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Twin spotlight beam generation in quadratic
crystals
Raphaël Jauberteau 1,2✉, Sahar Wehbi1, Tigran Mansuryan1, Alessandro Tonello1, Fabio Baronio 2,

Katarzyna Krupa3, Benjamin Wetzel 1, Stefan Wabnitz 4 & Vincent Couderc 1

Optical rogue waves have been extensively studied in the past two decades. However,

observations of multidimensional extreme wave events remain surprisingly scarce. In this

work we present the experimental demonstration of the spontaneous generation of spatially

localized two-dimensional beams in a quadratic nonlinear crystal, which are composed by

twin components at the fundamental and the second-harmonic frequencies. These localized

spots of light emerge from a wide background beam, and eventually disappear as the laser

beam intensity is progressively increased.
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Solitons are self-sustained nonlinear waves, and the abun-
dance of their observations in many different nonlinear
media is proof of their universal nature1,2. In fiber optics,

ultrashort pulses usually spread in time as a result of group
velocity dispersion (GVD). On the other hand, temporal solitons
are special pulses which self-preserve their temporal envelope,
when GVD is stably compensated by fiber nonlinearity. Solitons
in optical fibers are exact solutions of the well-known 1-dimen-
sional (1D) nonlinear Schrödinger equation (NLSE)3–5. Con-
tinuous waves or long pulse envelopes instead can have a
completely different fate: they can be unstable against temporal
perturbations and eventually break up in a train of short pulses.
Although the early stages of this process, which is known as
modulational instability, can be described by a simple linear
stability analysis, the nonlinear stage of the evolution of mod-
ulation instability can also be described in terms of analytical
solutions of the NLSE. Among these nonlinear modulation waves,
we may cite the so-called Akhmediev breathers6, Peregrine
solitons7, and Kuznetsov-Ma breathers8,9. All of those nonlinear
waves exhibit localization both in the temporal and in the long-
itudinal (or propagation) coordinates. Specifically, Peregrine
solitons are often referred to as an example of waves that “appear
from nowhere, and disappear without a trace”10. All of these
waves have been clearly observed in optical fiber experiments,
although most of their theory was first developed in the context of
hydrodynamics11–13. In spite of being fully deterministic solu-
tions of the 1D-NLSE, nonlinear modulation waves have been
proposed as a fundamental model for rogue waves, which
represent statistical extreme events in many different physical
settings, such as oceanography. The randomness of the initial
conditions for wave propagation associates rogue waves to the
appearance of rare events, whose presence can be detected by
long-tails in the probability distribution of, e.g., the wave height14.

The origin of the success of the 1D-NLSE model is associated
with its generality for describing wave propagation in weakly
(cubic) nonlinear and dispersive media, as well as its full
integrability by the inverse scattering method. Notably, determi-
nistic rogue waves have been also predicted in media with
quadratic nonlinearity. In this case, the three-wave mixing
equations apply, which is another example of a fully integrable
nonlinear wave model15,16. Incidentally, under the approximation
known as cascading, the three-wave mixing equations can also be
reduced to the 1D-NLSE.

If one replaces the temporal coordinate with a transverse
spatial coordinate, the 1D-NLSE equation describes beam pro-
pagation when diffraction (analogous to dispersion) is affecting
the local beam size (analogous to the pulse temporal envelope).
The analogy is an immediate draw since the transverse spatial
domain is inherently bidimensional, while the time domain is
naturally described by a single dimension. A good approximation
for a one-dimensional “flat” transverse spatial dimension is
provided by the case of a slab waveguide (or possibly a very
elliptical beam): spatial extreme waves have been predicted to
appear in 1D quadratic media17–19. A further extension of the
NLSE model could be considered for arrays of waveguides or for
multimode propagation in a waveguide: in both cases, multi-
modality can be seen as a synthetic transverse dimension. Indeed,
soliton solutions exist both in arrays of waveguides and in mul-
timode fibers20,21.

