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BLOCK DECOMPOSITION VIA THE GEOMETRIC SATAKE EQUIVALENCE

EMILIEN ZABETH

ABSTRACT. We give a new proof for the description of the blocks in the category of
representations of a reductive algebraic group G over a field of positive characteristic
¢ (originally due to Donkin), by working in the Satake category of the Langlands dual
group and applying Smith-Treumann theory as developed by Riche and Williamson. On
the representation theoretic side, our methods enable us to give a bound for the length
of a minimum chain linking two weights in the same block, and to give a new proof for
the block decomposition of a quantum group at an ¢-th root of unity.
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1. INTRODUCTION

In this paper, we give a proof for the description of the block decomposition of a
reductive algebraic group over a field of prime characteristic £ using the geometry of the
affine Grassmanian. We apply results from [RW20], where Riche and Williamson used and
developed Smith-Treumann theory for sheaves to give a geometric proof of the Linkage
principle, which is the first step towards the block decomposition. Most of our paper is
dedicated to the study of equivalence classes on some subsets of the affine Weyl group.
These equivalence classes will be defined using homomorphisms between indecomposable
parity complexes on some partial affine flag varieties, and we will show that their de-
scription implies the desired description for the block decomposition. Our methods will
moreover allow us to give a bound for the length of a minimum chain linking two weights
in the same block. Finally, using the fact that some of our techniques work in any charac-
teristic (for the field of coefficients of our sheaves), we will give a proof for the description
of the block decomposition of a quantum group at an ¢-th root of unity.

In the rest of this introduction, we start by recalling the description of the blocks for
a simply-connected simple algebraic group (due to Donkin), before giving a brief summary
of some key results from [RW20] and an overview of our proof.

1.1. The block decomposition of a simply-connected simple algebraic group. Let G be a
simply-connected simpleﬂ algebraic group over a field k of prime characteristic ¢, with a
split maximal torus and a Borel subgroup T C B. Let also Ry C R C X denote the set of

1By simple we mean that the root system of G is irreducible.
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positive roots (with respect to the Borel subgroup B™ satisfying BT N B = T) and roots
inside the character lattice of T, and W, be the Weyl group associated with (G,T'). The
category Rep(G) of finite dimensional algebraic G-modules is a highest weight category,
admitting the set of dominant characters X, of T as a weight poset. For each A € X,
denote by L) the associated simple G-module (which is the simple socle of the induced
G-module of highest weight \), and consider the equivalence relation ~ on X generated
by the relation %:
A = Extpoqy(La, Ly) # 0.

For any A € X, let A € X/ ~ be the associated equivalence class and define Repy(G)
as the Serre subcategory generated by the family (L,, @ ~ A) (this coincides with the
full subcategory of Rep(G) consisting of G-modules whose composition factors are of the
form L,, with u ~ X). The so-called block decomposition (cf. [Jan03, Lemma 7.1, Part
I1]) of Rep(G) is then:

Rep(G) = @ Repy(G).
XEXJr/N

Remark 1.1. This formalism also makes sense when char(k) = 0, in which case the semi-
simplicity of the category Rep(G) (cf. [Mill7, Theorem 22.42]) tells us that A = {A} for
every A € X, so that the block Repy(G) is just the additive subcategory generated by
L.

Fix A € X and denote by p € X the half-sum of the positive roots (this belongs
to X thanks to our assumption that G is simply connected). The linkage principle (cf.
[Jan03, Corollary 6.17]) tells us that

(11) XCW.Z)\HX_H

where W := Wy x ZR is the affine Weyl group associated with G and e, is the usual
¢-dilated dot action on X, i.e. we have

wt, oo N :=wA+Llp+p)—p

for any A € X, w € Wy and pu € ZR. A non-obvious result is that the inclusion (1.1)) turns
out to be an equality when A is not contained in a special facet of X @7 R (which concerns
the majority of weights), i.e. when A+ p € X\ £-X. An easy case, which has been treated
in [HJ78], is when A is contained inside of an alcove, which means that (A + p, ) ¢ ¢Z for
all & in the dual root system RV (where (-,-) denotes the usual perfect pairing between
X and the cocharacter lattice XV). The case where (\ + p, ) € ¢Z for some o € R (but
still with A+ p € X\ £-X) is however much more involved, and was treated by Donkin in
[Don&0].

The inclusion is not an equality in general, and the exact description of the
blocks is still due to Donkin (cf. [Don80]; as we will recall in Remark below, the proof
uses the case where A is not contained in a special facet): let r(A 4 p) be the smallest
integer satisfying A+ p € 7O+ . X\ rO+2)+1 . X and WA +0) be the affine Weyl group
with translation part dilated by ¢"(A+0) (cf. subsetion for the precise definition), then
we have:

A=WrO+) o) XX,

Remark 1.2. More recently, M. De Visscher gave a shorter proof for the block decompo-
sition [DVO§|. Several of her ideas play a key role in our proof. Her proof requires some
restrictions on ¢ and R; we circumvent these restrictions in this paper.

The main goal of this article is to give a proof of this result by working in the setting
of constructible sheaves via the geometric Satake equivalence. As we will see in the end



(cf. subsection [7.2)), one can deduce from this case the block decomposition for a general
reductive group (this description was known, but not explicitly written down in [Don80]).

1.2. A geometric proof of the linkage principle. Let F be an algebraically closed field
of prime characteristic p # ¢, and G be the Langlands dual group of G over F (in the
main body of the text, we will change the notation and replace G with GV). The affine
grassmannian Gr is an ind-scheme over F, which can be defined as the fppf-quotient of
the loop group ind-scheme LG (representing the functor R — R((z)), where z is an
indeterminate) by the positive loop group scheme LG (representing the functor R
R][[z]]). The geometric Satake equivalence (cf. [MV04]), asserts that there is an equivalence
of monoidal categories

(Pervy+(Gr, k), %) = (Rep(G), ®x),

where the left-hand side denotes the Satake category (equipped with a convolution prod-
uct), consisting of perverse (étale) sheaves on the affine Grassmanian Gr, with coefficients
in k and which respect an equivariance condition for the left action of the positive loop
group LG on Gr.

In [RW20], Riche and Williamson managed to give a new proof of the linkage prin-
ciple by working in Pervy+s(Gr, k). Moreover, their methods allowed them to give a
new character formula for tilting objects (valid in all characteristics), which involves cer-
tain ¢-Kazhdan-Lusztig polynomials. This seems to be the first instance of the geometric
Satake equivalence being able to bring us some knowledge on the combinatorics of the
category Rep(G) in positive characteristic. Their proof applies Treumann’s “Smith the-
ory for sheaves” to the Iwahori-Whittaker incarnation of the Satake category, which is a
highest weight category Pervyy(Gr, k) Witkﬂ weight poset X4 := p 4+ X} admitting an
equivalence of highest weight categories

(1.2) Pervy+q(Gr, k) = Pervry(Gr, k).

This equivalence, which comes from [BGM™19], sends an indecomposable tilting object
associated with A € X to the indecomposable tilting object associated with A 4 p, which

W
we denote by <7)\+p.

Let uy denote the F-group scheme of ¢-th root of unity, (Gr)*¢ be the fixed points for
the action of uy C Gy, on Gr by rescaling the indeterminate, and put

ari={peX®zR : 0< (g,a") <lVaeR;}

The set ay is called the fundamental alcove, and its closure is a fundamental domain for
the /-dilated “box” action oy of W on X ®7z R, defined by

wty oA == w(A + L)
for any A € X ®z R, w € Wy and p € ZR. Notice that, for any A € X ®z R and w € W,
we have
(1.3) w ey (A — p) = wog\ — p.

One of the main ingredients used in [RW20] is the decomposition into connected compo-

nents
V4
Gy = || FIg,
A€ea;NX

where FlgkO denotes the identity component in the partial affine flag variety associated
with the facet gy C ay containing A (cf. [RW20, Proposition 4.7]). This partial affine
flag variety is an ind-scheme defined as the fppf-quotient of the loop group ind-scheme

20ne needs to assume that there exists a primitive p-th roots of 1 in k to define Pervryy (Gr, k).



LG representing the functor R — G(R((2%))) by a positive loop group scheme L;ng,
representing R +— Pg, (R[[2‘]]) and associated with the “parahoric” group scheme Pg,
arising from Bruhat-Tits theory. When A € ay, one recovers for instance the full affine
flag variety for G and if A = 0, then we get a copy of the affine Grassmannian.

The other main result is the construction of a fully-faithful functor

® : Tiltzyy(Gr, k) = Smry ((Gr)H, k),

from the subcategory of tilting objects of Pervryy(Gr, k) to the so-called Smith category on
(Gr)*¢, which involves a pull-back along the immersion (Gr)* — Gr followed by passing
to a certain Verdier quotient.

As a consequence of the full-faithfulness (and of the fact that both categories are
Krull-Schmidt), ® sends indecomposable objects to indecomposable objects. Thus, one
can see that for every A\, u € X, the space HomTiltIW(GrVk)(f)\ZW, %IW) is non-zero
only if the supports of @(C‘Z\ZW) and ®( %M ) lie in the same connected component Flgj
of (Gr)# for some v € ay N X, and observe that this happens only if A\, u € Woyy. This
means that we must have WoyA = Woypu, which is equivalent to Wey(A—p) = Wey(u—p)
thanks to . In view of the equivalence and of the geometric Satake equivalence,
this means that we have

HomRep(G) (T)\—pv Tu—p) #0= Wey(A—p)=We(u—p),

where T\_, (resp. T),_,) denotes the indecomposable tilting G-module associated with
A — p (resp. p— p). Standard arguments on highest weight categories (see Theorem
below) then show that this statement is equivalent to the linkage principle (1.1]). Moreover,
those same standard arguments and equivalences of categories show that, if we denote by
A C X the equivalence class of A for the equivalence relation on X | induced by the
relation Ho:

YRy <= Homrig,,, Grw) (Z50, T37Y) # 0,

then Donkin’s theorem on blocks is equivalent to
A=W anX,,.

1.3. Summary of the proof. In the sequel, we will push this study further to get the full
description of the blocks. Fix A\, € Xy 4. A first step in this direction was actually
made in an earlier unpublished version of [RW20]; namely, we have an isomorphism (cf.

Proposition

Homriie k) (Tix s Ty ) ~ Homesiegy, G (T30, TEY).
This isomorphism enables us to only focus on the case where A € X\ ¢-X, for which we
want to show that the inclusion A C Woy,AN X 4, provided by the linkage principle, is an

equality. So from now on, let us assume that r(\) = r(u) = 0, with Wo,A = Woyu; we are
thus reduced to showing that A ~ p. We let v denote the unique element of Wo, A N ay.

Remark 1.3. For any r € Z>; and M € Rep(G), let M) denote the twist of M by the
r-th power of the Frobenius endomorphism. This first step is the analogue of the second
step in [DVOS], which uses the fact that the functor M — MU ® Lr_1)., induces an
equivalence of categories from Repy(G) to Repy7(G), where N := (0" —1)-p+£" - \.

Let g C ay be a facet, Wy C W denote the stabilizer of g for o, and ParIWZ(Fléo, k)
denote the additive category of Iwahori-Whittaker-equivariant parity complexe on Fléo

3In the body of the paper, we will mostly work in the equivalent context where g is a facet for the box
action O; included in the closure of a; and Flé’c’ replaces the isomorphic ind-variety Flﬁf;.



(cf. subsection . The isomorphism classes of indecomposable objects of this category
are labelled (up to a shift) by the set

fW8& ={w € W : w is minimal in Wyw and maximal in wWg},

and we will denote by Ezgw the indecomposable parity complex associated with w. More-
over, the assignment w — woyA induces a bijection {8 — Woyy N XY, . In this article,

we will extensively study the equivalence relation ~g on ¢W# generated by the relation
Hg:

(1.4) wRgw' < Hom? (Ee EF) # 0 Vw, w' € (W8,

w?

Parzyy, (Flg° k)
The reason for this interest is that we have an isomorphism
(1.5) HomTiltZW(Grvk)(ﬂzw T ) ~ Hom® Lo )(Qu,ggz,), Yu,u € (W9,

ubpyr <u Dé’y Pa,l'zy\;Z (F gy k

proved in [RW20] and which arises once again from Smith-Treumann theory (cf. Proposi-
tion [6.8]). Thus, if we let v and v’ be the elements of {1¥# such that voyy = A, v'opy = p,
we have that

A~ v g v,
So we are reduced to proving that the set (/W& consists of a single equivalence class for
~g.. The following statement (which is Theorem is the main result of this article.

Theorem 1.4. If g C ay is a non-special facet, then (W& consists of a single equivalence
class for ~g.

A facet g is called special if it is of the form g = {¢- 0} for some § € X. Since
r(A) = 0, the facet g, is non-special, so this theorem implies the desired result. There
might also be some non-special facets g C ay which do not contain an element of X; this
is for instance the case of a; when £ is less than or equal to the Coxeter number of G.
So this theorem gives a more general result than the block decomposition. We will also
describe completely the equivalence classes in (W8 in the case where g is a special facet
and R is not irreducible (see Theorem .

Fix a non-special facet g C a;. By standard considerations on parity complexes,
computing the dimension of the Hom-space on the right-hand side of boils down to
computing the dimension of the stalks of £; g and 5 ,» Which are given by evaluating some
anti-spherical £-Kazhdan-Lusztig polynomlals at 1 (cf [RW18|, Part III]). As the dimension
of the Hom-space can only increase when passing from char(k) = 0 to char(k) = ¢ > 0,
we will get the following crucial implication (which is our Corollary :

Vw, w' € W8, nyy (1) # 0 = wZgw',
where (ngy, ,y € W) denotes the usual anti-spherical Kazhdan-Lusztig polynomials
studied in [Soe97, Theorem 3.1]. This implication allows us to view our problem as a

question of combinatorics for the anti-spherical Kazhdan-Lusztig polynomials. The proof
of Theorem [T.4] then roughly goes into two steps:

(1) Step 1: moving away from the walls of the dominant cone. We show that, for any
u € {WE8 there exists some @ € {W& satisfying

Ny,a(l) # 0 and aog C L p +%,

where %T;r denotes the closure of the dominant cone (see Proposition . This
will allow us to only focus on polynomials 7,y ., with w, w" € {W# satisfying

w/Dng woeg C g - p + %7

on which we have a much better control.



(2) Step 2: linking close elements. Let v € W& be such that voyg C £ - p + @y and

pick w € {W8 such that wog C £+ p+ %, . We will prove that we have w ~g v (in
view of the first step, this will conclude the proof, since any element of {W#8 will
then be in relation with v). In order to do that, we will let Ay be an alcove such
that woyg C Ay,

A, ::g'pﬁLaﬁaArfl,"' , Ag
be a sequence of alcoves included in £- p+ %", where A;,1 is obtained by reflecting
A; along one of its walls for every i € [0, — 1], and denote by w; the element of
¢ W satisfying w;opg C A; for all i (so wy = w and w, = v)ﬁ See Figure (1| for
a representation of the situation in types Cy and As, where g is a wall. We will
show that we have

w; ~g Wi—1 Vi € [[0,7’ — 1]]

More specifically, we will find an element u; € {W# such that n, (1) # 0 and
N, 1.u; (1) # 0 (occasionally we might have u; = w;—_1, but not always).

Remarks 1.5. (1) The need for Step 1 is due to the “cancellation effect” occurring for
the anti-spherical Kazhdan-Lusztig polynomials when we are close to the walls of
the dominant chamber, as it was observed in the similar context of [And86] (cf.
the introduction and section 9 of this reference).

(2) The second step will actually be split into two parts: the case where g is not a
point, and the case where g is a point (and still a non-special facet). The latter
uses the theory of “periodic polynomials” (originally due to Lusztig) as displayed
in [S0e97], and is the most involved part of the paper (cf. subsection [5.5).

(3) These steps were inspired to us by the steps used in [DV0S8] §2].

(4) We will actually use “geometric” arguments (namely, parity complexes on par-
tial affine flag varieties) to prove some “combinatorial” facts concerning the anti-
spherical (-Kazhdan-Lusztig polynomials (see Proposition , which hold in par-
ticular for the ordinary anti-spherical Kazhdan-Lusztig polynomials. However, we
do not yet have an analogous geometric incarnation for the combinatorics we use
concerning the periodic polynomials (cf. Proposition, but hope to come back
to this question in the future.

1.4. Consequences. Our new proof of Donkin’s Theorem enables us to give a bound on
the length of a minimum chain linking two weights in the same block for Rep(G), in the
same fashion as [DVO08, Corollary 3.1], but without any restriction on the root system nor
on the characteristic of k, see Proposition[7.3] Such a result was not available via Donkin’s
original proof, as his arguments required going arbitrarily far inside of the dominant cone.

Moreover, our determination of the equivalence classes in (W& for ~g also applies to
the case where char(k) = 0, from which we are able to deduce the block decomposition
for a quantum group at an ¢-th root of unity in subsection (this result was originally
found in [Tha94]).

