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EVERY SUFFICIENTLY LARGE EVEN NUMBER IS THE SUM OF TWO PRIMES (with an alternative proof of Lemma 7.1)

The binary Goldbach conjecture asserts that every even integer greater than 4 is the sum of two primes. In this paper, we prove that there exists an integer Kα > 4 such that every even integer x > p 2 k can be expressed as the sum of two primes, where p k is the kth prime number and k > Kα. To prove this statement, we begin by introducing a type of double sieve of Eratosthenes as follows. Given a positive even integer x > 4, we sift from [1, x] all those elements that are congruents to 0 modulo p or congruents to x modulo p, where p is a prime less than √

x. Therefore, any integer in the interval [ √ x, x] that remains unsifted is a prime q for which either x -q = 1 or x -q is also a prime. Then, we introduce a new way of formulating a sieve, which we call the sequence of k-tuples of remainders. By means of this tool, we prove that there exists an integer Kα > 4 such that p k /2 is a lower bound for the sifting function of this sieve, for every even number x that satisfies p 2 k < x < p 2 k+1 , where k > Kα, which implies that x > p 2 k (k > Kα) can be expressed as the sum of two primes. In this version of the paper we give an alternative proof of the crucial lemma that allowed us to obtain this result.

Introduction

This paper is a version of [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF] where we provide an alternative proof of Lemma 7.1.

The sieve method and the Goldbach problem

In 1742, Goldbach wrote a letter to his friend Euler telling about a conjecture involving prime numbers. Goldbach's conjecture: Every even number greater than 4 is the sum of two primes. The Goldbach Conjecture is one of the oldest unproven conjectures in number theory [START_REF] Guy | Unsolved Problems in Number Theory[END_REF]. This conjecture was verified many times with powerful computers but has not been proven. In May 26, 2013, T. Oliveira e Silva verified the conjecture for n ≤ 4 × 10 17 [START_REF] Oliveira E Silva | Goldbach conjecture verification[END_REF]. Mathematicians have achieved partial results in their efforts to prove this conjecture. In 1937, Vinogradov proved that every sufficiently large odd number is the sum of three primes [START_REF] Vinogradov | The Representation of an Odd Number as the Sum of Three Primes[END_REF]. Later, in 1973, J.R. Chen showed that every sufficiently large even number can be written as the sum of either two primes or a prime and the product of two primes [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF]. In 1975, H. Montgomery and R.C. Vaughan showed that 'most' even numbers were expressible as the sum of two primes [START_REF] Montgomery | The exceptional set in Goldbach's problem[END_REF]. Recently, a proof of the related ternary Goldbach conjecture, that every odd integer greater than 5 is the sum of 3 primes, has been given by Harald Helfgott [START_REF] Helfgott | The ternary Goldbach conjecture is true[END_REF].

In this paper, we prove (Main Theorem, Section 8) the following: There exists an integer K α > 4 such that every even integer greater than p 2 k (k > K α ) is the sum of two primes. This proof is intended as a first step towards the resolution of the Goldbach problem.

One of the principal means of addressing the Goldbach conjecture has been sieve methods. Viggo Brun [START_REF] Brun | Le crible d'Eratosthène et le théorème de Goldbach[END_REF] was the first to obtain a result, as an approximation to Goldbach's conjecture: Every sufficiently large even integer is a sum of two integers, each having at most nine prime factors. Later, other mathematicians in the area of sieve theory improved upon this initial result.

In the context of sieve theory, the sieve method consists of removing the elements of a list of integers, according to a set of rules; for instance, given a finite sequence A of integers, we could remove from A those members that lie in a given collection of arithmetic progressions. In the original sieve of Eratosthenes, we start with the integers in the interval [1, x], where x is a positive real number, and sift out all those that are divisible by the primes p < √ x. Therefore, any integer that remains unsifted is a prime in the interval [ √ x, x). We begin by briefly describing the sieve problem; we use, as far as possible, the concepts and notation in the book by Cojocaru and Ram Murty [START_REF] Cojocaru | An Introduction to Sieve Methods an Their Applications[END_REF], Chapters 2 and 5. Let A be a finite set of integers, let P be the sequence of all primes, and let z ≥ 2 be a positive real number. Furthermore, for each p ∈ P, p < z we have associated a subset A p of A . The sieve problem is to estimate, from above and below, the size of the set A \ p∈P p<z A p , which consists of the elements of the set A after removing the elements of all the subsets A p . We call the procedure of removing the elements of the subsets A p from the set A the sifting process. The sifting function S(A , P, z) is defined by the equation S(A , P, z) = A \ p∈P p<z A p and counts the elements of A that have survived the sifting process. Now, let P z be the set of primes p ∈ P, p < z, and for each subset I of P z , denote

A I = p∈I A p .
Then, the inclusion-exclusion principle gives us

S(A , P, z) = I⊆Pz (-1) |I| |A I | ,
where for the empty set ∅, we have A ∅ = A . We often take A to be a finite set of positive integers and A p to be the subset of A consisting of elements lying in some congruence classes modulo p.

Using this notation, we can now formally define the sieve of Eratosthenes. Let A = {n ∈ Z + : n ≤ x}, where x ∈ R, x > 1, and let P be the sequence of all primes. Let z = √ x, and

P (z) = p∈P p<z p.
Now, to each p ∈ P, p < z, we associate the subset A p of A , defined as follows: A p = {n ∈ A : n ≡ 0 (mod p)}. Then, when we sift from A all the elements of every set A p , the unsifted members of A in the interval [ √ x, x) are integers that are not divisible by primes of P less than z; that is to say, any integer remaining in [ √ x, x) is a prime. Furthermore, if d is a squarefree integer such that d|P (z), we define the set

A d = p|d A p .
Thus, from the inclusion-exclusion principle, we obtain

S(A , P, z) = d|P (z) µ (d) |A d | , (1) 
where µ(d) is the Möbius function. Moreover, from [START_REF] Halberstam | Sieve Methods[END_REF], the Legendre formula can be derived

S(A , P, z) = d|P (z) µ (d) |A d | = d|P (z) µ (d) x d .
The sieve of Eratosthenes is useful for finding the prime numbers between √ x and x. However, from a theoretical perspective, the experts in sieve theory are interested in estimating, for every x, the number of integers remaining after the sifting process has been performed.

The Möbius function is a simple way to approach a sieve problem; however, satisfactory results are difficult to achieve unless z is very small. We illustrate this problem with the special case given in the book by Halberstam and Richert [START_REF] Halberstam | Sieve Methods[END_REF], Chapter 1, Section 5.

Let A = {n ∈ Z + : n ≤ x}, and let 2 ≤ z ≤ x. As usual in sieve theory, instead of |A |, we can use a close approximation X to |A |. Furthermore, for each prime p we choose a multiplicative function w(p) such that (w(p)/p)X approximates to |A p |. Then, for each squarefree integer d, we have that (w(d)/d)X approximates to |A d |, and we can write

|A d | = w(d) d X + R d ,
where R d is the remainder term. Then, substituting this result into [START_REF] Halberstam | Sieve Methods[END_REF] gives

S(A , P, z) = d|P (z) µ (d) w(d) d X + R d = d|P (z) µ (d) w(d) d X + d|P (z) µ (d) R d . (2) 
On the other hand, since w is a multiplicative function, Furthermore, if we impose the conditions |R d | ≤ w(d) and w(p) ≤ A 0 , for some constant A 0 ≥ 1, we obtain

S(A , P, z) = XW (z) + θ (1 + A 0 ) z .
See [1, Theorem 1.1] for details. Now, taking X = x, w(p) = 1, and A 0 = 1, these conditions are satisfied, and we obtain S(A , P, z) ≤ x p∈P p<z

1 - 1 p + 2 z . (3) 
From this illustrative case, we can see that the error term will be very large provided that z is not sufficiently small compared to x. Regardless, taking z = log x, the formula in (3) can be used to obtain an elementary upper bound for π(x). See [START_REF] Halberstam | Sieve Methods[END_REF]Ch. 1,(5.8)]. Now, suppose that the Goldbach problem is expressed as a sieve problem; clearly, a lower bound for the sifting function is required to prove this conjecture. However, a well-known phenomenon exists in sieve theory called the 'parity barrier' or the 'parity problem', which was first explained by Selberg (see [START_REF] Selberg | The general sieve method and its place in prime number theory[END_REF]): sieve methods cannot distinguish between numbers with an even number of prime factors and an odd number of prime factors. The parity problem was described briefly by Terence Tao [START_REF] Tao | Open question: The parity problem in sieve theory[END_REF] as follows: 'If A is a set whose elements are all products of an odd number of primes (or are all products of an even number of primes), then (without injecting additional ingredients), sieve theory is unable to provide non-trivial lower bounds on the size of A.' This means that in order to solve the Goldbach problem, a suitable sieve must be found first; then, new procedures for estimating the sifting function must be introduced, which is very different from the usual methods of current sieve theory.

A sieve for the Goldbach problem

Let P be the sequence of all primes, and given p k ∈ P, let m k = p 1 p 2 p 3 • • • p k (see Definition 2.4). Henceforth, for convenience, we take x to be an even integer greater than p 2 4 = 49 unless specified otherwise. Note that if p k is the greatest prime less than √ x, every even number x > 49 satisfies p 2 k < x < p 2 k+1 < m k ; this fact is highly important for our purposes, as we shall see later. Now, how can we construct a sieve to address the Goldbach problem? Given a positive even integer x, the sieve of Eratosthenes can be used to obtain the primes between √ x and x. Assume that among the primes between √ x and x there is at least one prime q such that x -q is also a prime. Then, to address the Goldbach problem we require a sieve that can sift out all the integers in the interval [1, x] that are divisible by the primes p < √ x, as the sieve of Eratosthenes does, and that additionally can sift out from the primes q remaining in [ √ x, x] all those such that x -q is not a prime.

To construct such a sieve, we propose a modification of the sieve of Eratosthenes as follows. First, we sift out all the integers n in the interval [1, x] such that n ≡ 0 (mod p), where p < √ x; thus, any integer that remains unsifted is a prime in the interval [ √ x, x]. Next, we sift out all the integers n that remain in [ √ x, x] such that n ≡ x (mod p).

Clearly, any number that remains unsifted in [ √ x, x] is a prime q such that x -q is not divisible by the primes p < √ x; thus, either x -q = 1 or x -q is a prime. We call it the Sieve associated with x, or alternatively the Sieve I.

More formally, let A = {n ∈ Z + : n ≤ x}. Let P be the sequence of all primes, and let z = √ x. Let

P (z) = p∈P p<z p = m k .
Now, to each p ∈ P, p < z, we associate the subset A p of A , defined as follows: A p = {n ∈ A : n ≡ 0 (mod p) or n ≡ x (mod p)}. Furthermore, if d is a squarefree integer such that d|P (z), we define the set

A d = p|d A p .
In this case, the sifting function S(A , P, z) = A \ p∈P p<z A p counts the primes q in the interval [ √ x, x], such that x-q is also a prime in [ √ x, x] and counts 1 and x-1 whenever x -1 is a prime (see Theorem 8.1). As in the case of the sieve of Eratosthenes-Legendre, the inclusion-exclusion principle gives us

S(A , P, z) = d|P (z) µ (d) |A d | .
Now, S(A , P, z) > 2 implies that x is the sum of two primes, and if this fact is proved for all x, the Goldbach conjecture would be proved. However, we cannot find a suitable lower bound for S(A , P, z) by using the usual sieve methods due to the parity problem mentioned in this Introduction. Thus far, all attempts to solve the Goldbach problem by the usual sieve techniques have not succeeded. Therefore, the strategy used in this paper differs substantially from the usual approach in sieve theory. In the next subsection, we begin by introducing another way of formulating a sieve problem.

The sequence of k-tuples of remainders

In this paper, we propose to use another formulation for this type of sieve that is able to illustrate all the details of the sifting process and will allow us to obtain a lower bound for the number of elements that remain unsifted. For this purpose, we begin by introducing the notion of the sequence of k-tuples of remainders. Let {p 1 , p 2 , p 3 , . . . , p k } be the ordered set of the first k prime numbers. Suppose that for every natural number n, we form a k-tuple, the elements of which are the remainders of dividing n by p 1 , p 2 , p 3 , . . . , p k ; thus, we have a sequence of k-tuples of remainders. If we arrange these k-tuples from top to bottom, the sequence of k-tuples of remainders can be seen as a matrix formed by k columns and infinitely many rows, where each column is a periodic sequence of remainders modulo p h ∈ {p 1 , p 2 , p 3 , . . . , p k }. The sequence of k-tuples of remainders can easily be proven to be periodic, and the period is

m k = p 1 p 2 p 3 • • • p k (see Proposition 2.1).
Suppose that within the periods of every sequence of remainders modulo p h (a given column of the matrix), we define some (not all) of the remainders as selected remainders, regardless of the criterion for selecting the remainders. Consequently, some k-tuples have one or more selected remainders, and other k-tuples do not have any selected remainder. If a given k-tuple has one or more selected remainders, we say that it is a prohibited k-tuple; otherwise, we say that it is a permitted k-tuple. We more formally define the sequence of k-tuples and related concepts in Section 2. Now, in a general context, a sieve is a tool or device that separates, for instance, coarser from finer particles. Then, given a sieve device, we can define a 'sieve problem', for instance, to count the number of finer particles that pass through the sieve device. We can think of a sequence of k-tuples as a 'sieve device', in the sense that when a set of integers is 'fed' into the sieve device (the sequence of k-tuples), the integers associated to permitted k-tuples are separated from integers associated to prohibited k-tuples. The sieve problem, in this case, is to estimate the number of integers that 'pass through' the sieve device, that is, to estimate the number of permitted k-tuples attached to some of the integers in the input set.

Given an even integer x > 49, we formulate Sieve I (the Sieve associated with x) by means of a sequence of k-tuples as follows. Let P be the sequence of all primes; let z = √ x, and let p k be the greatest prime less than z. With the index k corresponding to the prime p k , we construct the sequence of k-tuples of remainders, where the rules for selecting remainders are the following: If a given k-tuple of the sequence has 0 as an element or has its hth element equal to the remainder of dividing x by p h ∈ {p 1 , p 2 , p 3 , . . . , p k }, these elements are defined as selected remainders. Therefore, within the periods of every sequence of remainders modulo p h (a given column of the matrix), the remainder 0 is always a selected remainder; moreover, if p h does not divide x, the resulting remainder is a second selected remainder. Let A be the set consisting of the indices n of the sequence of k-tuples that lie in the interval [1, x]. For each p ∈ P, p < z, the set A p ⊂ A consists of the indices n for which the corresponding element in the sequence of remainders modulo p is a selected remainder. Then, the indices of the prohibited k-tuples lying in A are sifted out, and the indices of the permitted k-tuples lying in A remain unsifted. The sifting function is given by the number of permitted k-tuples whose indices lie in the interval [1, x]. In Section 8, we more formally define the formulation of Sieve I based on a sequence of k-tuples.

Remark 1.1. Note that given a k-tuple whose index is n < x, if n ≡ 0 (mod p) or n ≡ x (mod p) for at least one p < √ x, then it is a prohibited k-tuple, and if n ≡ 0 (mod p) and n ≡ x (mod p) for every p < √ x, then it is a permitted k-tuple.

Figure 1

Therefore, given an even integer x > 49 (p 2 k < x < p 2 k+1 ), the ordered set of k-tuples whose indices lie in the interval [1, x] of the sequence is only an alternative formulation of the Sieve associated with x (Sieve I), which was described before by using the usual sieve theory notation. We shall prove (Theorem 8.1) that the indices (greater than 1) of the permitted k-tuples lying within [1, x] are primes q such that either x -q is a prime or x -q = 1. Note that this form of the sieve gives us a detailed picture of the sifting process; other reasons for using this formulation for sieves based on a sequence of k-tuples will be explained later.

