, still today, several
systems are interested only in this aspect of the context [10] or
in the aspects related to the use of the mobile devices [17].

AHA! is a WIS, which supports user’s mobility neither the
user’s localization nor the aspects related to the use of the
mobile devices, but takes into account only user
characteristics. The architecture of this system is detailed in
the following paragraph.

Adaptive Hypermedia Architecture (AHA!)
AHA! is an Adaptive Hypermedia System based on the

Web, it is inspired by the AHAM model. AHA! system is
divided into components (Fig. 1) (for more details see [13]):

1) Java servlets are Java applications that enable enable
dynamically generating the pages from the local file system or
from external http servers.

2) The User Model (UM) contains the user’s characteristics

(identification, preferences, centre of interest, etc.).
3) The Domain Model (DM) helps to describe the

hypermedia content and its organization.
4) The Adaptation Model (AM) describes how the adaptive

hypermedia must make the personalization that represents the
core of this system.

5) Authors typically create the domain/adaptation model
through an authoring tool.

6) The Manager who configures AHA!, chooses the
installation directory, path names, etc., and who creates
accounts for authors.

Fig. 1. Architecture of AHA!

This system is characterized by its simplicity. It carries out
the adaptation of the presentation, the navigation and the
content according to user’s characteristics and preferences.
But, since the user is not fixed in his office, it is obviously
necessary to regard the user’s context as a principal element
for the adaptation. This context is presented by the user’s
dynamic and static characteristics and the characteristics of his
environment (terminal, location, etc.). But, as we said, AHA!
does not support the user’s context. For that, in our work, we
will enable to this system to carry out the adaptation
according to user’s context while trying to use the context
generally.

B. Web services (WS)

Today there is an increasing need for making WIS
component interoperable. So, WS appear to be the popular
mechanism to support application interoperability. A WS is a
software application which exists on the web accessible
through networks. Traditionally, the architecture of WS (Fig.
2) is composed of three entities (provider, user, and registry)
and is based on three standards (WSDL (Web Service
Description Language) [20], UDDI (Universal Description,
Discovery and integration) [19] and SOAP (Simple Object
Access Protocol) [15]). The service provider builds the service
and publishes its description in a registry. The user needs are
translated into requests that are carried on by the WS registry.
Once the service is found, the user will obtain direct
interaction with the service [18].

Fig. 2. Classical architecture of WS

Although the context becomes the ear and the eye of WIS
and the use of WS within WIS is increasingly frequent, the
classical architecture of WS does not consider context
adaptation.

In order to integrate the adaptation concept in the WIS and
provide the user with a list of services adapted to his context,
we will integrate the classical architecture of WS with the
architecture of AHA!, adding to these architectures an
adaptation layer containing various components dedicated to
the context adaptation.

III. NEW VISION OF WEB INFORMATION SYSTEM

We note that the majority of proposed works in the area of
adaptive WIS aim to build a WIS that is able to provide the
user with relevant information to his context. However, these
works are limited in analyzing small quantities of contextual
information and present solutions at very specific needs. In
addition, none of these works may return to the user the most
WS adapted to his context.

The objective of our work is, therefore, to build an Adaptive
Web Information System based on Web Services. To achieve
this objective, we propose to extend the AHA! architecture in
order to realize a general architecture of Adaptive Web
Information Systems, where this system is based on the Web
Service. This system allows, on one hand, to integrate a
generic context model in AHA!, and on the other hand, to
provide the user with a list of the most WS adapted to his
context.

In this part, we illustrate our contribution, which aims to
support the context adaptation and WS in WIS. We look, first,
our architecture. Then, we show how the context is defined
and represented in our architecture. Next, we detail the
adaptation process. Finally, we will show our work through an
example.

A. Our architecture

The next figure illustrates our proposal (for more details see
[8]). In this architecture, the role of some components of
AHA! does not change. For each component of the
architecture AHA! we define a new component that supports
its role in our architecture.

The user does not change. But in our architecture, the user
can launch his query using not only a PC but can use another
device types such as a mobile device or PDA.