1.5. Structure of the paper. After some preliminaries on highest weight categories in sec-
tion [2, we recall in section [3| the construction of Iwahori-Whittaker equivariant derived
categories on partial affine flag varieties of the form Flg, for a facet g C a7. In particular,
we introduce indecomposable parity complexes, and study the effect of pushforward and
pullback of these objects under the canonical proper morphism mg : Fl; — Flg (subsec-
tion . This allows us to introduce and study the equivalence relation ~g on the set
W8, Section [5]is the heart of the paper and is dedicated to the study of the equivalence

4Notice that we don’t necessarily have w;0¢a; = A;.
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FIGURE 1. Hyperplanes arrangement when R is of type Cy for (a) and
Ay for (b). The walls of the dominant cone 6,5 (resp. of £ p + €,) are
represented by thick black lines (resp. dashed lines), each alcove A; for
(i € [0,r]) is gray, each alcove w;opay is labelled with w;, and the facets
{w;oeg, i € [0,7]} are represented by red lines. Notice that on both of
these examples, it sometimes happens that there are two alcoves A; and
A;11 containing a same red faced in their closure for some 7, so that we
have W; = Wi41-

classes for ~g. In particular, we apply the plan described above: Step 1 is dealt with at
the end of subsection while Step 2 is taken care of in subsection (when g is not a
point) and subsection (when g is a non-special point). The case where g is a special
facet is done at the end of section [6] as we need Smith-Treumann theory to deduce it from



the previous cases. Finally, we harvest the consequences for representation theory in the
last section: block decomposition for reductive groups in subsection and for quantum
groups in subsection

1.6. Acknowledgements. I am deeply grateful to Simon Riche for his guidance through
many suggestions and countless careful re-readings, and to Geordie Williamson for helpful
discussions and comments. 1 also want to thank Joel Gibson for putting together the
interactive visualization tool Lievis and making it accessible on his web page (cf. |[Gib]): a
lot (if not all) of the intuition behind the results of this paper concerning the anti-spherical
Kazhdan-Lusztig polynomials came from there. This work was conducted during PhD
studies at the Université Clermont Auvergne, co-supervised by Simon Riche and Geordie
Williamson.

2. BLOCKS FOR A HIGHEST WEIGHT CATEGORY

In this section, k is any field. The goal of these formal preliminaries is to introduce
two equivalence relations on the weight poset of a highest weight category. Both relations
allow us to give block decompositions of the category, and we will show that these relations
and decompositions are the same. These results will later be applied in sections [6] and
to categories of perverse sheaves and representations. We start by briefly recalling some
properties of a highest weight category.

2.1. Recollections on highest weight categories. Let A be a highest weight category over
k, with weight poset (A, <) (cf. [Ricl6l 3.7] for a detailed treatment of highest weight
categories). In particular, we assume that each object of A has finite length and that
the vector space Hom 4(M, N) is finite dimensional for every M, N € A. To each s € A
corresponds a simple object Lg, a standard object As; and a costandard object V. By
definition, the association s +— L, induces a bijection between A and the isomorphism
classes of simple objects of A.

We denote by Tilt(.A) the full additive subcategory of A consisting of tilting objects,
i.e. those admitting both a filtration with sub-quotients being standard objects and a
filtration with sub-quotients being costandard objects. For any s € A and M € Tilt(A),
we will denote by (M : Vi), resp. (M : Ag), the number of times V appears in a filtration
of M with costandard, resp. standard, sub-quotients. This number does not depend on
the choice of such a filtration, as one can show that it is equal to dimHom4(As, M),
resp. dimyHomy4 (M, V). Indecomposable tilting objects are also parameterized (up to
isomorphism) by A; we denote by T the unique indecomposable tilting object such that

[Ts:Ls)]=1 and VteA, [Ts: L #0=1t<s.
We have morphisms Ly «— Ag; < T for all s € A. Finally recall that the canonical functor
(2.1) K'Tilt(A) — D°(A)
is an equivalence of categories (cf. |[Ricl6l Proposition 7.17]).

2.2. Equivalence relations on A. We are going to consider two equivalence relations on the
set A. The first one, denoted by ~1, is generated by the relation %1, defined by

st < Bxty(Ls, L) # 0.

Here, Ext}él(B , A) denotes the Ext-group of isomorphism classes of extensions of B by A,
for two objects A, B. Recall (cf. [Sta22, Lemma 13.27.6]) that this coincides with the k-
vector space Hompy( 4y (B, A[1]). For all s € A, we denote by s the associated equivalence
class and by Az the Serre sub-category generated by the L;’s, for ¢ € 5.



Proposition 2.1. The canonical functor

P A A

SEAN/~q

is an equivalence of categories.
Proof. The full faithfulness comes from the fact that, for each (M,N) € Az x A; with
S # t, we have Hom4(M, N) = 0. This is obvious when M and N are simple, and can
be shown by induction on the length of these objects in the general case. With this fact
and another induction on the length, one can also show using long exact sequences of
cohomology that
(2.2) Extl (M, N) = 0.

It remains to show that the functor is essentially surjective. We still proceed by
induction on the length of M, the case of simple objects being obvious. Let N C M and
t € A be such that we have a short exact sequence

(2.3) 0—>NLH M- L —0.

By the induction hypothesis, we have a canonical isomorphism N ~ @, o Nz, with

Ns € As for all 5. Now, let p: N — Nj be the canonical projection and M’ € A be such
that we have the following commutative diagram, with exact rows:

v

0 N M Ly 0
lp iw im
0 Nz M’ Ly 0.

The morphism ¢ is clearly surjective, and restricting ¢ to M" := @ N5 yields an exact
sequence
0—M'—M— M —0.

Finally, observe that M’, resp. M", belongs to Az, resp. @ ;.As, so that Exty(M',M") =
0 thanks to (2.2)). Thus, we have M ~ M’ & M", and this concludes the proof. O

The existence of a quasi-inverse functor allows us to define projection functors Qs :
A — As for every 5. We thus have an isomorphism of functors

(2.4) ids~ P Qs
§€A/~1
where there exists no non-zero morphism between the essential images of any two distinct
functors Q)5 and Q. In particular, each Q)5 is exact.
The second equivalence relation is denoted ~s. It is generated by the relation %5:

s%ot < Hom 4 (T, T;) # 0.

For every weight s, we denote by (s) the associated equivalence class and by Tilt)(A)
the additive sub-category generated by the family (7});c(s). Since any tilting object is
a sum of indecomposable tilting objects, it is easy to see that the canonical functor
D (s)en/~, Tilb(s) (A) — Tilt(A) is an equivalence, so that we can define projection functors
m(s) : Tilt(A) — Tilt(s)(A), inducing an isomorphism of functors

idiig(a) @ T(s)-
(s)EA/~2



The 7(5)’s induce endofunctors of the category KPTilt(A) (that we still denote by
T(s)), and those still induce a decomposition of the identity functor. Conjugating the
T(s)’s With the equivalence , the obtained functors (which we still denote by ()
provide a decomposition

(2.5) idDb(A) =~ @ T(s)-
(s)EN/~2

This isomorphism implies that each functor () preserves the sub-category A, so we get
an isomorphism id 4 =~ @( s) T(s)- It is also clear that each 7y is an exact functor of the
category A and that there is no non-zero morphism between the essential images of two
distinct such functors.

Lemma 2.2. Let s € A. For allt € A, we have isomorphisms

) Lsifse(t) g ] Tsifset
(e (Ls) = { 0 otherwise Q1) = { 0 otherwise.

Proof. By the decompositions and and the fact that the objects Ls; and T
are indecomposable, we know that there exists a unique (¢), resp. a unique 7, such that
() (Ls) # 0, resp. Qr(Ts) # 0, and we then have 7 (Ls) = Ls, resp. Qr(Ts) ~ Ts. By
exactness of the projection functors, we have morphisms

Qu(Ls) « Qu(As) = Qu(Ts) and W(u)(LS) “ 71'(u)(AS)  T(w) (T5)

for every u € A. If Qu(Ts) = 0, then Qu(Ls) = 0, so uw # 5. This implies that 7 = 5
Likewise, if 7(,)(Ls) # 0, then 7,y (Ts) # 0, so (u) = (s), whence (t) = (s). O

We have now all the necessary ingredients to prove the following theorem.
Theorem 2.3. The relations ~1 and ~9 coincide.
Proof. Let s,t € A be such that (s) # (). By lemma[4.3] we have
Exth(Lt, L) = Home(A)(Lt, L[1]) ~ Hom po( 4 () (L), 7o) (Ls[1]))-

As there is no non-zero morphism between the essential images of 7(,) and 7(), the right-
hand side is zero, so t %1 s. We have thus shown the implication 3 = = (s) = ().
Conversely, if s,t € A are such that 5 # t, then it follows that

HOHl_A(T’t, Ts) = HOIHA(Q{(E), Q?(Ts)) =0

so t# s, and we have the implication (s) = (t) =35 =1. O

In the sequel, we will denote by ~ the equivalence relation on A considered in the
previous theorem.

3. RECOLLECTIONS ON (IWAHORI-WHITTAKER) EQUIVARIANT DERIVED CATEGORIES

In this section, we recall the construction of Iwahori-Whittaker-equivariant derived
categories on some partial affine flag varieties arising from Bruhat-Tits theory. We fix a
prime number ¢ # p. Since our sheaves will be étale, we let k be either a finite field of
prime characteristic £ or a finite extension of Q.



3.1. Notations. From now on, GG will denote a semi-simple algebraic group of adjoint type
defined over an algebraically closed field F of characteristic p > 0. Choose a Borel subgroup
B C G and a maximal torus 7' C B, and let R C X (resp. 81 ) denote the subset of roots
(resp. positive roots with respect to the opposite Borel subgroup of B with respect to T')
inside the group of characters of T'. Each root « defines a subgroup U, C G isomorphic
to the additive group G,, and the subgroup generated by the U,’s, for a € R (resp.
for « € —9R,), is a unipotent group which we will denote by U™ (resp. U). We will
also denote by RY C XV the set of coroots inside the group of cocharacters of T' and by
XY (resp. XY,) the set of dominant (resp. strictly dominant) cocharacters, i.e. those
cocharacters which satisfy (A, ) > 0 (resp. (A, ) > 0) for any o € R

Fix an integer n > 1. We will write O,, := F[[z"]], K,, := F((z")), O := 01, K := K
where z is an indeterminate. For any affine F-group scheme H, we define the functors
LIH := R+~ H(R[[z"]]) and L,H : R — H(R((2"))) from F-algebras to groups, which
are representable by a F-group scheme and a F-group ind-scheme respectively. Note that
these definitions also make sense if H is only defined over O,,. We will write LT H , resp.
LH, instead of LTH , resp. L1H. We will denote by Iw; the inverse image of Ut under
the evaluation map LTG — G, z — 0.

We assume that there exists a primitive p-th root of unity ¢ € k, and consider the
Artin-Schreier map AS : G, — G, determined by the map of rings x — zP — x. This
morphism is a Galois cover of group Z/pZ, so determines a continuous group morphism
71(Ga, 0) — Z/pZ, where m1(G,,0) is the étale fundamental group of G, with geometric
base point 0. The composition of this map with the morphism Z/pZ — k* (induced by
() yields a continuous representation of the fundamental group, and thus a local system
on G, of rank one. We denote this local system by Lag.

3.2. The affine Weyl group and some Bruhat-Tits theory. We let N (7T') be the normalizer
of T in G. The finite Weyl group associated with (G,T") will be denoted by Wy :=
N¢g(T)/T, and we consider the affine Weyl group

W .= WO X va,
which acts naturally on E := XY ®z R via the n-dilated “box” action, defined by
wt,op A = w(A + np)

for any A € X¥ @z R, w € Wy and p € ZRY, where we have denoted by wt, the element
of the affine Weyl group associated with the couple (w, ). The closure a;, of the set

a,:={\e€FE : 0<(\a)<nVaecR}

is a fundamental domain for this action, which stabilizes XV. Thus, @, N X" is a funda-
mental domain for the action of W on the set of cocharacters. Each root o € R defines a
reflection s, € W, and we will denote by Sy the set of simple reflections (i.e. associated
with a simple root) of the finite Weyl group, which is known to generate Wy. It is also
well known (cf. [Jan03, I1.6.3]) that the set of simple reflections

S = {(s,0),s € So} U{(s, 8)},

where 3 runs through the set of largest short roots of the irreducible components of JRY,
generates W. Moreover, W is a Coxeter group, with Coxeter generating system S, for
which we will denote by I : W — Zx( the associated length function.

It will also be useful for us to note that one can extend the translation action of ZR"
to the whole group of cocharacters XV, by putting ¢,o0,A := A+npu for every p € E, X € XV,
and that this extends the action of W on E to an action of the extended affine Weyl group
W := Wy x XV. The subgroup W C W is normal and one can extend the length function



I to the whole group W (cf. [AR2I, §2.1] for more details), so that we can define the
subgroup B
={weW |l(w) =0},
which acts on W by Coxeter group isomorphisms and induces an isomorphism
(3.1) Qx W~ W
such that [(ww) = l[(ww) = l(w) for all (w,w) € Q x W.

The action of W on FE defines a hyperplane arrangement in E', and hence a collection
of facets (cf. [Bou, Ch.5, §1.2]). To any facet g C a,, Bruhat-Tits theory associates
a “parahoric group scheme” Py defined over O,, whose generic fiber is isomorphic to
G Xgpec(r) Spec(Kp) and whose group of Op-points coincides with a subgroup of finite
index of the pointwise stabilizer of —dﬂfor the action of G(/C,,) on the Bruhat-Tits building
associated with G Xgpecry Spec(Ky). We fix such a facet g. The partial affine flag variety
associated with g will be denoted by Fl; and defined as the fppf-quotient L,G /L Pg,
which is an ind-projective ind-scheme over F (cf. [PROS8] for a detailed exposition on
these partial affine flag varieties). The connected components of Flj are in bijection with
the group XV /ZRY (see [PRO8, Theorem 0.1]), so we will denote by Flg° the connected
component associated with the neutral element. In the sequel, we will apply these results
to the cases where n = £ or n = 1; when n = 1 (which will be the case until section @, we
will write Flg (resp. Flg) instead of Flé’O (resp. Flé).

3.3. Parity sheaves on partial affine flag varieties. Let xo : UT — G, be a morphism of
F-algebraic groups which restricts to a non-zero morphism on each subgroup U,, for a a
simple root, and let x : Iw;’ — G, denote the composition of x with the evaluation map.
For any Y C Flg which is a locally closed finite union of Iw, -orbits, one can show (cf.
[Cia21l Lemma 3.2]) that the Iw,-action on Y factors through a quotient group of finite
type J such that x factors through xs : J — Ga; we can then consider the (J, x5Las)-

equivariant derived category of étale k-sheaves D{’,XT’ Las (Y, k), where xj : J — G, is

induced by x. This category is by definition the subcategory of DZ(Y,k) consisting of
constructible complexes of étale k-sheaves F such that there exists an isomorphism a* F ~
X7Las K F, where a : J xY — Y is the action map; this definition does not depend
on the choice of J. We then define the category D%W(Flg,k) as a direct limit of the
categories DS’X; Las (Y, k), indexed by finite and closed unions of Iw; -orbits ¥ which are
ordered by inclusion. Notice that, since the transition maps are push-forwards of closed
immersions, they are fully faithful functors, and one can see this limit as an increasing
union of categories.

We now recall the definition and some of the properties of parity complexes on partial
affine flag varieties, since those will play a major role in the sequel. Let Y C Flg be a
finite locally closed union of Iw/-orbits. A complex F € D4, (Y, k) is called x-even, resp.
l-even, if for any inclusion j : Y’ < Y of an Iw; -orbit Y’, the complex j*F, resp. j'F,
is concentrated in even degrees. One defines similarly *-odd and !-odd complexes and say
that a complex is even, resp. odd, if it is both #-even and !-even, resp. *-odd and !-odd.
A complex is called parity if it is a direct sum of even and odd complexes.

Since the category D%W(Fl;, k) is defined as a direct limit, it makes sense to talk about
even and odd objects in this category, and we will denote by Parzy(Flg, k) the additive
full subcategory consisting of parity objects. The general theory of parity complexes (from
[JMW14]) allows us to state the following result.

SWe follow the conventions of [RW20] §4] for the facet which Pg(O,) must stabilize. Note that the
authors there defined a, to be the opposite of our current fundamental alcove.



Proposition 3.1. Let g C ay be a facet. For each Iw} -orbit Y in Flg which supports a
non-zero Iwahori- Whittaker rank one local system L, there exists a unique indecomposable
parity complex in ParIW(Flg, k) supported on'Y whose restriction to Y is isomorphic to
L[dim(Y)], and each indecomposable parity complex is isomorphic to such an object up to
a cohomological shift. Moreover, each object in ParzW(Flg,k) is isomorphic to a sum of
indecomposable parity complexes.

4. PARITY SHEAVES ON PARTIAL AFFINE FLAG VARIETIES AND EQUIVALENCE
RELATIONS

4.1. Pushforward and pullback of indecomposable parity complexes. Let g C aj be a facet
and mg : Fly, — Fl; be the canonical projection. In this section, we will explain what
is the effect of applying the functors 7y and 7g. to the Iwahori-Whittaker-equivariant
indecomposable parity complexes that we described in Proposition

Let us first state a lemma which will be needed below. Let (A, <) be a finite ordered
set admitting a unique minimal element g and equipped with a function | : A = Z>¢
compatible with the order < (i.e. such that A < pu = I(\) <I(u)), and (X, (X))ren) be a
stratified variety over F. We make the following assumptions on the stratification:

e for every A € A, X, is an affine space of dimension [(\) over F, and we have
X\ = UMSA Xy

o there exist isomorphisms of F-schemes (which we fix) X, ~ X, xr A
every A € A;

e there exists a morphism of F-schemes ¢ : X — X, such that ¢|x, is the canonical

projection on the first component Xy, xp Afp(’\)fl()‘o) — X\, for every A € A.

