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Abstract—Relational Graph Convolutional Networks (RGCNs)
are commonly applied to Knowledge Graphs (KGs) for black
box link prediction. Several algorithms, or explanations methods,
have been proposed to explain the predictions of this model.
Recently, researchers have constructed datasets with ground
truth explanations for quantitative and qualitative evaluation of
predicted explanations. Benchmark results showed state-of-the-
art explanation methods had difficulties predicting explanations.
In this work, we leverage prior knowledge to further constrain
the loss function of RGCNs, by penalizing node embeddings
far away from the node embeddings in their associated ground
truth explanation. Empirical results show improved explanation
prediction performance of state-of-the-art post hoc explanations
methods for RGCNs, at the cost of predictive performance.
Additionally, we quantify the different types of errors made both
in terms of data and semantics.

Index Terms—link prediction, Explainable AI, knowledge
graphs, graph neural networks, explanation evaluation

I. INTRODUCTION

Knowledge Graphs [1]] often represent facts as triples in the
form (subject, predicate, object), where a subject and object
represent an entity, linked by some predicate. Knowledge
Graphs are often incomplete. Link prediction is performed
on Knowledge Graphs to infer new facts from existing ones.
Several researchers have proposed to perform link prediction
on Knowledge Graphs using graph embedding algorithms.
These algorithms learn a function mapping each subject,
object, and predicate to a low dimensional space. A scoring
function is defined to quantify if a link (relation) should exist
between two nodes (entities). A Relational Graph Convolu-
tional Network (RGCN) [2]] generalizes Graph Convolutional
Networks [3]] to Knowledge Graphs, using the scoring function
from DistMult [4] as an output layer to return a probability of
the input triple being a fact.

RGCNs are treated as a black box, that is, the decision
function gives no insight, or explanation, as to why the model
arrives at a particular decision. As a result, several algorithms
for explainable link prediction have been proposed, in par-
ticular: ExplaiNE [5]] quantifies how the predicted probability
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of a link changes when weakening or removing a link with
a neighboring node, while GNNExplainer [6] explains the
predictions of any Graph Neural Network, learning a mask
over the adjacency matrix to identify the most informative
subgraph. ExplaiNE and GNNExplainer return explanations
to the user in the form of existing triples in the Knowledge
Graph.

Recently, researchers have proposed several datasets with
ground truth explanations for link prediction on Knowledge
Graphs, allowing for quantitative comparisons of predicted
explanations. The Royalty-20k and Royalty-30k datasets [7]]
were constructed such that each observation has one and only
one unique explanation. Researchers may want to know how
their explanation method performs when there are multiple
correct ways to explain why a relation exists between two
nodes. The FrenchRoyalty-200k dataset [8]] was constructed to
include all possible explanations for each triple in the training
and test set. This dataset includes a relevance score between
0 and 1 for each explanation based on how intuitive users
found it. For the aforementioned state-of-the-art explanation
methods, initial benchmark results showed these methods do
not always correctly predict ground truth explanations. Previ-
ous approaches to learning Knowledge Graph embeddings did
not have access to ground truth explanations, hence do not
incorporate information from explanations into the embedding.

In this work, we adapt RGCNs to incorporate prior knowl-
edge from ground truth explanations into each embedding.
This is done by constraining the cross entropy loss functions
used by RGCNs. We compare several different explanation-
constrained loss functions to an RGCN using the standard
binary cross entropy. Results show improved predicted ex-
planation performance of post hoc explanation methods for
RGCNs, at the cost of predictive performance. Additionally,
we quantify the different types of errors made in terms of data
and semantics.



II. RELATED-WORK
A. Link Prediction

Knowledge graph embedding algorithms [9] learn continu-
ous vectors for each subject, predicate and object. The loss
functions are often designed to capture specific algebraic
properties of predicates (symmetric, reflexive, transitive, etc).
A scoring function is defined to assign a value to each triple
based on if the subject, predicate, and object form a valid
fact. Typically, the scoring function is included in the loss
function. This paper focuses on performing link prediction
using RGCNGs.

A Relational Graph Convolutional Network (RGCN) can
also learn embeddings and perform link prediction on Knowl-
edge Graphs. The RGCN performs embedding updates for
a given entity by multiplying the neighboring entities by a
weight matrix for each relation in the dataset, and summing
across each neighbor and relation. A weight matrix for self
connections is also learned, and added to the neighbor embed-
ding summation. The cross entropy loss function optimized is
given by

1
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where 7 is the set of all real (positive) and corrupted
(negative) triples, w is the number of negative triples, |5 | is the
number of unique predicates, f is the function learned by the
RGCN, and for positive triples, the label y = 1 for positive
triples and y = 0 for negative triples. This is not the only
approach for link prediction (e.g. rule based, bayesian, etc.),
however, this work focuses on the evaluation and explanation
of link prediction on Knowledge Graphs using Relational
Graph Convolutional Networks.