The User Model (UM) is replaced, in our architecture, by
the User Context. This context includes information from the
user's environment, which may influence the adaptation
process.

The Domain Model (DM) is replaced, in our architecture,
by the Web Services context. This context includes
information on the environment service, for example, with
what kind of terminal we can display services.

The author plays the role of service provider that builds and
publishes his description in the Registry and which will be
responsible for providing the context of each WS and stores its
in DM.

The role of (AM) is played by the Answer Generator which
manages the adaptation process. This process aims to provide
the user with a list of the most WS adapted to his context.

The local and external pages are replaced by the WS
provided by several WIS.

So our architecture is composed of three layers (Fig. 3):
1) The Registry layer that corresponds to a registry of

service description offering facilities that publish services for
providers and that searches services for users. The provider
was presented by the WIS where each WIS has a WS. The
user will launch his query to the Registry; a list of services
adapted to his query will be forwarded to the second layer.

2) The Answer Generator layer is responsible for
managing the adaptation process and generates the final
answer (the list of WS adapted to the user’s context) to the
user.

3) The Context layer is responsible for capturing and
managing of user’s and services context.

Fig. 3. Architecture of WIS with context and WS

The Fundamental layer in our architecture is the Answer
Generator which is responsible for managing the adaptation
process. This layer is composed of two components (Fig. 4).

1) The first "Requester" asks the Registry the list of services
adapted to the user’s query. Then he contacted the Services
Context Management for request services contexts found in the
list returned to the Registry.

2) The second "Adaptation Model" (AM) is responsible for
the adaptation process. AM performs a process of "matching"
between the user’s context and the context of each service by
comparing the attributes of their metadata. The list of WS
returned to the user will be ordered according to the degree of
similarity calculated in the matching.

Fig. 4. Answer Generator

To restore the list of the most services adapted to context,
we need to define the necessary means to capture and store the
user’s context and the services context. The Context layer is
responsible for managing this process. It is composed of
module of the User Context Management and the Services
Context Management (for more de details see [8]).

1) The first one called "User Context Management” is
responsible for capturing the user’s context and storing it in a
database (UM).

2) The second called “Services Context Management” is
responsible for the extraction of contexts of Web Services, the
storage of these contexts in a database (Domain Model (DM)),
and restitution to The Answer Generator contexts of services
that meet the needs of the user. In this component, the service
context is expressed directly by the service provider.

B. Context modeling

Definition and representation the contextual user profile
In our domain, the definition of Dey is the most accepted by

the majority of researchers. But Chaari [16] considers that this
definition may be a source of conflict because it does not help
in separating the contextual data from the application data. To
provide more precision in Dey’s definition, Chaari defines the
context as: “the set of the external parameters that can
influence the behavior of the application by defining new
views on its data and its available services. These parameters
may be dynamic and may change during the execution”.

Based in this definition, we will define four principal
elements of the context: the user characteristics which are
composed of static characteristics (langue, first name, etc) and
of evolutive characteristics defined by his environment (his
localization, time, etc) and his preferences, the device
characteristics (hardware, software), the network
characteristics (type, bandwidth) and the session
characteristics (date, hour, etc).

Fig. 5 presents the general structure of our context model.
For each user session we associate a profile "Context-Profile"
which describes the four elements of the context “Context-
Element”. Each “Context-Element” may contain a “Context-
Sub-Element”. Each “Context-Sub-Element” may contain
another “Context-Sub-Element” or a “Context-Attribute”. The

contextual situation is defined by the values associated with
Context-Sub-Element of the context. The modification of one
of these values corresponds to a transition to another
contextual situation. Each Sub-Element of the context can be
static if it does not change in a user session or dynamic if its
value can vary in the same user session. That's why we
associate for each Sub-element, an attribute "Type" to
differentiate dynamic elements from static ones. This
differentiation is very important for the adaptation process.

Fig.5. General structure of our context model

In order to return to the user the list of the most services
relevant to his context, we must take into account not only the
user’s context but also the services context. In our architecture,
we define the service context by the four elements identified
before to the user.