N)=10%0) g5,

Lemma 4.1. We have an isomorphism in D2(Xy,,k):
aky =~ Pky, [F20(A) —1(2)].
AEA

Proof. The proof is done by induction on the cardinality of A. First note that the result
is trivial when #A = 1, so we assume from now on that #A > 2. Let A € A be a maximal
element for <, so that we have an open immersion ¢ : Xy < X. Denoting by j the closed
immersion X' := X\ X, < X, we get a distinguished triangle

ii'ky — kx — jij'ky +’1>

to which we can apply the triangulated functor ¢

(4.1) qiri'kx — qkx — qjiikyx .
Since got is the canonical projection Xy, XFA%()‘)J()‘O) — X, and i"kx ~ ky, , we have an

isomorphism qiji*ky ~ kXAO [—2(L(A) —1(X0))]- On the other hand, we have j*ky ~ ky/,
and the morphism ¢’ := qoj: X" — X, satisfies ¢|x, = ¢|x, for every p # X. Thus, we
can apply our induction hypothesis to the stratified space (X', (X,),-x) to find that

015 kx =~ qkx ~ @kXAO [=2(U(p) = 1(Mo))]-
HFEX

In particular, we see that qii1i*ky and qijij*ky only have cohomologies in even degrees,
so that the distinguished triangle (4.1)) is split (recall that X, is an affine space, so it only
admits cohomology in even degrees). Therefore we have an isomorphism

akx ~ qivitky © @jky.
This concludes the proof. O



Fix a facet g C a;. We denote by Wy C W the stabilizer of g for the box action o; and
put Sg := SN Wg. It is well known that (Wg, Sg) is a Coxeter Systerrﬂ We will denote
by wg the element of maximal length in Wy, and by W# the set of elements w € W for
which w is maximal in the left coset wWg. The set of elements w € W which are minimal
in Wyw will be denoted by W, and we put

e =WeNW.

The following well-known result (which is a direct consequence of [AR21] Lemma 2.2]) will
be useful throughout all the rest of this paper.

Proposition 4.2. Let w € W8. We have the following equivalences
w € (W8 = Vr e Wy, wr € ¢W.

For any w € W&, we choose a lift w of w in Ng(T)(K) (see [RW20, §4.2] for the
construction of such a lift), and denote by 2% the Iw, -orbit in Fl; of the image of w
under the canonical projection LG(F) — Flg(IF). We then have a stratification

(4.2) Flea= | | 25

weWwe

of the reduced ind-scheme associated with Fl;, where each orbit 2;% is isomorphic to
an affine space over F whose dimension is equal to the length of the minimal element
in wowWyg. All the properties concerning this stratification that we use in the sequel
follow from the analogous standard facts concerning the opposite Iwahori subgroup Iw, :=
wolw i, cf. [ACRIS, §A.A]. For any w € W&, the Iw; -orbit 2% supports a non-zero
Iwahori-Whittaker equivariant local system if and only if w € ¢W, which means that
w € W8,

For any w € (W8, we will denote by L%, resp. &% € Parpy(F Ig, k), resp. Ve €
D%W(Flé,k), the rank one Iwahori-Whittaker equivariant local system, resp. the inde-
composable parity complex from Proposition resp. the costandard perverse sheaf,
associated with 2:8.

Recall that mg : Fl; — Flg is the canonical projection, which is a proper morphism
of ind-schemes, and denote by Ng the length of wg. For any v € {W, we write 2, (resp.
Ly, resp. &,, resp. V,) instead of 22 (resp. L3', resp. &1, resp. V3a1). For every
w € (W8 and v € (W, we fix isomorphisms of F-schemes

(4.3) 2, ~ Al gre o plwows)

Let w € (W#. It is important to note that g is a locally trivial fibration, with g Y28 =
Uzewg Zwe, and that for any h € Wy the morphism 7Tg|%uwgh : Zwwgh = 2.8 identifies
with the canonical projection on the first component

Lrwogh = Lwwg X Luoh — LE.

The projection on the first component comes from the identification of 2, and 2.8 with
an affine space of dimension I(wowwg) thanks to ([4.3)); fix h € Wy, and let us explain the
first isomorphism above. For any v € W, denote by v the image of ¥ under the canonical
projection LG(FF) — Fl; (F). By construction we have

%wwgh = ﬂ)oIWuwo : wwgh = HJQIWu . wowwgh.

6Note that W coincides with the stabilizer of the facet ¢ - g C a; for the dilated box action o, of W.



But thanks to our hypothesis that w € W&, we know that wwg is minimal in wwgWg, and
our hypothesis that w € (W implies that wr € ¢W for all r € Wy thanks to Proposition
4.2| (in particular this holds when r € {wg, wgh}); these facts imply that we have

l(wowwgh) = l(wo) + l(wwgh) = l(wy) + l(wwg) + I(h) = (wowwg) + L(h).
From these equalities of lengths and the fact that Iw, - T ~ A]ZF(‘W)
the first isomorphism below

for any x € W, we deduce

Iwy, - wowwgh =~ Iw, - Wowwg X Iwy - b = Iwytig - Wwg x Iwyti - woh,
and hence finally
wolwy - wowwgh ~ 1wolwytig - Wig X tolwyti - woh.
The right-hand side corresponds to Zww, X Zwgh-

Lemma 4.3. (1) The functors Ty and g, send parity complexes to parity complezes.

(2) For any v € {W8, we have isomorphisms

T [Nel(E8) ~ & and  mgly = D EE[-2(1(wow) — I(wov))].
weEWg

(3) Let w € (W, and write w = w8h for some w® € W8, h € Wg. Then we have
Tes Vi = VEg[l(wgh)] if w® € ¢W,

TgxVw = 0 otherwise.

Proof. The first (resp. third) point can be proven just as in [ACRIS, Proposition A.2]
(resp. [ACRIS, Lemma A.1}).

Let us prove the second point, for which we will take back most of the arguments of
[ACRI8, Lemma A.5]. The second isomorphism will arise while proving the first one.

We first make the following observation: let us write X := uweWg Zvw and put
q = Tg|x, the object ¢*L¥ is a rank one Iwahori-Whittaker local system on X, whose
restriction to each orbit 23, coincides with L, (recall vw does belong to (¥ thanks to
Proposition . In particular, ¢*£§ is indecomposable.

The object mg[Ng](EF) is parity by (1), with 2, open in its support and its restriction
to this stratum coinciding with £,[l(wov)] (recall that 2 is of dimension [(wv) thanks
to (4.3). Therefore we can write

(4.4) i ING(E8) ~ £, &,

for some object G € Parnyy(Flg , k). Since the restriction of 75[Ng|(F) to X is the
indecomposable object ¢*L$[l(wov)], it must be isomorphic to &,|x, because the latter is
non-zero on %.

Thus, the base change theorem implies the first isomorphism below
(4.5)
(mge&o)l g = qeq” LE[l(wov)] = gk @" L[ (wov)] = ) LE[-2(I(wow) — U(wow))],
weEWg

the second isomorphism is implied by the projection formula (and the fact that ¢ = g
because ¢ is proper), and the third isomorphism is a direct application of Lemma
Since 2 is open in the support of the parity complex 7g.&,, we get an isomorphism

(4.6) gl ~ P EE[-2(U(wow) — l(wov))] & G,

weWg



for some G’ € Parrwy(Flg, k). Applying mg. to (4.4) and using (4.6), we deduce the
following isomorphism of parity complexeS'
T g [Ng|EF =~ @ EE[—2(l(wow) — l(wov))] & 7esG B G'.
weWg
Now, for any parity complex & € Parzyy(Flg, k) and w € W&, one may write (following
[Will2]):
Elgr = V(E)w @1 L5,

where V' (&), is a finite-dimensional graded k-vector space (and one can do likewise for any
€ € Pargyy (F1y k) and w € {IV). From the description of 7g as a locally trivial fibration

al?
and from the first observation that was made at the beginning of the proof, we see that

dimy (V (7 [Ng|€8)uw) = dimy (V(EF)u), V(u,w) € (W& x W,

where we forget the grading of our vector spaces when taking their dimension. Moreover,
the same arguments that were used to prove (4.5) imply that
dimy (V (mgumg [NglEF)u) = [Wel - dimy(V (mg[Ng|ES)w), Yu € (WE.
Thus we get
dimy (V (mgsmg[NglEF)u) = dimy (V(F)u), Yu € {WE,
where F:= @, e, EE[—2(I(wow) — l(wov))]. We deduce that V(7g.G)y, = V(G')y, = 0 for
all u € W8, so that mg,G ~ G' ~ 0 and TgsTg *I, ]5§ ~ F. This also implies that G ~ 0,
and therefore we get the desired isomorphism
g [Ngl(EF) = Eu.
O

4.2. The antispherical module. Let H be the Hecke algebra associated with (W, S), with
standard basis (H,, w € W), and denote by A its antispherical module (we follow the
notation of [Soe97, §3], the antispherical module is denoted by M?2Pt in [RW20]), with
standard basis (Ny,w € (W) and ¢-canonical basis (*N,,,w € ¢{W). We have a canonical
isomorphism of groups
ch : [Parpw(Fl3, k)] — N
] — Cueqw (s dimi Hompy e 10(F, Vuln))" ) No,

which sends the indecomposable parity complex &, onto ‘N, . The (-Kazhdan-Lusztig
polynomials (‘n;,, z,y € {W) are defined by the equality

(4.7) ‘Ny= " ‘ngyN..
zesW
It makes sense to extend the definition of these polynomials to the whole group W,
simply by putting Z”w,y = 0 whenever z or y does not belong to (W (this consideration
will slightly simplify the statement of the first point of Proposition . For any objects
&, F € Parny(Flg, k), we set

Homp, = pie 1 (€, F) = @Hongw(Flg,k) (€, F[n]).
nez
It follows that we have
(4.8) ngy(1) = dimy HomD o (FIS, K) (Eys V)

When ¢ = 0, the ¢-canonical basis coincides with the usual Kazhdan-Lusztig basis from
[Soe97, Theorem 3.1], which is denoted by (ng,, =,y € W) there, so we have %n,, =



Ngy (this is a consequence of the fact that the perversely shifted indecomposable parity
complexes coincide with the intersection cohomology complexes when ¢ = 0). We have
the following easy and useful observation.

Proposition 4.4. Let x,y € ¢{W. For any prime number £, we have én%y(l) > ngy(l).

Proof. The arguments are the same as the one used in [AR22, Lemma 3.4], replacing tilting
objects by indecomposable parity sheaves. O

4.3. Equivalence relations on (W&, Let g C a7 be a facet. In the sequel, we will consider
a relation #Zg on the set (W8, defined by

w%gwl <> Hom%arzw(m;’k) (5’1%7 85/) # 0

for any w,w’ € (8. The equivalence relation on /W& generated by # will be denoted
by ~g. The following results will be constantly used.

Proposition 4.5. Let u,v € {W be such that ‘ny (1) # 0. Then v%a,u. Moreover, we get
the same conclusion if ny (1) # 0.

Proof. Recall that, thanks to Proposition we have

¢ : .
Nup(1) < nyep(l) = dunkHomD%W(Fl&011 ¥ (&v, V),
so that our claim is a direct consequence of [JMW14] Proposition 2.6]. O

The relations Z,, and Zg are actually equivalent on fWE.
Proposition 4.6. Let w,w' € (W8. We have wZgw' iff wha,w'.
Proof. Using Lemma [£.3] we have

Eus Eur) ~ Hom® (w5 [Ng]€8, 75 [N E8)

Hom? o
Db ( D, (FI3, k)

by (FI, ,k)(
njuggtion om}, (E8 g iES)).
Db, (FIS k) \Cw> TgxTTg&qys
From Lemma we know that Fg*ﬂggg, is isomorphic to a finite direct sum of shifts
of £%,, so the hom-spaces above are non-zero if and only if Homz)%w(Flgk) (E8,E8) is
non-zero. [l

Putting together the two previous propositions yields:
Corollary 4.7. Let w,w’ € {W8. We have
Ny (1) # 0 = wZgw'.
Remark 4.8. Define a relation ,@é on W8 by
whgw' > P 0(1) # 0.
Then, using Proposition together with [JMW14 Proposition 2.6], it is not difficult to

show that the equivalence relation generated by %fg is equal to ~g.

5. DETERMINATION OF THE EQUIVALENCE CLASSES

The main goal of this section is to show that, when the root system RY (or, equiva-
lently, 2R) is indecomposable and g C a7 is a non-special facet, the set {W#& consists of a
single equivalence class for ~g (we will eventually see that the case where the root system
is not indecomposable follows from this first case, see Proposition . As we will see in
the end (cf. subsection , the case where g is a special facet can be deduced from the
non-special case with the help of Smith-Treumann theory, see Proposition



5.1. The regular case. In this short paragraph, we show that the set W is a single equiv-
alence class for ~,,, i.e. that all the elements of {W are in relation for ~,,. Although this
case will be included in the more general statement of Theorem (where a; is replaced
with a facet g C aj which is not a point), we give an independent proof here, which is
much simpler since many difficulties do not appear yet.

Remark 5.1. The result we get in Proposition below implies (via the discussion at the
end of subsection that the block associated with a “regular” dominant weight A € XY
(regular means inside of an alcove) is W ey AN XY (here we see XY as the weight poset of
Repy(GY)). This last result was already much simpler to get than the general description
of the block associated with an arbitrary dominant weight, see [HJ78| §2.4].

Lemma 5.2. Let w € (W. If w # e, then there exists w' < w such that w' € (W and
W By w.

Proof. Writing a reduced expression for w, it is easy to see that there exists an s € .S such
that ws < w. Let g be the wall fixed by s. Since w € {W#, Proposition 4.2 implies that
ws € {W. By Lemma [4.3] we get

Homz’brw(mil 3o (G V) = Homz”}_W(Fl;1 10 (Te[1EE; Viws)

~ Homb%W(Flgk) (€8, Tgs[—1]Vus)

~ Hom;:)%w(m;’k) (E8,VE) #0
where the second line is obtained by adjunction. So if we put w’ := ws, we get that
Ny w(1) # 0, and Proposition allows us to conclude. O

It is now straightforward to conclude.
Proposition 5.3. The set (W consists of a single class for the equivalence relation ~q, .

Proof. Let w € {W. By the previous lemma and an induction on the length of w, we can
see that w ~ya, e. This concludes the proof. U

The proof of the fact that all of the elements of /W& are in relation when g C ay is
an arbitrary non-special facet will be much more involved. This is due to the fact that,
for an arbitrary w € ¢W?8, there is no obvious choice of an element w’ < w in (W8 such
that w’ ~g w. The goal of the next subsection is to find such relations.

5.2. Some invariance properties of the /-anti-spherical Kazhdan-Lusztig polynomials. The
following result is a generalization of Lemma [5.2
Proposition 5.4. Let q be a facet inside a7 and w € ¢W9.

(1) For allw' € ¢W, we have gnw/nw(l) = Enwlyw(l) for all r € Wy.
(2) Assume moreover that g C ajy is a facet such that q C g. For all wi,wy €
wWq N W8, we have wy ~g wa.

Proof. (1) Let w’" € {W and write w’ = uh, where u is the maximal element in w'Wy,
and h € Wq. We have the following sequence of isomorphismsﬂ of k-vector spaces

"Notice that we forget the grading of the vector spaces in those isomorphisms.



for all r € Wgq:

Hompy ez, g (Ewr Virr) = Homipy g o) (Ma[NaJ€3j, Viurr)

81’ 817
adjunction N
5 Moy, a0 (65 () Vi)
Hom$ o (EX VY ifue W
~ D%w(quvk)( w sy u) f 9
0 otherwise,

where the first and last isomorphisms are consequences of the first and third point
of Lemma respectively. Thanks to the definition of the /-anti-spherical polyno-
mials (see ), this means that ;. ,,(1) = 0 for all r € W when u ¢ (W (which
trivially implies that an’r,w(l) = anfjw(l)), and Enw/nw(l) =Ny w(l) = an/,w(l)
otherwise.

(2) First notice that, since w € {W9, we have that wWq C ¢V thanks to Proposition

[4:2] so that
(5.1) wWq N W8 C W NWe =8,

Applying the previous point to w’ = w, we get that nyp (1) = ny(l) =1
for every r € Wy, and therefore that wZgwr if wr € W# (which implies that
wr € W8 by ) thanks to Corollary Thus, we have wZgw; for i € {1,2},
and we conclude by transitivity that w; ~g wa.

O

The goal of the next subsection is to get a precise picture of the geometry of the affine
space XY ®zR. By doing so, we will be able to use the previous relations together with the
bijection between ;W& and AZ (the set of dominant facets which are in Woyg) to show
that ¢1V® consists of a single class for ~g (when g is not a point).

5.3. Geometry of XV ®7 R. In this subsection, we follow the terminology and some of the
notation&ﬁ of both [Lus80l §1] and [Soe97, §4]. The box action o; of W on the affine space
E := XY @z R defines a set of hyperplanes # (one could also work with the dilated box
action o, for some n > 1 or with e, cf. the setting of [Lus80, §1]). For any facet p (not
necessarily included in ay), we will denote by W, its stabilizer in W for the box action.
We define the set of strictly dominant elements by

¢y ={AEE|(\a)>0Vae R}

Recall that the connected components of E\|Jyc, H are products of open simplices
called alcovesﬂ An example is

ay={peFE|0<(ua)<lVaecRi},

which we call the fundamental alcove. The box action on the set of alcoves A can be
extended to an action of W, in which case the stabilizer of a; is equal to Q = {w €
W | [(w) = 0}. Thus, the assignment w — woja; yields a bijection W ~ W /Q =5 A,
so that any alcove A can be written as A = woja; for a unique w € W. This bijection
W = A allows us to define a right action of W on A, induced by right multiplication on
itself. We may also define an order < on A, induced by the Bruhat order on W. Thus,
for any s € S and A € A, we will have that A < As if and only if [(w) < [(ws), where
w € W is such that woja; = A. Since As is obtained by reflecting A along its wall which

8The general reference, which is used in [Lus80, §1], is [Boul.

