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Abstract—The available amount of geographic datasets has 
considerably grown. These data (maps) are available in different 
formats, in different scales, and they are usually generated by 
different procedures. Distinct maps that represent the same or 
overlapping areas (multiresolution maps) can differ both in 
accuracy and resolution. Therefore, an important issue is to 
determine whether two maps are consistent, i.e., do they 
represent the same area without contradictions, and if not, are 
they at least similar? In this paper we develop a method to assess 
the similarity over complex structured spatial objects that form 
networks. Existing approaches deal only with the change in 
accuracy and do not take into account the change in resolution; 
as a result the two maps in question must have the same number 
of components. In this paper we extend them to treat the change 
in resolution by tying each component in the map with weight 
according to its importance. Other improvements to existing 
approaches, which are based on topological properties, are 
proposed by considering the directional and metrical properties. 
This method is the first step to assess the similarity between maps 
with complex configurations including all the geographic 
features. 
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I. INTRODUCTION

The available amount of geographic datasets is significantly 
growing in recent time. This is due to the increasing number of 
different devices collecting such data; such as remote sensing 
systems, environmental monitoring devices, etc. These data 
(maps) are available in different formats, in different scales, 
and they are usually generated by different procedures. 
Consequently distinct maps can differ both in accuracy and 
resolution [1]. A less precise representation means that the data 
contain simplification of the original representation, but the 
topology should not be changed. On the other hand, the 
reduction of the map resolution may change the topological 
structure of spatial object. 

The necessity to deal with two or more maps in the same 
environment requires an effective management to these 
multiple representations of information. Currently, 
multiresolution geographic database records explicitly multiple 
representations covering the same geographic area at different 
scales. Such databases require a mechanism to detect 
inconsistencies among the different representations. In the 
future multiresolution geographic databases will be envisioned 
that they would derive multiple representations “on the fly” by 
using generalization algorithm, this will provide more 
flexibility to the interrogation process and decrease the amount 

of the data stored. Under such a scenario, quality control 
mechanisms will be needed to confirm that the generalization 
algorithm produces consistent results. Therefore, the 
determination of consistency and similarity of data is an 
important step for both scenarios. 

The assessment of consistency and similarity corresponds 
with comparing the data and test to see whether they contain 
contradiction or not. It also requires geographic domain 
knowledge. This paper focuses on domain knowledge about 
networks, which is an important data type and is shared by 
many geographic applications (e.g. transportation, hydrology, 
etc.). We extend the proposed approach which assesses the 
similarity between networks differing in accuracy [2], to deal 
with networks differing in resolutions. “Fig. 1” depicts three 
networks: the network (b) differs from the network (a) in 
accuracy because only the lengths of the segments and the 
angles among them have modestly been modified. On the other 
hand, the network (c) differs from the network (a) in resolution 
because some segments are dropped or aggregated. 

Current similarity methods focus on the topological 
relations among the components and ignore metric and 
directional relations. This paper develops a method which takes 
into account these relations to improve the process similarity’s 
result. The method employed is based on topological 
relationships [3], the boundary-boundary sequence [4], the 
cardinal direction [5], and the approximate distance [6]. This 
formalization represents the first steps of research efforts for 
developing formal models for checking the consistency among 
multiple representations in heterogeneous geographic 
databases. 

Figure 1.  Difference between the change in accuracy and resolution 



The remainder of this paper is organized as follows: 
Section 2 discusses previous works on consistency and 
similarity. Section 3 illustrates the data model adopted to 
represent the multiresolution networks. In section 4 we present 
our proposition to assess the similarity between networks. 
Finally, section 5 concludes our proposition and outlines future 
works. 

II. RELATED WORKS

Multiresolution maps have started to emerge as a research 
topic in geographic information community in the 1980s [7]. It 
implies a considerable increase in the amount of data to be 
stored, introducing additional problem for the maintenance and 
integration of these data at different levels of detail [8]. Ideally 
multiple representations should be automatically derived from 
a single detailed representation in order to answer some 
specific user queries [9]. Unfortunately, this is not feasible at 
this time due to the inadequacy of the automated generalization 
procedures. 

Multiresolution maps are interpreted in [10] as a set of 
different levels S0,...,Sn where the level Si+1 is derived from 
level Si by using some generalization operations. These 
operations guarantee to transform a map into another map, 
which is consistent with the first one with respect to 
topological relations. A similarity measure between maps, 
defined as a deviation from consistency, has also been provided 
in [10]. “Planar Abstract Cell Complex” has been used to 
define a formal model for representing multiresolution maps in 
[8]. In this paper the consistency test is defined at the 
combinatorial level by means of homeomorphisms. 