To represent the contextual information, the majority of
researchers used the format CC/PP [9]. CC/PP is a
decomposable, uniform and extensible standard but we did not
use it to represent our context because of its lack of structured
functionalities where its two leveled strict hierarchy is not
appropriate to capture structures of complex profiles [12].

We use the CSCP format to overcome the structure deficits
of CC/PP. CSCP provide a multileveled structure which allows
the representation of all the types of contextual information
[2]. So, we stock all the contextual information in an XML
document based on this CSCP model (Fig. 8). Each element of
this document presents a context element.

An algorithm for constructing User-Context-Profile (UCP)
To solve the conflict problem between the user's preferences

and his context, we use an algorithm that realizes a filtering
process in order to build a general profile of the user’s context
"User-Context-Profile". This algorithm analyzes each user
preference to assess whether this preference can be satisfied
with the context or not. This context allows the system to
select only the preferences that are compatible with it. For
example, among the preferences that concern the display type
of query result; we will only retain the preferences which can
correspond with access device characteristics.
An algorithm constructing User -Context-Profile (UCP)
(1) User-Context-Profile (UCP)
(2) begin
(3) user identification
(4) Save (A)
(5) if the first connexion then

(6) Save (B)
(7) Save (C)
(8) enter User Preferences (UP)
(9) Function-Preferences (First)
(10) else
(11) Save (C)
(12) enter User Preferences (UP)
(13) Function-Preferences (Second)
(14) end if
(15) end

(1) Save (A)
(2) capture the session characteristics (SC) and the environment
characteristics (EC)
(3) save SC and EC in the document (UPC)
(1) Save (B)
(2) enter static characteristics (STC) // name, surname, , etc.
(3) save STC in the document XML (UPC
(1) Save (C)
(2) enter the device characteristics (DC) and the network characteristics (NC)
(3) save DC and NC in the document (UPC)

(A) In this algorithm, if the user connects to the system for the
first time. He must enter SC, DC, NC and their preferences.
Then, for each one of these preferences Pi, we apply the
function Function-Preferences (First) to determine if this
preference can be added to the UCP (cf. lines 4, 5) au to LPNS
(cf. line 7).
Algorithm that concerns the Function-Preferences (First)
(1) Function-Preferences (First)
(2) i=0
(3) while (i<=n) // 0 <= i <= n the number of user preferences
(4) if (Pi can be satisfied) then
(5) add Pi in UCP
(6) else
(7) add in LPNS // LPNS content the list of preferences which can’t be
satisfied
(8) end if
(9) i=i+1
(10) end while

(B) If this is not the first connexion of the user. He must only
enter DC, NC and their preferences. Then, for each one of
these preferences, we apply the function Function-Preferences
(Second). This function realizes the following steps:
1) If this preference can be satisfied with the context, and if
this preference is found in LPNS having the same value, we
must remove it from LPNS and add it in the UCP. Otherwise,
if the preference can be satisfied with the context, and if this
preference is found in LPNS with other values, we must know
whether this preference with the different value is satisfied
with the context or not. If yes, we add this value in the UCP
(cf. lines 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).
2) If this preference is not satisfied with the context, and if this
preference is found in LPNS with other values, we must know
whether this preference with the different value is satisfied
with the context or not. If yes, we add this value in the UCP.
Otherwise, we must delete it (cf. lines 16, 17, 18, 19, 20, 21,
22, 23).
Algorithm that concerns the Function-Preferences (Second)
(1) Function-Preferences (Second)
(2) i=0
(3) while (i<=n) // i= 0, …n
(4) case

(5) if (Pi can be satisfied) then
(6) if (Pi is in LPNS having the same value) then
(7) delete Pi from LPNS
(8) else
(9) if (Pi can be satisfied) then
(10) delete Pi form LPNS
(11) end if
(12) end if
(13) add Pi in UCP
(14) end if
(15) otherwise
(16) if (Pi is in LPNS having other value) then
(17) if (Pi can be satisfied) then
(18) delete Pi from LPNS
(19) end if
(20) add Pi in UCP
(21) else
(22) add Pi in LPNS
(23) end if
(24) end case
(25) i = i+1
(26) end while

If a preference in our UCP has two or more value, we give
priority to the value entered by the user during the current
session. If the user in the current session has not defined
preferences, the system considers the history of the user, i.e.
previous sessions.