When the full bidimensional nature of the transverse spatial
domain is considered, the beam propagation problem is far more
complex, and many dynamical systems are no longer integrable.
Nevertheless, both “solitons” (under their less demanding defi-
nition of nonlinear self-preserving waves) and modulation
instabilities have been reported for 2D systems22–26. When the
interacting optical waves have different linear group velocities, in

the presence of diffraction and nonlinearity, the nonlinear wave
models increase their complexity. In nonlinear media with
dominant quadratic susceptibility and in the presence of crystal
anisotropy, spatial 2D solitons are conditionally stable solutions.
This is the case of walking solitons27, with their related beam
instabilities28,29.

The existence of extreme waves in 2D wave systems is still an
open question: this is new territory yet largely to be explored. The
first endeavor in this research direction was the numerical pre-
diction of rogue waves, as reported in ref. 30. Spatial 2D rogue
waves and caustics generated by nonlinear instabilities have been
studied by means of a statistical approach in31. Some mathema-
tical models also predict the existence of 2D deterministic rogue
waves: for example, the three-wave mixing model which describes
the nonlinear coupling between a fundamental frequency (FF)
wave and its second harmonic (SH). Remarkably, under some
approximations32,33 one obtains an integrable model, in the
frame of which the existence of extreme waves has been recently
predicted32. Another important consideration is that, when
dealing with the propagation of nearly plane waves or relatively
wide beams, that is, of intrinsically 2D waves, the observation of
spatial modulation instability in quadratic media has been
reported34–36. However, when taking into account the presence of
the temporal dimension, then the analysis of modulation
instabilities should be extended to fully 3D waves. In analogy with
the 1D case11, it is then natural to speculate whether in a 2D
crystal with quadratic nonlinearity or even in 3D quadratic sys-
tems (when time is also considered), the decay (or the instabil-
ities) of spatially localized solutions which is observed when, e.g.,
the input power is varied, can be interpreted as a signature of the
underlying existence of rogue waves.

The present work demonstrates we believe, for the first time, in
the generation of extreme light beams in anisotropic crystals with
quadratic nonlinearity. Specifically, we report the experimental
observation of a deterministic 2D spatial twin spotlight beam
(TSB), which appears from nowhere and disappears without a
trace as the input laser power is progressively increased. By twin
beam, we mean a beam composed of two frequency components,
one at the FF and one at the SH frequency.

Results and discussion
Our experimental analysis was carried out with a sample of
Potassium Titanyl Phosphate, a nonlinear crystal with quadratic
susceptibility, commonly known as KTP. The crystal, 30 mm
long, was cut to maximize the efficiency of second harmonic
generation (SHG) by exploiting its anisotropic nature at room
temperature. The nonlinear process is known as type-II SHG, as it
involves the nonlinear coupling of the two polarization compo-
nents of the input FF beam, propagating along the ordinary and
extraordinary axis of the crystal, and the SH wave, which is
polarized along the extraordinary axis. Light propagation in
anisotropic crystals (in the specific case, the KTP is an orthor-
hombic biaxial crystal) is quite peculiar, since the wavevector (the
vector normal to the wave fronts) does not align, in general, with
the direction of the energy flow (the Poynting vector). Fig. 1 gives
a visual interpretation of the nonlinear frequency conversion
process. The input optical beam is linearly polarized: the electric
field forms an angle α with the horizontal reference axis. The
white arrow represents the wavevector of the FF, while the
Poynting vectors are indicated in red for the FF and in green for
the SH. The Poynting vector of the FF extraordinary wave (e) has
a spatial walk-off angle ρ1 with the horizontal axis. Similarly, the
Poynting vector of the SH wave (e) has a spatial walk-off angle ρ2.
Figure 1 also shows the orientation of the KTP crystallographic
axes, X, Y, and Z, as well as the two relevant angles θ and φ with
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respect to the propagation reference frame, which are used in
order to control the phase matching for type-II SHG.

Experiments have been carried out close to the values θ= 90°,
φ= 23.5° at the phase matching of type-II SHG. Small angle tilts
out of these reference values are a common way to introduce a
controlled phase mismatch. In our experiments, we noticed the
presence of a spatial asymmetry among the three waves, which we
may explain by the presence of an additional walk-off of the
(pseudo) ordinary axis, which we indicated by ρ0. As it is well-
known, these walk-off angles and the consequent beam splitting
induce limits to the effective nonlinear interaction length along
the propagation direction.