9When the root system 9RY is irreducible, the alcoves are open simplices. In general, :RY decomposes
into a product of irreducible root systems, from which we deduce the decomposition of any alcove into a
product of open simplices (cf. subsection .



is the W-conjugate of the wall of a; fixed by s, this means that A < As if and only if
the number of hyperplanes separating A from a; (i.e. the number of hyperplanes H € 7
such that A and a; are included in different connected components of E\H) is smaller
than the number of hyperplanes separating As from a; (see [Lus80, §1.4]). In the sequel,
we will denote by d(A) the number of hyperplanes separating A from aj, so that we have
d(A) = l(w).

The set of dominant alcoves (i.e. those included in €;") will be denoted by A*; we
have a bijection (/W = AT, w +— woa;.

For any facet g C ay, we define Ag := {woig, w € W} and A = {woig, w € {W8}.
One can show that Ag is exactly the subset of facets of Ag which are included in ;,". Note
that the map w +— wo;g induces a bijection between W&, resp. (W&, and Ag, resp. Ag.
We will consider the left action of W on Ag given by wh := woih for any h € Ag. Thus,
if h = ug for some u € W8, then wh = wug, and the element of W8 corresponding to the
facet wh is the maximal element of wuWg. Also note that, by continuity of the action of
W on E, if Ais an alcove containing h in its closure, then wh is the unique element of Ag
which is contained in the closure of wA. Let us state and prove the following easy result,
which will be used a lot in the sequel.

Proposition 5.5. Let h be a facet containing a facet p in its closure such that p C %6".
Then we have h C %”J. In particular if g C ay is the facet such that h € Ag, then there
exists a unique element w € W& such that wg = h.

Proof. By definition of %&L , any facet is either included in ‘KJ orin F \‘KJ , the latter being
a closed subset of E. If h € E\%;", then h C E\%,,", contradicting our assumption on p.
Therefore h C ‘"50+. The rest of the proposition follows. O

A special facet will be a zero dimensional facet by which a maximal number of hyper-
planes passes through. An example is the point {0}, and all the other special facets are
translates of this point by elements of XV, i.e. are of the form {\} for A € XV (cf.[Boul,
chap. VI, §2, Proposition 3|). For any special facet v, we will denote by Wy, the stabilizer
of v, which is the subgroup of W generated by the reflections with respect to the hyper-
planes passing through v. If v = {\}, then Wy, = t\Wyt_). We will write wy := tywot_j,
which is an element of W,,.

Lemma 5.6. Let u, v be special facets. Then wywy is a translation.
Proof. Write v = {\}, u= {u} for some \, u € XV, then we have

WuWy = T woel—ptxwoel —\ = Wolweul—plawot —\ = w%tut,wwtwoxt_A = tu—A+wo(/\—u)'

g

Let v be a special facet, a quarter with vertex v is a connected component of

B\ | B

Hesr

vCH
When v = 0, one such quarter is the dominant cone ‘K(f. For a general v, we denote
by €. the quarter with vertex v which is a translate of CKOJF , and we put €, = wyE, .
We will also denote by A{, resp. Ay, the unique alcove contained in %, resp. in 4,
containing v in its closure. We clearly have A, = wyA{. Furthermore, let J#* be the
set of hyperplanes H of . such that H is a wall of some 4, for a special facet v, we

define bozes to be the connected components of E\Jyc - H. Each alcove is contained



in a unique box, and we denote by Il the box containing AJ . In our context, if v = {\}
for some \ € XV, we put II, := II,, and we get

(5.2) Iy={peFE|0<(u—Aa)<l1lVae Sy}

Remark 5.7. In [Lus80], Lusztig defines 2 to be the group generated by the orthogonal
reflections through the hyperplanes of .57, which is seen as acting on the right on E. In
our context, this right action is the left action of W = 2 on E, and the left action of W
on the set of alcoves from [Lus80] is our right action on .A.

Proposition 5.8. Let H € 5. Then, there exists a unique connected component E1 of
E\H that has a non-empty intersection with €5 for any special facet v. Moreover, there
exists at least one special facet u such that €, N Ey = 0.

Proof. Let f : E — R be a linear form (where E is seen as a real vector space with origin
0) and = € XV such that H = z + f~1({0}). Then the connected components of E\H
are By == x + f7}(R%) and Ey := z + f~1(R*). Since f~}({0}) € #, %, must be
inside f~}(R%) or f~*(R*). We may assume that 6,7 C f~}(R%). Let y € X and put
v := {y}, so that €, = y + 6, . For any u € €, we can find r > 0 big enough so that
f(y — 2 +ru) > 0 (because f(u) > 0), which implies that

y+rue (y+%6)N (x+ fHRY) =6 NEL.

So E; has a non-empty intersection with any 4. On the other hand, we have seen
that f~1(R*) N%," = 0, which means that Fy N %,” = (). This shows that E is the only
connected component of E\H having the desired property.

Finally, we want to show that there exists a special facet u such that €, N E; = (.
Recall that we have

Cy = wo6, = —6; .
Since €;" C f~H(R?), we must have €, N f~1(R%) = 0, and therefore €, NE; =0. O

Let H € A, then E\H consists of two connected components E; and E}; Thanks to
Proposition we can set EIJ; to be the one connected component that has a non-empty
intersection with 4,5 for any special facet v. Following [Soe97, §4] (see also [Lus80, §1.5]),
we define a partial order < on A generated by the relations

A=<sgA ifAc A, He #, syAC E},

where sy € W denotes the affine reflection associated with the hyperplane H. One can
show (cf. the proof of [Soe97, Claim 4.14]) that this partial order < coincides with the
usual Bruhat order < on A™". The following result will be crucial in the sequel. We let A
be an alcove, s € S and H be the hyperplane containing the wall separating A and As.

Proposition 5.9. Assume that A, As € A" and that there exists a special point v such that
wyA and wy As belong to AT. Then A < As if and only if wyAs < wyA.

Proof. Since the two orders < and =< coincide on A" and As = sy A, the fact that A < As
is equivalent to As C EIJ;

Because the actions of W on the right and on the left on A commute, the hyperplane
H' := wyo1 H is the one separating wy As from wy A. Using the fact that wy A, wyAs € AT,
we see that wyAs < wy A if and only if wy A is included in E;;" Thus, to conclude it is
enough to show that £, = wy B, or equivalently that Fp;, = wVE;{I. Notice that since
vaE is connected, it equals either EIJ;, or E'y,. By Proposition we can find a special
facet u such that ¢; N Ef; = 0. Then we have wy%, NwyE}; = 0. But

- _ -
WyCy = WyWuCy ,



and since wywy, is a translation (thanks to Lemma, wy €y is of the form €, for some
special facet w. So €& N va;; = (), which implies that E,, = vaj{I. O

Following [Soe97, §4, §5], we consider the bijection A — A, A — A. This bijection
sends an alcove A inside of Il to the alcove wy, A. We will denote by A — A the inverse of

this bijection. For any alcove B C II := Iy, we see that B = wyB. For a general alcove A,
write it uniquely as A = A+ B for some A\ € XV, B C II, and it follows that A = A +woB.

Lemma 5.10. Let A € A and write A = A+ B, with A € XY, B C II. We have A =
/\—l-tQPVwoB.

Proof. For all u € TI, we have that wo(u — p¥) € II. Thus, wo(—p" + B) C II for any
alcove B C II, so if we set C' := p¥ 4+ wo(—p" + B), we get C' = B and so

B=C=2p" 4+ wB = tyvwyB.
The general result follows casily, since any alcove A can be written uniquely as A = A+ B,
with A e XV, BCII, and A = X+ B. 0
Proposition 5.11. Let A € A*. Then A C p¥ + €.

Proof. Let A € AT, and write A = A+ B, for A € XY, B C II. Since A is in AT, we
must have A € 65" N XY. Indeed, if u € IT and A € XY\, then one sees using that
A ¢ 6y

Thus, it is enough to prove the proposition for A C II. But in this case, we have by
lemma [5.10)

A= topvwoA = p¥ 4+ wo(—p" + A).
Since wo(—p" + A) C I, this concludes the proof. O

We also need to define a bijection Ag — Ag, h — h for an arbitrary facet g C aj.
One can do it as follows: let h € Az and A € A be such that h C A and A < Aw for
all w € Wy (such an alcove exists and is unique, thanks to the existence and unicity of a

minimal element in a coset of a parabolic subgroup in a Coxeter group), then we define h
as the element of Az which sits inside the closure of A.

Corollary 5.12. For any h € Ag, we have h C p¥ + %T)Jr.

Proof. By definition, h sits inside the closure of some alcove A. Notice that, since A
contains h in its closure, we must have A € A" thanks to Proposition Thus A C

p¥ + €, by Proposition sohcp¥+ ?OJ“. O
Corollary implies in particular that the operation h +— h preserves .Ag.

Proposition 5.13. Let A € AT be such that Ar > A and Ar € A" for allr € Wg. Then,
for all r € Wg, we have Ar < A and Ar € A™T.

Proof. Let v be the special point such that A € II,. First notice that A is included in
p¥ + €, thanks to Proposition Thus, if we denote by h the facet of Ag included in

the closure of A, we see that h C p¥ + CKOJF and that h is included in the closure of all the

alcoves of leg, so that they all belong to AT thanks to Proposition Since A = wy A,

we can apply Proposition to get that As < Afor all s € Sg. From the general theory
of maximal elements in cosets of parabolic subgroups in Coxeter groups, this implies that
Aw < A for all w € Wyg. O



The anti-spherical /-Kazhdan-Lusztig polynomial En%y will also be denoted by ‘n B,A
for the alcoves B, A corresponding to x,y € ¢W. The following result will be of great
importance for us.

Lemma 5.14. For any dominant alcove A € AT, we have n, ;(1) = 1.

Proof. This is an immediate consequence of [Soe97, Theorem 5.1] (see also [Soe97, §7]). O

Lemma 5.15. Let A € A" and g C a7 be a facet such that Ar > A and Ar € AT for all
r € Wg. Then we have n . ;(1) =1 for all r € Wy.

Proof. By Lemma we have that n, ;(1) = 1 and, by Proposition (applied to the

~

elements w € W&, w' € ¢W such that w'a; = A and wa; = A) combined with Proposition
we deduce that n,, ;(1) =1 for all r € Wy. O

The following Proposition will allow us to only consider facets which are far inside of
the dominant cone.

Proposition 5.16. Let g C ay be a facet and h € Ag. Denote by u, resp. 4, the elements

of W& corresponding to h, resp. h (i.e. such that ug =h, resp. ug = ﬁ) Then we have
nya(1) # 0, so that
Hom$,, (112,10 (EB,E8) # 0.

w
Proof. Recall that wg is the element of maximal length in W, and set A := uwgay. Notice
that A € AT thanks to Proposition and, by construction, A is the alcove such that
h C A, Ar € AT and A < Ar for every r € Wy (in particular Ar < A for all r € Wy),

so that h ¢ A. By Lemma [5.15, we have that " fg 4(1) =1+#0, and Aw < A for every

w € Wy thanks to Proposition 5.13L In particular we deduce that 4a, = A. Thanks to

Proposition this implies that
Hom'D%W(Flo K (Eus&a) # 0.

aj’

By Proposition we get the desired result. O

5.4. Facets which are not points. The root system RY decomposes uniquely into a disjoint
union RY = RY U---URY of irreducible root systems. This decomposition comes with a
decomposition of the affine Weyl group W = W; x --- x W, (where each W is the affine
Weyl group associated with R}) and of the affine space E = Ej X - - - X E; (where each E; is
associated with 2}'). Note that one also has dually a decomposition R = R, U- - -UR, into
irreducible root systems, and an isomorphism G x - - - x G, = G induced by multiplication
from the product of the minimal closed connected normal subgroups of G of positive
dimension over F, each G; admitting R; as a root system (cf. [HumT75, Theorem and
Corollary 27.5]). The point for us is that, for every i, the alcoves determined by the box
action of W; on FE; are open simplices, and that each alcove A € A is a product of such
alcoves A; x --- x A;. More generally, each facet h C A decomposes into a product of
facets hy x --- x hy, with h; C A; for every 1.

In this subsection we prove that, for any facet g C ay such that each g; is not a point
(where g = g1 X -+ X g), the set (W& is single equivalence class. We will prove in the
next subsection that (¥ is a single equivalence class exactly when each g; is a non-special
facet. Let us first explain how we can reduce ourselves to the case where the root system
is irreducible; we start with a technical lemma, where k could be taken to be any field.

Lemma 5.17. Let A be a local k-algebra and B be a connected k-algebra (we do not assume
A and B to be commutative). Assume that there exists a k-algebra morphism A — k and
that B is a finite dimensional k-vector space. Then the ring A @k B is connected.



Proof. Denote by m the maximal ideal of A. Since we have a morphism A — k, we get an
injection A/m < k, which is in fact an isomorphism A/m ~ k as A/m is a k-vector space.
Therefore we get an isomorphism

A/m ®x B ~ B,

from which we deduce that A/m ®x B is a connected ring.
Thanks to Nakayama’s lemma (cf. [Knu91l §2, Proposition 4.2.3]), a morphism of
finitely generated A-modules f : M — N is surjective if and only if

f®idgjm: M/mM — N/mN

is surjective. Since A ®y B is finitely generated over A (because dimxB < o0), we can
apply this last result to any endomorphism of the finitely generated A-module A Ry B,
and deduce that an element e € A ®y B is invertible if and only if its image € under the
canonical projection A ®x B — A/m ®x B is invertible.

Let e € A ®k B be an idempotent, i.e. an element satisfying e(e — 1) = 0. Then
€ € A/m ®g B is an idempotent, from which we deduce that € € {1,0} by connectedness
of A/m®x B. If € = 1, then e € (A ® B)* thanks to the previous paragraph, so
ele—1)=0=e=1. Ife =0, then

e—1=¢e—1=—-1€(A/m®yB)*,

from which we deduce once again that e — 1 € (A ®x B)* and thus e = 0. Therefore any
idempotent of A ®y B is trivial, which means that this ring is connected. ]

For the next result, notice that the decomposition W = W7 x --- x W, carries on at
the level of parabolic subgroups, so that we have equalities W8 = W18 x ... x W8 and
(W8 = (W18 X - .. x (W8t

Proposition 5.18. Let g = g1 X --- X g be a facet included in ay, and w = (wy, -+ ,wy),
w' = (W, ,wy) be elements of {W8. Then we have
(5.3) W' > W Rg, W] Vi.

Moreover there is an equality
(5.4) o (1) = gy g (1) X X g o (1),

Proof. The isomorphism Gy x --- x G, = G induces an isomorphism from the product
of the partial affine flag varieties Flg , each being relative to G;, to the partial affine flag
variety Fl; relative to G. This morphism is equivariant for the action of the product of
the Iwahori subgroups Iwj” x - -+ x Iw; on the left (where Iw;” = LTG; N Iw™ for each 7)
and of Iw" on the right. Thus, external tensor product yields a functor

t
F: [ D5y (Flg, k) — D4y (Fig, k),
i=1
and one can easily check with the Kiinneth formula that F' sends tuples of parity complexes
to parity complexes.
Next, we claim that we have an isomorphism

F((E8 .. E8')) ~ £8.

w17' » MWt

The two objects above are parity complexes and coincide when restricted to the stratum
2.8, so we only need to check that the object F((E£8,--- ,£8!)) is indecomposable, which
we will do by showing that its endomorphism ring is connected.



We claim that we have the following isomorphism of graded k-vector spaces

(5.5) Hom$ (EHR-- REZ NN KEY) ~ ®HomD%W pie 1o (€5 €5).

we?

Db, (F12 k)

Let us briefly explain how to obtain . Thanks to [Ach21l Proposition 1.4.6] (the result
is stated with sheaves for the analytic topology there, but is easily translated for the étale
topology), we know that for every F,G € D%W(Fl‘é, k) we have a natural isomorphism of
graded vector spaces

(56)  H'(RT(RHom(F,0))) ~ H*(RHom(F,0)) = Hom}, .\ (F,0),

where Hom is the internal hom functor, and H®(—) means the direct sum of cohomology
groups. Thus, we only need to show that there exists an isomorphism

RHom(F, K --- R F;,G1 K --- K G) ~ K'_ RHom(F;, G:)

for every F;,G; € D%W(Flg, k). This fact is proved in [BBDGIS| §4.2.7(b)] for constructible
complexes.
Next, notice that the k-algebra Homp, o (FIS. k) (E8:,E%)) is local for each i (because

&S is indecomposable), so that A; := Hom? )(&%1,5 ;) is also a local k-algebra as

Db w(Flg, k

its degree zero part is local (here we apply [(1(182, Theorem 3.1]); moreover, restriction

to the stratum 2;5 yields a k-algebra morphism from A; to k. Therefore we can apply

Lemma (recall that a local ring is connected) to deduce that the ring on the right-

hand side of is connected. Hence we deduce that the degree zero part of the left-hand

side of is connected (applying once again [GG82, Theorem 3.1]), proving the claim.
Thus, can be rewritten as

Hom?*

D1z (€80 E) ®HongW pie 1 (€5 ER).