Example 1.1. Figure 1 illustrates how Sieve I can be used to find some Goldbach partitions for the even number x = 52. We proceed as follows:

1. We make a list of the primes less than √ 52. We obtain {2, 3, 5, 7}.

2. We compute the remainders of dividing x = 52 by the prime moduli of the list. We obtain {0, 1, 2, 3}.

3. In every k-tuple, we select each 0 and the elements {1, 2, 3} corresponding to the moduli {3, 5, 7}, respectively.

(The selected remainders are circled.)

4. Now, we colour grey the permitted k-tuples. The arrows show the corresponding Goldbach partitions. Note that there is no permitted k-tuple for the partition 47 + 5.

Auxiliary Sieve II

To prove the main theorem, we need to find a lower bound for the sifting function of the Sieve associated to x for every even number x > p 2 k , where k is sufficiently large. However, we can see that, regardless of the formulation, Sieve I is a 'static' sieve; that is, given an even number x, we can formulate a specific Sieve I for the even number x. For our purposes, we require a 'dynamic' sieve that works as x → ∞. Suppose that given x > 49 and using Sieve I we have a way to compute the number of permitted k-tuples whose indices lie in [1, x]; then, we could prove the main theorem by constructing a sequence of sieves associated with every even number x > 49; that is, we could construct a sequence where the elements are sequences of k-tuples, each one for every even number x > 49, and compute the number of permitted k-tuples whose indices lie in the interval [1, x] of each sequence of k-tuples. Now, using Sieve I, the implementation of this idea faces some difficulties. For instance, if x = 50, Sieve I can be described as follows. Since the greatest prime less than √ 50 is p 4 = 7, we have k = 4; thus, we construct the sequence of 4-tuples of remainders. In every 4-tuple of the sequence, if the hth element is 0 or is equal to the remainder of dividing x by p h ∈ {p 1 , p 2 , p 3 , p 4 }, this element is a selected remainder. Let A be the set consisting of the indices of the sequence of 4-tuples that lie in the interval [START_REF] Halberstam | Sieve Methods[END_REF]50].

Suppose that we proceed to the next even integer x = 52. In this case, we again have k = 4, and the sequence of 4-tuples of remainders is the same as before. However, the set A now consists of the indices that lie in [START_REF] Halberstam | Sieve Methods[END_REF]52], and the selected remainders take specific values for x = 52. In addition, as x runs through the even numbers, when x > 121, we have k > 4 because the greatest prime less than √ x will be p k > p 4 . The difficulty resides in the handling of all these variables as x proceeds through all the even numbers. On the other hand, given k ≥ 4, when x is divisible by a prime p h ∈ {p 1 , p 2 , p 3 , . . . , p k }, the remainder is 0; therefore, in each sequence of remainders modulo p h (1 ≤ h ≤ k) that form the sequence of k-tuples, there could exist one or two selected remainders within the period of the sequence (see Remark 8.1). This problem is an additional serious difficulty in deriving a formula for computing the sifting function.

For all these reasons, a more general kind of sieve is preferred, for which the sequence of k-tuples is more 'homogeneous' than that corresponding to Sieve I in the sense that in each sequence of remainders modulo p h (1 < h ≤ k) that form the sequence of k-tuples of this new sieve, there always exist two selected remainders in every period of the sequence. Therefore, we introduce another sieve, which we call simply Sieve II. We describe Sieve II in the form proposed previously by means of a sequence of k-tuples, as follows. Let P be the sequence of all primes, and let p k (k ≥ 4) be a prime of the sequence. With the index k corresponding to the prime p k , we construct the sequence of k-tuples of remainders, where the rules for selecting remainders are the following. In every sequence of remainders modulo p h (1 < h ≤ k) that form the sequence of k-tuples, there are always two selected remainders r and r modulo p h . In the sequence of remainders modulo p 1 = 2, there is only one selected remainder r modulo p 1 . Let B be the set consisting of the indices of the sequence of k-tuples that lie in the interval [1, y], where y is an integer that satisfies y > p k . For each p ∈ P, p ≤ p k , the set B p ⊂ B consists of the indices n for which the corresponding element in the sequence of remainders modulo p is a selected remainder. The indices of the prohibited k-tuples lying in B are sifted out, and the indices of the permitted k-tuples lying in B remain unsifted. The sifting function is defined by the equation

T (B, P, p k ) = B \ p∈P p≤p k B p ,
and counts the number of permitted k-tuples whose indices lie in B. We more formally define Sieve II in Section 2.

Remark 1.2. In this case, given a k-tuple whose index is n, if n ≡ r (mod p) or n ≡ r (mod p) for at least one p ≤ p k , where r, r are the selected remainders modulo p, then it is a prohibited k-tuple, and if n ≡ r (mod p) and n ≡ r (mod p) for every p ≤ p k , then it is a permitted k-tuple.

Note that the unsifted elements in B may or may not be prime numbers; indeed, Sieve II is a collection of sieves, one for each particular choice of selected remainder. 

n 2 3 5 7 n 2 3 5 1 1 1 1 1 • • • • • 2 0 2 2 2 176 0 2 1 3 1 0 3 3
• • • • • 210 0 0 0 Figure 2
Now, suppose that in Sieve II, we take B = {n : 1 ≤ n ≤ p 2 k }. Given an even number x > 49 that satisfies p 2 k < x < p 2 k+1 , we can construct the sequence of k-tuples associated to Sieve I, and using the same k, we can construct the sequence of k-tuples associated to Sieve II. Thus, we can compare, for every even number x > 49, the sifting function of Sieve I with the sifting function of the attached Sieve II. That is, we can compare the number of permitted k-tuples whose indices lie in the interval [1, x] of the sequence of k-tuples corresponding to Sieve I with the number of permitted k-tuples whose indices lie in the interval [1, p 2 k ] of the sequence of k-tuples corresponding to Sieve II. We shall prove later (Lemma 8.2) that for every even number x > 49, under the given conditions, the value of the sifting function corresponding to Sieve I is greater than or equal to the minimum value of the sifting function corresponding to Sieve II.

Example 1.2. For k = 4 (p k = 7), the period of the sequence of k-tuples is equal to 210. The first 35 and the last 35 of the 4-tuples in the interval [START_REF] Halberstam | Sieve Methods[END_REF]210] (the first period of the sequence) are pictured in Figure 2 for a given choice of selected remainders. Sieve II is given by the k-tuples whose indices lie in [1, 7 2 ].

We can now construct a sequence indexed by k, where every element of the sequence is a sequence of k-tuples; that is, we have a sequence of sequences of k-tuples. In each of these sequences of k-tuples, we have a Sieve II, which is given by the ordered set of k-tuples whose indices lie in the interval [1, p 2 k ] of the sequence of k-tuples. Therefore, our problem is now, given Sieve II, how to compute the number of permitted k-tuples whose indices lie within [1, p 2 k ].

1.5 Using the inclusion-exclusion principle for computing the number of permitted k-tuples in a period of the sequence of k-tuples of Sieve II

The sieve method usually consists of operations on the formula given by the inclusion-exclusion principle to obtain bounds for the sifting function, as we have illustrated in the first subsection. In our approach, the starting point is also the inclusion-exclusion principle, but only as a first step towards obtaining a lower bound for the sifting function of Sieve II. That is, from the formula given by this principle, we compute the number of permitted k-tuples within a period of the corresponding sequence of k-tuples, as follows.

Let us again consider Sieve II but now taking B = {n : 1 ≤ n ≤ m k }; that is, B is now the set of indices corresponding to the first period of the sequence of k-tuples. Given p ∈ P, 2 < p ≤ p k , we have |B p | = 2m k /p since p|m k and there are two selected remainders r, r for each modulus p > 2, by definition. Furthermore, given a squarefree integer d such that d|m k , 2 d, the set B d is the intersection of the subsets B p such that p|d (p = 2). Hence,

|B d | = 2 ν(d) d m k (d|m k , 2 d),
where ν(d) is the number of distinct prime divisors of d. Furthermore, we have the identity

d|m k 2 d µ (d) 2 ν(d) d = 2<p≤p k p∈P 1 - 2 p . (4) 
On the other hand, the subset B p1 consists of the integers n ∈ B such that n ≡ r (mod p 1 ), where r is the selected remainder for the modulus p 1 in the sequence of k-tuples of Sieve II. Then, |B p1 | = m k /p 1 since p 1 |m k and there is only one selected remainder for the modulus p 1 , by definition. Furthermore, given a squarefree integer d such that d|m k , 2 | d, the set B d is the intersection of the subsets B p such that p|d, and one subset B p is B p1 . Hence,

|B d | = 2 ν(d)-1 d m k (d|m k , 2 | d).
Now, by the inclusion-exclusion principle,

T ({n : 1 ≤ n ≤ m k }, P, p k ) = d|m k µ (d) |B d | = d|m k 2 d µ (d) 2 ν(d) d m k + d|m k 2|d µ (d) 2 ν(d)-1 d m k = = d|m k 2 d µ (d) 2 ν(d) d m k - 1 2 d|m k 2 d µ (d) 2 ν(d) d m k = 1 2 d|m k 2 d µ (d) 2 ν(d) d m k .
Thus, by means of (4), we can see that the number of permitted k-tuples whose indices lie in the interval [1, m k ] (the first period of the sequence of k-tuples associated to Sieve II) is given by

T ({n : 1 ≤ n ≤ m k }, P, p k ) = 1 2 m k 2<p≤p k p∈P 1 - 2 p , (5) 
regardless of the selected remainders r, r (mod p), for every p ∈ P, p ≤ p k .

1. [START_REF] Guy | Unsolved Problems in Number Theory[END_REF] The structure of the first period of the sequence of k-tuples of remainders

Until now, we have arranged the elements of each k-tuple horizontally, from left to right, and we have arranged the k-tuples of the sequence vertically, from top to bottom. Hence, the first period of the sequence of k-tuples can be seen as a matrix, with columns from h = 1 to h = k and m k = p 1 p 2 p 3 186 187 188 189 190 191 192 193 194 195 196 197 198 199 Consider now the sequence of k-tuples in horizontal position (see Definition 3.1). Consequently, we can think of the first period of the sequence of k-tuples as a matrix formed by k rows and m k columns. Each row of this matrix, from h = 1 to h = k, is formed by the remainders of dividing the integers from n = 1 to n = m k by the modulus p h . For every n (1 ≤ n ≤ m k ), the corresponding column matrix is the k-tuple of the remainders of dividing n by the moduli p 1 , p 2 , . . . , p k .

... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ... 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...
Note that if we let k → ∞, the period of the sequence and the size of the involved k-tuples grow simultaneously.

Example 1.3. Figure 3 illustrates the first period of the sequence of 4-tuples pictured in Figure 2 in horizontal position.

The sequences of k-tuples in general are defined more formally in Section 2; now, we require the following definition. Specifically, let us consider the sequence of k-tuples associated to Sieve II. Since this sequence is periodic, it suffices to consider the first period, between n = 1 and n = m k (the interval I[1, m k ]). Note that for p k ≥ 7 (k ≥ 4), the interval I[1, p 2 k ] is completely included within the first period of the sequence of k-tuples. Although this is the interval that interests us, to understand the properties of the sequence of k-tuples and the behaviour as k → ∞, the entire fundamental period of the sequence, not just the interval I[1, p 2 k ], must be studied. The following step in our approach consists of dividing the first period of the sequence of k-tuples into two parts: the left interval I[1, p 

I[p 2 k + 1, m k ] h .
If we think of the first period of the sequence of k-tuples as a matrix, we can see that this matrix has been partitioned into two blocks: the left block, formed by the columns from n = 1 to n = p 2 k ; and the right block, formed by the columns from n = p 2 k + 1 to n = m k . Recall that within the first period of the sequence of k-tuples (the interval I[1, m k ]), the exact number of permitted k-tuples is given by [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF]. Furthermore, for every h such that 1 ≤ h < k, since the number of permitted h-tuples in a period of the sequence of h-tuples is given by ( 5) and the period m h divides m k , we can compute precisely the number of permitted h-tuples in each interval I[1, m k ] h . For every h (1 ≤ h ≤ k), the number of permitted h-tuples in I[1, m k ] h is the same, regardless of the choice of the selected remainders in the sequence of h-tuples. However, within both the left interval I[1, p 2 k ] h and the right interval I[p 2 k + 1, m k ] h , the number of permitted h-tuples could change when the selected remainders in the sequence of h-tuples are changed because the positions of the permitted h-tuples along the interval I[1, m k ] h are modified.

The following question may have occurred to the reader at this point: What is the advantage of the formulation of sieves based on a sequence of k-tuples of remainders? We shall explain the principal reason in what follows.

Let us consider again the sequence of k-tuples of Sieve II, in horizontal position, where k ≥ 4. For a given choice of selected remainders, the interval I[1, p 2 k ] of this sequence is a sieve device that sifts out the prohibited k-tuples that lie in I[1, p 2 k ] and allows the permitted k-tuples in this interval to remain. Furthermore, for every h (1 ≤ h < k), there is also a sequence of h-tuples of remainders and the interval I[1, p 2 k ] h of every sequence is also a sieve device that sifts out the prohibited h-tuples and allows the permitted h-tuples in I[1, p 2 k ] h to remain. Thus, we have decomposed the sifting process into several stages, from h = 1 to h = k, where each 'partial' sieve device contributes to the whole sifting process. Hence, we can study the behaviour of these partial sieve devices to determine the behaviour of the overall sieve; the advantage of this perspective will become apparent in the rest of this section. It is obvious that as h goes from 1 to k, the number of permitted h-tuples decreases as a result of the sifting process in each stage of the entire sifting process.

The density of permitted k-tuples

In Sieve II, we have taken first the set B = {n : 1 ≤ n ≤ p 2 k }; therefore, the sifting function

T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) is equal to the number of permitted k-tuples in the interval I[1, p 2
k ] of the sequence of k-tuples associated to Sieve II. However, this sifting function depends on the choice of the selected remainders in the sequence of k-tuples associated to Sieve II. Obtaining of a lower bound for this sifting function is the main task of this paper.

On the other hand, in Sieve II, we have next taken the set B = {n : 1 ≤ n ≤ m k }; here, the sifting function

T ({n : 1 ≤ n ≤ m k }, P, p k ) is equal to the number of permitted k-tuples in the interval I[1, m k ]
of the sequence of k-tuples associated to Sieve II. In this case, the sifting function does not depend on the choice of the selected remainders in the sequence of k-tuples and can be computed precisely using [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF].

A natural question arises: How can we take advantage of the exact computation of T ({n : k ] since we know this quantity for the interval I[1, m k ] by [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF]. Certainly, our assumption on the proportion of permitted k-tuples in these intervals is unlikely to be true; however, we could say that in some sense, this assumption is 'approximately' true, which suggests the possibility of working with this value (the proportion of permitted k-tuples in a given interval) to obtain the expected results. Now, assume that for every k the proportion of permitted k-tuples in I[1, p 2 k ] is greater than some constant C > 0; in this case, the number of permitted k-tuples within this interval would be greater than Cp 2 k . This result implies that the number of permitted k-tuples within I[1, p 2 k ] tends to infinity with k. However, this constant is unlikely to exist since it follows from (5) that the proportion of permitted k-tuples in the interval

1 ≤ n ≤ m k }, P, p k ) for obtaining an estimate of T ({n : 1 ≤ n ≤ p 2 k }, P, p k )? Let us consider the interval I[1, m k ] (
I[1, m k ] is given by 1 2 k h=2 1 - 2 p h ,
which tends slowly to 0 as k → ∞. This fact makes working with this value (the proportion of permitted k-tuples) not very useful.