LreoN = — ylog(f(s,p,0))
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B. Explainable Link Prediction

Several algorithms have been proposed to explain the pre-
dictions of RGCNs. For a model with scoring function g,
ExplaiNE [5] computes the gradient of the scoring function
with respect to the adjacency matrix. This measures the change
in score due to a small perturbation in the adjacency matrix,
that is, how much the score changes if a link is added or
removed between two given nodes.

GNNE«xplainer [6] explains the predictions of any Graph
Neural Network, learning a mask over the input adjacency
matrix to identify the most relevant subgraph. GNNExplainer
minimizes the cross entropy between the predicted label using
the input adjacency matrix, and the predicted label using the
masked adjacency matrix.

C. Explanation Aware Loss Function

In the context of Image classification, a recent research
paper [10] shows that interpretations are useful and that we
can penalize explanations to align neural networks with prior
knowledge. To do so, they constrain the loss functions of deep

neural networks by introducing an explanation penalty term,
which teaches the model to generate correct explanations.
This additional constraint was shown to increase classification
performance. The explanations generated by this approach
however were not empirically evaluated. Without ground truth
explanations, this paper relies on assumptions made by either
manually annotating explanation labels, or rules to define
correct explanations for image data. Indeed manual annotation
is difficult with large datasets.

For link prediction on Knowledge Graphs, the standard
RGCN optimizes a cross entropy loss function (Equation [1)) to
learn embeddings. Recently, researchers have used a standard
RGCN in a benchmark of three datasets to determine the
quality of explanations generated post hoc by GNNExplainer
and ExplaiNE [[7]], 8]

Until recently, benchmarks did not include ground truth
for explanations, and the loss functions used by the standard
RGCN do not include any constraints that account for them.
This lack of constraints on the standard RGCN loss function
causes subject and object embeddings in each triple to be
mapped far away in the embedding space from the subject and
object embeddings in its associated explanation. The Royalty
datasets [7]], [[8]] gives us the opportunity to train the predictors
with the prior knowledge of ground truth explanations.

D. Our contribution: Explanation-constrained Loss Function
for Link Prediction

On the task of link prediction on Knowledge Graphs, the
Royalty datasets [7], [8]] provided a rule-based approach to
generate a ground truth explanation for each input observation.
Quantitative and qualitative results showed that both explana-
tion methods did not always generate correct explanations, and
performance across multiple metrics were low. In this work,
we propose and evaluate several explanation-constrained loss
functions to include prior explanation knowledge on the task
of RGCN link prediction on Knowledge Graphs. For each
triple in the training set, we penalize node embeddings far
away from the node embeddings in the associated ground
truth explanation. We reproduce the results of [7]], [8]] on three
datasets, Royalty-20k, Royalty-30k, and FrenchRoyalty-200k,
and use these to evaluate the impact of different explanation
constraint strategies. We find our proposed approaches im-
prove performance of post hoc explanation methods compared
to a standard RGCN. Lastly, we perform an error analysis on
the Royalty datasets, quantifying errors in terms of both data
and semantics. Code for this paper is available online

III. INJECTING GROUND TRUTH EXPLANATIONS INTO
RGCN EMBEDDINGS
A. Constraining the Loss Function

We propose a loss function for RGCNs to improve post hoc
explanation method performance on the Royalty datasets. This
is achieved by adding an explanation constraint that pushes
subject and object embeddings from each input triple closer to

Uhttps://github.com/halliwelln/penalized-rgcn
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subject and object embeddings in the input triple’s explanation.
This is captured by the penalty expressed in Equation [2| where,
for some input triple ¢, = (s,p,0) and an explanation triple
t; = (sj,p;,0;), we propose an explanation aware constraint
that can be added to the binary cross entropy used by RGCNs:

P(tp,t;) = max(||[Emb(s) — Emb(s;)
|[Emb(s) — Emb(o;)]l2)

)

|

+mazx(||Emb(o) — Emb(s; @

|| Emb(o) — Emb(o;)||2).

This penalty sums the maximum ¢y distances between
embedding Emb(.) of the subjects and objects of the input
triple ¢,, and an explanation triple ¢;. Penalizing the maximum
allows us to push the subject embedding Emb(s) from the
input triple closer to subject and object embeddings from its
ground truth explanation.