Since a finite tensor product of vector spaces is non-zero if and only if each vector space
appearing in the product is non-zero, this isomorphism finishes implies the equivalence

(-3)-

Now we prove (5.4]). First notice that, by compatibility of the x-pushforward with
the external tensor product (cf. [BBDGIS, §4.2.7(a)]), we get an isomorphism V&, ~
VE K- K Vlgul,. Next, another use of || yields the second isomorphism below:

1 t

o (ER R REE VE R BVE)

wt?

t
~ ° f 8i
~ ® HomD%W(Fléi’k) (&8, ng).

Taking the dimensions in this isomorphism yields the desired equality. O

Now that we understand how to reduce the study to the case of an irreducible root
system thanks to (5.3]), we treat this case in detail. We start with the following easy lemma
(which does not require R to be irreducible).

Lemma 5.19. Let A be an alcove contained in pY + ‘KJ. Then there exist alcoves
Apy Ar—1y 0 A Ao
contained in p¥ + 6, such that
p'+a =4, <A 1< <A <A4=A
and A; is obtained by reflecting A;—1 along one of its walls for each i € [1,r — 1].



Proof. Since the order < is invariant under translation by pY in A" (because it coincides
with the periodic order <), it is equivalent to prove that for any alcove A contained in €',
there exist alcoves (A4;)o<i<, contained in CKOJF such that (A4,, Ag) = (a1, A), 4; < A;—1 and
A; is obtained by reflecting A;_1 along one of its walls. This last condition is equivalent to
requiring that A; = A;_1s for some simple reflection s. Now if we let w be the element of
¢W such that wa; = A, we know by the proof of Lemma [5.2] that there exists some simple
reflection s such that wy := ws < w, with wy, € (W, so that we can put A; := wia;. We
then conclude by induction. O

See Figure |1f for an illustration of Lemma (but notice that one needs to dilate
the affine plane on the picture by £~! to find back the same setting).

Lemma 5.20. Let h € Ag. Pick a facet p C h and consider b’ := vh with v € Wp. If
p C 6;, then h and b’ belong to Af, and we have w ~g w', where w,w' € (W& are such
that h = wg and h' = w'g.

Proof. Since p is inside %", the same is true for all the facets vh, with v € W}, since those

contain p in their closure. In particular h and h’ belong to .A;‘ thanks to Proposition
Let w € (W& be such that wg = h. By construction, there exists a facet q C g such

that wq = p. In particular, we get that W, = wY/unF1 and, for any v € Wy, we have

vh = vwg = wrg,

where r € Wy is such that wrw t=v. Letu € Weg be such that wru is maximal in wrWsg.

We still have wrug = h’, and since h’ € Ag, we must have wru € {W8, so w’ = wru, with
ru € Wq. Thanks to the second point of Proposition we conclude that w ~g w’ (more
precisely, if we let w” € {W#& be the maximal element in wWy (see Figure [2| below), then
we have 1, (1) # 0 and nyy (1) # 0).

FIGURE 2. Lemma in type C3. The black dot is p, while the Wp-
conjugates of h are represented by blue lines, and the red lines are the
other walls fixed by Wp,.

We have now enough ingredients to conclude.

Theorem 5.21. Assume that RV is irreducible and let g C a7 be a facet which is not a
point. Then (W8 consists of a single class for the equivalence relation ~g.

Proof. We introduce a new notation for this proof: if h,h’ € Ag are such that
h=wg, h=u'g

for some w,w’ € ¢W8, then we write h ~g h' if w ~g w’. We want to show that AJ
consists of a single equivalence class for ~g.



By Proposition we have h ~g h for any h € Ag and, thanks to Corollary
we know that h C pY + ‘50+ . Thus, it is enough to show that all the elements of Ag lying

inside of p¥ + %OJr are in relation. For this, we will show that any facet satisfying this
condition is in relation with the unique representative of its W-orbit in pV + ay.

Pick h inside of p¥ +<50+ and let A C pV +<€0+ be an alcove containing h in its closure.
Let also A,, A,_1,--- , A1, Ag := A be alcoves as in Lemma [5.19] and denote by s; € S the
reflection such that A;s; = A;_1.

Since g is not a point and aj is a simplex (because RRY is indecomposable), the face
of the simplex fixed by any s € S (which is the closure of the facet fixed by s) must have
a Nonzero intersectionlﬂ with g inside aj. This means that for any s € 5, there exists a
facet q C g such that s € Wy.

For i € [1,7], denote by q; a facet such that q; C g and s; € W,; for i € {0,--- ,r},
denote by w; the element of ;W such that w;a; = A; and put h; := w;g, p; := w;q;.
Notice that A;s; = w;s;w,; 1 4; and that h; C 4;. By construction, we have the following
data

p; Ch;, withhy=handh, C p" +ay,
h; ;= wiSiwi_lhi Vie [1,r] with wisiwi_l € Wy,

Since the alcoves A; are inside of pY + (KOJF , the facets p; are inside of ‘50+ for all 7. Thus
we can apply Lemma to get that h; ~g h;_; for every i, and by transitivity h, ~g h.
This concludes the proof. ]

5.5. Non-special facets which are points. In order to get the statement of Theorem for
non-special facets which are points, we need to be able to say more about the anti-spherical
Kazhdan-Lusztig polynomials np 4. For that, we will make use of the combinatorial data
linking the “periodic” polynomial pp 4 of [Soe97, Remark 4.4] (which is very closely related
to Lusztig’s polynomial Qp 4 from [Lus80]) and the anti-spherical polynomials.

Recall the partial order < introduced in subsection [5.3] The following lemma will be
helpful throughout all of this subsection.

Lemma 5.22. Let v be a special facet and C be an alcove contained in €, . Then C is
maximal in Wy, C' for <.

Proof. If D € W, C is different from C, then there exists a hyperplane H passing through
v which separates D from €,/ (one may take a well chosen wall of €,7), so that D C E},
and D < sgD, with sgyD € W, D. Assume that sgD # C, then sgD is not included in
€.t (because C is the only alcove of W, D contained in 4,'), so that we can once again
find some alcove Dy € W, D satisfying sgD < Ds. Since W, D is a finite set, we can
repeat this process a finite number of times until finding an alcove D,, € WD which is
contained in ¢, and such that D < D, so that D,, = C. Therefore C is the maximal
element in W, C' for <. [l

We now recall the definition of the “periodic” module P, which is the free left Z[v*1]-
module with basis A, equipped with a structure of right H-module satisfying

As+vA, if A< As

5.7 Vs € S, ACS —
(5.7) ° {As+v1A, if As < A,

10Recall that, for a positive integer n, an n-simplex A inside of an affine space E of dimension n is
defined as the convex hull of n+1 vertices (those vertices being n+1 points not lying on a same hyperplane).
For 0 < k < n, a k-face of A is a subset consisting of the convex hull of k& 4+ 1 vertices of A. From these

definitions, it is straightforward to show that an (n — 1)-face of A has a non-empty intersection with any
k-face, for k > 1.



where Cs := Hs + v (these data do define a right action of H thanks to [Soe97, Lemma
4.1]). One then defines the submodule P° C P as the right H-submodule generated by
the elements of the form

Ey = Z ' F (X 4 zap), A e XV,
zeWp

Notice that this definition parallels Lusztig’s definition of

e{)\} = Z A

AcA, {\}CA

from [Lus80, §1.7], because the set of alcoves {\A + za;, z € Wy} is equal to the set
{Ae A, {\} C A}

Recall that a morphism f : M — N of right H-modules is called skew linear if it
satisfies f(zHy) = f(x)(Hy,1)7Y, f(zv) = f(x)v~! for every z € M, w € W. It can
be shown (cf. [Soe97, Theorem 4.3]) that P° admits a unique H-skew linear involution
(-) : P° — P°such that E = E) for all A € XV, and that for all A € A there exists a unique
P, € P° which is self dual with respect to this involution, with P4 € A+ 5 vZ[v]B. The

P, form a Z[v*!]-basis of P°, and the periodic polynomials are defined via the formula
BA = ZPB,AB .
B

The following result follows quite directly from the constructions, but will be of great
importance for us.

Lemma 5.23. Let A € A and v be the special facet such that A C 1l,,. Then we have
Pwc,A(1) = pc,a(l) for allC € A and w € W,,.

Proof. Denote by Py the free left Z-module Z®zj,+11P, where Z is seen as a Z[v*T1]-module
through the map Z[v*'] — Z, v+ 1, and let ¢ : P — P; be the morphism of Z-modules
induced by sending v to 1. In particular we have

o(P4) = pp.a(l)B.
B

The left and right actions of W on A endow P; with a structure of left and right Z[W]-
module, and one can check with that o(PH,) = ¢(P)w for every w € W and P € P.
In particular, p(PH,) belongs to the right Z[W]-submodule generated by ¢(P), which
we denote by ¢(P)Z[W]. From [Soe97, Remark 4.4], we know that pp 4(1) = @p.a(1)
for every alcoves A, B, where Qg 4 is Lusztig’s polynomial from [Lus80]. But D, :=
> 5 @B,AB belongs to the right H-submodule generated by ey thanks to [Lus80, Theorem
2.15], from which we deduce that ¢(P,) belongs to eyZ[W]. Now ey is invariant under
the left action of W, by construction, but since the left and right actions of W on P
commute, we get that wP = P for every P € eyZ[W], concluding the proof. O

For any x € W and A € A, write A = A+ B for a unique A\ € X" and B C II, and put
xx A:=x\+ B. We will denote by N4 the element that we denoted by IV, in subsection
where za; = A, and we define (following [Soe97, Proposition 5.2]) the Z[v*!]-linear
application

res: P — N,
which sends an alcove A to N4 if A € A", and to 0 otherwise. Finally, for any A € A, set

alt Py:= Y (=1)!"P, 4.
zeWp



The link between periodic and antispherical polynomials is made explicit by the fol-
lowing result, which is [Soe97, Theorem 5.3(1)].

Proposition 5.24. For any alcove A C p¥ + €, we have

N, =res alt Py.

For any special facet v and alcove A € A such that A C Ily, we define the set

Sa={C|wC < AVw e W,}.

The next few results will help us utilize Proposition More precisely, our main goal
in Proposition will be to determine for which alcoves C' one has nc a = pc,a, where
the alcove A C pY + “KJ is fixed. As recalled in the lemma below, our interest for the set
S4 comes from the fact that it contains the support of P 4.

Lemma 5.25. Let A € A and v be the special facet such that A C 1.

(1)
(2)

(3)

Proof.
(2)

3)

We have the implication pp o #0 = B € S4.
We have

Sa={wC |weW,, C=<AandCC%E}.

Assume that there exists some facet g C aj such that A € AFWg, and that v C
z6" for some x € Wo\{id} (this simply means that v is inside another quarter
with vertex {0} than €. ). Then we have

DESA:>D§Z/)V+(50+.

(1) This is [Soe97, Proposition 4.22].
Let us write

Sy ={wC | weW,, C=<Aand C C ¥/}

The inclusion S4 C S’ just follows from the fact that any alcove C' € A has a
Wy conjugate wC' inside of €. Conversely, if C' is an alcove such that C' C %,
and C' < A, then we have wC' < C for every w € W, thanks to Lemma S0
wC = A for every w € W,,. This proves the inclusion S’y C Sa, and concludes the
proof of the first point.

Let C' C €' be an alcove such that C < A.

e We claim that C belongs to AYW. Since < is invariant under translations,
we can translate everything by —u, where v = {u}, so that we are reduced to
the case where v = {0}. More precisely, if we denote by w, € W the element
such that w,a; = AY, by w € Wy the element such that A = Afw and set
wy = t_,w,, then we get that w,a; = a; and

CA=1t_,Ct_JA=t_j(wpajw) =t_,(w,war) = wy,way

C =t (wpuw

Jwpal = (wuwwljl)al.

= (wpww,
So now, if we set g’ := w,g, we get the inequality t_,C < w'a;, with v’ =
wuwwljl € Wy Since the alcoves t_,C and w'a; belong to AT (because they
are translates by —p of alcoves in €7), we get that ¢_,C < w'ay, so that
t_u,C = w"a; for some w” < w', from which we easily deduce that w” € Wy;
this means that w” = wuuwgl for some u € Wy, so

I

o
— — At
= wyua; = Aju.

Ja; = tu(wuuwgl)t_utual = (wyu)(w, t,)a; = (wyu)w

1 ai



e Denote by h the W-conjugate of g contained in Aif,r In particular, we get
that h belongs to both Ay and C (because C' € A{ W, thanks to the previous

paragraph), so that C' N Aif,“ # (). From this and the description of S given
in (2), we deduce that for any alcove D € Sy, there exists some w € Wy, such
that

DNnwAT £ 0

(just write D = wC for some alcove C as above). But wA{ C 2%, for any
w € Wy (because 27 'wAY{ is an alcove containing z7'v C €' in its closure,
so that x 7 lwA{ C ‘50+ thanks to Proposition ;so we get ultimately that
if an alcove D € Sy is contained in €, then D must have a non-empty
intersection with a hyperplane separating ‘KOJF from %", so that D is not
contained in p¥ + ;.

O

Lemma 5.26. Assume that the root system RV is irreducible. Let A\ be a nonzero weight
contained in %OJF NXY, v be a special facet, C be an alcove contained in I, and put
A:=\+C. If AN AT # 0, we must have C = AJ.

Proof. In order to simplify the notations, we may and will reduce ourselves to the case
where v = {0}. Let us write

C={peFE |ny—1<{pa)<nygVaecR;}

for some integers n,. First notice that if o/, € R are such that a < o’ (ie. o/ —a'is
a sum of positive roots), then we must have n, < ny. Indeed, since C' C ‘KOJF , we know
that (u, @) < (u,a’) for every p € C, so in particular we get that

na —1< <:u704> < <,u70/> < Ng/y

proving the claim.
Since C' C II, we know that n, = 1 for every a € Sp, and thus n, > 1 for every
a € Ry. The assumption that A Naj # () implies that we have

ne + (N, @) € {1,2} for every a € R,

Therefore we must have (\, ) € {0,1} for every o € R;. Since X\ # 0, there exists some
ap € Sp such that (A, ap) > 0. So let g = ZSO caex € Ry be the longest root (cf. [Boul
Chap. 6, Proposition 25], this is where we need the assumption that R is irreducible). In
particular we have ¢, > 1 for every o € Sp, so that (X, 5) > 0, and thus ng = 1. But for
every o € Ry, we have o < 3, so we get that n, < ng, and finally n, = 1. This means
that C' = aj. O

The following corollary can be visualized on Figure [3| below.

Corollary 5.27. Let v be a special facet, g C aj be a non-special facet and A € AT Wy be
the alcove which is mazimal in AYWg for <. Then A belongs to Il.

Proof. Let us first explain why A C €,F. Denote by h’ the element of Ag which belongs to
the closure of AY. We have the inclusion AY C 4.7, so we know that h’ is included in €4
If C € A{Wyg is an alcove which is not included in €, then there exists a hyperplane
H of the boundary of % which contains h’ and separates C from %", so we clearly
have the inclusion C' C Ey;, and therefore C' < syC. Since sy € Wy, the alcove syC



must belongjﬂ to AL Wg. This shows that the maximal element in A¥ Wg for < must be
contained in €7, whence A C €.

Now let us show that A C Il,. For this we may and will assume until the end of
this proof that fR is irreducible. Assume that this inclusion does not hold, then because
A C €}, we can write A = A + C for some nonzero weight \ € %OJF N XY and some alcove
C C TI,. But we also have A N AJ # () (both of those sets contain h’), therefore we can
apply Lemma (here we use the assumption that R is irreducible) to see that C' = A{.
So we are in the following situation:

(5.8) A+ AY € AT Wy,
Let p € XV be such that {u} = v, and denote by w, € W the element such that w,a; =
AY. Putting w,, := t_,w, and applying t_, to (5.8)), we get that

At wyay € wyaWy = (wuVng;l)wual7
and, using the fact that w, fixes the fundamental alcove a;, we obtain
(5.9) A +a; € Wyay, with g’ := w,g.
Since w,, € Q (because w, fixes a;) and g is a non-special facet, g’ is also a non-special
faceﬁ included in the closure of the fundamental alcove. From (5.9) we deduce that
g C A+aj. But A € 6, NXY is nonzero, so (\,8) > 1, where B € R, is the longest
root. Since g’ C ay, we have that (u, 3) <0 for every p € —A+g’ (because (i/, 8) <1 for
all i/ € ay); therefore the inclusion —\ 4+ g’ C ay is possible only when (u, 8) = 0 for all
uweE —-XN+g'. Since a < S for all & € Ry we get that

0<(u,a) < (1, B) =0Va€ Ry, pe-A+g

which means that 4 = 0 and so g’ = {\}, contradicting our assumption that g’ is not a
special facet. This concludes the proof of the lemma. O

We are now ready to prove our central result.

Proposition 5.28. Let g C ay be a non-special facet, h € Ag be such that h C p¥ + ‘KOJF
and B C p¥ + %OJF be an alcove containing h in its closure. Let also v be a special facet
such that v C B, and A be the alcove which is mazimal in AWy for <. Then we have
A cCIl, and

npra(l) =1 Vr € Weg.

Proof. Let h’ be the element of Ag which is included in A¥. By construction (i.e. because
v C pV+%,"), we have that A C p¥+ %', so that in particular h’ C %;". Thus, applying
Proposition we know that all the alcoves of AW, are contained in A" (because they
contain h’ in their closure), so that the orders < and < coincide in A Wg. Therefore A
is maximal in AW, for <, so is included in II, thanks to Corollary

By Lemma @ and because A C p¥ + %", we have that

(5.10) > neaNe = > (1)@ " pegea res C.
C C

zeWp

Our next goal is to use this formula to show that

ne,A = po,A for al]Cva—}—ng’_.