In order to demonstrate the generation of a spatial two-
dimensional TSB, let us consider first a series of experimental
results obtained with a polarization orientation angle α= 47°:
such a choice imposes a power unbalance in the FF between the
ordinary and the extraordinary axis. Figure 2 summarizes the
experimentally obtained spatial beam shapes of the FF and the SH
for different input intensities. When the intensity is relatively low,
we observed only weak conversion into the SH in absence of any
change of shape in the FF (see Fig. 2a for FF and Fig. 2e for SH).

When we increased the input FF beam intensity up to 0.07 GW/
cm2, we observed the formation of a narrow-coupled FF-SH
beam trapped at the intersection of the two diverging beams at
the FF. Such a self-focused beam, or TSB, has a diameter of
~40 μm, that is about ten times smaller than the diameter of the
input FF beam. The TSB, which results from a strong reshaping of
the input FF beam, has the main features of a spatial soliton
surrounded by radiation:27 it involves both spectral components
at the FF and the SH, as shown in Fig. 2b, c, f, g. The maximum
peak intensity of the TSB, which is 2.7 times higher than that of
the encircling background, is reached for an input FF intensity of
0.64 GW/cm² (see Fig. 2c).

Now, surprisingly, we observed that by increasing further the
input FF intensity, the TSB suddenly vanished (see Fig. 2d): its
existence is thus confined to a limited range of input intensity
values. At relatively high intensities, the smooth FF background
beam recovers a spatial profile, which is nearly as wide as that
observed at low intensities, except for the presence of minor
residual distortions. To summarize, upon an increase of the input
laser intensity, the TSB is first formed, then it grows up to an
intensity elevation, which is nearly three times that of the local
background, and then it disappears without leaving a visible trace.
The observed TSB dynamics is thus very different from that of
spatial solitons, which tend to persist and can even be strength-
ened upon increasing input FF intensity. It is important to notice
that as the FF component of the TSB grows up, its shape is
replicated at the SH, with high contrast from the associated
background. However, the beam dynamics at the FF and the SH
are very different at very high intensities (cf. Fig. 2d, h).

As can be seen, although the high-energy located spot at the FF
nearly disappears, beam-breaking occurs at the SH. Specifically,
for input intensities of 9.3 GW/cm2, the SH breaks up into a
speckled beam (Fig. 2h and Fig. SM4 in Supplementary Note 3).
The process of beam-breaking at the SH has been studied in detail
in a related study37.

Figure 3 collects many different transverse beam sections at the
FF vs. the input FF intensity: panel 3(a) clearly shows the
appearance and the vanishing of the TSB. Whereas panel 3(b)
clarifies the quantitative dependency of the TSB to background
intensity contrast vs. the input intensity.

We observed that the TSB generation is influenced, similarly to
quadratic spatial solitons, by the power unbalance between
the two polarization components of the beam at the FF, as

Fig. 1 Graphical illustration of beam propagation in potassium titanyl
phosphate (KTP) crystals. The fundamental frequency (FF) ordinary (o),
FF extraordinary (e), and the second harmonic (SH) beams have different
walk-off angles, ρ0, ρ1, and ρ2, respectively. The orientation of the reference
frame with respect to the crystallographic axes X, Y, and Z is identified by
the angles θ and φ. The orientation of the input linear polarization of the
light beam is measured by the angle α.