The /¢ maximum distance
for the fact that the direction of the links is an
arbitrary modelling decision that should not impact
the comparison of the embeddings of subjects and
objects. Consider the case when the input triple
t, = (John,hasParent,Tom), and its associated
ground truth explanation t; = (Tom,hasChild, John).
Simply summing the distance between subject and objects
gives ||[Emb(John) — Emb(Tom)||2 + ||[Emb(Tom) —
Emb(John)|la = 2 x ||Emb(John) — Emb(Tom)||s. If
however, the direction of the predicate in the explanation
changes, for example, if t; = (John,isChildof,Tom),
the distance summation then becomes |[Emb(John) —
Emb(John)|la + ||[Emb(Tom) — Emb(Tom)|ls = 0.
Certainly the triple pair (John, hasParent,Tom), and
(Tom, hasChild, John)  contains the same amount
of information as (John,hasParent,Tom), and
(John,isChildof,Tom), however, a simple summation
over distances results in two times the distance or zero. In
order to account for this ambiguous case, we compute the
maximum between the subject distances and add this to the
maximum between the object distances.

We can now augment the standard RGCN binary cross
entropy loss with the penalty term in Equation [2] in several
ways and to account for several types of prior knowledge from
explanation ground truth.

computations accounts

B. Loss Function for Unique Explanations

The Royalty-20k and Royalty-30k datasets [7]] contain one
and only one unique explanation per predicted triple, describe
as the case of non-ambiguous explanations. We introduce
the first loss function incorporating the penalty term from
Equation [2] for non-ambiguous explanations. Formally, let
t, € TT be a positive triple in the form (s, p,0), let e, be
its explanation that contains a set of explanatory triples t;
for the prediction of ¢,. The equation our proposed approach
optimizes is given by

I Z P(t;,,,tj),

1
lep] tieep
3)

where | .| denotes the cardinality, for example |e,| denotes
the number of triples in e,,. Intuitively, Equationtakes a train-
ing set triple ¢, = (s, p, 0), and its associated explanation e,
and applies an {5 penalty for subject and object embeddings in
the explanation of ¢, that are far away from ¢,’s subject and
object in the embedding space. In other words, the subject
and object embeddings found in each triple’s ground truth
explanation should be “similar” in the embedding space to the
subject and object embeddings, as they are used to explain why
a predicate exists between the triple’s subject and object. Using
the standard RGCN loss function, this relationship between a
triple and its ground truth explanation may not be captures in
the embedding space without the additional constraint from
Equation [3] We apply this loss function to the Royalty-20k
and Royalty-30k datasets, results are reported in the following
section.

1
Esum =L + =
: RGCN |7-+| Z

t,€T+

C. Loss Summing all Possible Explanations

The FrenchRoyalty-200k dataset [8]] contains multiple ex-
planations for each predicted triples, described as the case of
non-unique, or ambiguous explanations. We introduce a loss
function including a penalty term for these ambiguous expla-
nations. Formally, let E,, = {e1,...¢;} be the set of [ explana-
tions available for ¢, and e; = {(s1,p1,01), -, (Sks D> Ok) }
be it explanation for triple t,. Explanation e; contains a set
of explanatory triples ¢; for the prediction of ¢,. The proposed
loss function is given by

1
£sum’ =L T
RGCN + 7] Z

t,€T+

3 ﬁ S Pl ty)
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Similarly, Equation [| takes a training set triple ¢, =
(s,p,0), and its associated explanations E,, and applies an
{5 penalty for subject and object embeddings from all expla-
nations of ¢, that are far away from ¢,’s subject and object
in the embedding space. The subtle difference between this
loss function and Equation |3|is that E, = {e,}, that is, there
is only one explanation available for Equation [3] hence the
inner summation can be dropped. Equation 4] however must

sum across all explanations available to ¢,, hence is used for
the FrenchRoyalty-200k dataset.

D. Loss Weighting each Possible Explanations

We also consider a loss function that weights the distance
penalty term by the relevance score of each explanation. This
approach again pushes the subject and object embeddings of
t,, closer to the subject and object embeddings from all triples
in E,. However, this distance penalty term is weighted by



the user score of each explanation in FE,, therefore making
the embeddings in ¢, more similar to the embeddings from
explanations with high relevance scores. This equation is given
by

1 1
Loeight = W Z m Z
tpeT+ Pleer,
) )
P Z score(e;) * P(tp, t;)
tj€e;
Eweight = ﬁweigh,t + ﬁRGCN (6)

where score(e;) is the relevance score of e; taking values
between 0 and 1 of the explanation as provided by the
FrenchRoyalty-200k dataset. Intuitively, large distances from
embeddings in highly relevant explanations are given a larger
penalty than large distance from embeddings in less relevant
explanations. This loss function considers all triples in the
ground truth explanation set F,, but focuses on intuitive
explanations. This loss function relies on the user assigned
scores for each explanation included in the FrenchRoyalty-
200k, and is thus limited only to applications on this dataset.