Thus, it is more convenient to work with a new quantity that we call the density of permitted k-tuples, or simply the k-density, which is defined formally in Section 3. This value is defined for a given interval as the quotient of the number of permitted k-tuples within the interval and the number of subintervals of size p k . That is, for a given interval, the density is the average number of permitted k-tuples within the subintervals of size p k . We denote by c k and δ k the number of permitted k-tuples and the density of permitted k-tuples within the period I[1, m k ] of the sequence of k-tuples, respectively (see Definition 2.9 and Definition 3.4). Since c k does not depend on the choice of the selected remainders in the sequence of k-tuples, neither does δ k . We shall prove later (Lemma 3.2 and Theorem 3.4) that δ k increases and tends to infinity as k → ∞. For some values of k, Table 1 gives c k , the ratio c k /m k , and δ k .

Suppose that the minimum value of the density of permitted k-tuples within the left interval I[1, p 2 k ] is greater than some constant C > 0. This assumption implies that the number of permitted k-tuples within this interval is greater than Cp k since the number of subintervals of size p k in I[1, p 2 k ] is equal to p k , which in turn implies that the number of permitted k-tuples in I[1, p 2 k ] (that is, the sifting function of Sieve II) tends to infinity as k → ∞. 

Short explanation of the main ideas

Let us again consider the interval I[1, m k ] of the sequence of k-tuples of Sieve II, in horizontal position, for k sufficiently large. As we have seen before, we can consider the first period of the sequence of k-tuples as a matrix of k rows and m k columns. Recall that for every h (1 ≤ h ≤ k), the rows from 1 to h are part of a sequence of h-tuples. We shall say that h is the level of this sequence (see Definition 2.1). Note that since δ h increases (see the preceding subsection), δ k > δ 4 for sufficiently large k.

Suppose that for every level h (1 ≤ h ≤ k), the permitted h-tuples are placed in positions that follow an approximately regular pattern along the interval I[1, m k ] of the corresponding sequence of h-tuples, regardless of the choice of the selected remainders in the sequence of k-tuples. In this case, for each level h, the density of permitted h-tuples in both intervals I[1, p 2 k ] and I[p 2 k + 1, m k ] of the sequence of h-tuples should be close to δ h . Therefore, the density of permitted k-tuples in the interval I[1, p 2 k ] of the sequence of k-tuples (no matter the choice of the selected remainders) should be greater than δ 4 for sufficiently large k.

We shall prove that there exists an integer K α > 4 such that the density of permitted k-tuples in the interval I[1, p 2 k ] of the sequence of k-tuples (for all choices of the selected remainders) is greater than δ 4 = 1/2 for every k > K α . Therefore, the quantity of permitted k-tuples in I[1, p 2 k ] (the value of the sifting function of Sieve II) must be greater than p k δ 4 = p k /2, for k > K α . Furthermore, for every even number x that satisfy p 2 k < x < p 2 k+1 , the value of the sifting function of Sieve I is greater than or equal to the minimum value of the sifting function of Sieve II, as we have seen in Subsection 1.4. From this result, it follows that p k /2 is also a lower bound for the sifting function of Sieve I for all even numbers x such that p 2 k < x < p 2 k+1 (k > K α ). This fact is clearly what is required to prove the main theorem. Now, an obvious question arises at this point: How the parity barrier has been overcome? As we have seen in Subsection 1.5, given Sieve II we can compute T ({n : 1 ≤ n ≤ m k }, P, p k ) using the formula [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF], which was derived from the inclusion-exclusion principle, because in the case of the set B = {n : 1 ≤ n ≤ m k } the cardinality of the subsets B d can be computed precisely, since the square free integer d divides m k . On the other hand, it is clear that, for our purposes, we need a lower bound for T ({n :

1 ≤ n ≤ p 2 k }, P, p k ). Given k, let us consider Sieve II taking B = {n : 1 ≤ n ≤ p 2 k }; thus, B is the set of indices corresponding to the interval I[1, p 2
k ] of the sequence of k-tuples associated to Sieve II. (Assume given a choice of selected remainders in this sequence.) In this case, we can write

|B d | = 2 ν(d) d p 2 k + R d (d|m k , 2 d)
and

|B d | = 2 ν(d)-1 d p 2 k + R d (d|m k , 2 | d)
where R d is the remainder term (see Subsection 1.5). Now, by the inclusion-exclusion principle,

T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) = d|m k µ (d) |B d | = 1 2 d|m k 2 d µ (d) 2 ν(d) d p 2 k + d|m k µ (d) R d ,
thus, by means of ( 4), the number of permitted k-tuples in the interval I[1, p 2 k ] of the sequence of k-tuples associated to Sieve II is given by

T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) = 1 2 p 2 k 2<p≤p k p∈P 1 - 2 p + d|m k µ (d) R d , (6) 
for an specific choice of selected remainders. Note that the product

1 - 1 p 1 1<h≤k 1 - 2 p h (7) 
appears in both formulas ( 5) and ( 6). In the formula (5) the factors (arranged in the order of primes) represent the precise fraction of permitted h-tuples that remain unsifted (as permitted (h + 1)-tuples) in the interval I[1, m k ] after every stage of the sifting process from h = 1 to h = k (see the last paragraph in Subsection 1.6). On the other hand, the fraction of permitted h-tuples that remain unsifted in the interval I[1, p 2 k ] after every stage of the sifting process depends on the choice of the selected remainders in the sequence of k-tuples. For this reason, in the formula (6) the 'true' factors (corresponding to a given choice of the selected remainders) are replaced by the 'average' factors that appear in [START_REF] Montgomery | The exceptional set in Goldbach's problem[END_REF], and then an error term is added to the formula.

The usual approach in sieve theory consist in estimating T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) by using (6) as starting point. However, the parity problem prevents us from attempting to establish a lower bound for T ({n : 1 ≤ n ≤ p 2 k }, P, p k ), as we have seen in Subsection 1.1. Note that the remainder sum in (6) has too many terms if k is sufficiently large, since z = p k . Now, the limitation imposed by the parity problem appears when we apply to the formula in (6) the usual methods developped so far in sieve theory. In this paper, we proceed in a way quite different from that is usual in sieve theory.

As we have remarked in the last paragraph of Subsection 1.6 (and it is an obvious fact), after every stage of the sifting process from h = 1 to h = k, the number of permitted h-tuples in I[1, p 2 k ] h decreases. This fact makes very difficult (maybe impossible) to directly estimate a lower bound for the number of permitted k-tuples in I[1, p 2 k ] after the whole sifting process has ended. For this reason, in place of estimating a lower bound for T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) using ( 6) we first estimate a lower bound for the density of permitted k-tuples in I[1, p 2 k ] using [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF], and then we compute the lower bound for T ({n : 1 ≤ n ≤ p 2 k }, P, p k ) using the lower bound for the k-density (see the 3rd paragraph in this subsection). We explain briefly this idea in the following paragraphs.

Given k sufficiently large, let us consider again the interval I[1, m k ] h for every sequence of h-tuples from h = 1 to h = k. Suppose that we rewrite [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF] in the form

T ({n : 1 ≤ n ≤ m k }, P, p k ) = m k 1 - 1 p 1 1 - 2 p 2 1 - 2 p 3 . . . 1 - 2 p k .
Then, if we shift denominators to the right we obtain

T ({n : 1 ≤ n ≤ m k }, P, p k ) = m k p k p 2 -2 p 1 p 3 -2 p 2 p 4 -2 p 3 . . . p k -2 p k-1 .
Clearly, the quotient m k /p k is the number of subintervals of size p k within the period of the sequence of k-tuples, and the product

p 2 -2 p 1 p 3 -2 p 2 p 4 -2 p 3 . . . p k -2 p k-1
is the density of permitted k-tuples within the period of the sequence, which is denoted by δ k . Furthermore, every partial product in the preceding formula is δ h (1 < h ≤ k); note that δ h increases, as we have seen in the preceding subsection.

Now, let us consider the interval I[1, p 2 k ] h for every sequence of h-tuples from h = 1 to h = k. We shall prove that the average density of permitted h-tuples (for all the choices of selected remainders) within the interval I[1, p 2 k ] h of a given sequence of h-tuples (1 ≤ h ≤ k) is equal to δ h . Thus, the average density of permitted h-tuples within the interval I[1, p 2 k ] h increases as we go from h = 1 to h = k, despite that the number of permitted h-tuples decreases. From this fact we can obtain a lower bound for the density of permitted k-tuples within the interval I[1, p 2 k ] k , so, we can compute a lower bound for T ({n : 1 ≤ n ≤ p 2 k }, P, p k ), for sufficiently large k. This is the way to circumvent the parity problem in this paper, rather different than the usual methods in sieve theory.

2 Periodic sequences of k-tuples General Notation. We write (a, b) for the greatest common divisor of a and b, if no confusion will arise. In addition, lcm is used as an abbreviation for the least common multiple. Given a set A, we denote by |A| the cardinality of A.

For each a ∈ R, the symbol a denotes the floor function, and the symbol a denotes the ceiling function.

In the Introduction, we began by describing one type of sieve to address the Goldbach problem, which we call the Sieve associated with x (or Sieve I); then, we introduced the notion of a sequence of k tuples of remainders as a new formulation for sieves in general, and for this sieve in particular. The Sieve associated with x (Sieve I) is directly related to the Goldbach problem; we leave the formal definition of this sieve to Section 8. On the other hand, we have also described in the Introduction a second more general sieve, which we call Sieve II. As we have seen in the Introduction, the sequence of k-tuples corresponding to Sieve II is more homogeneous than that corresponding to Sieve I, in the sense that in every sequence of remainders modulo p h (1 < h ≤ k), there are always two selected remainders. This fact is very important for computing the minimum value of the sifting function of Sieve II.

Sieve II is not directly related to the Goldbach problem, but as we have seen in the Introduction, the minimum number of permitted k-tuples in the interval I[1, p 2 k ] of the sequence of k-tuples corresponding to Sieve II (the minimum value of the sifting function of Sieve II) is a lower bound for the number of permitted k-tuples in the interval I [1, x] of the sequence corresponding to Sieve I (the sifting function of Sieve I), where p 2 k < x < p 2 k+1 . We shall prove this fact in Section 8. In this section, we formally define Sieve II; from here until the end of Section 7 we shall address the properties of this sieve.

We begin by defining the sequence of remainders, the sequence of k-tuples of remainders, and other associated concepts.

Definition 2.1. Let P be the sequence of all primes, and consider the subset {p 1 , p 2 , p 3 , . . . , p k } of the first k primes.

(1) Given p h (1 ≤ h ≤ k), we define the periodic sequence {r n }, where r n (n ∈ Z + ) denotes the remainder of dividing n by the modulus p h . We denote the sequence {r n } by the symbol s h . The period of the sequence is equal to p h .

(2) We define the sequence {(r 1 , r 2 , r 3 , . . . , r k ) n }, the elements of which are k-tuples of the remainders obtained by dividing n by the moduli p 1 , p 2 , p 3 , . . . , p k . We arrange the sequence of k-tuples of remainders vertically; we usually omit the comma separators in the k-tuples. Then, the sequence of k-tuples can be seen as a matrix formed by k columns and infinitely many rows, where each column of the matrix is a periodic sequence s h (1 ≤ h ≤ k). We call the index k the level of the sequence of k-tuples of remainders. See Example 2.1.

Example 2.1. Table 2 shows the first elements of the sequence of 5-tuples of the remainders of dividing n by {2, 3, 5, 7, 11}. Definition 2.2. Given a sequence {r n } with prime modulus p k , we assign to the remainders r n one of the two following states: selected state or not selected state. Definition 2.3. Given a sequence of k-tuples of remainders, we define a k-tuple to be prohibited if it has one or more selected remainders, and we define it to be permitted if it contains no selected remainders. Definition 2.4. We denote by m k the product 

p 1 p 2 p 3 • • • p k .
m k = p 1 p 2 p 3 • • • p k . Proof. Let s h (1 ≤ h ≤ k)
be the sequences of remainders that form a given sequence of k-tuples. Let m be a multiple of all the primes p 1 , p 2 , p 3 , . . . , p k . The period of every sequence s h is equal to p h ∈ {p 1 , p 2 , p 3 , . . . , p k }. Therefore, for every sequence s h , the remainders are repeated for all the integer intervals of size m , starting from the index n = 1 onward. Since p 1 , p 2 , p 3 , . . . , p k are primes, the product m k is the lcm. Consequently, the fundamental period of the sequence of k-tuples is equal to m k .

Thus far, we have defined the sequence of k-tuples of remainders without defining any rules for selecting remainders, so, the sequence of k-tuples does not work as a sieve. Before defining these rules, we shall consider another important question concerning the sequence of k-tuples of remainders. As shown in the Introduction, in the case of Sieve II, the behaviour of the sequence of k-tuples as k increases indefinitely must be addressed. Consequently, we require two more definitions before defining the rules for selecting remainders. Definition 2.5. Sum of sequences.

Let {p 1 , p 2 , p 3 , . . . , p k } be the set of the first k primes. Let {(r 1 r 2 r 3 . . . r k ) n } be the sequence of k-tuples of the remainders of dividing n by the k prime moduli {p 1 , p 2 , p 3 , . . . , p k }, and let {(r k+1 ) n } be the sequence of the remainders of dividing n by the prime modulus p k+1 . We define the sum {(r 1 r 2 r 3 . . . r k ) n } + {(r k+1 ) n } of the sequence {(r 1 r 2 r 3 . . . r k ) n } and the sequence {(r k+1 ) n } to be the sequence of (k + 1)-tuples given by the equation

{(r 1 r 2 r 3 . . . r k ) n } + {(r k+1 ) n } = {(r 1 r 2 r 3 . . . r k r k+1 ) n } ,
and formed by the ordered juxtaposition of each k-tuple of the first sequence with each element (index n modulo p k+1 ) of the second sequence. Definition 2.6. Let P be the sequence of all primes, and let p k ∈ P. Let s k be the sequence of the remainders r n of dividing n by the modulus p k (see Definition 2.1). Let {s k } be the sequence of sequences s k . We define the series denoted by s k to be the sequence {S k }, where S k denotes the partial sum:

S 1 = s 1 , S 2 = s 1 + s 2 , S 3 = s 1 + s 2 + s 3 , . . . . . . . . . . . . S k = s 1 + s 2 + s 3 + s 4 + • • • + s k ,
and the symbol refers to the formal addition of sequences. In each partial sum S k , the greatest prime modulus p k is called the characteristic prime modulus of the partial sum S k , and we say that S k is the partial sum of level k.

Note . On the one hand, we can view a given partial sum S k as a sequence, indexed by n, of the k-tuples of remainders obtained by dividing n by the moduli p 1 , p 2 , p 3 , . . . , p k . On the other hand, the partial sum S k can be seen as a finite sequence, indexed by the set {1, . . . , k} (k ∈ Z + ), of sequences of remainders modulo p h ∈ {p 1 , p 2 , p 3 , . . . , p k }, where the indices {1, . . . , k} increase from left to right. Additionally, by definition, the series s k is the sequence, indexed by k, of the partial sums S k .

Example 2.2. Table 3 shows the partial sum S 4 and the formal addition of the sequence of remainders s 5 to obtain the partial sum S 5 . Rule 1. If h = 1, in the sequence of remainders s 1 , there will be selected one remainder, which is the same in every period of the sequence.

Rule 2. If 1 < h ≤ k, in every sequence of remainders s h , there will be selected two remainders, which are the same two in every period of the sequence.

Example 2.3. Table 4 shows the partial sum of level k = 4, where the selected remainders are in square brackets [ ]. Note that the 4-tuples 1 and 7 are permitted k-tuples.