11Indeed7 write ¢ = wa; for some w € W, then h' = wg and wlsgw € Wg, so that sgC =
Cw™'spw) € OWg = AT W.

121ndeed, the action of W (and hence of Q) on E obviously permutes the set of hyperplanes #, so it
also permutes the set of special facets by construction.



For that we will prove that when the alcove C C p¥ + %, is fixed and = € Wy\{id}, we
have pc 4«4 = 0; this will follow from a careful study of the periodic polynomials.

Fix x € Wy\{id}, and notice that x * A C I,y since A C II,. We can then apply the
first point of Lemma [5.25

PD,zxA 7é 0= De¢ S:E*A'
But we have that z * A € AY, Wy (because x x A and AJ, are just translates of A and

AT respectively, by the same translation of ZRY) and v C 2%, so the third point of
Lemma [5.29] tells us that

D€ Spa= D¢ p’' +%;.
This fact, combined with (5.10)), implies that we have

(5.11) nea=pca  forall C Cp’+% .
On the other hand, recall the result of Lemma [5.23
(5.12) Pwc,A(1) = pc,.a(l) Yw € Wy.
Thus, for any alcove C included in p¥ + %', and yield
(5.13) nwc,A(1) = ne a(l) Vw € Wy such that wC C p” + 6,

By construction, there exist elements w € Wy, ro € Wy such that B = wAY and
A¥ = Arg, so that B = wArg. Since B C p¥ + CKOJF, we can apply (5.13) to get that

nB,A(l) = nAro,A(l)«

Finally, since A is maximal in AW, for <, we can apply successively the first point of
Proposition (where the facet g from this proposition is our current g, and where the
elements w € (W8, w' € (W are such that wa; = A and w'a; = B) to obtain

ngrA(l) =npa(l) = nar,,a(l) =naa(l) =1Vr € Wg.

See Figure [3| for an illustration of the setting of the previous Proposition.

FIGURE 3. Proposition in type Co. The black dot is v and the thick
black lines represent the affine hyperplanes fixed by the reflections in W5,.
The red dots are the Wy,-conjugates of h, and the set of gray alcoves rep-
resents {Br, r € Wg}.

Remark 5.29. Keep the notations of the previous proposition. By positivity of the coef-
ficients of the anti-spherical Kazdhan-Lusztig polynomials, the fact that np, 4(1) = 1 for
all » € Wg means that the polynomial np, 4 is always a non-zero monomial.



Corollary 5.30. Let g C ay be a non-special facet, h € Ag be such that h C p¥ + ?,
BcCpV+ Cf(f be an alcove such that h C B, and let v C pV + %OJF be a special facet such

that v C B. If we let u € Wy, be such that B' := uB is included in p¥ + ‘50+ and denote by
h' the element of Al included in B, then we have w' ~g w, where w',w € {W& are such
that h = wg and h' = w'g.

Proof. Denote by A the alcove which is maximal in A{ Wy for <, and by h” the element
of Ag included in A. Recall that A C II, thanks to Proposition so that in particular
h"” € Af. So if we let w” be the element of (W& which satisfies w”g = h” and € Wy be
the element such that Br is maximal in BWg for < (so that wa; = Br and w'a; = A),
then Proposition tells us that

nBT,A(l) = 17

from which we deduce that w ~g w” thanks to Corollary The same reasoning (consid-
ering this time the alcove B’ containing both h’ and v in its closure) shows that w’ ~g w”,
so finally w ~g w’ by transitivity. O

We can finally complete the proof of Theorem [5.21

Theorem 5.31. Assume that RV is irreducible and let g C ay be a non-special facet. Then
fW8 consists of a single class for the equivalence relation ~g.

Proof. Thanks to Theorem we may and will assume that g is a point. With the
notation of the proof of Theorem recall that we want to show that A} consists of
a single equivalence class for ~g. Also recall from the proof of Theorem @ that it is

enough to show that all the elements of Ag lying inside of p¥ + %" are in relation.

Pick h inside of p¥ + %" and let A C p¥ +%," be an alcove containing h in its closure.
Let also A;, Ap—1,--+, A1, Ag := A be alcoves as in Lemma/[5.19] and denote by s; € S the
reflection such that A;s; = A;_1.

Since fR is irreducible, there exists a unique simple reflection o € S which does not
belong to the finite Weyl group Wy. Moreover, because aj is a simplex, there is only one
facet inside @y which is a point and which is not included in the hyperplane fixed by o:
this is the special facet {0}. Thus, since g is not special, it must be included in the wall
fixed by o, or in other words we have o € Wg.

For ¢ € [0,---,r], denote by w; the element of {W such that w;a; = A; and put
h; := w;g. Notice that A;s; = wisiwi_lAi and that h; C A;. By construction, we also
have

h;_1 = wis;w; 'h; Vi € [1,---,7] and hg = h.

Fix i € [1,---,r]. Now, if s; = o, then wisiwf fixes h;, so that h; = h;_;. So
assume that s; # o, which implies that s; € Wy, and put v; := w;{0}. Then we see
that v; is a special facet included in A;, which thus satisfies the inclusion v; C p¥ + €,
with w;s;w; Le Wy,. Therefore we may apply Corollary |5.30| to see that h; ~g h;_;. By
transitivity of the relation we get h ~g h,., concluding the proof. 0

Remark 5.32. Take back the notations of the previous proof. Corollary (when g is a
point) and Lemma (when g is not a point) actually allow us to be a bit more precise:
for all 4 € [1,---,r], there exists an element u; € {W# (which is the maximal element in
Wy, w; in Corollary and the maximal element in w;Wg, in Lemma such that
Nw;u; (1) # 0 and 1,y 0, (1) # 0.



One of the advantages of our proof is that it gives an explicit way of linking an element
w € ¢W# to the unique element v of {W# satisfying vg C p¥ +a;. This allows us to give
the following result.

Corollary 5.33. Assume that RY is irreducible. Let g C ay be a mon-special facet and
w,w" be elements of (W& which are in the same equivalence class for ~g. Denote by A,
(resp. Ay) the alcove which contains wg (resp. w'g) in its closure and which is minimal
in AWy (resp. AwWg) for <. Then there exists a positive integer s and a chain of
elements of (W&

Ws = W, Ws—1," " ,W0 :w,
such that, for alli € [0,s — 1], there exists an element u; € {W¥ satisfying

N, (1) # 0 and nu, 0, (1) # 0,
and such that R R

5 <24 d(Ay —pY) +d(Ay —pY).
Proof. Denote by v the unique element of (/& such that vg C pY +ay. Let us also denote
by w the element of (W8 such that wg C A, and A4g := Aw, Ap_1,--+, A, == pY+a be the

alcoves of Lemma [5.19] By Remark we know that there exist elements w;, u; € (W8
such that (w,,wy) = (v, w) and

wig C Ay, My, (1) # 0 and ng,,, 0, (1) # 0, Vi € [0,7 —1].

Therefore, the chain w,w, w1, -+ ,w, = v linking w to v is of length equal to 1 plus the
number of hyperplanes separating A, from a; + pY, and this last number is equal to the
number of hyperplanes separating A, — p¥ from aj, i.e. to d(A, — p¥). Repeating the
same process for w’, we find a chain linking w’ to v of length equal to 1 + d(/lw/ —pY), so

that the concatenation of these two chains yields the desired result. O

6. SMITH-TREUMANN THEORY AND CONSEQUENCES

6.1. Geometric Satake equivalence. The affine Grassmanian Gr associated with G can
be defined as the fppf-quotient LG/LTG, which can be shown to be an ind-projective
ind-scheme over F. In particular, Gr coincides with the partial affine flag variety Flgg,

(cf. subsection . For any A € XV, we denote by z* € T(O) the image of z by
A Gu(K) — T(K), and define [A] ;= 2*L*G. The orbit LTG - [\] will be denoted X.
Using the Cartan decomposition, one can show that the action of LTG on Gr induces the
following equality
(Gr)rea = | | Xa,
AEXY

where (Gr)peq is the reduced ind-scheme associated with Gr. Moreover, each orbit X is a
smooth F-scheme of finite type and

X, = |_| X,
HSA
pexy
is a projective F-scheme, where ;1 < X means as usual that A — p is a sum of positive
coroots.

For any X which is a locally closed finite union of L™G-orbits, one can show that the
L*G-action on X factors through a quotient group of finite type J (cf. [Cia2l, Lemma
3.2]); this quotient may and will be chosen so that the kernel of the map LTG — J is
contained in ker(LT™G — G). We can then consider the J-equivariant derived category
of constructible étale k-sheaves Df’](X ,k), which does not depend on our choice of J (see



[Cia21], §3.3]). We are now allowed to define the category Dz+ (Gr, k) as the direct limit of
the categories DS(X ,k), indexed by finite and closed unions of orbits X which are ordered
by inclusion and where the transition maps are given by direct images. This category
admits a canonical perverse t-structure, and we denote by Perv+4(Gr, k) its heart.

For A € XY, let i : X, < Gr denote the inclusion and define

AP =PH(iMkx, [dim(Xy)]), V"= PH(i0ky, [dim(X,)]).

The complex AS/\ph, resp. Vf\ph, is called the standard perverse sheaf, resp the costandard
perverse sheaf attached to A\. By construction, there is a canonical map Af\ph — Vf\ph, and
we define the intersection cohomology complex ICf\ph associated with A as the image of

this map. Intersection cohomology complexes cover (up to isomorphism) all of the simple
objects of the category Pervy+g(Gr,k) when X runs through XY.

Proposition 6.1 (Proposition 12.4, [BRIS8]). The category Pervi+o(Gr,k) is a highest
weight category, with weight poset XY, standard objects {Aiph, A € XY} and costandard
objects {Viph, Ae XY}

The category D%+ (Gr, k) admits a monoidal product , which restricts to a monoidal

product on Perv;+4(Gr, k). In the following crucial result, we denote by GV the Langlands
dual group of G over k, and by Rep, (G") the category of algebraic finite dimensional k-
representations of GV.

Theorem 6.2 (Theorem 14.1, [MV04]). There is an equivalence of monoidal categories
(Pervy+o(Gr, k), %) = (Repi(GY), ®x).

Remark 6.3. Let A € XY. It is well known that the category Repy(G") also admits a
highest weight structure, and we denote by Ay, resp. Vy, resp. L), the standard object,
resp. the costandard object, resp. the simple module, associated with A. Then, the
previous equivalence of categories sends VY’ b resp. Af\ph, resp. ICf\ph, on Vy, resp. Ay,
resp. Ly (cf. [MV04, Proposition 13.1]). We will say that this equivalence is an equivalence
of highest weight categories.

6.2. Iwahori-Whittaker variant. Recall the construction of D%,,(Gr, k) from subsection
If we denote by Y} the orbit of [A] under the action of Iw;, then we have a decompo-

sition
(Gr)red = |_| Y)\a
AeXV
where each Y) is an affine space over F. One can show that an orbit Y, supports a non-zero
Iwahori-Whittaker local system iff A is strictly dominant, and that in this case there exists
exactly one (up to isomorphism) such local system of rank one on Y, which we will denote
by Egs.

Once again, the category D%W(Gr,k) admits a canonical perverse t-structure, and
we will denote by Pervry(Gr, k) its heart. Thanks to the fact that the Iw -orbits are
affine spaces over IF, this category of perverse sheaves admits a transparent highest weight
structure (cf. [BGMT19, Corollary 3.6]). Namely, the weight poset is given by XY,
and the standard, costandard and simple objects associated with some A € XYF L are
respectively given by

AV = Lps[dim(Yy)], VRV = LRsldim(Yy)],  1CRY,

where j* : Y\ < Gr is the inclusion, and ICfW is obtained as the image of the canonical
morphism AT — VIW. In the sequel, we will denote by Tiltzyy(Gr, k) the category of



tilting objects associated with this highest weight category, and by L?\IW the indecompos-
able tilting object of highest weight A € XY .

Although the category D%W(Gr, k) is not endowed with a canonical convolution prod-
uct making it a monoidal category, it admits a right action of the monoidal category
DY, ,(Gr,k). The following result was found by the authors of [BGMT19], and gives
another incarnation of the category Repy,(GY). Note that by our assumptions on G, the
element pY, defined as the half-sum of positive coroots, belongs to XV.

Theorem 6.4. The functor F ng\) *F induces an equivalence of highest weight categories
Pervy+q(Gr, k) = Pervyy (Gr, k).

Remark 6.5. At this stage, we can note that the action of Gy, on Gr by rescaling z stabilizes
each Iw -orbit. This allows us to consider the loop rotation equivariant Iwahori-Whittaker
derived category of k-sheaves

L%WWGm(CH7k%
which comes with a natural t-exact forgetful functor to D4,,(Gr, k) (cf. [RW20), §5.2]). It
is then not difficult to show (cf. [RW20, Lemma 5.2]) that the forgetful functor

(6.1) Pervw g, (Gr, k) = Pervoy (Gr, k)

is an equivalence of categories. These considerations will become useful in section [6]

6.3. Fixed points of the affine Grassmannian and connected components. As in subsection
B.I we fix an integer n > 1. We denote by u, the finite group scheme of n-th roots of
unity, which acts on L*G and LG by rescaling the indeterminate z; in particular, u, acts
on Gr. The following fact, which will only be used with n = ¢, is one of the fundamental
tools used by the authors of [RW20] (cf. [RW20), Proposition 4.7]). For any A € &, N XV,
we will denote by gy C @, the facet which contains A.

Proposition 6.6. For any A\ € &, N XY, the map g — g - [\ factors through an open and
closed embedding
Flg® < (Gr)H»
and the induced map
|| Fize — (Gry
A€a,NXV
s an isomorphism of ind-schemes.

If we denote by IW:;Z the inverse image of U1 under the evaluation map L;G —
G, z* + 0, then we get (Iw;)* = IW:;Z, and the orbits of (Gr)** under the action of
le—i—,f are still parametrized by XV (cf. [RW20, Lemma 4.8]). Thus, using the morphism
IWZ_’ ¢ — Ga induced by x, we can take back the constructions of subsectionto define the
category D%We (Y, k), where Y C (Gr)"* is a finite locally closed union of Iw; ,-orbits. The
theory of parity complexes also adapts to the present context: a complex F € D%We (Y, k)
is called x-even, resp. !-even, if for anyﬁ A€ Xi 4 such that (Y))* C Y the complex
(jﬁz)*}', resp. (jli‘[)!]:, is concentrated in even degrees, where j;}z : (Y)* — Y is the
inclusion. The definition for *-odd and !-odd complexes is similar and one says that a

complex is even, resp. odd, if it is both *-even and !-even, resp. *-odd and !-odd. As
usual, a complex is called parity if it is a direct sum of even and odd complexes.

IBNotice that, if A ¢ XY, the restriction and co-restriction of F to (Y)"¢ is zero (because this orbit
supports an Iwahori-Whittaker local system only when A € XY ), so that we can restrict ourselves to the
case where A € XY .



Defining the category D%WZ((Gr)W, k) (resp. D%Wg (Flé’o, k) for a facet g C ay) as a
direct limit, it then makes sense to talk about even and odd objects in this category, and
we will denote by Parzyy, ((Gr)*¢, k) (resp. Parzyy, (Fléo, k)) the additive full subcategory
consisting of parity objects. By Proposition it is clear that the additive category
Parzyy, ((Gr)#, k) splits into a direct sum of subcategories of the form Parzyy, (Fléo,k),
where g runs through the facets inside ay.

It is important to note that we have a bijection g — £ - g between facets inside ay
associated with the action o; of W on E and facets inside a; associated with the action
o¢ of W on E, and that a simple change of variable (namely, replacing z with z¢) induces
canonical isomorphisms of ind-schemes Flg := Flé’o ~ Flﬁj;,
orbits in Fl; to Iwig—orbits in Flﬁjz. For any facet g C ajy, we thus have a canonical

Iw, ~ Iw},, sending Iw;-

equivalence of categories
D5y (F12, k) =~ DYy, (FI2 k),

l-g’
restricting to an equivalence between the corresponding categories of parity complexes:
(6.2) Parzyy (Flg, k) ~ Parpy, (FI7, k).

In the sequel, we will denote by 55'5 the indecomposable parity complex in Parzyy, (Flif;, k)
corresponding to £F via the equivalence (6.2). It is clear that, up to a shift, all of the
indecomposable parity complexes in Parzyy, (Flgf;, k) (coming from Proposition ) arise
in this way.

6.4. Smith category and the linkage principle. Since the action of Gy, on Gr stabilizes the
fixed points (Gr)*¢, we can take back the construction recalled in Remark [6.5|to define the
category D%We,Gm(Y’ k), where Y C (Gr)* is a locally closed finite union of Iw," -orbits.

We will denote by D%Wé ¢ (Y, K)u—pert the full subcategory whose objects are the F for

which the object Resﬁ’;ﬂ (F) has perfect geometric stalks in the sense of [RW20, §3.3]. The
Smith category Smzyy (Y, k) on Y is by definition the Verdier quotient

Djb,’Wg,Gm (Y7 k)/D%WZ,Gm (Ya k),ug—perf-

Let X C Gr be a locally closed finite union of Iw, -orbits, and ix : (X)* < X denote
the inclusion. We define the functor

i% : Pervow g, (X, k) — Smpw((X)", k)
as the composition of the inverse image 7% with the canonical quotient map
Q : Do, 6., ((X)", k) = Smaw ((X)", k).