E. Loss Selecting the Highest Score

Lastly, we consider a loss function that penalizes subject
and object embeddings in t,, that are far away from the subject
and object embeddings of the best available explanation e;, as
determined by the given user relevance score. This equation
is given by

1 P(t,,ti
Lo = 7z 2 > )
|T | t,€T+T  t;€e;;score(e;)=max score(e) |€Z|
P Jee Y eeBy
(7
Lmaz = Emaw + ['RGCN (8)

This loss function pushes the subject and object embeddings
from ¢, close to the subject and object embeddings in the
best explanation e; in the embedding space, making these
embeddings more similar to each other than the standard
RGCN. Embeddings from all other available ground truth
explanations are not factored in. Similar to Equation [6] this
loss function relies on the user assigned scores from the
FrenchRoyalty-200k, hence this loss function is limited only
to applications on this dataset.

IV. RESULTS AND EVALUATIONS

In this section, we evaluate the proposed loss functions
on three datasets. The Royalty-20k dataset contains 3 types
of predicates: hasSpouse, hasSuccessor, and hasPredecessor.
The Royalty-30k dataset also contains 3 types of predicates
including hasSpouse, hasGrandparent, and hasParent, where
hasParent is only used to explain hasGrandparent. These
datasets are used to evaluate explanation quality when there
is one and only one explanation for each predicted triple.

The FrenchRoyalty-200k contains 6 types of predicates also
based on family relations, hasSpouse hasBrother, hasSister,
hasGrandparent, hasChild, and hasParent. Each predicted
triple in this dataset includes all possible explanations, and is
used to evaluate explanation quality when there are multiple
to choose from. We compare all loss functions with a standard
RGCN (using the loss function from Equation [T). We apply
two state-of-the-art explanation methods, GNNExplainer [6]]
and ExplaiNE [5] to all RGCNs post hoc, and compare
the quality of explanation generated by GNNExplainer and
ExplaiNE.

For all experiments in this work, we fix the number of
embedding dimensions to 10 as done in the original bench-
mark. Across all three datasets, we subset the data by each
predicate, and report results on each subset. For example, on
the Royalty-20k dataset, the Spouse column from Table |l gives
performance results on a subset of data using only hasSpouse
triples and their associated explanations. Additionally, we
report results on the full dataset, with all predicates included.

On the Royalty-20k and Royalty-30k datasets, predicted
explanation performance is measured using the Jaccard score
between each predicted and ground truth explanation. We also
report precision, recall and F; scores, however, the original
authors recommend measuring explanation quality on these
datasets using the Jaccard score. On the FrenchRoyalty-200k
dataset, predicted explanation performance is measured using
the Generalized Precision, Recall, and F} scores [11], along
with the Max-Jaccard score [8].

A. Results with Non-Ambiguous Explanations

The top two rows of Table|l|report the link prediction results
for the standard RGCN and the loss function in Equation
on the Royalty-20k dataset. We can see the standard RGCN
outperformed the proposed approach on the full dataset,
along with the hasSpouse subset. The proposed approach
outperformed the standard RGCN on the hasSuccessor and
hasPredecessor subsets.

Rows three and four of Table [I] report the results of
GNNExplainer applied to a standard RGCN, and applied to
the proposed RGCN in Equation [3| on the task of explainable
link prediction. We observe the GNNExplainer applied to the
proposed RGCN outperformed or matched the GNNExplainer
applied to the baseline in terms of the Jaccard score on all
subsets, and the full dataset.

Rows five and six of Table [[] report the results of ExplaiNE
applied to a standard RGCN, and applied to the proposed
RGCN in Equation [3| On the hasSpouse, hasSuccessor and
hasPredecessor subsets, we find ExplaiNE when applied to
the RGCN in Equation [3] improved all performance metrics.
On the full dataset, we found using the proposed approach
resulted in an improved Jaccard score.

The three rightmost columns of Table [[] report the per-
formance metrics for the standard RGCN and the proposed
approach on the Royalty-30k dataset. On the task of link
prediction, we again find the proposed approach decreased the
accuracy on all subsets, including the full dataset.