A given partial sum S k is a sequence of k-tuples of remainders. However, henceforth, when we refer to a given partial sum S k , we mean S k together with the selected remainders, unless we specifically state otherwise. Now, we are ready to formally define Sieve II. Hereafter, we take B = {n : 1 ≤ n ≤ p 2 k }, that is y = p 2 k . In the following theorems, we prove some additional properties of the partial sums of the series s k , which will be used throughout this paper. Proposition 2.2. Let S k be a given partial sum. Let s k+1 be the sequence of remainders modulo p k+1 . Let r (0 ≤ r < p k+1 ) be one of the remainders modulo p k+1 of the sequence s k+1 . Let n ∈ Z + be the index of a given k-tuple of S k . Then, when we juxtapose the elements of the sequence s k+1 to each k-tuple of S k , we obtain the following.

n 2 3 5 7 1 1 1 1 1 2 [0] [2] 2 2 3 1 [0] [3] [3] 4 [0] 1 4 4 5 1 [2] [0] [5] 6 [0] [0] 1 6 7 1 1 2 0 8 [0] [2] [3] 1 9 1 [0] 4 2 10 [0] 1 [0] [3] 11 1 [2] 1 4 12 [0] [0] 2 [5] 13 1 1 [3] 6 14 [0] [2] 4 0 15 1 [0] [0] 1 16 [0] 1 1 2 . . . . . Definition 
(1) If the k-tuple at position n is prohibited, then the (k + 1)-tuple of S k+1 at position n will be prohibited as well.

(2) If the k-tuple at position n is permitted and n ≡ r (mod p k+1 ), then:

(a) The (k + 1)-tuple of S k+1 at position n is prohibited if and only if r is a selected remainder;

(b) The (k + 1)-tuple of S k+1 at position n is permitted if and only if r is not a selected remainder.

Proof. By definition, a given k-tuple is prohibited if it has one or more selected remainders; if it has no selected remainders, the k-tuple is permitted. The proof is immediate. Definition 2.9. For a given partial sum S k , we denote by c k the number of permitted k-tuples within a period of S k .

Proposition 2.3. Let S k be a given partial sum. We then have

c k = (p 1 -1)(p 2 -2)(p 3 -2) • • • (p k -2).
Proof. It follows from [START_REF] Chen | On the representation of a large even integer as the sum of a prime and the product of at most two primes[END_REF], by simplifying the expression. Proposition 2.4. Let S k be a given partial sum. Let p k be the characteristic prime modulus of the partial sum S k . Let c k be the number of permitted k-tuples within the period of S k . We have

p 2 k = o(c k ).
Proof. Using Proposition 2.3, we have

p 2 k c k = p 2 k (p 1 -1) (p 2 -2) (p 3 -2) • • • (p k -2) = (8) = 1 (p 1 -1) (p 2 -2) (p 3 -2) • • • (p k-2 -2) p k p k-1 -2 p k p k -2 . Let g k-1 denote the gap p k -p k-1 ; so, p k /(p k-1 -2) = (p k-1 + g k-1 )/(p k-1 -2)
. By the Bertrand-Chebyshev theorem, we have

g k-1 < p k-1 =⇒ (p k-1 +g k-1 )/(p k-1 -2) < 2p k-1 /(p k-1 -2). It follows that lim k→∞ p k /(p k-1 -2) < lim k→∞ 2p k-1 /(p k-1 -2) = 2. Since lim k→∞ p k /(p k -2) = 1, returning to (8), clearly, lim k→∞ p 2 k /c k = 0.
Now, to obtain a period of the partial sum S k+1 , we first take p k+1 periods of the partial sum S k ; next, we juxtapose the remainders of the sequence s k+1 to each k-tuple of S k (that is, we perform the operation S k + s k+1 ). The following proposition shows that the distribution of the indices of permitted k-tuples within the p k+1 periods of the partial sum S k over the residue classes modulo p k+1 is uniform. 

Definition and properties of the density of permitted k-tuples

In this section, we formally define the concept of the density of permitted k-tuples, and we prove that the density of permitted k-tuples within a period of the partial sum S k is increasing and tends to ∞ as k → ∞. Definition 3.1. If we write the index n of the sequences s h from top to bottom and the level h from left to right (see Table 2), we say that the partial sum S k is in the vertical position. Now, suppose that the partial sum S k is in the vertical position, and we rotate it 90 degrees counterclockwise. Then, the index n of the sequences s h increases from left to right, and the level h increases from the bottom up. In this case, we say that the partial sum S k is in the horizontal position.

Hereafter, we consider that every partial sum S k is in horizontal position, unless we specifically state otherwise. For the empty interval, we define δ The following lemma gives a formula for computing δ k .

I[] k = 0.
Lemma 3.1. We have

δ k = p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 • • • p k-1 -2 p k-1 (p k -2) .
Proof. By definition and Proposition 2.3

δ k = c k m k /p k = (p 1 -1) (p 2 -2) (p 3 -2) • • • (p k-1 -2) (p k -2) p 1 p 2 p 3 p 4 • • • p k-1 = = p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 • • • p k-1 -2 p k-1 (p k -2) .
The next lemma shows that δ k is increasing if k > 1.

Lemma 3.2. Let S k and S k+1 be consecutive partial sums of the series s k . If δ k denotes the density of permitted k-tuples within a period of S k and δ k+1 denotes the density of permitted (k + 1)-tuples within a period of S k+1 , then

δ k+1 = δ k p k+1 -2 p k .
Proof. Taking the quotient δ k+1 /δ k and simplifying, the proof follows immediately.

Corollary 3.3. By Lemma 3.2, 1. p k+1 -p k < 2 =⇒ δ k+1 < δ k . 2. p k+1 -p k = 2 =⇒ δ k+1 = δ k . 3. p k+1 -p k > 2 =⇒ δ k+1 > δ k . Now, we prove that δ k → ∞ as k → ∞.
First, we present a definition.

Definition 3.5. Let p k > 2 and p k+1 be consecutive primes. We denote by θ k the difference p k+1 -p k -2.

Theorem 3.4. Let S k be a given partial sum. Let δ k be the density of permitted k-tuples within a period of S k . As k → ∞, we have δ k → ∞.

Proof. By Lemma 3.1,

δ k = p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 p 4 -2 p 4 p 5 -2 p 5 • • • p k-1 -2 p k-1 (p k -2) .
If we shift denominators to the right, we obtain

δ k = (p 1 -1) p 2 -2 p 1 p 3 -2 p 2 p 4 -2 p 3 p 5 -2 p 4 • • • p k-1 -2 p k-2 p k -2 p k-1 .
By definition, θ k = p k+1 -p k -2 =⇒ p k+1 -2 = p k + θ k . Consequently, we can write the expression of δ k as

δ k = 1 2 p 2 + θ 2 p 2 p 3 + θ 3 p 3 p 4 + θ 4 p 4 • • • p k-2 + θ k-2 p k-2 p k-1 + θ k-1 p k-1 = = 1 2 1 + θ 2 p 2 1 + θ 3 p 3 1 + θ 4 p 4 • • • 1 + θ k-2 p k-2 1 + θ k-1 p k-1 = = 1 3 1 + 1 p 1 1 + θ 2 p 2 1 + θ 3 p 3 1 + θ 4 p 4 • • • 1 + θ k-1 p k-1 1 + θ k p k p k p k + θ k .
Then,

lim k→∞ δ k = 1 3 1 + 1 p 1 ∞ k=2 1 + θ k p k lim k→∞ p k p k + θ k . ( 9 
)
The infinite product between square brackets diverges if the series

1 p 1 + ∞ k=2 θ k p k (10) 
diverges. In the series [START_REF] Helfgott | The ternary Goldbach conjecture is true[END_REF], if p k is the first of a pair of twin primes, by definition, we have θ k = 0; otherwise, we have θ k ≥ 2. Let ∞ j=1 1/q j denote the series where every prime q j is the first of a pair of twin primes. Since the series of reciprocals of the twin primes converges [START_REF] Brun | où les dénominateurs sont nombres premieres jumeaux est convergente où finie[END_REF], the series ∞ j=1 1/q j also converges. Therefore, the series

∞ k=1 1/p k - ∞ j=1 1/q j diverges because ∞ k=1 1/p k diverges. By comparison with the series ∞ k=1 1/p k - ∞ j=1 1/q j ,
it follows that the series [START_REF] Helfgott | The ternary Goldbach conjecture is true[END_REF] diverges because θ k /p k > 1/p k for the terms where θ k > 0. Thus, the infinite product in (9) tends to ∞ as well. On the other hand, by the Bertrand-Chebyshev theorem,

p k < p k+1 < 2p k =⇒ θ k < p k =⇒ p k /(p k + θ k ) > 1/2. Consequently, δ k → ∞ as k → ∞.

4

The average density of permitted k-tuples within a given interval I[m, n] Let S k be a given partial sum of the series s k . In Section 3 we showed that for the interval I[1, m k ] of the partial sum S k , the density of permitted k-tuples does not depend on the choice of the selected remainders in the sequences s h (1 ≤ h ≤ k) that form the partial sum S k (see Lemma 3.1). However, this assertion does not hold for all the intervals I[m, n] of the partial sum S k . In this section, we prove that within a given interval I[m, n] of the partial sum S k , the average of the values of the k-density for all the possible choices of the selected remainders is equal to δ k . First, we present some definitions. Definition 4.1. Let s h (1 ≤ h ≤ k) be the sequences of remainders that form the partial sum S k . A given choice of selected remainders within the period of one of the sequences s h or within the periods of all the sequences s h (1 ≤ h ≤ k) is called a combination of selected remainders. We denote by ν h the number of combinations of selected remainders within the period of a given sequence s h . Since, by definition, for the sequences s h (1 < h ≤ k) there are two selected remainders within the period p h ,

ν h = p h 2 . ( 11 
)
In the sequence s 1 , there is only one selected remainder within the period; then,

p 1 = 2 =⇒ ν 1 = 2.
Note that the number of combinations of selected remainders within the periods of all the sequences s h (1 ≤ h ≤ k) is given by

p 1 1 p 2 2 p 3 2 • • • p k 2 . ( 12 
)
Convention. Henceforth, when we refer to the average density of permitted k-tuples within a given interval I[m, n] of the partial sum S k , we mean that the average is computed taking into account all the combinations of selected remainders in the sequences s h that form the partial sum S k . We use the same convention when we refer to the average number of permitted k-tuples.

Definition 4.2. The operation of Type A. Let s h (1 ≤ h ≤ k) be the sequences of remainders that form the partial sum S k . For h > 1, let r, r (mod p h ) be the selected remainders within the period p h of the sequence s h . We define the operation that changes the selected remainders r, r (mod p h ) to r + 1, r + 1 (mod p h ) to be the Type A operation.

For the sequence s 1 , we also define the operation of changing the selected remainder r (mod p 1 ) to r + 1 (mod p 1 ) to be the Type A operation.

Example 4.1. Table 5 shows the first period of the sequence of remainders s 4 (p 4 = 7), where initially we select the remainders [START_REF] Halberstam | Sieve Methods[END_REF] and [START_REF] Brun | où les dénominateurs sont nombres premieres jumeaux est convergente où finie[END_REF] and then successively apply the Type A operation.

Table 5: First period of the sequence of remainders s 4 . Let s h (1 < h ≤ k) be the sequences of remainders that form the partial sum S k . Let r, r (mod p h ) be the selected remainders (in that order), within the period p h of the sequence s h . We define the Type B operation as follows:

n 1 [1] 1 1 1 1 [1] 1 2 2 [2] 2 2 2 2 [2] 3 [3] 3 [3]
1) The remainder r remains selected.

2) We change the other selected remainder r (mod p h ) to r + 1 (mod p h ), r = r + 1.

Example 4.2. Table 6 shows the first period of the sequence of remainders s 4 (p 4 = 7), where initially we selected the remainders [START_REF] Halberstam | Sieve Methods[END_REF] and [START_REF] Cojocaru | An Introduction to Sieve Methods an Their Applications[END_REF] and then successively applied the Type B operation.

Table 6: First period of the sequence of remainders s 4 . 

n 1 [1] [1] [1] [1] [1] [1] 2 [2]
B h (h > 1) by ν B h = (p h -1)/2.
Remark 4.1. Suppose that we choose two consecutive selected remainders r, r within the period of the sequence s h (1 < h ≤ k). Thus, we have one of ν h combinations of selected remainders. Repeating the Type A operation ν A h -1 times, we obtain ν A h = p h different combinations of selected remainders. Now, if for each one of these combinations we leave unchanged the selected remainder r and then we repeat the Type B operation ν B h -1 times, we obtain all the ν h combinations of selected remainders within the period of the sequence s h . This process is expressed by the equation We denote by f k+1 the average of f k+1 for all the combinations of selected remainders in the sequence s k+1 (k ≥ 1). For the partial sum S 1 , let f 1 denote the average of f 1 for the 2 combinations of selected remainders in the sequence s 1 .

ν h = p h 2 = p h ! 2! (p h -2)! = p h p h -1 2 = ν A h ν B h .
The following lemma gives a formula for computing the average fraction f k+1 . 

= η 0 + η 1 + η 2 + • • • + η p k+1 -1 .
We wish to compute the average fraction of the permitted k-tuples within the interval I[m, n] k that are converted to prohibited (k + 1)-tuples within the interval I[m, n] k+1 for all ν k+1 combinations of selected remainders in the sequence s k+1 (k ≥ 1). Now,

ν k+1 = ν A k+1 ν B k+1 = p k+1 (p k+1 -1) 2 ,
by Remark 4.1. Consequently, we begin by taking the average over the ν A k+1 combinations obtained by the Type A operations, and then we take the average of the previous averages over the ν B k+1 combinations obtained by the Type B operations.

Step 1. Suppose that we choose two selected remainders r, r within the period of the sequence s k+1 . By Proposition 2. Step 2. Now, if we take the average over the ν B k+1 = (p k+1 -1)/2 combinations of selected remainders obtained by repeated Type B operations from each one of the combinations obtained before, we obtain

f k+1 = ν B k+1 j=1 2 p k+1 ν B k+1 = 2 p k+1
, because p k+1 does not depend on the index j (1 ≤ j ≤ ν B k+1 ). For the partial sum S 1 , there are two residue classes modulo p 1 = 2 and one selected remainder. Therefore, f 1 = 1/p 1 . Definition 4.6. It follows from Proposition 2.2 that when we juxtapose the remainders of the sequence s k+1 to each k-tuple of S k , the permitted k-tuples of S k whose indices are not congruent to any of the two selected remainders of s k+1 modulo p k+1 are, as (k + 1)-tuples of S k+1 , still permitted. We denote by f k+1 the fraction of permitted k-tuples within the interval I[m, n] k of S k that are transferred to the interval I[m, n] k+1 of S k+1 as permitted (k + 1)-tuples. For the partial sum S 1 , let f 1 denote the fraction of the permitted 1-tuples within the interval I[m, n] k=1 .

We denote by f k+1 the average of f k+1 for all combinations of selected remainders in sequence s k+1 . For the partial sum S 1 , let f 1 denote the average of f 1 for the 2 combinations of selected remainders in sequence s 1 . Now, using the preceding lemma, we can calculate the average fraction f k+1 . Lemma 4.2. We have f k+1 = (p k+1 -2)/p k+1 . For S 1 , we have f 1 = (p 1 -1)/p 1 .

Proof. By Proposition 2.2, a given permitted k-tuple within the interval I[m, n] k of S k can be transferred to the interval I[m, n] k+1 of S k+1 either as a permitted (k + 1)-tuple or as a prohibited (k + 1)-tuple. Consequently, f k+1 + f k+1 = 1, so f k+1 + f k+1 = 1. Therefore, using Lemma 4.1, we obtain f k+1 = 1 -f k+1 = 1 -2/p k+1 = (p k+1 -2)/p k+1 .