Fig. 2 Output twin spotlight beam (TSB) profiles when increasing the input beam intensity IFF. a–d Refer to the fundamental frequency (FF). e–h Show
the corresponding second harmonic (SH) intensity profile. Color gradient goes from blue (the lowest light peak intensity) to red (the highest light
peak intensity).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00976-2 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:197 | https://doi.org/10.1038/s42005-022-00976-2 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


determined by the polarization orientation angle α. Since the
beams carried by each of the two polarization components have
slightly different propagation directions (owing to spatial walk-
off), by modifying the polarization angle α, the spatial position of
the TSB can abruptly hop from one output spatial position to
another one. Although the TSB is systematically obtained for all
angles from α= 10° to α= 80° for a fixed FF intensity, the ele-
vation of the FF component of the TSB from the surrounding
background and its spatial position varies: maximum TSB
intensity is reached for two symmetric polarization orientation
angles, close to either α= 30° and α= 60° (Fig. 4a): the corre-
sponding spatial shape is given in panel (4b). When the input
polarization angle was set to α= 45° (i.e., equal input FF inten-
sities in both polarization axes), we observed the presence of two
competing TSBs (Fig. 4c, d). Panel (c) shows an example of

spatial switching of the TSB position for three particular values of
α; while panel (d) illustrates the sharp nonlinear transition of the
spatial TSB position for a set of values of the orientation angle α.
Note that analogous dynamics were earlier reported for spatial
solitons38,39: the sharp dependence of the output beam position
on the input state of polarization could find possible applications
to ultrafast all-optical switching, as polarization comparator24, or
even, by extension, as an optical implementation of an activation
function for an artificial neuron.

Additionally, in the large positive phase mismatch regime, we
also observed the presence of multiple TSBs (see Fig. SM1 in
supplementary note 1).

In our experimental analysis, we found that the generation of
the TSB not only involves the spatial domain, as it can be detected
by a slow-time response camera but also has a direct influence on

Fig. 3 Fundamental frequency (FF) transverse beam sections at the crystal output. a Twin spotlight beam (TSB) sections of the FF component of the TSB
vs. input FF intensity; b peak intensity measuring the intensity elevation of the FF component of the TSB from the local background vs. input FF intensity.
R is the peak intensity ratio between the top of the TSB and the encircling background.

Fig. 4 Experimental results on the efficiency of the 2D spatial twin spotlight beam (TSB) trapping and associated spatial switching. a Peak intensity
ratio between the TSB and the input beam; b Example of TSB generation for an input polarization orientation angle α= 60°; c Example of TSB spatial switching
for three different input polarization angles; d Spatial position of the TSB vs. the input polarization angle α (input beam intensity IFF=0.64GW/cm²).
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the temporal shape of the FF component of the TSB. For ana-
lyzing temporal reshaping effects in detail, we measured the
temporal autocorrelation within the TSB area, and we varied the
input FF intensity (cf. Fig. 5a) as well as the FF-SH phase mis-
match. At low input intensities, the temporal autocorrelation
trace has a Gaussian shape with a 41 ps temporal width (com-
patible with a pulse duration of 29 ps FWHMI), see Fig. 5b.
However, once the TSB is formed, the shape of the autocorrela-
tion trace takes a nearly triangular profile of 24 ps (FWHMI), see
Fig. 5c. At even higher input powers, where the TSB is close to its
vanishing, the temporal autocorrelation trace exhibits several
peaks, which can be associated with a temporal break-up of the
underlying pulse, see Fig. 5d. Interestingly, different behavior is
observed for positive and negative values of the phase mismatch
(cf. Figs. SM2, SM3 in the supplementary note 2). Indeed, it is
known that temporal modulational instability may occur for both
positive and negative values of the phase mismatch in quadratic
crystals. However, asymmetric evolutions (i.e., different gain
profiles) of the sidebands are obtained when changing the sign of
phase mismatch40. Note that spectral sideband generation at the
FF and the SH have also been experimentally reported in ref. 36.
for similar pulse durations.

We would like to underline that the nature of the observed
extreme TSB is fully deterministic and reproducible. We con-
firmed its deterministic nature by numerically solving the non-
linear coupled equations involving the three interacting waves, i.e.,
the two FF beams and the SH wave. In the model, we included all
relevant effects, namely diffraction and quadratic susceptibility.
We limited our numerical analysis to the case of a simple spatial
interaction of the three waves, thus neglecting the temporal
dimension. Moreover, our analysis was limited to walk-off angles
corresponding to the two extraordinary waves, and we set to zero,
for simplicity, the FF ordinary beam angle ρ0. The input beam had
a Gaussian profile with a 400-μm diameter, and we superimposed
to it a weak bump, whose center had an offset of 200 μm in one of
the spatial coordinates, which was used as a seed.