Royalty-20k Results

Royalty-30k Results

Models Metrics Spouse Successor Predecessor Full data Spouse Grandparent Full data
RGCN Accuracy 0.737 0.612 0.683 0.77 0.737 0.654 0.687
Lsum Accuracy 0.517 0.989 0.717 0.758 0.517 0.643 0.678

GNN Explainer
Precision 0.657 0.154 0.123 0.273 0.657 0.064 0.258
Recall 0.498 0.151 0.121 0.22 0.498 0.089 0.297
with RGCN Fy 0.567 0.153 0.122 0.251 0.567 0.074 0.276
Jaccard 0.34 0.149 0.119 0.193 0.34 0.089 0.114
Precision 0.657 0.18 0.133 0.275 0.657 0.066 0.259
Recall 0.498 0.176 0.13 0.234 0.498 0.092 0.298
with Lum Fy 0.567 0.178 0.131 0.253 0.567 0.077 0.277
Jaccard 0.34 0.171 0.128 0.194 0.34 0.092 0.154
ExplaiNE

Precision 0.886 0.28 0.178 0.574 0.886 0.104 0.427
Recall 0.668 0.272 0.176 0.493 0.668 0.139 0.471
with RGCN Fy 0.762 0.276 0.177 0.531 0.762 0.119 0.448
Jaccard 0.45 0.264 0.174 0.412 0.45 0.139 0.185
Precision 0.949 0.402 0.257 0.582 0.949 0.123 0.453
Recall 0.712 0.391 0.251 0.501 0.712 0.164 0.506
with Loym Fi 0.813 0.396 0.254 0.539 0.813 0.141 0.478
Jaccard 0.474 0.38 0.245 0.419 0.474 0.164 0.286

TABLE I: Results on Royalty-20k, Royalty-30k datasets: Link prediction results for baseline RGCN and proposed loss functions,
along with explanation evaluation for GNNExplainer and ExplaiNE. Highest scores per predicate denoted in bold.

Rows three and four of Table [[|report the results of GNNEx-
plainer applied to the baseline RGCN, and proposed RGCN
on the task of explainable link prediction. We find equal or
better performance across all metrics. The precision, recall,
and F} score remain relatively unchanged on the full dataset.

Rows five and six of Table [[] report the results of ExplaiNE
applied to the baseline RGCN, and the proposed RGCN. Here
we see improved performance on all metrics, and across all
data subsets, including the full dataset.

B. Results with Non-Unique Explanations

The top four rows of Table [IIf report the link prediction
results of the baseline and proposed methods. In general, the
baseline RGCN from Equation [I] outperformed the proposed
methods in terms of accuracy on the task of link prediction,
with the exception of the hasSpouse, hasSister, and hasChild
subsets.

Rows five through eight of Table [II| report the results of
GNNExplainer applied the baseline RGCN, and the proposed
approaches from Equations 4] [6] and [§] on the task of explain-
able link prediction. Overall, we found all approaches had
similar performance metrics, with two proposed approaches
having a small increase in Max-Jaccard score on the full
dataset.

Rows nine through twelve of Table [II| report the results of
ExplaiNE applied to the baseline RGCN, and the proposed
approaches on the task of explainable link prediction. We
found the proposed approach improved performance on almost
all metrics. Most notably, a large increase in Max-Jaccard
score on the full dataset and hasSister subset.

V. ERROR ANALYSIS: QUANTITATIVE EVALUATION OF
EXPLANATIONS
A. Royalty-20k

The top row of Table gives a breakdown of each
explanation method’s most frequent error by subset for the

Royalty-20k dataset when applied to Lrgon and Lgy,,. Each
row reports the most frequent predicate, and the percentage of
errors this predicate occured in. For example, under the has-
Spouse subset, the most common predicate across ExplaiNE’s
incorrectly predicted explanations (when applied to the RGCN
in Equation [3) was hasSpouse, and this predicate was observed
in 100% of errors. This error occurs when ExplaiNE predicts
the wrong subject or object in the explanation. This can occur
on the hasSpouse subset, as under this subset, there is only
one possible predicate to predict (hasSpouse).