For the partial sum S 1 , we have Finally, using the preceding lemmas, we calculate the average k-density within a given interval I[m, n] and show that it is equal to the k-density within the period of S k . 

f 1 = 1/p 1 =⇒ f 1 = (p 1 -1)/p 1 .
c I[m,n] k = |I [m, n]| p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 • • • p k -2 p k . ( 13 
)
Now, the number of intervals of size p k within the interval

I[m, n] is equal to |I[m, n]|/p k . Consequently, by definition, δ I[m,n] k = c I[m,n] k |I[m,n]| p k = p k |I [m, n]| c I[m,n] k . ( 14 
)
Therefore, substituting [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF] for c

I[m,n] k
in (14) and using Lemma 3.1, we obtain

δ I[m,n] k = p k |I [m, n]| |I [m, n]| p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 • • • p k -2 p k = = p 1 -1 p 1 p 2 -2 p 2 p 3 -2 p 3 • • • (p k -2) = δ k .
5 The density of permitted k-tuples within the interval 

I[1, n] as n → ∞ Let S k (k > 2)
δ I[1,n] k = n m k m k n δ k + p k c n .
Proof. By definition,

δ I[1,n] k = c I[1,n] k n p k .
Since n/m k is the number of times that the period of S k fits in the interval I[1, n], the interval I[1, n/m k m k ] is that part of I [1, n] whose size is a multiple of m k . Thus, n/m k m k /p k is the number of subintervals of size p k within this part of the interval I [1, n]. Consequently, multiplying by the k-density in the period of S k , we obtain

c η = n m k m k p k δ k . Since c I[1,n] k
is the number of permitted k-tuples within I[1, n], we have c

I[1,n] k = c η + c . Then, δ I[1,n] k = c I[1,n] k n p k = c η + c n p k = n m k m k p k δ k + c n p k = n m k m k n δ k + p k c n .
Now, using the formula from the preceding lemma, we find lower and upper bounds for the k-density within the interval I[1, n]. 

δ k < δ I[1,n] k < n m k + 1 m k n m k m k + 1 δ k . ( 15 
)
Proof.

Step 1. We first consider the case where n is not a multiple of m k . By Lemma 5.1,

δ I[1,n] k = n m k m k n δ k + p k c n . ( 16 
)
To obtain bounds for δ

I[1,n] k
, we proceed as follows. We begin by obtaining bounds for c . By definition

δ k = c k /(m k /p k ), so, c k = δ k m k /p k . Since, by assumption, n is not a multiple of m k , it is easy to see that 0 ≤ c ≤ c k = δ k m k /p k . ( 17 
)
Next, we obtain bounds for the denominator in (16). Since n is not a multiple of m k ,

n/m k m k + 1 ≤ n ≤ n/m k m k + (m k -1) . ( 18 
)
Step 2. We obtain a lower bound for δ

I[1,n] k
. If we replace the denominator in (16) with the upper bound in (18),

n m k m k n m k m k + (m k -1) δ k + p k c n m k m k + (m k -1) ≤ δ I[1,n] k . ( 19 
)
Note that if n is equal to the upper bound in (18), the size of the incomplete period differs from period m k by one. On the other hand, it is easy to check, using Proposition 2.3, that within the period of the partial sum S k (k > 2), there is more than one permitted k-tuple. It follows that if n is equal to the upper bound in (18), then there is at least one permitted k-tuple within the incomplete period of I [1, n]; thus, c > 0. Therefore, if we replace c in (19) with the lower bound in (17),

n m k m k n m k m k + (m k -1) δ k < δ I[1,n] k . ( 20 
)
Step 3. We now obtain an upper bound for δ

I[1,n] k
. If we replace the denominator in ( 16) with the lower bound in (18),

δ I[1,n] k ≤ n m k m k n m k m k + 1 δ k + p k c n m k m k + 1 . ( 21 
)
Note that if n is equal to the lower bound in (18), the size of the incomplete period is equal to 1, so there cannot be more than one permitted k-tuple within the incomplete period of I[ 

δ I[1,n] k < n m k m k n m k m k + 1 δ k + p k δ k m k p k n m k m k + 1 = n m k + 1 m k n m k m k + 1 δ k . (22) 
Step 4. Now we complete the proof. Suppose that n is a multiple of m k . Then, clearly the density of permitted k-tuples within the interval I[1, n] is equal to the density within the period of S k ; that is, δ

I[1,n] k = δ k .
Since the lower bound in (20) is less than δ k and the upper bound in ( 22) is greater than δ k , we conclude that for every interval I[1, n] of the partial sum S k (k > 2), the inequalities (20) and ( 22) are always satisfied, and the lemma is proved.

Remark 5.1. It is easy to check that in (15) the upper bound is decreasing and the lower bound is increasing as n → ∞.

Finally, we show that the k-density in the interval I[1, n] of a given partial sum S k tends to δ k as the size n of the interval increases. Proof. Using the inequalities of Lemma 5.2, if we take the limits as n → ∞,

lim n→∞ n m k m k n m k m k + (m k -1) δ k < lim n→∞ δ I[1,n] k < lim n→∞ n m k + 1 m k n m k m k + 1 δ k .
Now, dividing the numerator and denominator by n/m k , we obtain

lim n→∞ m k m k + (m k -1) n m k δ k < lim n→∞ δ I[1,n] k < lim n→∞ 1 + 1 n m k m k m k + 1 n m k δ k .
Since for a given level k, the values m k and δ k are constant, as n → ∞, we have n/m k → ∞, and the lower and upper bounds tend to δ k . Thus δ

I[1,n] k converges to δ k as n → ∞.
6 The k-density within the intervals I[1, p 2 k ] and

I[p 2 k + 1, m k ]
Let S k (k ≥ 4) be a given partial sum of the series s k . In this section, we shall subdivide the interval I[1, m k ] of S k into two parts and establish the relationship between the density of permitted k-tuples within one part and the density of permitted k-tuples within the other part. We begin by introducing some terminology and notation. Definition 6.1. Let S k and S k+1 be consecutive partial sums of the series s k . We use the notation p k → p k+1 , or alternatively k → k + 1, to denote the transition from level k to level k + 1. For the level transition p k → p k+1 , we call the difference p k+1 -p k the order of the transition. Definition 6.2. When we juxtapose the remainders of the sequence s k+1 to each k-tuple of S k , by Proposition 2.2, a given permitted k-tuple of S k , whose index is congruent to a selected remainder of s k+1 modulo p k+1 , is converted to a prohibited (k + 1)-tuple of S k+1 . In that case, we say that at the level transition k → k + 1, one permitted k-tuple is removed.

Let s h (1 ≤ h ≤ k) be the periodic sequences of remainders that form the partial sum S k . Recall the notation m h for the period of the partial sum S h ; recall the notation c h for the number of permitted h-tuples and δ h for the h-density within the period of the partial sum S h (1 ≤ h ≤ k). For every partial sum S h from level h = 1 to level h = k in the horizontal position, let us consider the interval I[1, m k ] h , whose size is the period m k of S k . Remark 6.1. Using Proposition 2.1, it is easy to check that the period of the partial sum S 1 is equal to m 1 = p 1 = 2. On the other hand, by Proposition 2.3, within every period of S 1 we have only one permitted 1-tuple. Therefore, the interval I[1, m k ] 1 of the partial sum S 1 is divided into subintervals of size m 1 = 2, each containing one permitted 1-tuple. The position of the permitted 1-tuple is the same within every subinterval and is determined by the selected remainder in the sequence s 1 . Remark 6.2. According to the preceding remark, the positions of the permitted 1-tuples show a regular pattern along the interval I[1, m k ] 1 of the partial sum S 1 . However, when we add the sequences s h from level h = 2 to level h = k, the selected remainders in each sequence s h remove permitted (h -1)-tuples from the partial sum S h-1 . Consequently, we obtain an interval I[1, m k ] k where the permitted k-tuples are spread along the interval in positions that show an irregular pattern. Note that if we change the combination of selected remainders in the sequences s h (1 ≤ h ≤ k), within the interval I[1, m k ] k , some permitted k-tuples 'disappear', and other permitted k-tuples 'appear', although the number of permitted k-tuples within the interval I[1, m k ] k of the partial sum S k does not change (see Proposition 2.3).

The following lemma gives us the number of permitted h-tuples within the interval I[1, m k ] h of every partial sum S h where h < k. Lemma 6.1. Let S k (k ≥ 4) be a given partial sum of the series s k . For any given partial sum S h (h < k), the number of permitted h-tuples within the interval

I[1, m k ] h is equal to c h p h+1 p h+2 • • • p k .
Proof. Choose a level h < k. By definition, we have

m k = p 1 p 2 p 3 • • • p h p h+1 p h+2 • • • p k = m h p h+1 p h+2 • • • p k . That is, the size of the interval I[1, m k ] h of the partial sum S h is equal to p h+1 p h+2 • • • p k times
the period m h of the partial sum S h . Consequently, it is easy to see that the number of permitted h-tuples within the interval

I[1, m k ] h is equal to c h p h+1 p h+2 • • • p k .
Now, let us denote by c h the number of permitted h-tuples within the interval I[1, m k ] h of every partial sum S h (1 ≤ h ≤ k), which is computed using Proposition 2.3 and Lemma 6.1. We have a question at this point: What is the behaviour of c h as h goes from level 1 to level k? This behaviour is given by the following lemma. Lemma 6.2. Let h and h + 1 be consecutive levels, where 1 ≤ h < k. We have

c h+1 = c h p h+1 -2 p h+1 .
Proof. Given the partial sum S h (1 ≤ h < k), suppose that we juxtapose the remainders of the sequence s h+1 to each h-tuple of S h . By Proposition 2.2, the permitted h-tuples within the interval I[1, m k ] h whose indices are included in two residue classes modulo p h+1 are removed by the selected remainders within the sequence s h+1 , and the permitted h-tuples whose indices are not included in these residue classes are transferred to level h + 1 as permitted (h + 1)-tuples within the interval I[1, m k ] h+1 of the partial sum S h+1 , regardless of the combination of selected remainders in the sequence s h+1 . Since for every level h < k, the size of the interval I[1, m k ] h is a multiple of p h+1 , by Proposition 2.5 and Corollary 2.6, the indices of permitted h-tuples within the interval I[1, m k ] h of S h are distributed uniformly over the residue classes modulo p h+1 . Therefore, a 2/p h+1 fraction of the permitted h-tuples within the interval I[1, m k ] h of S h have been removed, and a (p h+1 -2)/p h+1 fraction have been transferred to level h + 1 as permitted (h + 1)-tuples within the interval I[1, m k ] h+1 of S h+1 , regardless of the combination of selected remainders in the sequence s h+1 . From this result, the lemma follows.

Remark 6.3. By Proposition 2.3 and Lemma 6.1, the number of permitted h-tuples within the interval

I[1, m k ] h (1 ≤ h ≤ k)
does not depend on the combination of selected remainders in the sequences s h that form the partial sum S h , therefore, neither does the density of permitted h-tuples within this interval. Furthermore, since the size of I[1, m k ] h is a multiple of m h , the density of permitted h-tuples within the interval I[1, m k ] h is equal to δ h (the density of permitted h-tuples within the period m h of the partial sum S h ).

Let us now examine the behaviour of δ h as h goes from level 1 to level k. Since the selected remainders of the sequences s h+1 remove permitted h-tuples within the interval I[1, m k ] h of the partial sum S h , at each level transition h → h + 1, the number of permitted h-tuples decreases as the level increases from h = 1 to h = k (the factor by which we must multiply c h to obtain c h+1 is given by Lemma 6.2). However, by Lemma 3.2 and Corollary 3.3, the h-density within the interval I[1, m k ] h of the partial sum S h grows at each transition p h → p h+1 of order greater than 2; and if p h → p h+1 is a level transition of order 2, the h-density within I[1, m k ] h does not change. Remark 6.4. Note that if p h → p h+1 is a level transition of order greater than 2, δ h increases because to compute the h-density we count the permitted h-tuples within subintervals of size p h , which grow by more than 2, overcompensating for the removed permitted h-tuples. On the other hand, if p h → p h+1 is a level transition of order 2, δ h does not change because the increase in the size p h is compensated for by the removed permitted h-tuples. (Observe that p 1 → p 2 is the only level transition where δ h decreases.) Note that the result from Lemma 3.2 can be written in the form

δ h+1 = δ h p h+1 -2 p h+1 p h+1 p h ,
where the factor (p h+1 -2)/p h+1 is related to the permitted h-tuples removed from I[1, m k ] h (see Lemma 6.2), and the factor p h+1 /p h is related to the increase of the size of the subintervals. Now, if we 'cut' the first period of S k into two parts between the indices p 2 k and p 2 k + 1, we obtain a left-hand subinterval and a right-hand subinterval. k + 1, m k ] h . Although the number of permitted h-tuples within the interval I[1, m k ] h of every partial sum S h (1 ≤ h ≤ k) does not change if we choose another set of selected remainders, the positions of the permitted h-tuples along the period of S h do change. Thus, it appears reasonable to expect that some permitted h-tuples will be transferred from the Left interval I[1, p 

I[p 2 k + 1, m k ] by the symbol R k . For every partial sum S h from level h = 1 to level h = k -1, there is also a Left interval I[1, p 2 k ] h and a Right interval I[p 2 k + 1, m k ] h . See
Level h = k I 1, p 2 k h=k ∪ I p 2 k + 1, m k h=k = I [1, m k ] h=k Level h = h I 1, p 2 k h=h ∪ I p 2 k + 1, m k h=h = I [1, m k ] h=h Level h = 1 I 1, p 2 k h=1 ∪ I p 2 k + 1, m k h=1 = I [1, m k ] h=1
I[p 2 k + 1, m k ]
h is determined by the combination of the selected remainders in the sequences s h that form the partial sum S h . Definition 6.5. For a given partial sum S h (1 ≤ h ≤ k), we use the notation δ L k h to denote the density of permitted h-tuples within the Left interval I[1, p 2 k ] h , and we use the notation δ R k h to denote the density of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h . According to Remark 6.3, the h-density within the interval I[1, m k ] h does not depend on the combination of selected remainders in the sequences s h that form the partial sum S h . However, the transfer of some permitted htuples from the Left interval I[1, p 2 k ] h to the Right interval I[p 2 k + 1, m k ] h , or in the opposite direction, when we change the combination of selected remainders, changes the h-density within both intervals. The crossing of some permitted 

h-tuples from I[1, p 2 k ] h to I[p 2 k + 1, m k ] h decreases δ L k h and increases δ R k h ,
δ R k h within I[p 2 k + 1, m k ] h is also equal to δ h . Hence, δ L k h > δ h ⇐⇒ δ R k h < δ h , (23) 
δ L k h < δ h ⇐⇒ δ R k h > δ h .
Although the increase in the number of permitted h-tuples within one interval is equal to the decrease in the number of permitted h-tuples within the other interval, the increase in the h-density within one interval is not equal to the decrease in the h-density within the other interval. This result is due to there being more subintervals of size

p h within I[p 2 k + 1, m k ] h than within I[1, p 2 k ] h , for k > 3.
The following lemma gives the relationship between the h-density within I[1, p 2 k ] h and the h-density within

I[p 2 k + 1, m k ] h .
First, we present a definition. Definition 6.6. Let S h be the partial sums from level h = 1 to level h = k (k ≥ 4). Let I[1, p 2 k ] h be the Left interval, and let

I[p 2 k + 1, m k ] h be the Right interval in every partial sum S h (1 ≤ h ≤ k). For a given partial sum S h (1 ≤ h ≤ k), let δ L k
h be the density of permitted h-tuples within the Left interval I[1, p 2 k ] h , and let δ R k h be the density of permitted h-tuples within the Right interval

I[p 2 k + 1, m k ] h . We use the notation {δ L k h } to denote the set of values of δ L k
h , and we use the notation {δ R k h } to denote the set of values of δ R k h for all the combinations of selected remainders in the sequences that form the partial sum S h .