A method for checking similarity between topological 
relations of regions is defined in [12], using the similarity 
values over topological relations between regions, a partial 
order is defined to evaluate how the relation may be changed 
after some generalization operations. In [13] this distance is 
used to create a partial order over the topological relations 
between lines and regions. In [12] and [13] the similarity 
between topological relations is computed between pairs which 
have the same dimension. In [14] this distance is extended to 
consider the changes in the dimension of the objects. 

In [2], consistency among networks, defined as sets of lines 
(homogeneous networks) and sets of lines and regions 
(heterogeneous networks), is investigated. In this paper, 
similarity is computed between two networks which have the 
same number of components (small change); despite in the 
majority of situations the two networks don’t have the same 
number of components. Therefore, in this paper we investigate 
the consistency and similarity between networks when large 
changes happened (some components disappeared or 
aggregated), by tying each component with weights 
representing its importance in the network and taking into 
account the metric and directional relation among the 
components. 

III. NETWORK REFERENCE MODEL

A canonical representation of networks aids in the 
assessment of consistency and similarity. Therefore, we 
introduce a set of constraint for the constituent components, 

which are necessary to form valid network. In this paper we 
address the homogenous networks, which are made up of line 
segments only linked by intersection points. The relations 
between networks and other components of the map will be 
addressed in a future paper. 

Definition 1: A (segment) simple open line l is a 
continuous, non intersecting sequence of points (x,y) in ℜ² that 
can be represented by an injective continuous function as 
following: 

l: [0,1] ℜ² (1)

The segment endpoints l(0), l(1) are usually referred to as 
the segment boundaries, whereas the other points of the line are 
referred to as the segment interior. “Fig. 2” shows four lines 
that (a-b) are valid for the segment definition whereas (c-d) are 
not. 

The Segment may be a straight line e.g. “Fig. 2” (a), or a 
line that has shape points e.g. “Fig. 2” (b). To assess the 
similarity between two segments, we introduce the following 
notions: 1) the number of segment detour, 2) the detour degree 
of inclination. While the number segment detour is determined 
by counting the number of detour in the segment, the degree of 
inclination is estimated by computing the angle output from the 
detour. For computing them we joint the segment endpoints by 
the straight line ls and compare its length (leng(ls))with the 
length of segment initial (leng(l0)). According to the difference 
we have two cases: 

1) If the difference is less than a threshold ( ) “Fig.3” (a),
the segment will be represented by the equation of the straight 
line which its slope (m) can be calculated by using the 
equation (3) 

|leng(ls)-leng(l0)| <   l0 is straight (2) 

m=(Yl(0)-Yl(1))/(Xl(0)-Xl(1)) (3)

Figure 2.  Collection of lines 

Figure 3.  Different situations of the segment 



Figure 4.  Computing the degree of inclination 

Figure 5.  Line containing two detours 

2) In the other case, we distinguish two states:
1. If the initial segment doesn’t cross the straight line

“Fig. 3” (b), then we consider that the segment contains one 
detour. To compute its degree of inclination we divide the 
segment into two segments by using the axe of the straight 
line. For each sub-segment we joint its endpoints and repeat 
the preceding steps until we reach the state when the segment 
can be represented by set  of straight lines. “Fig. 4” shows an 
example of how a segment is divided. The degree of 
inclination is the sum of the angles (αi) between the final 
straight lines. Knowing that the angle (α) between tow lines 
which their slopes are m1, m2 can be obtained by the equation 
(5). 

Inclination =  (5) 

α= tan-1{(m2 – m1) / (1+ m2 m1)} (6) 

2. If the initial segment crosses the straight segment in
n0 point, then the line segment contains n0+1 detours. For 
each detour we compute the degree of inclination as presented 
in 2.a. “Fig. 5” presented an example of a segment which 
contains tow detours. 

We present in the “Fig. 6” our model of segment's 
representation by taking into account the previous different 
cases. 

For two segments, 33 topological relationships [14] can be 
founded. These relations can be simplified by considering that 
two segments, in network, are either disjoint if they do not 
intersect in any point (boundaries, interiors) or meet if the 
segments only intersect in their boundaries. Then, two 
segments may only meet in one or two points (the segment’s 
endpoints). If two segments intersect in another point, different 
from their boundaries, the two segments will be divided into 
new segments in a manner that the new segments have this 
point as an endpoint and their other endpoint is one of the 
initial segments’ endpoints. 

Figure 6.  Model of segment representation  

Definition 2: A network N is a set of connected segments Si 
where all segments are exclusively related by 1-meet, 2-meet, 
or disjoint relations. “Fig. 7” shows examples of different 
configurations; the network (a) is adequate of the definition of 
homogeneous network whereas network (b) is not. 