On the Royalty-20k dataset, we can see on the hasSuccessor
subset that the 94% of ExplaiNE with L, errors contained
the hasPredecessor predicate. This type of error occurs when
the subject and/or object in the predicted explanation are
incorrect. We can deduce this due to the fact that on the
hasSuccessor dataset, the RGCNs and explanation methods
only observe two predicates, hasSuccessor and hasPredeces-
sor. GNNExplainer when applied to both RGCNs however
produce more uniform errors, where 52% of errors occurred
by using the wrong subject and/or object, and the remain-
ing errors occurred by identifying the wrong predicate. For
GNNExplainer applied to both RGCNs, we observe a similar
phenomenon on the hasPredecessor subset as well.

Note there are three types of explanation errors, one where
the predicate in the predicted explanation is incorrect, one
where the subject and/or object in the predicted explanation is
incorrect, or both. From Tabe [[II} we can see that ExplaiNE,
when applied to the RGCN from Lg,,,, has an increased
number of errors using the wrong subject and object on the
hasSuccessor subset. Recall each hasSuccessor predicate has
an associated hasPredecessor ground truth. Here, the proposed
approach produces more errors using the hasPredecessor pred-
icate.

The first row of Table[[V]reports the most frequently missing
predicate from the explanation method’s errors for the Royalty-



FrenchRoyalty-200k Results

Models Metrics Spouse Brother Sister Grandparent Child Parent Full data
LRGCN Accuracy 0.935 0.909 0.853 0.858 0.792 0.838 0.928
L sum/! Accuracy 0.973 0.864 0.999 0.599 0.8 0.639 0.877
Lmazx Accuracy 0.966 0.75 0.824 0.648 0.793 0.697 0.878
Lopeight Accuracy 0.966 0.909 0971 0615 0801 0.706 0.897
GNN Explainer
G. Precision 0.246 0.323 0.34 0.162 0.142 0.131 0.109
with G. Recall 0.415 0.333 0.353 0.162 0.167 0.154 0.119
LRGCN G. Fp 0.302 0.327 0.344 0.162 0.15 0.139 0.112
Max-Jaccard 0.256 0.345 0.299 0.128 0.16 0.161 0.109
G. Precision 0.243 0.324 0.34 0.162 0.142 0.13 0.108
with G. Recall 0411 0.335 0.353 0.162 0.166 0.154 0.118
sum/ G. Fy 0.299 0.328 0.344 0.162 0.14 0.138 0.111
Max-Jaccard 0.254 0.345 0.299 0.128 0.161 0.16 0.109
G. Precision 0.246 0.324 0.34 0.164 0.143 0.128 0.108
with G. Recall 0.414 0.335 0.353 0.164 0.167 0.151 0.118
Lmazx G. F'1 0.302 0.328 0.344 0.164 0.151 0.136 0.112
Max-Jaccard 0.255 0.345 0.299 0.13 0.161 0.159 0.11
G. Precision 0.243 0.324 0.328 0.163 0.144 0.13 0.11
with G. Recall 0.411 0.335 0.342 0.163 0.168 0.153 0.12
Loueight G. Fy 0.299 0328 0.333 0.163 0152 0.138 0.113
Max-Jaccard 0.254 0.345 0.299 0.129 0.162 0.161 0.11
ExplaiNE
G. Precision 0.336 0.48 0379 0.234 0.221 0.255 0.192
with G. Recall 0.637 0.49 0.418 0.234 0.279 0.27 0.218
LRGCN G. Fp 0.435 0.483 0.392 0.234 0.24 0.26 0.2
Max-Jaccard 0.363 0.504 0.417 0.201 0.241 0.27 0.193
G. Precision 0.37 0.585 0.536 0.244 0.231 0.247 0.188
with G. Recall 0.726 0.605 0.667 0.244 0.291 0.258 0.232
sum/ G. Fy 0.488 0.591 0.58 0.244 0.251 0.25 0.203
Max-Jaccard 0.41 0.598 0.539 0.211 0.246 0.273 0.209
G. Precision 0.338 0.433 0.487 0.224 0.224 0.267 0.177
with G. Recall 0.66 0.471 0.592 0.224 0.283 0.286 0213
Lmazx G. F1 0.444 0.444 0.522 0.224 0.243 0.273 0.189
Max-Jaccard 0.377 0.523 0.402 0.189 0.242 0.303 0.196
G. Precision 0351 0.538 0.485 0.232 0.227 0.263 0.189
with G. Recall 0.69 0.567 0.629 0.232 0.287 0.275 0.23
Lueight G. Fy 0.463 0.547 0.533 0.232 0247 0267 0.203
Max-Jaccard 0.39 0.557 0.407 0.196 0.243 0.295 0.208

TABLE 1II: Results on FrenchRoyalty-200k: Link prediction results for baseline

RGCN and proposed model, along with

explanation evaluation for GNNExplainer and ExplaiNE. Highest scores in bold, and G. being an abbreviation for Generalized.