Lemma 6.3. There is a bijective function f

h : {δ L k h } → {δ R k h } such that f h (x) = δ h -(x -δ h ) p 2 k m k -p 2 k , and 
f -1 h (x) = δ h + (δ h -x) m k -p 2 k p 2 k .
Proof. For a given level h (1 ≤ h ≤ k), if we change the combination of selected remainders in the partial sum S h , some permitted h-tuples will be transferred from the Left interval I[1, p 2 k ] h to the Right interval I[p 2 k + 1, m k ] h , or vice versa, as we have seen in the paragraph above Definition 6.5. However, there exists a one-to-one correspondence between the set of values of δ L k h and the set of values of δ R k h , since the number of permitted h-tuples within the interval I[1, m k ] h is the same, regardless of the combination of selected remainders in the sequences s h that form the partial sum S h , by Proposition 2.3 and Lemma 6.1. Therefore, for a given level h (1 ≤ h ≤ k), we can define a bijective function

f h : {δ L k h } → {δ R k h }. Now, for the partial sum S h , assume that the h-density within both I[1, p 2 k ] h and I[p 2 k + 1, m k ]
h is equal to the average δ h . Then, suppose that some permitted h-tuples are transferred from the Right interval to the Left interval. We have an increase (δ 

L k h -δ h ) in
-δ R k h )(m k -p 2 k )/p h .
Since the number of permitted h-tuples entering the Left interval must be equal to the number of permitted h-tuples exiting the Right interval,

δ L k h -δ h p 2 k p h = δ h -δ R k h m k -p 2 k p h =⇒ δ R k h = δ h -δ L k h -δ h p 2 k m k -p 2 k .
Therefore, we have a bijective function

f h : {δ L k h } → {δ R k h }, such that f h (x) = δ h -(x -δ h )(p 2 k /(m k -p 2 k
)), and we can check that f -1

h (x) = δ h + (δ h -x)(m k -p 2 k )/p 2 k .
Remark 6.5. Note that for a given level h (1 ≤ h ≤ k), the image of max{δ L k h } under the function f h of the preceding lemma is min{δ R k h }, and the image of min{δ k + 1, m k ] h ; recall also the notation c h for the number of permitted h-tuples within a period of the partial sum S h and c h to denote the number of permitted h-tuples within the interval I[1, m k ] h of every partial sum S h (1 ≤ h ≤ k).

L k h } under f h is max{δ R k h }.
In this section, we shall prove that there exists a sufficiently large integer K α > 4 such that the number of permitted k-tuples within the Left interval I[1, p 2 k ] of the partial sum S k (the sifting function of Sieve II) is greater than p k /2 for every k > K α , regardless of the combination of selected remainders in the sequences s h that form the partial sum S k . However, for reasons that will be clear later, we begin by studying the behaviour of the h-density 

[p 2 k + 1, m k ] h (1 ≤ h ≤ k)
approximates the proportion of permitted h-tuples within the respective interval I[1, m k ] h more and more closely as the level k increases. Therefore, as the level k increases, we expect that every value of δ R k h (1 ≤ h ≤ k) approximates the respective average δ h more and more closely, regardless of the combination of selected remainders in the sequences s h that form the partial sum S k .

The following lemma shows that as k → ∞, the values of h-density within the Right intervals 

I[p 2 k + 1, m k ] h of the partial sums S h (1 ≤ h ≤ k) converge
δ R k h = c R k h (m k -p 2 k ) /p h (1 ≤ h ≤ k). (24) 
Step 2. Let us denote by m h the period of the partial sum S h and by c h the number of permitted h-tuples within a period of the partial sum S h . For every level from h = 1 to h = k, let c h be the number of permitted h-tuples within the interval I[1, m k ] h of the partial sum S h . Using Lemma 6.1, we obtain

c 1 = c 1 p 2 p 3 • • • p k , (25) 
c 2 = c 2 p 3 p 4 • • • p k , . . . c h = c h p h+1 p h+2 • • • p k , . . . c k = c k .
Note that c h increases as the level decreases from h = k to h = 1 (see Proposition 2.3). For every level from 

h = 1 to h = k, since I[1, m k ] h = I[1, p 2 k ] h ∪ I[p 2 k + 1, m k ] h ,
c h -p 2 k (m k -p 2 k ) /p h ≤ δ R k h ≤ c h (m k -p 2 k ) /p h (1 ≤ h ≤ k),
so, extracting the common factors c h and m k , we have

c h m k /p h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ c h m k /p h 1 1 -p 2 k /m k . Now, by definition, m k = p 1 p 2 p 3 • • • p h p h+1 p h+2 • • • p k = m h p h+1 p h+2 • • • p k .
Then, using (25) and canceling common factors, we obtain

c h m h /p h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ c h m h /p h 1 1 -p 2 k /m k .
By definition,

δ h = c h m h /p h .
Therefore, for every partial sum S h from level h = 1 to level h = k, regardless of the combination of selected remainders in the sequences s h that form the partial sum S k , we have the bounds

δ h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ δ h 1 1 -p 2 k /m k . ( 26 
)
Step 3. Now, let > 0 be a given small number, and let N ≥ 12. For level h = k, from (26) we have

δ k 1 -p 2 k /c k 1 -p 2 k /m k ≤ δ R k k ≤ δ k 1 1 -p 2 k /m k .
On the one hand, p 2 k = o(m k ); on the other hand, c k = c k , by (25), thus, by Proposition 2.4, p 2 k = o(c k ). Moreover, it follows from Proposition 2.3 that c k < m k . Therefore, we can take sufficiently large N that for level k > N ,

δ k - 2 < δ k 1 -p 2 k /c k 1 -p 2 k /m k ≤ δ R k k ≤ δ k 1 1 -p 2 k /m k < δ k + 2 , (27) 
at level h = k.

Step 4. Now, the rightmost inequality in (27) implies

δ k 1 1 -p 2 k /m k -1 < 2 .
For a given level h < k, since k > N ≥ 12 by assumption, it is easy to check using Lemma 3.2 and Corollary 3.3 that δ h ≤ δ k . Hence,

δ h 1 1 -p 2 k /m k -1 < 2 =⇒ δ h 1 1 -p 2 k /m k < δ h + 2 . ( 28 
)
Step 5. The leftmost inequality in (27) implies

δ k 1 - 1 -p 2 k /c k 1 -p 2 k /m k < 2 .
For a given level h < k, since k > N ≥ 12, we have δ h ≤ δ k (see Step 4). On the other hand, c k = c k < c h < m k , where 1 ≤ h < k (see (25) and Proposition 2.3). Hence, replacing δ k with δ h and c k with c h , we obtain

δ h 1 - 1 -p 2 k /c h 1 -p 2 k /m k < 2 =⇒ δ h - 2 < δ h 1 -p 2 k /c h 1 -p 2 k /m k . ( 29 
)
Step 6. We now prove the lemma. By (26), ( 27), (28), and (29), for k > N , we can write

δ h - 2 < δ h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ δ h 1 1 -p 2 k /m k < δ h + 2 ,
for every level from h = 1 to h = k. This result implies |δ R k h -δ h | < for every level from h = 1 to h = k (k > N ), regardless of the combination of selected remainders in the sequences s h that form every partial sum S k . Now, regarding the Left block of the partition, we begin by asking whether it can occur that there are no permitted k-tuples within a given interval I[1, n] k (n > 1) of S k . Consider the interval I[1, n] h of every partial sum S h from h = 1 to h = k. Assume that there are some permitted 1-tuples within the interval I[1, n] 1 of the partial sum S 1 (see Remark 6.1). We know that when the sequences s h from level h = 2 to level h = k are added, the selected remainders in every sequence s h remove permitted (h -1)-tuples from the partial sum S h-1 (see Remark 6.2). Clearly, it can happen that there are no permitted k-tuples within the interval I[1, n] k of S k if k is sufficiently large. On the other hand, for a given k there must be permitted k-tuples within the interval I[1, n] k of S k if n is sufficiently large, since the density of permitted k-tuples within this interval converges to δ k as n → ∞, by Proposition 5. [START_REF] Brun | où les dénominateurs sont nombres premieres jumeaux est convergente où finie[END_REF].

We can see that the quantity of permitted k-tuples within the interval I[1, n] k of S k depends on the level k and the size n of this interval. Thus, as k → ∞, the chance that there are permitted k-tuples within I [1, n] k is given by the relationship between k and the size of I [1, n] k . In the case of the Left interval n = p 2 k , so the relationship between k and the size of I [1, n] k follows from the sequence of the primes.

As we have seen in Section 6, the density of permitted h-tuples within every interval I[1, m k ] h (1 ≤ h ≤ k), denoted by δ h , does not depend on the combination of selected remainders in the sequences s h that form the partial sum S h (see Remark 6.3). Furthermore, δ h increases between h = 1 and h = k, by Lemma 3. k ] h from h = 1 to h = k (left block of the partition of the first period of S k ), there must be levels for which δ L k h < δ h mixed with levels for which δ L k h > δ h , for k sufficiently large.

The fact that the average of the h-density within every Left interval

I[1, p 2 k ] h (1 ≤ h ≤ k) is δ h , together with Remark 7.2 suggest that for every h (1 ≤ h ≤ k) the value of δ L k h is relatively close to δ h , if k is sufficiently large. Now, given h = h (4 ≤ h < k
) as a fixed level, from Proposition 5.3 we know that δ L k h (in the Left interval) approximates the average δ h more and more closely as k → ∞, for every level from h = 1 to h = h . Simultaneously, for every level from h = 1 to h = h the value of δ R k h (in the Right interval) approximates also the average δ h more and more closely as k → ∞, by Lemma 7.1. On the other hand, for every level from h = h + 1 to h = k the value of δ R k h converges to δ h as k → ∞, by Lemma 7.1 as well. Therefore, it seems reasonable to think that at the same time δ L k h also converges to δ h as k → ∞, for every level from h = h + 1 to h = k.

The following lemma shows that the values of h-density within the Left intervals I[1, p 2 k ] h of the partial sums S h (1 ≤ h ≤ k) converge uniformly to the respective average δ h as k → ∞, no matter the combination of selected remainders in every partial sum S k . Remark 7.3. As we go from h = 1 to h = k, the number of combinations of selected remainders within the periods of all the sequences s h (1 ≤ h ≤ k) forming S k , given by [START_REF] Selberg | The general sieve method and its place in prime number theory[END_REF], increases; furthermore, the number of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h decreases. Thus, it appears reasonable to assume that the variation of δ R k h about the mean δ h increases from h = 1 to h = k. Remark 7.4. Given S k (k ≥ 4), under the assumption of the preceding remark the deviations (max{δ R k h } -δ h ) and (δ h -min{δ R k h }) increases from h = 1 to h = k. Thus, the rate at which max{δ R k h } and min{δ R k h } tend to the respective average δ h must increase from h = 1 to h = k, since the values of max{δ R k h } and min{δ R k h } converge uniformly to δ h by Lemma 7.1, so, these values must be equal to δ h simultaneously in the limit as k → ∞. Definition 7.1. We define the extended function ϕ h : R + → R + such that ϕ h = f h , where f h is the first function of Lemma 6.3, and we define the extended function ϕ

-1 h : R + → R + such that ϕ -1 h = f -1 h , where f -1 h
is the second function of Lemma 6.3, for every h (1 ≤ h ≤ k).

Remark 7.5. Note that for a given level h (1 ≤ h ≤ k), the image of an upper bound for δ L k h under the function ϕ h is a lower bound for δ R k h , and the image of a lower bound for δ L k h under ϕ h is an upper bound for δ R k h . See the proof of Lemma 6.3 and (23). Lemma 7.2. Let S k (k ≥ 4) be a partial sum of the series s k . Let us consider the Left interval I[1, p 2 k ] h in every partial sum S h from h = 1 to h = k. For every small number ∆ > 0, there exists N (depending only on ∆) such that k > N implies |δ L k h -δ h | < ∆ for every partial sum S h from h = 1 to h = k, regardless of the combination of selected remainders in S k .

Proof. Step 1. Let us choose h = h (1 < h < k) as a fixed level and let ∆ > 0 be a small number. As k → ∞, for every level from h = 1 to h = h the size of the Left interval I[1, p 2 k ] h increases, so, the values of δ L k h converge uniformly to the respective average δ h , by Proposition 5.3. Therefore, there exists K such that

δ h -∆ < min{δ L k h } ≤ δ L k h ≤ max{δ L k h } < δ h + ∆ (30) 
when k > K, for every Left interval I[1, p 2 k ] h from h = 1 to h = h , regardless of the combination of selected remainders in S k .

Step 2. Let P be the sequence of primes. Given the small number ∆, we define the sequence { k } = 1 , 2 , 3 , 4 , . . . by the equations

1 = 1, 2 = 1, 3 = 1, and k = ∆ p 2 k m k -p 2 k for k ≥ 4, p k ∈ P.
Note that k decreases and tends to 0 as k → ∞.

Now, let us consider the Right interval I[p 2

k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h . Applying the function ϕ h to each member of (30) and using remarks 6.5 and 7.5, we obtain

ϕ h (δ h -∆) > ϕ h min{δ L k h } ≥ ϕ h δ L k h ≥ ϕ h max{δ L k h } > ϕ h (δ h + ∆) if k > K,
for every partial sum S h from h = 1 to h = h , regardless of the combination of selected remainders in S k . Then, since the function f h is the restriction of ϕ h to the set {δ L k h }, we can write

ϕ h (δ h -∆) > f h min{δ L k h } ≥ f h δ L k h ≥ f h max{δ L k h } > ϕ h (δ h + ∆) ,
so, using the sequence { k } we obtain

δ h + k > max{δ R k h } ≥ δ R k h ≥ min{δ R k h } > δ h -k (31) 
for the Right interval I[p 

R k h } -δ h k = max{δ R k h } -δ h (δ h + k ) -δ h = f h min{δ L k h } -δ h ϕ h (δ h -∆) -δ h = δ h -min{δ L k h } p 2 k m k -p 2 k ∆ p 2 k m k -p 2 k , thus, we obtain max{δ R k h } -δ h k = δ h -min{δ L k h } ∆ . (32) 
In the same way it can be checked that

δ h -min{δ R k h } k = max{δ L k h } -δ h ∆ . ( 33 
)
By the explanation given in Step 1, the right-hand side of (32) and (33) tend to 0 as k → ∞, so, it follows that (max{δ

R k h } -δ h ) and (δ h -min{δ R k h }) are both o( k ) as k → ∞.
Step 4. By Step 2, the inequalities in (31) are satisfied for the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h , for k > K. In this step we prove that these inequalities are also satisfied from level h = h + 1 to level h = k, for sufficiently large k.

We make the following remark: At the same time that the values of max{δ R k h } and min{δ R k h } from h = 1 to h = h converge uniformly to δ h as k → ∞, by Lemma 7.1, the values of δ h + k and δ hk tend also to δ h for every level from h = 1 to h = h , since k → 0 as k → ∞, as we have seen in the last paragraph of Step 2. However, max{δ R k h } and min{δ R k h } converge to δ h more rapidly than δ h + k and δ hk respectively for every level from h = 1 to h = h as k → ∞, by the result of the preceding step.

On the other hand, as k → ∞ the values of max{δ R k h } and min{δ R k h } converge uniformly to δ h from level h = h + 1 to level h = k, also by Lemma 7.1. Furthermore, in view of the result of the preceding step, together with Remark 7.4 we deduce that max{δ R k h } and min{δ R k h } also converge to δ h more rapidly than δ h + k and δ hk respectively for every level from h = h + 1 to h = k, as k → ∞.