Each network contains a collection of segments linked by 
intersection point. We will use the intersection points to 
represent the network; knowing that each intersection point in a 
network must have at least three segments (if an intersection 
point has only two segments, these two segments will be 
aggregated in one segment). Around an intersection point, the 
connected line segments are cyclically ordered. For example, if 
we choose the orientation of counter-clockwise, the segments 
intersects in “Fig. 8” can be represented by the sequence 
<ABCDE>. 

Two different intersection points may have the same 
number of segments; therefore to make difference between 
them we will take into account the angles among the segment. 
The angle between the segments can be calculated by using the 
equation 5. “Fig. 9” shows our model for network 
representation. 

Figure 7.  Collection of networks 



Figure 8.  The orientation around intersection 

Figure 9.  Model of network representation 

IV. SIMILARITY OF NETWORKS

The assessment of the similarity among the networks when 
large changes take place is a complex task, though people do it 
innately. According to [16] the similarity is an intuitive and 
subjective judgment which displays no strict mathematical 
models. In this section we focus on a computational method to 
assess the similarity among networks. 

In order to understand how people do this task, we take an 
example of a user who wants to retrieve the networks that 
resemble sketched configuration and ranks the results 
according to their degrees of similarity. We find that the user 
usually does not consider that all the information has the same 
importance in the network; and when he creates his sketch, he 
puts only the information which he considers as important and 
abandons the other. Therefore, it is important to provide for 
each component in the network a suitable weight according to 
its importance. Another observation is the user use approximate 
information not precise information. Generally quantitative 
information is used to describe numeric information, but it is 
precise information and can be changed dramatically with 
resolution and accuracy changes. Therefore, it is more suitable 
to map this information from quantitative to qualitative 
representation which is more robust with changes. 

The network is composed of segments linked by 
intersection points. Identical networks have the same number 
of components but similar ones don’t necessary have that. To 
assess similarity among networks we will tie a weight to each 
component in the network according to its importance. The 
importance of segment in the network generally 
commensurates with its length and its shape. The segment’s 
relative length is quantitative and changes with accuracy and 

resolution changes. In order to have the qualitative relative 
length of the segments we will use a clustering method. In this 
method, firstly we rank the segments’ length in ascendant 
order. Secondly, we calculate the difference between each two 
following values, and the average of these differences. Thirdly, 
we will fix the segments’ lengths which are the difference 
between them to see whether they are equal or bigger than the 
average. Finally, other segments’ lengths will be clustered to 
fixed length provided that the interval’s length is smaller than 
the average difference; if it is not possible to do that, we will 
create new fixed segments’ lengths. 

After tying a weight to each segment, we will tie a suitable 
weight to each intersection point. This weight is obtained by 
the sum of the segment's length which has this intersection 
point as an endpoint. We will use only these weights to rank 
the intersection points according to its importance. Thus, we 
don’t need to map it to qualitative information. Another 
characteristic of intersection point is the angles among the 
segments which have this intersection point as endpoint. We 
will map it to qualitative information by dividing the full circle 
(4 right angles) into eight angles and will note them by α, β, σ, 
τ, υ, ϖ, μ, ϕ; as it is shown in “Fig. 10”: 

To assess the similarity among networks we distinguish 
between exact matching and approximate matching. The first is 
adequate to the accuracy change (i.e. only the components’ 
lengths and the angles among them have modestly changed). 
The second is adequate to the resolution change (i.e. some 
components are dropped or aggregated). 

Figure 10.  Dividing the full circle into eight angles  

TABLE I. TRANSFORMATION  QUANTITATIVE ANGLE FROM 
TO QUALITATIVE 

Quan. Angle Qual. Angle 

α 2π-π / 8 ≤ θ ≤ π / 8 

β π / 8 ≤ θ ≤ 3π / 8

σ 3π / 8 ≤ θ ≤ 5π / 8 

τ 5π / 8 ≤ θ ≤ 7π / 8 

υ 7π / 8  ≤ θ ≤ 9π / 8 

ϖ 9π / 8 ≤ θ ≤ 11π / 8 

μ 11π / 8 ≤ θ ≤ 13π / 8 

ϕ 13π / 8 ≤ θ ≤ 15π / 8 



a. Exact matching:
In this section we present a method to assess the similarity

among homogeneous networks, when small changes occur. In 
this case the two networks have the same number of 
components and only the components’ lengths and the angles 
among them have modestly changed. Therefore, we try to 
match the intersection points in the two networks by starting 
with the point which has the biggest weight in the first network 
with its counterpart in the second network; the two points must 
have the same number of segments. Secondly, we take all 
intersection points which have a direct link with the biggest 
intersection point in the first network and try to do matching 
with their counterpart in the second and so on. If we can’t do 
matching between networks’ intersection points according to 
the previous procedure we will try to do an approximate 
matching; otherwise we will have two trees which is used to do 
the matching among the segments and the angles. In this case 
the degree of similarity can be calculated by comparing the 
angles and the lengths among the asymmetric components, and 
it can be given by the following equation:The template is used 
to format your paper and style the text. All margins, column 
widths, line spaces, and text fonts are prescribed; please do not 
alter them. You may note peculiarities. For example, the head 
margin in this template measures proportionately more than is 
customary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the 
entire proceedings, and not as an independent document. Please 
do not revise any of the current designations. 