20k dataset. Each row denotes the predicate subset, the ground
truth predicates defining the rule, and the percentage of triples
not containing the ground truth predicate(s). For example,
under the hasSuccessor subset of the Royalty-20k dataset, 6%
of ExplaiNE’s errors (when applied to Lg,,,) did not contain
hasPredecessor.

B. Royalty-30k

The second row of Table [ITI] gives a breakdown of each
explanation method’s most frequent error by subset for the
Royalty-30k dataset when applied to Lrgon and Lgym.
After applying ExplaiNE to L., we can see on the has-
Grandparent subset, the most frequently predicted predicate
was hasParent, accounting for 56% of errors. Conversely,
for ExplaiNE with the baseline Lrccn, the most frequently
predicted predicate is hasGrandparent. We can conclude from
this that the explanation aware loss function Ly, changed
the most frequent type of error made by ExplaiNE. Rather
than predict the wrong predicate, the explanation aware loss
instead produces errors using the correct predicate but wrong
subject and/or objects.

The second row of Table [[V] reports the most frequently
missing predicate from each explanation method’s errors for
the Royalty-30k dataset. On the hasGrandparent subset, we

find a decreased number of errors missing the hasParent
explanation, consistent with Table m In general, we found
GNNExplainer when applied to an explanation aware RGCN
had minimal changes in errors metrics.

C. FrenchRoyalty-200k

The last row of Table [[I] gives a breakdown of each
explanation method’s most frequent error by subset for the
FrenchRoyalty-200k dataset when applied to Lrgon and
Lsum. On the hasBrother subset, we can see the errors
produced by ExplaiNE with L,  results in errors using the
hasParent predict, instead of hasGrandparent produced by the
baseline.

Figures [Ta] and [Tb] show frequency counts of the most
frequently predicted predicates amongst predictions made by
Lum: with a Max-Jaccard score less than 1. We can see
both ExplaiNE and GNNExplainer’s most frequently predicte
predicate is hasGrandparent. Additionally, both explanation
methods least frequently predicted predicate amongst errors
were hasBrother, and hasSister. We found ExplaiNE had diffi-
culty predicting hasSpouse explanations, while GNNExplainer
had fewer hasSpouse errors, and more errors with hasChild
explanations. The number of errors made by GNNExplainer
on the hasParent and hasChild subsets were nearly equal. We
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Fig. 1: RGCN with Lg,,,,: Predicate Frequency Count on Incorrectly Predicted Explanations on FrenchRoyalty-200k Dataset.

Most Frequently Predicated Predicate

ExplaiNE with L gy ExplaiNE with £ p gy GNNExplainer with £ 4,7,  GNNExplainer with £ pao N

Most Frequent Most Frequent Most Frequent

Most Frequent
% of Error

Dataset Predicate % of Error % of Error % of Error
Predicate Predicate Predicate Predicate

hasSpouse hasSpouse 100% hasSpouse 100% hasSpouse 100% hasSpouse 100%

Royalty — 20k hasSuccessor  hasPredecessor 94% hasPredecessor 67% hasSuccessor 52% hasPredecessor 52%
hasPredecessor  hasPredecessor ~ 64%  hasPredecessor ~ 55% hasPredecessor 57% hasPredecessor 51%

Royalty — 30k hasSpouse hasSpouse 100% hasSpouse 100% hasSpouse 100% hasSpouse 100%
hasGrandparent hasParent 56% hasGrandparent 55% hasGrandparent 64% hasGrandparent 64%

hasSpouse hasSpouse 92% hasSpouse 84% hasSpouse 51% hasSpouse 50%

hasBrother hasParent 72%  hasGrandparent 53%  hasGrandparent 47% hasGrandparent 45%

FrenchRoyalty hasSister hasParent 60% hasParent 53% hasGrandparent 32% hasGrandparent 32%
hasGrandparent hasGrandparent ~ 44%  hasGrandparent  56%  hasGrandparent  57%  hasGrandparent 56%

200k hasChild hasParent 30% hasParent 33% hasGrandparent 41% hasGrandparent 41%
hasParent hasParent 45% hasParent 46% hasGrandparent 37% hasGrandparent 38%

TABLE III: Most frequent predicate across incorrectly predicted explanations, along with the percentage of error by subset.

Note Lgym is used for FrenchRoyalty-200k.

omit this analysis on Royalty-20k and Royalty-30k datasets
due to space constraints.