From these facts it follows that there exists K > K such that (31) is satisfied also from level h = h + 1 to level h = k if the index k of the element in the sequence { k } exceeds K . That is, we can write

δ h + k > max{δ R k h } ≥ δ R k h ≥ min{δ R k h } > δ h -k (34) 
for the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = k, when k > K , regardless of the combination of selected remainders in S k .

Step 5. Now, applying the function ϕ -1 h to each member of (34) and using remarks 6.5 and 7.5, we obtain

ϕ -1 h (δ h + k ) < ϕ -1 h max{δ R k h } ≤ ϕ -1 h δ R k h ≤ ϕ -1 h min{δ R k h } < ϕ -1 h (δ h -k ) (k > K ), (35) 
for every Left interval I[1, p 2 k ] h from level h = 1 to level h = k, regardless of the combination of selected remainders in S k . Now, since the function f -1 h is the restriction of ϕ -1 h to the set {δ R k h }, we can write

ϕ -1 h (δ h + k ) < f -1 h max{δ R k h } ≤ f -1 h δ R k h ≤ f -1 h min{δ R k h } < ϕ -1 h (δ h -k ) (1 ≤ h ≤ k, k > K ). (36) 
Then, by the definition of the sequence { k }, we have

ϕ -1 h δ h + ∆ p 2 k m k -p 2 k < f -1 h max{δ R k h } ≤ f -1 h δ R k h ≤ f -1 h min{δ R k h } < (37) < ϕ -1 h δ h -∆ p 2 k m k -p 2 k (1 ≤ h ≤ k, k > K ), so, δ h -∆ < min{δ L k h } ≤ δ L k h ≤ max{δ L k h } < δ h + ∆ (1 ≤ h ≤ k, k > K ).
From this it follows that

|δ L k h -δ h | < ∆,
for the Left interval I[1, p 2 k ] h in every partial sum S h from h = 1 to h = k, for every k > N = K , regardless of the combination of selected remainders in S k . In words, while the h-density in every Right interval I[p 2 k + 1, m k ] h from h = 1 to h = k approximates the corresponding average δ h more and more closely as k → ∞ (by Lemma 7.1), the h-density in every Left interval I[1, p 2 k + 1] h (1 ≤ h ≤ k) approximates δ h as well. The lemma is proved. Now we can give the alternative proof of Lemma 7.1 in [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF].

Lemma 7.3 (This is Lemma 7.1 in [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]). Let S k (k > 4) be a partial sum of the series s k . Let I[1, p 2 k ] h be the Left interval for every partial sum S h from h = 1 to h = k, and let δ L k h be the density of permitted h-tuples within every interval I[1, p 2 k ] h . For every real number M > 0 there is a positive integer N (not depending on the combination of selected remainders in S k ) such that δ L k k > M for every k > N . Alternative proof of Lemma 7.1 in [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]. By Theorem 3.4, there exists K such that δ k > M for every k > K, regardless of the combination of selected remainders in S k . Now, let us take a small number ∆ < (δ k -M )/2 (k > K).

(38) By Lemma 7.2, there exists K > K such that δ L k k > δ k -∆ for every k > K , thus, by (38) we have δ L k k > M for every k > N = K , regardless of the combination of selected remainders in S k . The lemma is proved. Step 2. Now, by Lemma 7.3 and Corollary 7.4, if k > K α , then min{δ L k k } > δ 4 . From this result and Step 1, it follows that min{T (B, P, p k )} > p k δ 4 , whenever k > K α . Using Lemma 3.1, it is easy to check that δ 4 = 1/2 (see Table 1), so min{T (B, P, p k )} > p k /2 if k > K α .

Proof of the Main Theorem

In this section, we prove the main theorem. We begin by defining formally the sequence of k-tuples of the Sieve associated with x (Sieve I). Definition 8.1. Let x > 49 be an even number, and let k be the index of the greatest prime less than √ x. Let {b 1 , b 2 , b 3 , . . . , b k } be the ordered set of the remainders of dividing x by p 1 , p 2 , p 3 , . . . , p k . We define the sequence of k-tuples of remainders of level k, where the following rules for selecting remainders are applied in the sequences of remainders modulo p h (1 ≤ h ≤ k) that form this sequence of k-tuples.

Rule 1. Within every period of size p h of the sequence s h (1 ≤ h ≤ k), the remainder 0 is selected. Rule 2. Within every period of size p h of the sequence s h (1 ≤ h ≤ k), the remainder b h is selected. Now, we can formally define the formulation of Sieve I based on a sequence of k-tuples, as follows.

Definition 8.2. Let P be the sequence of primes, let z = √ x, and let p k be the greatest prime less than z. Let A be the set consisting of the indices n of the sequence of k-tuples of the preceding definition that lie in the interval [1, x].

For each p = p h ∈ P (1 ≤ h ≤ k), the subset A p of A consists of the indices n of the sequence of k-tuples such that the remainder of dividing n by the modulus p h is a selected remainder. Then, the indices of the prohibited k-tuples lying in A are sifted out, and the indices of the permitted k-tuples lying in A remain unsifted. See Remark 1.1. The sifting function S(A , P, z) = A \ p∈P p<z A p , is given by the number of permitted k-tuples whose indices lie in the set A .

Remark 8.1. Every sequence s h (1 ≤ h ≤ k) that forms the sequence of k-tuples associated to Sieve I consists of the remainders of dividing n by p h . If a remainder is equal to 0, it is always a selected remainder. If a remainder is equal to b h , it is also a selected remainder. If x is divisible by p h , then b h = 0; therefore, in every period p h of s h , there is only one selected remainder.

The following theorem shows that if n is the index of a permitted k-tuple belonging to the set A and 1 < n < x, then n is a prime such that either x -n = 1 or x -n is also a prime. Theorem 8.1. Let x > 49 be an even number, and let k be the index of the greatest prime less than z = √ x. Let us consider Sieve I and its associated sequence of k-tuples. If n (1 < n < x) is an unsifted element of the set A , then n is a prime such that either x -n = 1 or x -n is also a prime.

Proof. Step 1. By definition, the set A consists of the indices of the sequence of k-tuples associated to Sieve I that lie in [1, x]. Since n is an unsifted element of the set A , by definition, n is the index of a permitted k-tuple.

In the sequences of remainders modulo p h (1 ≤ h ≤ k) that form this sequence of k-tuples, if a remainder is equal to 0, then it is a selected remainder; thus, by definition, a permitted k-tuple in this sequence has no element equal to 0 (see Remark 1.1). Therefore, n is not divisible by any prime p h (1 ≤ h ≤ k), so, n is a prime.

Step Step 3. By Step 1, n is a prime; furthermore x-n is not divisible by any prime p < √ x, by Step 2. Since √ x -n < √ x, it follows that either x -n = 1 or x -n is also a prime.

Note that, given k and an even integer x such that p 2 k < x < p 2 k+1 , there is a sequence of k-tuples associated to Sieve I that has specific selected remainders for this particular x. On the other hand, given k, there is a partial sum S k associated to Sieve II, where there are multiple choices for selecting remainders allowed by the rules defined in Section 2. Both are sequences of k-tuples of remainders, but they differ in terms of the rules for selecting remainders. The following lemma gives the relationship between the number of permitted k-tuples within the interval I[1, p 2 k ] of the partial sum S k (the sifting function of Sieve II) and the number of permitted k-tuples within the interval I [1, x] of the sequence of k-tuples associated to Sieve I (the sifting function of Sieve I).

Recall that we denote by {T (B, P, p k )} the set of values of T (B, P, p k ) for all combinations of selected remainders in the sequences that form the partial sum S k associated to Sieve II. Lemma 8.2. Let P be the sequence of primes. Let x > 49 be an even number, and let k be the index of the greatest prime less than z = √ x; that is, p 2 k < x < p 2 k+1 . Consider Sieve I, Sieve II, and their associated sequences of k-tuples. We have S(A , P, z) ≥ min{T (B, P, p k )}.

Proof. By definition, the sequences of remainders modulo p h (1 < h ≤ k) that form the sequence of k-tuples associated to Sieve I can have one or two selected remainders in every period (see Remark 8.1). However, the sequences s h (1 < h ≤ k) that form the partial sum S k associated to Sieve II, by definition, always have two selected remainders in every period. Suppose that we perform the following operation on the sequence of k-tuples associated to Sieve I: in each sequence of remainders modulo p h (1 < h ≤ k) that have only one selected remainder in every period, we choose an arbitrary second selected remainder (the same element in every period of the sequence). We obtain a partial sum S k with a particular combination of selected remainders, where the number of permitted k-tuples within the interval I[1, p 2 k ] is greater than or equal to min{T (B, P, p k )}. Clearly, in the interval I[1, p 2 k ] of the sequence of k-tuples associated to Sieve I before performing the operation, the number of permitted k-tuples is also greater than or equal to min{T (B, P, p k )}. Since I[1, p 2 k ] ⊂ I [1, x], it follows that S(A , P, z) ≥ min{T (B, P, p k )}.

Finally, we prove the main theorem.

Theorem 8.3. The Main Theorem Let x > 49 be an even number, and let k be the index of the greatest prime less than z = √ x. Furthermore, let K α be the number whose existence is established in Corollary 7.4. Every even integer x > p 2 k (k > K α ) is the sum of two primes.

Remark 8.2. Assume that x is of the form q + 1, where q is a prime. Clearly, in the sequence of k-tuples associated to Sieve I there is a permitted k-tuple at position n = 1, since 1 ≡ 0 (mod p h ), and furthermore x -1 = q =⇒ 1 ≡ x (mod p h ), for every prime p h (1 ≤ h ≤ k). (See Remark 1.1.) On the other hand, there is a permitted k-tuple at position n = x -1, since x -1 = q =⇒ x -1 ≡ 0 (mod p h ), and furthermore x -1 ≡ x (mod p h ), for every prime p h (1 ≤ h ≤ k).

Proof. Step 1. Recall that S(A , P, z) denotes the sifting function of Sieve I. Assume that S(A , P, z) ≥ 3. By Remark 8.2, among the unsifted members of the set A might appear 1 and x -1. Therefore, we can see that there are at least S(A , P, z) -2 integers n in A such that n is a prime and x -n is also a prime, by Theorem 8.1.

Step 2. By Lemma 7.5, for every level k > K α we have min{T (B, P, p k )} > p k /2. On the other hand, S(A , P, z) ≥ min{T (B, P, p k )} for every even number x > 49 such that p 2 k < x < p 2 k+1 , by Lemma 8.2. It follows that S(A , P, z) > p k /2 for every even number x > p 2 k , where k > K α (note that K α > 4 by definition). Then, by Step 1, if x > p 2 k (k > K α ), there must be at least one unsifted member n < x of A that is a prime such that x -n is also a prime. The theorem is proved.

On the basis of the main theorem, we can assert that every even integer x > p 2 k , where k > K α , is the sum of two primes. On the other hand, the strong Goldbach conjecture has already been verified for all even numbers less than a certain bound N , whose value is updated frequently [START_REF] Oliveira E Silva | Goldbach conjecture verification[END_REF]. We believe that the next step towards the proof of the binary Goldbach conjecture is to obtain a suitable estimate for K α ; if this estimate is sufficiently small, the Goldbach conjecture would be true.

  result into[START_REF] Cojocaru | An Introduction to Sieve Methods an Their Applications[END_REF] givesS(A , P, z) = XW (z) + d|P (z) µ (d) R d .Hence, we can writeS(A , P, z) = XW (z) + θ d|P (z) |R d | (|θ| ≤ 1).

  Figure 3

Definition 1 . 1 .

 11 Given a sequence of k-tuples and using the order relation given by index n, we define an interval of k-tuples, denoted by I[m, n] k , to be the set of consecutive k-tuples associated with an integer interval [m, n]∩Z + , where m is the index of the first k-tuple, and n is the index of the last k-tuple. We also use the notation I[m, n] = I[m, n] k for this interval. We define the size of I[m, n] by the equation |I[m, n]| = n -m + 1, and we use the notation I[] k , or alternatively I[], to denote the empty interval.

  the first period of the sequence of k-tuples of Sieve II); furthermore, consider the intervals I[1, p 2 k ] and I[p 2 k + 1, m k ]. For a given choice of selected remainders in the sequence of k-tuples, if the proportion of permitted k-tuples in I[1, p 2 k ] is less than the proportion in I[1, m k ], the proportion of permitted k-tuples in I[p 2 k + 1, m k ] must be greater than the proportion in I[1, m k ] and vice versa. Suppose that the proportion of permitted k-tuples in the interval I[1, p 2 k ] was equal to the proportion of permitted k-tuples in the interval I[1, m k ]. In this case, we could immediately compute the exact number of permitted k-tuples in the interval I[1, p 2

Proposition 2 . 1 .

 21 The sequence of k-tuples of remainders is periodic, and its fundamental period is equal to

  are ready to define the rules for selecting remainders in the sequences s h (1 ≤ h ≤ k) that constitute every partial sum S k of the series s k .Definition 2.7. Let s h (1 ≤ h ≤ k) be one of the sequences of remainders that form the partial sum S k .

2 . 8 .

 28 Let P be the sequence of all primes, and let p k (k ≥ 4) be a prime of the sequence. Let B be the set consisting of the indices n of the partial sum S k that lie in the interval [1, y] (see note following Definition 2.6), where y is an integer that satisfies y > p k . For each p = p h ∈ P (1 ≤ h ≤ k), the subset B p of B consists of the indices n whose remainder modulo p = p h is one of the selected remainders r or r . The indices of the prohibited k-tuples lying in B are sifted out, and the indices of the permitted k-tuples lying in B remain unsifted. See Remark 1.2. The sifting functionT (B, P, p k ) = B \ p∈P p≤p k B p ,is given by the number of permitted k-tuples whose indices lie in the interval B.

Proposition 2 . 5 .Corollary 2 . 6 .

 2526 The indices of permitted k-tuples within the first p k+1 periods of the partial sum S k are uniformly distributed over the residue classes modulo p k+1 .Proof. Let c k be the number of permitted k-tuples within a period of S k . Let [y] = [0],[START_REF] Halberstam | Sieve Methods[END_REF],[START_REF] Cojocaru | An Introduction to Sieve Methods an Their Applications[END_REF], . . . , [p k+1 -1] be the residue classes modulo p k+1 . Let n ∈ Z + be the index of a given permitted k-tuple within the first period of the partial sum S k . Thus, within p k+1 periods of the partial sum S k , there are p k+1 permitted k-tuples with indices n = m k x + n, where x = 0, 1, 2, 3, . . . , p k+1 -1 represents each period. Because (m k , p k+1 ) = 1, for each residue class [y], the congruence m k x + n ≡ y (mod p k+1 ) has a unique solution x. Therefore, since there are c k permitted k-tuples within the period of S k , it follows that there are c k indices of permitted k-tuples within each residue class modulo p k+1 , and the resulting distribution is uniform. If there are m consecutive periods of the partial sum S k (including the first), where m is a multiple of p k+1 , the indices of permitted k-tuples within these m periods are also uniformly distributed over the residue classes modulo p k+1 .

Definition 3 . 2 .

 32 Let S k be a given partial sum of the series s k , and let I[m, n] be a given interval of k-tuples. We denote by c I[m,n] k the number of permitted k-tuples within I[m, n]. Definition 3.3. Let S k be a partial sum of the series s k , and let I[m, n] be a given interval of k-tuples. The number of subintervals of size p k in this interval is |I[m, n]|/p k . We define the density of permitted k-tuples in the interval I[m, n] (or simply the k-density) by δ I[m,n] k = c I[m,n] k |I [m, n]| /p k .