C. Adaptation process

In order to realize the adaptation process, we present the
two profiles in the form of trees. The tree that represents the
user's profile must be weighed, i.e. weights are associated with
nodes of the tree. The weight represents the degree of
importance of the information associated with nodes. Its value
is given directly by the user when he launches his query. The
user assigns each element a real number between 0 and 1: 1
being the criteria for adaptation priority and 0 as the default,
designating a criterion of adaptation without special hierarchy.
As an example, suppose a user wants to travel from Toulouse
to Paris. He wants to know price of the train ticket going from
the nearest station to his location with importance 0.6. He
hoped that the service responds in English with importance
0.4. While the answer in English is less important than the
location. Then, we perform a matching process between the
two contexts (user, services) by comparing the content of
contexts elements and by calculating a degree of similarity
between the two. In order to calculate the degree of similarity
between the profiles, we use measures of similarity proposed
by Alilaouar [1] on our team and presented by the following
equation:

T: context tree, n: the number of nodes in the tree, ui: child’s
of the root, niv (ui)=1,...M : the number of the level where we
find le node ui, W(ui) : the weight of the node ui.

With this equation, the weight of a tree is calculated
progressively starting with the weight of the leaf nodes (tree to
a single node) and going up to the root of the tree.

The list of Web Services returned to the user by the Answer

Generator will be ordered according to the degree of similarity
which was calculated in the matching. So the most appropriate
Web Service will be found at the top of the list.

D. An example

A user wants to travel from Paris to Bordeaux. He wants to
know price of the train ticket going from the nearest station to
his location. The user also prefers that the service would
answer in English and be able to adapt to his device. The user
will launch his query to the Registry asking a service for
reserving the cheapest train ticket from Paris to Bordeaux. At
that time, User Context Manager captures explicitly his
preferences via an interface that allows him to express his
preferences and the priorities associated with them. The
service will answer the user query in English and would
provide him with the nearest station of his departure. The user
precise the weight (0.4) for the first attribute "Language" and
the weight (0.6) for the second attribute “place”. The User
Context Manager captures also the information concerning the
device type and the network implicitly. Then, it stores all this
information in an XML document in the database UM (Fig.6).

Figi.6. An example of CSCP profile

In order to make the filtering process the Answer Generator
calculates a score of correspondence between the descriptions
of user’s context and services context by taking into account
the priorities expressed by the user. In this example, the
Generator gives priority to the attribute place because it has a
higher weight. The list of WS returned to the user by the
Answer Generator will be ordered according to the degree of
similarity calculated in the matching. Where the most WS
adapted will be placed at the top of the list of services.

IV. CONCLUSION

In this article, we propose a simple and general architecture
that enables, on one hand, to support the adaptation process
according to the user’s context and on the other hand, to
provide the user with a list of Web Services relevant to his
context. So, our aim is to build an Adaptive Web Information
System based on Web Services where the user can reach the
list of the most relevant services to his query and his context.

Then, we presented an algorithm that aims to build a user
contextual profile “Profile-Context-User (UCP)” containing
only the user’s preferences that can be satisfied with the
context. Next, we mentioned the adaptation process that
performs a matching process between the two contexts (user,
services). Finally, we illustrated our work by an example.

In the near future, we envisage to implement our proposal
and to specify the service context more precisely and to use
ontology for Web Services search as WSDL-S since the UDDI
registry supports only keyword matching.