In Fig. 6, we show a collection of numerically computed output
FF components of the TSB for different input intensities. As can
be seen by comparing Fig. 6 with Fig. 3a, numerical simulations
agree well with experimental results. In particular, the intensity of
the FF component of the TSB grows up to an elevation of about
2.5 times the background intensity. Then the TSB progressively
disappears when the input FF beam intensity grows larger. A
numerical study of the FF beam shape at different positions along
the crystal and at fixed input intensity is also given in supple-
mentary note 4 (Fig. SM5).

In conclusion, we demonstrated that a coupled FF and SH 2D
spotlight beam can appear and disappear at the output of a
quadratic crystal in the presence of a monotonic increase of the
input FF beam intensity. Such a beam bears a strong resemblance

Fig. 5 Time domain analysis of pulses from the output fundamental frequency (FF) component of the twin spotlight beam (TSB). a Autocorrelation
traces at different input intensities for perfect phase matching. Details of the traces: b Autocorrelation of the input laser pulse; c Autocorrelation at 1 GW/cm2;
d Autocorrelation taken at high FF intensities, such that the TSB has nearly vanished. The circular inset illustrates the orientation of the linear polarization state
of the input beam.

Fig. 6 Numerically simulated sections of the fundamental frequency (FF)
component of the twin spotlight beam (TSB) vs. the input intensity I0.
The images have been collected after propagation of 30mm. The color bar
relates to the light peak intensity (normalized with the encircling
background).
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to fully localized waves such as the Peregrine temporal soliton of
the 1D-NLSE, which also appears and disappears as the input
power grows larger, thanks to the equivalence between varying
power or propagation length. However, the localized wave that we
have unveiled here emerges in the frame of a genuine 2D non-
linear wave coupling process. Besides the resemblance with other
types of extreme waves, the full nature of the extreme or rogue
wave described in the present work appears to involve a coupling
between its spatial and temporal dimensions. Additionally, we
showed how the spatial position of the TSB can abruptly switch
upon a relatively small change in the linear polarization angle of
the input FF beam. Although phase mismatched SHG seems to be
the dominant nonlinear process in the early stage of the TSB
generation, the observed temporal wave breaking at the FF could
provide the mechanism which is responsible for its disappearance
at high intensities.

Methods
Experiments. We used a laser source at 1064 nm, delivering pulses of 30 ps with
pulse energies up to several tens GW/cm² and a repetition rate of 10 Hz. The
linearly polarized beam was collimated in the nonlinear crystal (beam diameter of
400 μm at 1/e² in intensity) by means of a convergent lens (f= 10 cm, the Fresnel
length associated to the beam is more than six times longer than the crystal length)
and a half-wave plate, which allows for setting the polarization orientation of the
input beam. An output convergent lens (f= 3.5 cm) was used to obtain a magnified
image of the output end face of the crystal on a CCD camera. An autocorrelator
was used to obtain the temporal evolution of the output FF beam. We used a type-
II KTP crystal cut for second harmonic generation at 1064 nm. The spatial walk-off
between the two FF beams and the SH is 3.48 mrad and 4.88 mrad, respectively.
The phase matching conditions were controlled through crystal orientation in
horizontal or vertical dimensions. Additional experimental results are discussed in
the supplementary material notes 1 to 3, and the reader can also find further
information about the experimental setup in ref. 41 Temporal autocorrelations were
obtained by selecting the TSB with a diaphragm and then by measuring the
autocorrelation at the FF.

Numerical simulations. We numerically solved the three-wave equations by
considering the presence of diffraction, the spatial walk-off between the FF and SH,
and the quadratic nonlinear response of the KTP at the relevant angles close to
phase matching. The numerical integration scheme was based on a standard
Runge-Kutta method. Details on the three-wave equations and simulation para-
meters can be found in supplementary note 4.

Data availability
The data supporting the findings of this research are available upon request from the
corresponding author.

Code availability
The code supporting the simulation plots inside our paper are available upon request
from the corresponding author.
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