S=ω SL+ζ SA (6) 

Knowing that SL represents the similarity between the 
lengths and SA represents the similarity between the angles. If 
we have two networks which have n segments grouped into k 
clusters and m angles, SA and SL can be given by the following 
equations, knowing that Δi, δi represent respectively the 
difference between the lengths’ class and qualitative angles 
between the asymmetric components. 

b. Approximate matching:
In this section we present a method to assess the similarity

among homogeneous networks, when large changes occur. In 
this case the two networks don’t have necessarily the same 
number of components. Doing the matching in this situation is 
more complex than exact matching because some components 
may disappear or aggregate. We propose an original method 
based on the construction of the main network. 

The main network is obtained from the initial network by 
removing small segments which have a big possibility to drop 
or aggregate with accuracy and resolution changes. But by 
doing so, it must be ensured that the main network remains 

connected. To do this, firstly we keep only the segments which 
represent the links among intersection points. This can be done 
by arbitrarily taking an intersection point and keep only the 
segment which links this point to other intersection points. For 
each of these points we apply the same method and so on until 
we reach all intersection points. Afterward we add to this 
network each segment which has a length equal or more than 
the average length. 

After the extraction of the main network we have three 
cases adequate to the result. First case represents the state of 
the two main networks which have the same number of 
components. As a result we can do the exact matching over 
them. Second case represents the state of the two main 
networks which don’t have the same number of components; 
each of them has at least one intersection point. In this case we 
try to do the matching among intersection points by using the 
angles’ sequence. The problem in this case is that as some 
components can be dropped, the angles’ sequence of 
intersection can be changed. With the deletion of one segment 
from the intersection point, the two angles formed by this 
segment and its neighbourhood segments will be integrated in 
one angle which is the sum of the two initial angles. The last 
case represents the state where one main network doesn’t have 
any intersection point. In this case we try to do the matching by 
using the characteristic of the segment (the number of detour 
and the degree of inclination). The degree of similarity for the 
two previous situations is given by the equation (8). Knowing 
that Ki, Li represent respectively the segment in the first 
(second) main network which has asymmetric components in 
the second (first) main network. 

Example: 

Let us take the two networks in the following figure: 

Figure 11.  Comparison between two networks 



Figure 12.  Main networks 

We find that the two networks don’t have the same number 
of components so we will extract their main networks. 

The first main network in the figure (a) will be represented 
as following by using its intersection points: ABDC(13, τ, β, σ, 
σ), DEF(14, υ, β, τ). 

The second main network in the figure (b) will be 
represented as following by using its intersection point: adc(7, 
β, σ, ϖ). 

As the two main networks don’t have the same number of 
components, we try to do the matching by using the angles’ 
sequence. Form the second main chain we have an intersection 
point which has three segments and the angles' sequence in it is 
(β, σ, ϖ). In the first one we have tow intersection points; one 
of them has three segments and the other has four segments. By 
comparing the two intersections points which have three 
segments we find that the two sequences have β in common but 
the rest of the sequence is completely different. Therefore we 
try to do the matching between ABDC and adc; knowing that 
the first has one more segment than the second; so we look for 
the angle common between the two sequences. We have β, σ in 
the same order, the remaining angles in the second main 
network ϖ can be considered as the sum of the two angles σ, σ 
taking into account that the asymmetric of A in the second 
main network was dropping. The degree of similarity between 
the networks is given by: 

S=  =0,7 

V. CONCLUSION

We presented a method to assess the similarity between 
homogenous networks when the large changes occur. As with 
large changes some network’s components may disappear or 
aggregate, it is impossible to use only the topological 
equivalence. Particularly, we have extended an existing method 
by considering the directional and metrical properties and 
introducing the importance of component in assessing the 
similarity. 

We are programming our proposal in a software which is 
capable of evaluating whether two pairs of networks are similar 
or not. In the case of similarity, it generates a report of 
difference. This software will be extended to work as a search 
engine which allows the user to draw his sketch and look for 

the networks which have similar structure. Future search plan 
will lead to the assessment of similarity between the scenes 
with complex configurations including all the geographic 
features. 
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