A crucial result says that taking Z'X instead of ¢% in the previous construction gives iso-
morphic functors (cf. [RW20, §6.2]), whence the notation. It then takes a bit more work
(cf. [RW20, Lemma 6.1]) to prove that, for two locally closed finite unions of Iwig—orbits
Z C Y, the canonical functor 5™ : Smzw(Z, k) — Smpw (Y, k) induced by the direct
image in the corresponding derived categories is fully faithful, and fits into the following
commutative diagram

I
Di, e (2. k) = Dy, 6, (Y: k)

e



where the vertical arrows are the quotient maps. One can thus define the category
Smzy((Gr)¢, k) as a direct limit indexed by finite closed unions of Iw. ,-orbits, and
consider the functor

it : Pervry g, (Gr, k) — Smzy ((Gr)#, k).
The following statement is [RW20, Theorem 7.4].

Theorem 6.7. The composition of functors

Pervow (Gr, k) M Pervry g, (Gr, k) l—G*r—> Smzyy ((Gr)He k)
restricts to a fully faithful functor ® : Tiltzyy(Gr, k) — Smpy ((Gr)H¢, k).

We can now reformulate the proof of the linkage principle from [RW20, Theorem 8.5].
Thanks to the decomposition of (Gr)*¢ into its connected components from Proposition
we deduce from Theorem above that two strictly dominant weights A and g which
are not in the same orbit for the box action cannot be in relation for %5 (seen as a relation
on the weight poset XY, of the highest weight category Pervryy(Gr, k), cf. section .
Indeed, let §, resp. 7, be the element of WoyA Nay, resp. of WoyA Nay;. We have

HomTiltIW(Gr,k)(xlwa ZLIW) = Homsmzw((Gr)“f,k)(¢(‘7)\IW)7 (I)(%IW)),

and since the object ®(FI"), resp. @(%IW), is indecomposable (thanks to the full
faithfulness of ®), its support must be contained in a single connected component of
(Gr)#¢, which is easily seen to be the parametrized by d, resp. 7, in the isomorphism of
Proposition applied to the case n = /.

Thanks to Theorem this implies that two dominant weights \’, i/ which are not
in the same orbit for the dot action cannot be in relation for %5 (where we now consider
the highest weight category Perv;+q(Gr,k)). Finally, the geometric Satake equivalence
(Theorem and Theorem allow to prove the linkage principle for GV (cf. [Jan03|
Corollary 6.17, Part II]):

(6.3) VN, ' € XY such that TV ey X' = W e 1/, we have Extéy (Ly, L) = 0.

6.5. Consequences on equivalence relations. Recall the definition of the “dot” action of
W, which acts on XV by

w e pu:=wop(p+p*) — p,
for any w € W, p € X¥. Let p € X¥ Nay and g, be the facet (for o;) containing p.

Therefore, E‘Lgu C aj is a facet for o;. The assignment w — wogu, resp. w — wey(u—p"),
induces a bijection

(6.4) fW[—l.gu ~ WaepN Xi+7 resp. fWZ_l'g“ oW o (1 — p\/) N Xi

(this follows from the fact that, if we denote by Wy
then we have an equality Wg, o, = Wy-1.¢ ).

In the sequel, we will want to determine an exact description of the blocks in Xi i
(seen as the weight poset of Pervyy(Gr,k)) for %5 (cf. subsection [2.2). The following
results will help us to do so (cf. the proof of [RW20, Theorem 8.9]).

C W the stabilizer of g, for oy,

/A:DZ

Proposition 6.8. Let p € XY Nay, g, be the facet (for op) containing p, and w,w' be

-1 . .
elements of {W*' 8. We have an isomorphism

W W N\ ~ .
HomTﬂtIW(Gr,k) (ngg/.u <g.w/Dg,u,) - HomPaTIW[ (Flé’;?k

gu
)(5

Law?

5,%,).



Proof. This is a direct consequence of [RW20, Proposition 8.11] and of the equivalence of

highest weight categories Repy(GV) ~ Pervyy(Gr, k), which sends the indecomposable

tilting module of highest weight w e, (1 — pV), resp. w' o, (u — p¥), to ﬂfg%, resp.

w
T O

Let A € a; N XY. Note that, thanks to the equivalence (6.2)), we have

° ffl-g/\ 2_1~g/\ ~ ° g )
HomParIW(FlszgA,k) (Ew BNEy ) Homparzwl (Flé;\>7k)(g€,w? Epur)-

Therefore Proposition [6.8] yields
(6.5) Vw,w' € (WEB, By g w = (woph) Ba(w'op)).

6.6. Dilating weights by ¢. Smith-Treumann theory allows us to understand the effect of
dilating dominant weights by ¢ on the equivalence relation ~.

Proposition 6.9. Let A\, u € XYFJF. We have an isomorphism
HomTiltIW(Gr,k) (%Z)\Wv %IMW) = HomTﬂtZW(Gr’k) (%\ZW’ ZLZW)‘
Proof. First recall that, by full-faithfulness of ®, we have an isomorphism
(6.6) Homrite gy, (i) (Tix s Ti ") 2= Homg,,, ((Gryne ) (R(TRY), R(TEY)).
Next, notice that we have an embedding
LiG/LfG < (Gr)"
thanks to [RW20, Remark 4.8], and that the left-hand side identifies (via Proposition

with the union of the connected components Flé’; , with A\ running through a; N ¢ - XV.

Moreover, the LZG—orbits in L,G/L}G are parametrized by £ - XY, and a simple change
of variable z — 2’ together with (6.1)) induce an equivalence of categories

R : Tiltzw(Gr, k) ~ Tiltzw, 6., (L«G/L G, k),
which sends 2 (resp. %ZW) to the indecomposable tilting object associated with £ - A
(resp. € - p). Therefore, the indecomposable tilting objects in Tiltzyy, g, (L:G/L] G, k)

are parity complexes (see [BGM™19, Proposition 4.12]), so that we can take back the same
arguments as in the proof of [RW2(, Theorem 7.4] to show that restricting the functor

Q : Dhw, 6., ((Gr)", k) — Smzyy((Gr)", k)
to LyG/ L;G and composing it with R yields a fully-faithful functor
Q o R : Tiltzw(Gr, k) — Smyw (LeG/L; G, k),
which satisfies the following isomorphisms:
Qo R(FEY) = &(FY) and Q o R(TPY) = &(TEV).
The desired result thus follows from comparing with the following isomorphism
HomTiltIW(Gr,k)(%\ZWa %ZW) ~ Homgy,,,y, ((@ryme 1) (Q © R(?\ZW% Qo R(%ZW))-
O

Corollary 6.10. For anyy € XY, denote by 7 the equivalence class of vy for the equivalence
relation ~ on XY (seen as the weight poset of Pervry(Gr,k)). Then we have

VaeXY{,, (-XCl-A

Proof. This is a direct consequence of Proposition and of the fact that ~ is generated
by %> (cf. section [2)). O



Corollary 6.11. Let A\, € XY . We have an equality
(7P V) = (IR VED),

Proof. For any v € XY _, let us denote by n(v) the number of elements v € XY, such that
v < . We may and will assume that u < A to prove the desired equality, and proceed by
induction on n(¢- u). Standard arguments on highest weight categories (and the fact that
Verdier duality sends ALY, resp. T2V, to VIW, resp. IV, for all v € XY ; namely,
we use the same arguments as the one used in [ARI6, §6.2]) imply that we have
(6.7)

(e%\IW . ViW) _ dimkHom(%\IW, ‘ZLIW) _ Z (%\ZW : ng> . (%IW : VYVJW)

v<p, IIEXX+

Now when n(¢- ) =0, we get that n(u) = 0 and so

(Z2 VDY) = dimgHom( 7Y, 7PY) = dimcHom(78Y, T2 = (72Y: VED),
where the second equality is due to Proposition This proves the first step of the
induction. The induction step still follows from using (6.7)) and Proposition together
with the fact that for any v € XY such that (%,I#W : VZW) £ 0, we have that v € £- XY,
(this is because we must have v € Woy(¢ - u) by the linkage principle). O

6.7. The general case for equivalence relations on ¢(W&. In this subsection, we apply the
equivalence and Proposition to finish the study of section [5| by treating the case
of special facets. The arguments that we have used until now do not apply when g is a
special facet (notice that Corollary is false in this case). With good reason: we are
going to see that the set W8 splits into infinitely many classes when some component of
g is a special facet. As in subsections [5.4] and we are first going to deal with the case
where the root system is irreducible before generalizing.

Let g C a7 be a facet, w € (W&, and recall that if g special, then wg can be written as
wg = {A} for a unique coweight A\. We will denote by w the equivalence class of w for ~g,
and define rg(w) to be equal to —1 if g is not special, and to be the unique (non-negative)
integer such that

A e reXV\ re(WHXY | with wg = {A\}
if g is special. For any positive integer 7, we also define the group W) := Wy x £"ZRY,
which is a subgroup of W isomorphic to it, with W(® = W. Finally, notice that for any
A € XY and positive integer r, we have " - Woy\ = W(T)Dg(fr - A). We start with an easy
lemma.

Lemma 6.12. Let v € a; N XY, g C a7 be the facet containing v, w € (W8 and r be a
positive integer. If we set X := woyv, then the application W — XV u > unp(£-v) induces
a bijection

(WOwWe) N eW8 =~ WMo (£- X)) NXY, .
Proof. Notice that £ - X = woy(£ - v), so that WMoy (£ - \) = W woy(f - v). The desired
isomorphism then follows from the fact that Wy is the stabilizer of £ - v for oy, and from
the well-known fact that u — uoy(¢ - v) induces a bijection

WE ~ WL v) XY,
U

Proposition 6.13. Assume that RV is irreducible. For any facet g C a7 and w € W8, we
have
_ {w} if g is special and char(k) =0
w =
(W e Dy We) N W8 otherwise.



Proof. If g is not special, then we have rg(w) = —1 by definition and
(WD W,) Ny We = W N We = ;WE,

which does coincide with w thanks to Theorem So we assume from now on that g is
a special facet. We will first treat the case where char(k) = /.

Let w,v € (W8, v € XV Nay be such that g = {v}, and put wg = {A\}, vg = {u}.
Notice that woy(£ - v) = £ -\, vog(£ - v) = £ - u, and recall that, thanks to Proposition
coupled with , we have

Homriy,, (Grk) (%ZAW’ %ﬂw) = HomlgarIW(Flg,k) (€8, EF),

which implies that wZgv < (£-X\)%2({- j1). Moreover, recall that by the geometric linkage
principle ([RW20, Theorem 8.5]) we have

Vy e XYy, (0-N)%ay =~y € Wog(l-N),
so that in particular
(6.8) (b- NPy =~y el- XYﬁL.
Therefore, Lemma [6.12] (applied to r = rg(w)+1) implies that our claim on @ is equivalent
to showing that
X =wreH e, (0. ) NXY,,
where £ - X denotes the equivalence class of £ - A for the equivalence relation ~ on XYF ey

By definition of rg(w) and rg(v), we know that there exist X',/ € XY, such that

¢rs(@) . X = X and ¢7s() . 1/ = ;1. Assume (without any loss of generality, up to switching
the roles of A\ and p) that rg(v) > rg(w), so that Proposition [6.9| yields

IW o IW IW o IW
(6.9) HomTiltIW(Gr,k)(%.A "%u )EHOInTﬂtIW(Gr,k)(y,\/ 7%rg<v>frg<w>,w)-

If we denote by g’ C @y the facet (for oy) containing the element of Wo,\ Nay, then ¢~!.g’

is a facet (for o;) contained in a7 which is not special (because otherwise we could write
g’ = {¢- X'} for some weight \’, and X = w"ge(¢ - N") = £ - (w51 \") for some w” € W,
contradicting the definition of rg(w)). So thanks to (6.5) and Theorem we get

N = WD()\/ N Xi-&-'
In particular, if 7¢(v) > 7¢(w), then we easily see that ¢"&(®)=7e() .,/ ¢ W5,\| so the
right-hand side in is non-zero only if rg(v) = rg(w). This observation, together

with and , allows us to deduce that ¢re(@)+1. )\ c ¢rs(W)+1 . X7 The reversed

inclusion ¢8(W)+1.\ < gre(w)+1 . X/ i obtained by applying Corollary We finally get
the desired equality:

X = fra()tl .\ = gre()F1 3 — e+l g N A XY, = W@ g, 0. 3) N XY,

Now we pass to the case char(k) = 0. We want to show that for any w’ € fW#8 such
that w’ # w, we have
(6.10) Hom%y g 1) (€ €8) = 0.
We claim that there exists w € Q such that w{0} = g. Indeed, the map u +— u{0} is
actually a bijection from € to a; N X" thanks to the first point of the remark in [Boul, Ch.
VI, §2.3]. We then have an isomorphism LT Py ~ WL TG ™1, and conjugation by & yields
an isomorphism

Flc{’o} ~ Flg.



+

w, so that we get an equivalence of

Since w belongs to €2, conjugation by w preserves Iw
categories

(6.11) D%w(Flza k) ~ D%W(Fl?o}a k).

This equivalence implies that we only need to prove with g replaced by {0}. Now,
recall that Flipy ~ Gr and let \,\ € XY, be such that wg = {\}, w'g = {\}. By
[BGMT19, Remark 3.5], the complex &, is isomorphic to ICX" when char(k) = 0 (which
denotes the intersection cohomology complex on Gr associated with A, cf. subsection [6.2)).
Therefore in characteristic zero we have an isomorphism

Hom?, i (Eurs €w) = Homi, o (IC3Y, ICTY).

D%W(FI‘EO},

But we know from [BGM™19, §3.2] that we have an equivalence of triangulated categories
Db, (Gr, k) ~ D*Pervyy(Gr, k), and that Pervpyy(Gr, k) is semi-simple when char(k) = 0
thanks to [BGM™19, Corollary 3.6]. Therefore the right-hand side above is zero when
A # X and char(k) = 0, which is equivalent to w # w’'. E O

This last result coupled with Proposition [5.18| now enables us to deal with the case
where SRY splits into irreducible root systems, inducing decompositions W = Wy x - - - x W,
and g = g1 X -+ X g, (see the beginning of subsection .

Theorem 6.14. Assume that char(k) = £. For any facet g C a7 and w = (wy,- -+ ,w,) €
W8, we have

T
w =[] w0 Wy, 0w,
i=1
When char(k) = 0 and r(w;) > 0 for some i, one replaces the i’th component in the above
product by {w;}.

7. APPLICATIONS TO REPRESENTATION THEORY

7.1. Preliminaries on alcoves. Just as in subsection the action e, of W on E defines
a hyperplane arrangement .#”, where the shift by p¥ induces a bijection between .7’ and
. We will call a connected component of E\.7” an alcove for e;, and a facet contained
in the closure of an alcove for e, will be called a facet for e,; once again shifting by p"
induces a bijection between facets for e, and facets for oy, and composing this bijection
with the dilation by £~! gives a bijection with facets for o;. We put Cy := a; — p¥. The
bijection between sets of alcoves allows us to define right and left actions of W on these
sets, together with the Bruhat order < and the periodic order =<, by transport of structure
from the set of alcoves for o; (or equivalently, by seeing every alcove for e;, resp. for oy,
as a W-translate of Cy, resp. of ay). Note that if A, B are two alcoves for ey, then we
have A < B < A 1 B, where the order 1 is defined in [Jan03| §6]: this is an immediate
consequence of [Jan03l II, §6.6, (4)] (which says that 1 is invariant under translation)
together with [ARIS| II, Lemma 10.1] (which implies that 1 coincides with the Bruhat
order inside of €," — p", and thus with <). For any alcove C for e;, we define the alcove
C for oy, resp. the integer d(C), by transport of structure using once again the bijection
between alcoves for e, and oy (notice that d(C) is then the number of hyperplanes of J#”
separating C' from Cp).

Mynstead of using the equivalence lb we could have argued by saying that Flg is a connected
component of Gr.



For any facet h for e;, we will denote by Wy, ., C W the stabilizer of h for e,. One
can easily check that we have

Whie, = Whipv o, = Wit (V)

where the second and third sets denote stabilizers for oy and o; respectively.
Let A\ € XYF and h C E be the facet for e, containing A, which is of the form

h={peE|(utp’,a)=Lln,VYa e R)(h), l-(na—1) < (u+p",a) < l:n, Va € RY (h)}

for suitable integers n, and a partition R4 = R (h) UKL (h). If we let C\ be the alcove
for e, defined by the integers (n4)aem, , then C) is the only alcove satisfying

AeCri={neE |l (na—1)<(u+p’,0) <Ll ng Vo eRy}.

The set Cy (which is denoted by Cy in [Jan03]) is called the upper closure of Cy. The
alcove C) can be characterized as the only alcove containing h in its closure which is
minimal in Wy, ., e C) for the order < (cf. [Jan03, §6.11]). Now, let us denote by p the
element of 1V e; A contained in Cy, by g’ C ay the facet containing p + p" and by w the
element of ;W 8 such that woy(u + p¥) = A + p¥ (cf. the first isomorphism of )
Then the alcove A := p¥ + C) is the only alcove for o; containing A + p¥ in its closure
which is minimal in

Wh-HJVﬂeA = ng’,DeA = AWg’ﬂe

for <. Likewise, the alcove A, := £~ A is the only alcove (for 01) containing £~ (h+p")
in its closure which is minimal in A, Wy for <, where g := (=1 . g'. By definition of the
operation " on the set of alcoves for ey, we have C = ¢- A,, — pY, and so Cy—0- p’ =
(- (A, —pY) — p¥. In particular (once again by definition of the application d(-) on the
set of alcoves for e;), we have

(7.1) d(Cx— - p") = d(Ay, = p").