Definition 3 . 4 .

 34 Let S k be a given partial sum of the series s k , and let m k be the period of S k . Recall that we have used the notation c k = cI[1,m k ] kfor the number of permitted k-tuples within the interval I[1, m k ] (the first period of S k ). We normally use the notationδ k = δ I[1,m k ] kfor the density of permitted k-tuples within the interval I[1, m k ]. Since m k /p k is the number of subintervals of size p k within a period of S k , by definition, we haveδ k = c k m k /p k .By Proposition 2.3, the number of permitted k-tuples within the interval I[1, m k ] (the first period of S k ) does not depend on the selected remainders in the sequences of remainders that form S k . Therefore, we consider I[1, m k ] to be a special interval, which explains why we use the special notation c k for the number of permitted k-tuples within I[1, m k ] and use δ k for the density of permitted k-tuples within I[1, m k ].

Definition 4 . 3 .

 43 The operation of Type B.

Definition 4 . 5 .

 45 Let S k and S k+1 be the partial sums of levels k and k + 1. Let s k+1 be the sequence of remainders of level k + 1. Let I[m, n] k be an interval of k-tuples of S k , and let I[m, n] k+1 be an interval of (k + 1)-tuples of S k+1 , where the indices m, n are the same for both intervals. When we juxtapose the remainders of sequence s k+1 to each k-tuple of S k , then, by Proposition 2.2, the permitted k-tuples of S k , whose indices are congruent to a given selected remainder of s k+1 modulo p k+1 , are converted to prohibited (k + 1)-tuples of S k+1 . We denote by f k+1 the fraction of the permitted k-tuples within the interval I[m, n] k that are converted to prohibited (k + 1)-tuples within the interval I[m, n] k+1 . For the partial sum S 1 , let f 1 denote the fraction of the prohibited 1-tuples within the interval I[m, n] k=1 .

Lemma 4 . 1 .

 41 For k ≥ 1, we have f k+1 = 2/p k+1 . For S 1 , we have f 1 = 1/p 1 . Proof. Let [0], [1], [2], . . . , [p k+1 -1] be the residue classes modulo p k+1 . Let c I[m,n] k be the number of permitted k-tuples within I[m, n] k . We denote by η 0 , η 1 , η 2 , . . . , η p k+1 -1 the number of permitted k-tuples within I[m, n] k whose indices belong to the residue classes [0], [1], [2], . . . , [p k+1 -1], respectively. Therefore, c I[m,n] k

2 ,

 2 the indices of the permitted k-tuples within the interval I[m, n] k of S k that are converted to prohibited (k + 1)-tuples within the interval I[m, n] k+1 of S k+1 belong to one of the residue classes [r] or [r ]. It follows that the fraction of the c I[m,n] k permitted k-tuples within the interval I[m, n] k of S k that are converted to prohibited (k + 1)-tuples within the interval I[m, n] k+1 of S k+1 is equal to (η r + η r )/c I[m,n] k . Taking the average over the ν A k+1 combinations of selected remainders obtained by repeated Type A operations, we obtain

Definition 4 . 7 .

 47 Let S k be the partial sum of level k. Let I[m, n] be an interval of k-tuples of S k . We denote by c I[m,n] k the average number of permitted k-tuples within the interval I[m, n]. We denote by δ I[m,n] k the average density of permitted k-tuples within the interval I[m, n].

Theorem 4 . 3 .

 43 Let δ k be the density of permitted k-tuples within a period of the partial sum S k . Then, δI[m,n] k = δ k . Proof. Let s h (1 ≤ h ≤ k)be the sequences of remainders that form S k . If there are no selected remainders within the sequences s h , all the k-tuples within the interval I[m, n] are permitted k-tuples, and c I[m,n] k = |I[m, n]|, where |I[m, n]| is the size of the interval I[m, n]. However, since we have selected remainders in every sequence s h (1 ≤ h ≤ k), using Lemma 4.2 at each level transition from h = 1 to h = k, we can write

Definition 5 . 1 .

 51 be a partial sum of the series s k . Let p k be its characteristic prime modulus, and let m k be its period. Let δ k be the density of permitted k-tuples within the period of S k . Let I[1, n] (n ≥ m k ) be a given interval of k-tuples of the partial sum S k . Recall the notation cI[1,n] kfor the number of permitted k-tuples and δI[1,n] kfor the k-density in I[1, n]. In this section, we shall show that δI[1,n] k converges to δ k as n → ∞.First, we present a definition. Let n/m k denote the integer part of n/m k (n ≥ m k ). We denote by c η the number of permitted k-tuples within the interval I[1, n/m k m k ] ⊆ I[1, n]. If n is not a multiple of m k , we denote by c the number of permitted k-tuples within the interval I[ n/m k m k + 1, n] ⊂ I[1, n]; otherwise, c = 0. We call the interval I[ n/m k m k + 1, n] the incomplete period of the interval I[1, n]. The following lemma gives us a formula for the k-density in the interval I[1, n]. Lemma 5.1. We have

Lemma 5 . 2 .

 52 Let I[1, n] (n ≥ m k ) be an interval of k-tuples of a given partial sum S k . Recall the notation c k for the number of permitted k-tuples within the period of S k . For k > 2, n m k m k n m k m k + (m k -1)

Proposition 5 . 3 .

 53 Let S k (k > 2) be a given partial sum of the series s k . As n → ∞, the density δ I[1,n] k converges to δ k , regardless of the combination of selected remainders in the sequences s h that form the partial sum S k .

Definition 6 . 3 .

 63 Let S k (k ≥ 4) be a given partial sum in the horizontal position. We subdivide the interval I[1, m k ] (its first period) into two intervals: I[1, p 2 k ], which we call the Left interval, and I[p 2 k + 1, m k ], which we call the Right interval. We often denote the Left interval I[1, p 2 k ] by the symbol L k and the Right interval

Figure 4 .

 4 As shown in the Introduction, the first period of the sequence of k-tuples can be seen as a matrix with m k columns and k rows. In addition, this matrix has been partitioned into two blocks: the Left block formed by the columns from n = 1 to n = p 2 k and the Right block formed by the columns from n = p 2 k + 1 to n = m k . Each row of the Left block is formed by the remainders of dividing the integers from n = 1 to n = p 2 k by the modulus p h , and each row of the Right block is formed by the remainders of dividing the integers from n = p 2 k + 1 to n = m k by the modulus p h .

Figure 4 : 6 . 4 .

 464 Figure 4: Left and Right intervals

  (1 ≤ h ≤ k) within the Right block of the partition of the first period of S k . Since p 2 k = o(m k ), for every partial sum S h from h = 1 to h = k, the size of the Right interval I[p 2 k + 1, m k ] h approximates the size of the interval I[1, m k ] h more and more closely as the level k increases. On the other hand p 2 k = o(c k ), by Proposition 2.4; furthermore, c h > c k = c k (see Proposition 2.3 and Lemma 6.1). Therefore, the proportion of permitted h-tuples within every Right interval I

  uniformly to the respective average δ h . Lemma 7.1. Let S k (k ≥ 4) be a partial sum of the series s k . Let us consider the Right intervalI[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = k. For every > 0, there exists N (depending only on ) such that k > N implies |δ R k h -δ h | < , for every partial sum S h from level h = 1 to level h = k,regardless of the combination of selected remainders in the sequences s h that form every partial sum S k . Proof. Step 1. The size of the Right interval I[p 2 k + 1, m k ] h of the partial sum S h , by definition, is equal to m k -p 2 k , so the number of subintervals of size p h within the Right interval is equal to (m k -p 2 k )/p h (1 ≤ h ≤ k). Denoting by c R k h the number of permitted h-tuples within I[p 2 k + 1, m k ] h , by definition, we have

  2 and Corollary 3.3, for sufficiently large k. Now, the density of permitted h-tuples within every Left intervalI[1, p 2 k ] h (1 ≤ h ≤ k), denoted by δ L k h, clearly depends on the combination of selected remainders in S k . However, the average of the h-density within every Leftinterval I[1, p 2 k ] h from h = 1 to h = k is equal to δ h ,by Theorem 4.3, so, for sufficiently large k the average of the h-density within every Left interval I[1, p 2 k ] h increases between h = 1 and h = k. Remark 7.1. Let S k be a given partial sum of the series s k with a particular combination of selected remainders in the sequences s h (1 ≤ h ≤ k) that form S k . Given a partial sum S h (1 ≤ h ≤ k), when the interval I[1, m k ] h is subdivided into the Left interval I[1, p 2 k ] h and the Right interval I[p 2 k + 1, m k ] h , the proportion of permitted h-tuples within the Left interval I[1, p

Corollary 7 . 4 .

 74 There exists an integer K α > 4 such that δ L k k > δ 4 for every k > K α , regardless of the combination of selected remainders in S k .Proof. This follows immediately taking M = δ 4 . Definition 7.2. Let S k be the partial sum associated to Sieve II. Recall that in Section 2, we have taken B = {n : 1 ≤ n ≤ p 2 k }. Let T (B, P, p k ) be the sifting function of Sieve II. We denote by {T (B, P, p k )} the set of values of T (B, P, p k ) for all combinations of selected remainders in the sequences that form the partial sum S k . Now, we can obtain a lower bound for the sifting function of Sieve II (that is, a lower bound for the number of permitted k-tuples within the Left interval I[1, p 2 k ] of S k ) for sufficiently large k. Lemma 7.5. Let K α be the number whose existence is established in Corollary 7.4. For level k > K α , we have min{T (B, P, p k )} > p k /2.Proof.Step 1. Let S k be the partial sum associated to Sieve II. We use the notation {δ L k k } to denote the set of values of δ L k k for all the combinations of selected remainders in the sequences that form the partial sum S k . Since there are p k subintervals of size p k in the Left interval I[1, p 2 k ] of S k , the minimum number of permitted k-tuples within I[1, p 2 k ] is p k min{δ L k k }. Then, by definition, min{T (B, P, p k )} = p k min{δ L k k }.

2 .

 2 Let {b 1 , b 2 , b 3 , . . . , b k } be the ordered set of the remainders of dividing x by p 1 , p 2 , p 3 , . . . , p k . Let r h (1 ≤ h ≤ k) be the elements of the permitted k-tuple whose index is n. In the sequences of remainders modulo p h (1 ≤ h ≤ k) that form this sequence of k-tuples, by definition, if a remainder is equal to b h ∈ {b 1 , b 2 , b 3 , . . . , b k }, then it is a selected remainder. Consequently, by definition, for the permitted k-tuple whose index is n, we have r h = b h (1 ≤ h ≤ k). This result implies n ≡ x (mod p h ) for every prime p h (1 ≤ h ≤ k) (see Remark 1.1).

  • • • p k rows. Note that for each h (1 ≤ h ≤ k), we also have a sequence of h-tuples with period m h = p 1 p 2 p 3 • • • p h .

	7	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	...
	5	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	...
	3	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	...
	2	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	...
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	...
		...	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0
		...	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

  2 k ] and the right interval I[p 2 k + 1, m k ] (see Definition 6.3). Since for every h (1 ≤ h ≤ k), there is a sequence of h-tuples of remainders, the interval I[1, m k ] h of each sequence is subdivided into two intervals: the left interval I[1, p 2 k ] h and the right interval

Table 1 :

 1 Quotient c k /m k and density δ k .

	k	p k	m k	c k	c k /m k	δ k
	4	7	210	15	0.071 0.500
	5	11	2310	135	0.058 0.643
	6	13	30030	1485	0.049 0.643
	7	17	510510	22275	0.044 0.742
	8	19	9699690	378675	0.039 0.742
	9	23 223092870 7952175 0.036 0.820
	10 29	-	-	0.033 0.962
	11 31	-	-	0.031 0.962
	12 37	-	-	0.029 1.087
	13 41	-	-	0.028 1.145
	14 43	-	-	0.027 1.145
	15 47	-	-	0.025 1.199
	16 53	-	-	0.024 1.301
	17 59	-	-	0.024 1.399
	18 61	-	-	0.023 1.399
	19 67	-	-	0.022 1.490
	20 71	-	-	0.022 1.535
	21 73	-	-	0.021 1.535
	22 79	-	-	0.020 1.619
	23 83	-	-	0.020 1.660
	24 89	-	-	0.019 1.740
	.	.	.	.	.	.

Table 2 :

 2 Sequence of 5-tuples of remainders.

Table 3 :

 3 Partial sums S 4 and S 5 .

Table 4 :

 4 Partial sum S 4 with selected remainders.

  1, n]. On the other hand, we saw in Step 2 that for a level k > 2, there is more than one permitted k-tuple within the period of the partial sum S k . It follows that if n is equal to the lower bound in (18), then c ≤ 1 < δ k m k /p k . Therefore, if we replace c in (21) with the upper bound in (17),

  and vice versa. By Theorem 4.3, the average of δ L k h within I[1, p 2 k ] h is equal to δ h , and the average of

  the h-density within the Left interval and a decrease (δ h -δ R k h ) in the h-density within the Right interval. See (23). Since there are p 2 k /p h subintervals of size p h within the Left interval I[1, p 2 k ] h , by definition, the number of permitted h-tuples entering the Left interval is equal to (δ L k h -δ h )p 2 k /p h . In the same way, within the Right interval I[p 2 k + 1, m k ] h there are (m k -p 2 k )/p h subintervals of size p h , so, the number of permitted h-tuples exiting the Right interval is (δ h

  See the proof of Lemma 6.3 and (23).7 A lower bound for the sifting function of the Sieve IIFor every partial sum S h from level h = 1 to level h = k (k ≥ 4), let us consider the interval I[1, m k ] h , the Left interval I[1, p 2 k ] h and the Right interval I[p 2 k + 1, m k ] h . Recall the notation δ h for the density of permitted h-tuples within the period of S h , and recall the notation δ L k h and δ R k h for the density of permitted h-tuples within the intervals I[1, p 2 k ] h and I[p 2 k + 1, m k ] h , respectively. Furthermore, recall the notation c L k h to denote the number of permitted h-tuples within the Left interval I[1, p 2 k ] h , and the notation c R k h to denote the number of permitted h-tuples within the Right interval I[p 2

  the number of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h cannot exceed c h , so we have c R k h ≤ c h . On the other hand, the number of permitted h-tuples within the Left interval I[1, p 2 k ] h of the partial sum S h cannot exceed the size p 2 k of the Left interval. Therefore, c h -p 2 k ≤ c R k h . Consequently, replacing the numerator in (24) by c h -p 2 k and c h , we obtain

  2 k ] h will be greater than the proportion of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h , or vice versa, since p 2 k is not a multiple of m h . Remark 7.2. From the preceding remark, it follows that when the interval I[1, m k ] h of S h (1 ≤ h ≤ k) is subdivided into the Left interval I[1, p 2 k ] h and the Right interval I[p 2 k + 1, m k ] h , the h-density within the Left interval I[1, p 2 k ] h will be greater than the h-density within the Right interval I[p 2 k + 1, m k ] h ; or vice versa (see (23) and the paragraph preceding these inequalities). Therefore, considering the Left intervals I[1, p 2

  Step 3. Now, given a level h (1 ≤ h ≤ h ), let us consider the quotient (max{δR k h } -δ h )/ k for the Right interval I[p 2 k + 1, m k ] h .Using the bijective functions f h and ϕ h we can write max{δ

2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h and k > K, regardless of the combination of selected remainders in S k . Note that given ∆ (for the Left interval I[1, p 2 k ] h ), the bounds δ hk and δ h + k (for the Right interval I[p 2 k + 1, m k ] h ) approximates δ h more and more closely as k increases, for every level from h = 1 to h = h , since { k } is a decreasing sequence.
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