REFERENCES

[1] A. Alilaouar, “Contribution à l’interrogation flexible de données semi-
structurées,”. PHD Thesis, Paul Sabatier University of Toulouse, IRIT, 2007.
[2] A. Held, S. Bouchholz, and A. Shill, “Modeling of Context for Pervasive
Computing Application,” In Proceedings of the 16th world Multiconference
on Systemics, Cybernetics and Informatics (SCI). Orlando, FL, USA, 2002.
[3] A. Isakowitz, M. Bieber and F. Vitali, “Web information systems,”
Communications of the ACM vol.41, pp.78-80, July 1998.
[4] A. Jameson, “Modeling both the context and the user,” Personal and
Ubiquitous Computing Journal, 2001, pp. 29–33.
[5] A.K. Dey, “Providing Architectural Support for Building Context-Aware
Applications,” PhD Thesis, Georgia Institute of Technology, 2000.
[6] B.N. Schilit, and M.M. Theimer, “Disseminating active map information
to mobile hosts,” in IEEE Network, vol. 8, n°5, 1994, pp. 22-32.
[7] B.N. Schilit, N. Adams, and R. Want, “Context-Aware Computing
Applications,” Proceedings of the IEEE Workshop on Mobile Computing
Systems and Applications, Santa Cruz, USA, December 1994, pp. 85-90.
[8] B. Soukkarieh, and F. Sedes, “Towards an Adaptive Web Information

System Based on Web Services,” The Fourth International Conference on
Autonomic and Autonomous Systems ICAS 2008, Gosier , Guadeloupe,
March 16-21, 2008.
[9] CC/PP, W3C, Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 1.0. W3C Recommendation 15 January 2004. The
last version: http://www.w3.org/TR/CCPP-struct-vocab/ (Janvier 2007).
[10] H.K. Rubinsztejn, M.Endler, V. Sacramento, K. Gonçalvez, and F.
Nascimento, “Support for context-aware collaboration,” in First International
Workshop on Mobility Aware Technologies and Applications - MATA 2004,
Florianopolis, Brazil, Springer-Verlag, 2004, pp.37-47.
[11] K. Cheverest, K. Mitchell, and N. Davies, “The role of adaptive
hypermedia in a context-aware tourist guide,” in Communication of ACM,
vol. 45, n° 5, Mars 2002, ACM Press, pp. 47-51.
[12] K. Mostéfaoui, J. Pasquier-Rocha, and P. Brézillon, “Context-aware
computing: a guide for the pervasive computing community,” Proceedings of
the IEEE/ACS International Conference on Pervasive Services (IPCS’04),
IEEE Computer Society, 2004, pp. 39-48.
[13] P. De Bra, G. J. Houben, and H. Wu, “Aham : A dexter-based reference
model for adaptive hypermedia,” in tenth ACM conference on hypertext and
hypermedia, 1999, pp. 147-156.
[14] P. De Bra, A. Aerts, B. Berden, B. De Lange, B. Rousseau, T. Santic, D.
Smits, and N. Stash, “AHA ! The Adaptive Hypermedia Architecture,”
HT’03, Nottingham, United Kingdom, August 26–30, 2003, pp 81-84.
[15] SOAP, W3C, Recommandation W3C 24 Juin 2003. The last version:
http://www.w3.org/TR/soap12-part0/ (December 2006).
[16] T. Chaari, F. Laforest, and A. Flory, “Adaptation des applications au
contexte en utilisant les services Web, ” Second Francophone workshop:
Mobility and Ubiquity, Grenoble, France, 31 May- 3 June 2005.
[17] T. Lemlouma, “Architecture de négociation et d'adaptation de Services
Multimédia dans des Environnements Hétérogènes,” PHD, Institut National
Polytechnique de Grenoble, Grenoble, France, April 2004.
[18] T. Melliti, “Interopérabilité des Services Web complexes. Application
aux systems multi-agents,” PHD, Paris IX Dauphine University, 2004.
 [19] UDDI, W3Schools, http://www.w3schools.com/wsdl/wsdl_uddi.asp
(December 2006).
[20] WSDL, W3C, Web Services Description Language (WSDL), the last
version: http://www.w3.org/TR/wsdl. (December 2006).