VI. DISCUSSION

On all three datasets, we found the proposed approaches
matched or increased the Jaccard (or Max-Jaccard) scores on
ExplaiNE when training on the full dataset with all predicates
included. We found however, the baseline RGCN outper-
formed the proposed approach on the task of link prediction on
the same datasets. From these experiments, we observe a trade
off between black box model performance and explainability.
Including prior information from ground truth explanations
into the embeddings of RGCNs improves the quality of expla-
nations generated by ExplaiNE and GNNEXxplainer. However,
this comes at the cost of predictive power. Our approach
allows practitioners and researchers to find a balance between
predictive power and model explainability that the standard
RGCN is unable to provide.

Additionally, we found our approach had the biggest impact
on ExplaiNE’s explanations, and a minimal impact on GN-

NExplainer’s explanations. Understanding why the proposed
approach had a larger impact on ExplaiNE’s performance
metrics than that of GNNExplainer would require a further
understanding of what properties of the graph the embedding
has learned. We leave this task for future work.

We recognize the difficulties in predicting explanations,
even after making improvements, Jaccard (and Max-Jaccard)
scores were still low. In fact, we found many of the Jaccard
scores to be less than 0.5. Applying explanation methods post
hoc to a black box model creates difficulties in diagnosing
errors in predicted explanations, as there are many possible
sources of error. When an explanation method produces an
incorrectly predicted explanation, there are no available tech-
niques to our knowledge that can identify if the explanation
method is flawed, or if the error is due to a bad embedding that
has not capturing the necessary information. Recent research
has raised a similar concern, and that explanation methods for
black boxes can be misleading [12]—[13].

This work contributes to being able to identify where in the
pipeline errors are caused. Injecting knowledge into the graph



Most Frequently Missing Predicate

ExplaiNE ExplaiNE GNNExplainer ~ GNNExplainer
with with with with
Dataset Predicate Ground Truth
Lsum LraonN Lsum LraenN
% Missing % Missing % Missing % Missing
hasSpouse hasSpouse 0% 0% 0% 0%
Royalty — 20k hasSuccessor hasPredecessor 6% 33% 52% 48%
hasPredecessor hasSuccessor 64% 55% 57% 49%
hasSpouse hasSpouse 0% 0% 0% 0%
Royalty — 30k
hasParent 44% 55% 64% 64%
hasGrandparent
asandparen hasParent 44% 55% 64% 64%

TABLE IV: Most frequently missing predicate. Each row denotes the predicate subset, the ground truth predicates defining the
rule, and the percentage of triples not containing the ground truth predicate(s)

embedding shows GNNExplainer’s errors are likely due to its
parameters learned and not the RGCN embeddings, where as
ExplaiNE’s error are due to the embeddings. We recognize
that the proposed approaches do not often have a practical
application due to the difficulty of obtaining ground truth
explanations. Rather, this work shows the theoretical impact
of using prior knowledge during training, in order to identify
if errors come from the RGCN or the post hoc explanation
methods. For instance, this work showed that injecting the
ground truths cause an accuracy decrease in some cases, and
this opens some new research directions.

The lack of significant changes in performance metrics of
GNNExplainer is likely due to the large number of parameters
used by the model for each observation. Perturbations to
the RGCN embedding are less influential on the predicted
explanation, hence we can conclude GNNExplainer is less de-
pendent on the RGCN embeddings for explanation predictions
than ExplaiNE.

We are aware that there are few Knowledge Graphs pro-
viding a ground truth for explanations, however we wanted to
evaluate the impact of such knowledge on different methods
before investing resources in campaigns to manually annotate
Knowledge Graphs with explanations. This work focuses on
the case of supervised explanation prediction, where ground
truth explanations are available. We provide a theoretical
study of the behaviour of several explanation methods in the
presence of explanation aware embeddings.

VII. CONCLUSION

In this work, we apply an explanation-constrained loss func-
tion [[10]] to RGCNs for link prediction on Knowledge Graphs.
We add a penalty term for subject and object embeddings
far away from the subject and object embeddings found in
the ground truth explanation. We compare several different
explanation-constrained loss functions to a baseline RGCN,
and evaluate performance on three datasets with ground truth
explanations. Results show improved performance of post hoc
explanation methods. We perform an error analysis on the
Royalty datasets, quantifying errors in terms of both data and
semantics. This work provides opportunity for future exten-
sions, such as leveraging the proposed RGCNs to distinguish
between model error and an explanation method error. That

is, determining if an incorrect explanation is caused by the
embedding learned by the RGCN, or if the error is caused by
the explanation method.
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