7.2. A new proof of Donkin’s Theorem. As an application of the study that was made in
the previous sections, we can give a new proof of the description of blocks of Repy (GV).
Unless specified otherwise, G is assumed to be a semi-simple algebraic group of adjoint
type over F (so GV is simply connected). For any A € XV, we define r(\) to be the unique
non-negative integer such that

= gr()\) . XV\ gr()\)-‘rl XV

If we let X be the W-conjugate (for the action og) of A contained in @y, gy C @y be the
facet containing A, put g := ¢~! - gy and let w be the unique element of (W8 such that
wogN = X (cf. (6.4)), then one can easily check that

r(A) = rg(w) +1,

where rg(w) is as it was defined in subsection

We take back the setting of the beginning of subsection for the next statement:
since GV is semi-simple and simply connected, we get a decomposition G¥ = GY x---x GY
into simply connected simple algebraic groups, each GY admitting R} as a root system;
this decomposition induces a decomposition of the root system, affine Weyl group and
dominant characters attached to GV. Moreover, for every i, we will denote by p) € Xx i
the half sum of positive coroots relative to GY and, for any positive integer r, we will

denote by Wi(r) the subgroup of W; whose translation part has been dilated by ¢" (cf.
subsection for the precise definition).



Theorem 7.1. Let = (p1,---, pr) € XY =, X/ '+, and denote by @ the equivalence class

of w for the equivalence relation ~ (cf. section @) on XY (seen as the weight poset of
Repy (GY)). We have

.
_ ity
o= H Wi(T(.“' [29)) o 1L N X;/’+
i=1
Proof. Recall that thanks to the geometric Satake equivalence (Theorem and Theorem
we have an equivalence of highest weight categories
(7.2) Repy (GY) = Pervryy(Gr, k)

sending a tilting module 7}, to the tilting Iwahori-Whittaker perverse sheaf Q/\IW, where
A := p+p". Therefore, proving the claim is equivalent to showing that for any A € XY =
XY +p¥ =[LXY, +p)), we have the equality

,
(7.3) X=[Iw o nxy,

i=1
where A now denotes the equivalence class of A = (\1,---, ) for the equivalence relation

~ on XY, seen as the weight poset of Pervzyy(Gr, k).

Denote by A the unique W-conjugate (for the dilated box action oy) of A\ which is
contained in @y, by gy C ag the facet containing X, put g := ¢~! - gy C ay and let w the
element of {W# such that wo,\ = A. Recall that {8\ = Wo, N N XY, . By (6.5), we
have

(woph') ~ (W'egN) <= w ~g W', Yw,w' € (W8,

and by Proposition [5.18| we have

W g W= w; ~g, Wi Vi,
where w = (w1, ,w,), w' = (W], - ,w.).

On the other hand, the linkage principle tells us that

(U}Dg)\l) ~ = e WDg)\,,
from which we deduce (also using Lemma |6.12)) that proving (7.3)) is equivalent to proving
that

w = H W wZW N W;s.
But this last equality was proved in Theorem (because 1(\;) = g, (w;) + 1 for all
). 0
We can also apply our Corollary to give a bound on the length of a minimum

chain linking two weights in the same block. We start with a lemma.

Lemma 7.2. Let A\, p € XY, r € Z>q, and put N :==0"-(A+p")—p", p/ == 0"-(u+p¥)—p".
We have
(Ty : Vo) = (T : V,).

Proof. By the geometric Satake equivalence (Theorem coupled with Theorem we
have an equivalence of highest weight categories

Repy (GY) = Pervoy(Gr, k),
sending 7 to 7 awv for every v € XY. We can thus apply Corollary

(T)\/ : /) (y7 {(A+pY) V o -(u+pY )) [I (:%\%V,V%v) = (T)\ : VM)



Proposition 7.3. Assume that GV is a simple and simply connected algebraic group over
k. Let \, N be two elements of XY in the same equivalence class for ~, and denote
by A (resp. N) the unique element of XY which satisfies X + p¥ = " - A+ pY) (resp.
N4 pY =0 (N+pY)), where r = r(A+p") (notice that X = X\ when r =0). Also denote
by C5 (resp. Cy,) the alcove containing X (resp. N') in its upper closure. Then there exists
a chain of dominant characters

)‘S = AaAS—la"' 7)\0 = )\/
such that, for all i € [0,s — 1], there exists an indecomposable GV -module M; satisfying
[Mi : L)\i] 75 0 and [Mz H L)\H_l] 75 0

and such that R R
s<24d(C5—L-p")+d(Cy —L-pY).

Proof. Denote by u the W-conjugate (for e;) of A which is included in Cy. We will first
deal with the case where » = 0, which means that the facets (for o;) containing A + pV
and X + p" are not special (notice that, since A and X" are in the same equivalence class,
we must have 7(\ + pY) = r(N 4 p¥) thanks to Theorem [7.1]).

We denote by g,, C @ the facet containing u + p", put g := . g, and let w,w’ be
the elements of (W8 satisfying wog(pu+p¥) = A+ pY, woe(u+pY) = N + p¥. The facet g
for op is a non-special facet included in the closure of ay. Let us also denote by A,,, resp.
Ay, the alcove containing wg, resp. w'g, in its closure and which is minimal in A, Wy,
resp. Ay Wg, for the order <. Thus, we can apply Corollary and pick a chain of
elements of (V8

Wg = W, Wsg—-1,"* , Wy = w’

as in this corollary, with s < 2+ d(A,, — p¥) + d(Aw — p"). Thanks to the equation ,
we have that d(Ay, — p¥) = d(Cy — £ - pY) and d(A — p¥) = d(Cyx — £ - p¥), so that s
is bounded by the desired integer. This same corollary tells us that for all ¢ € [0,s — 1],
there exists an element u; € {W# satisfying

nwi,ui<1) # 0 and nwi+1,ui(1> # 0.

By Proposition we can replace n with ‘n in the above, so that the character formula
of tilting modules given in [RW20, Theorem 8.9] yields

(Tui.[p/ : vwiq,u) # 0 and (Tuio(gu : vwi+10gu) # 07
which implies that

[Tu¢°zu : LU/’L‘Z,U«] # 0 and [TU¢'eu : Lwi+1°e,u] 7é 0.
So we get the result by putting \; = w; ey u and M; = T),q,,-

Now we assume that 7 > 0. Since r(A+p) = (XN +p) = 0, we can apply the previous
step and find two sequences of dominant characters (\;), (7;) of the desired length such
that A = A, Ao = X and

(Tgi : V;\i) 75 0 and (Tgi : VS\¢+1) 75 0.
By Lemma we see that if we put v; := €7 - (0; 4 p) — p and \; := €7 - (\; + p) — p, we
get:
(TVi : V)\Z) = (Tgi : VS\Z) 7é 0 and (Tyi : V)\i+1) = (Tgi : V;\Hl) 7é 0,
from which we deduce that
[T,, : Ly,] # 0 and [T,, : Ly,,,] # 0.
This concludes the proof. O



We will now use the process described in [Jan03|, §11.7.3] to deduce from Theorem 7.1
the block decomposition of Repy (G") in the general case where GV is a reductive group
starting with a lemma.

Lemma 7.4. Let Hy, Hy be reductive algebraic groups over k, with Th1 C By, resp. Ts C Ba,
a maximal torus and a Borel subgroup of Hi, resp. of Ha, and ¢ : Hi — Hy a central
isogeny such that o(Th) = T, p(B1) = Ba. Denote by X(T1)+ C X(T1) (resp. X(T3)+ C
X(T3)) the dominant characters and characters associated with Ty C By (resp. Ta C Bs).

Then ¢ induces an injective morphism X(T2);+ < X(T1)4, and the blocks of Hy are
the blocks of Hy contained in X(1%)+.

Proof. Since ¢ is a central isogeny, the morphism induced on root data identifies the
root systems of Hy and Ha, (cf. [Jan03 §I1.1.17]). Therefore, the injection X(7%) —
X(T1) (induced by ¢|7,) induces an injection X(7%)4+ < X(71)4+. On the other hand,
pulling back by ¢ induces a fully-faithful functor ¢* : Repy(H2) — Repy(Hi), which
sends an indecomposable tilting module of highest weight A to the indecomposable tilting
module of same highest weight (cf. [Jan03, §E.7]), and such that there exists no non-
zero morphism between an indecomposable tilting module in the essential image of ¢*
and an indecomposable tilting module of Repy (H;) which is not in this essential image.
The conclusion follows easily, thanks to the description of blocks via tilting modules (cf.

Theorem . O

Corollary 7.5. Assume that G is a general reductive group. Denote by DGV the derived
subgroup of GV, by Ty the reduced part of the neutral connected component of the centre
of GV and let Hy,--- , Hy be the simply connected covers of the minimal closed connected
normal subgroups of positive dimension of DG". For each i € [1,t], also denote by T, the
split mazimal torus of H; determined by the split mazimal torus of GV which is Langlands
dual to T, by W; (resp. by XXJF, resp. by p;) the affine Weyl group (resp. the set
of dominant characters of T, determined by RY, resp. the half-sum of positive roots)
associated with H;, seen as a subgroup of the affine Weyl group associated with DG, and
by X(T3) the group of characters of To. Then there is a central isogeny

(p:'DGvXTQ—)Gv,
which induces an injection XY — []; Xy, x X(T2) and such that, for every
A= ()\la e ))\ta >‘t+1) € XY‘-a

we have

t
X — H Wi(T(Ai"Fpi ) o )\7, N Sg;/7+ % {)\t+1}'
=1

Proof. The fact that ¢ exists follows from [Jan03, I1.1.18]. Moreover, we know that DGY
is a semi-simple algebraic group, so that we have a central isogeny Hj x --- x H; — DG,
where H{,--- , H, are the minimal closed normal subgroups of positive dimension of DG,
which are simple algebraic groups. We then get a central isogeny H; X - - - x H; — DG" by
replacing each H/ with its simply connected cover. Therefore, Lemma and Theorem
tell us that for any dominant character X' of the maximal torus TNDG" of DGV, the
associated block of Rep (DGV) is equal to

t
H WZ-(T(Ai+p;/)) o )\; N XZ-‘,—)
i=1

15We warn the reader that the statement (3) given in [Jan03] §I1.7.3] is wrong, since one needs to assume
the semi-simple group of loc. cit. to be simple for it to be correct.



where we see \’ as the element (A, - -+, A}) of [[; X}/, (notice that the above set is included
in the set of dominant characters of T NDGY, because each W; is a subgroup of the affine
Weyl group associated with DGY).

Finally, since T» is a torus (in particular, the category Repy(72) is semi-simple), one
can easily check that the block of A in DG x T is equal to the product of blocks associated
to (A1, -+, Ar) and Mgy in Repy(DGY) and Repy(T») respectively, i.e. to

t
Xit+pY
HWZ(T( +p;)) o\ N XX-}— > {)\tJrl}-
i=1
This concludes the proof by Lemma since the above set is included in XY. O

Remark 7.6. We take back the context of Corollary and let X\, \’ be dominant charac-
ters in the same equivalence class. The result of Proposition can also be generalized
to the case where GV is a general reductive group. Indeed, using the central isogeny
DGY x Ty, — GV, one is reduced to proving it for DG", and since DG is a central isogeny
of the product of ¢ simple subgroups (because DGV is semi-simple), we can further reduce
to the case where GV is a product of simply connected simple groups Hj x - - - x Hy. Finally,
the equality of Proposition allows us to bound the length of a minimum chain
linking two weights (A1,--+, A;) and (N}, ---, A}) in the same block by max{s;, i € [1,t]},
where s; is the bound obtained in Proposition [7.3] for the length of a minimum chain
linking A; and \.

7.3. Block decomposition for a quantum group. In this subsection, G is semi-simple of
adjoint type. We assume that char(k) = 0, and that there exists a primitive ¢-th root of
unity ¢ in k. Moreover, we assume that £ is odd, greater than the Coxeter number of RY
and not equal to 3 if R has a component of type G2. We then denote by U,k Lusztig’s
quantized enveloping algebra specialized at q and associated with GV (we take the con-
ventions of [Jan03| §H]). The category of finite dimensional representations of Uy x, which
we will denote by Rep(U, k), has many features in common with the category Rep(G}.),
where GY, denotes the Langlands dual group of G over some field k' of characteristic
(. In particular, Rep(U, k) is a highest weight category with weight poset XY; for any
A € XY, we will denote by T;,(A), resp. V4(A), the indecomposable tilting module, resp.
the costandard object, with highest weight A.

We fix a weight A € C; N XY, let g’ be the facet for o, containing A + pV and w, w’
be elements of W&, where g := ¢! . g’ (recall the bijections ) Most importantly for
us, the multiplicity of costandard objects in tilting objects is known.

Proposition 7.7. We have
(Ty(w g N) : Vg(w' o5 X)) = nyy p(1).
Moreover, we have that (Ty(w e; A) : V(X)) = 0 whenever \' ¢ W ey \.

Proof. The second claim is due to the linkage principle for quantum groups, see [APK91],

§8.
Let us denote by W ) the subset of W consisting of elements w which are minimal in
wWy, and recall that the action of Iw by left multiplication on FI3 , resp. on Gr°, yields

stratifications
(Flgl)red = |_| Xua (Gro)red = |_| vaa
ueW ’UEW(O)
where Y, := Iw - 4, resp. X, := Iw - 0, is an affine F-space of dimension [(u), resp.

I(v). Moreover, the canonical projection 7 : Fl; — Gr° is ind-proper, Iw-equivariant and
satisfies 771(Y,,) = Ll.ew, Xuw- for every w € W(p). We denote by Perv iy (Fl;, , k), resp.

ayl?



PeTV(IW)(GTO,k), the category of perverse sheaves on FI3 , resp. Gr°, constant along the
Iw-orbits, and by Repy(Uy k) the Serre subcategory of Rep(Ug k) generated by the simple
objects whose highest weight belongs to W e, 0 N XY (the fact that Repy(U, k) is truly a
block will follow from Proposition .

Thanks to [ABG04], we have an equivalence of highest weight categories

Repg(Uy k) = Perv(iy) (Gr®, k),

sending Ty (x e, 0) (resp. V4(y e, 0)) to the indecomposable tilting object TJEI,VZ) (
the costandard object V;IENI)) associated with z, for any x € (W (resp. y € fW)
For any u € W, let us denote by 7, € Perv(yy)(Fl,,, k) the indecomposable tilting

object associated with w; by [Yun09, Proposition 3.4.1], we have an isomorphism m.7, ~

7™ for any w € W). Therefore, combining [Yun09, (3.4.1)] with [Yun09, Theorem
5.3.1], we get

resp. to

(TSW) . V&IW)) = Z (—1)l(z)hvz7u(1) Vu,v € Wy,
zeWo

where (hg,, z,y € W) denotes the ordinary Kazhdan-Lusztig polynomials associated
with W, as described in [Soe97]. Using [Soe97, Proposition 3.4] together with the fact
that hyy = hy—1,-1 for all m,y € W (which is a consequence of the fact that the anti-
automorphism i from the proof of [Soe97, Theorem 2.7] commutes with the involution
d : H — H defined in loc. cit.) show that the right-hand side in the above equation
coincides with n,-1,-1(1). So we get

(Ty(w o 0) : Vg(w' 0, 0)) = (T : VI ) =m0 (1),

w1 w/'—1

which proves our claim in the case where A = 0. Using the second point of [Soe97, Remark
7.2], one can deduce from this the general case. U

Remark 7.8. The character formula of Proposition [7.7 was originally stated as a conjecture
in [Soe97, Conjecture 7.1], and proved in [Soe98] for ¢ > 33.

In particular, the second assertion of Proposition [7.7] tells us that 7 C W e, i for any
p e XY.

Corollary 7.9. We have an equality
dimyHompep(p, ) (Ty(w o N), Ty(w' 8¢ N)) = dimkHoml'garIW(Flg’k) (E8,E8).
Proof. Proposition and standard arguments (see [AR10, §6.2]) show that we have

(7.4) dimyHompep(rr, ) (Ty(w ¢ ), Ty(w' op N) = Y nya(1) -y (1).
yerWe

But we also know that

dimy Homz)%w(m;,k) (E8,VE) = ny (1) Yo,y € (WE

thanks to (4.8) together with Lemma So by [JMW14, Proposition 2.6] the right-hand
side in ([7.4)) coincides with

dimkHOml.:,arIW (Flg ,k) (gq% 5 55/ ) .

6Notice that w — w~! induces a bijection (W =~ W<0).



Therefore, we get a very similar situation as the one in subsection [6.5
fwow\ww'ow\(:}wwgw’.
For any p € XY, recall the definition of r(x) from subsection and put

1 ifr(p)=0
0 othewise.

6(p) =

We define W to be equal to W when § = 1, and to {id} otherwise. The next result is
obtained from Theorem in the same way that Theorem [7.1] was, from which we take
back the notations.

Proposition 7.10. Let p = (p1,- -+ ,ur) € XY =[], XZ-V,JF, and denote by 1 the equivalence
class of p in XY (seen as the weight poset of Rep(Uyk)) for the equivalence relation ~
from section |3 We have

T
_ S(pi+py
u:HWi(“ p)OguiﬂX;{+.

i=1
Remarks 7.11. (1) The proof of the previous proposition does not require Smith-
Treumann theory (because the proof of Theorem does not require it when

char(k) = 0).
(2) One can use Corollary[5.33]to give a bound for the length of a minimal chain linking
two weights in the same block for Rep(Uy k), of the same kind as Proposition
(3) Another proof of Proposition was found in [Tha94] (under the same assump-
tions on ¢). However, the results of loc. cit. use the proof of Donkin from [Don80],
so it does not allow to give a bound as in the previous point.
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