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DIRECTED DEGENERACY MAPS FOR PRECUBICAL SETS

PHILIPPE GAUCHER

Abstract. Symmetric transverse sets were introduced to make the construction of

the parallel product with synchronization for process algebras functorial. It is proved

that one can do directed homotopy on symmetric transverse sets in the following sense.

A q-realization functor from symmetric transverse sets to flows is introduced using a

q-cofibrant replacement functor of flows. By topologizing the cotransverse maps, the

cotransverse topological cube is constructed. It can be regarded both as a cotransverse

topological space and as a cotransverse Lawvere metric space. A natural realization

functor from symmetric transverse sets to flows is introduced using Raussen’s notion

of natural d-path extended to symmetric transverse sets thanks to their structure of

Lawvere metric space. It is proved that these two realization functors are homotopy

equivalent on cofibrant symmetric transverse sets by using the fact that the small cate-

gory defining symmetric transverse sets is c-Reedy in Shulman’s sense. This generalizes

to symmetric transverse sets results previously obtained for precubical sets.
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Introduction

Presentation. Precubical sets are an important combinatorial model for directed homo-

topy [9]. The n-cube represents the concurrent execution of n actions. It has been known

for a long time that the usual degeneracy maps used in non-directed homotopy theory
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are not convenient for directed homotopy. The purpose of this paper is to introduce a

convenient notion of degeneracy map for doing directed homotopy.

This is the second paper about symmetric transverse sets. This notion is introduced

in [15] to make the construction of the parallel product with synchronization of process

algebras functorial. It is proved in [15, Theorem 3.1.15] that it is the only solution

to achieve such a goal. A symmetric transverse set is a presheaf on the category �̂

generated by the posets [n] = {0 < 1}n for n > 0 and by all cotransverse maps. The

latter are the strictly increasing maps preserving adjacency (Definition 2.3). Note that

to avoid cumbersome and inconsistent terminology, the words adjacency-preserving map

and transverse symmetric precubical set of [15] are replaced in this paper by cotransverse

map and symmetric transverse set respectively.

All coface maps and all symmetry maps are cotransverse. The latter cannot be re-

garded as degeneracy maps. However, a map like γ1 : [2] → [2] defined by γ1(ǫ1, ǫ2) =

(max(ǫ1, ǫ2),min(ǫ1, ǫ2)) is also cotransverse. Since γ1(1, 0) = γ1(0, 1) = (1, 0), the map

γ1 adds a degenerate 2-cube by crushing the 2-cube transversally to the direction of time

which goes from (0, 0) to (1, 1). The transverse degeneracy maps are exactly the cotrans-

verse maps from [n] to itself for n > 2 which are not one-to-one. All examples coming

from computer science are symmetric transverse sets freely generated by precubical sets,

and even most of them are freely generated by non-positively curved precubical sets [23,

Proposition 1.29]. Symmetric transverse sets provide a setting with degeneracies that fit

with directed homotopy. They do not provide new examples for computer science: there

does not seem to be any interpretation in computer science of a degenerate cube like the

one given by γ1.

The first goal of this paper is to prove that the notion of symmetric transverse set

is a convenient framework for Raussen’s notion of natural d-path. After translating

the cotransverse maps into continuous maps thanks to a max-min formula, we obtain

the cotransverse topological cube which is a cotransverse object both in the category

of topological spaces and in the category of Lawvere metric spaces. The point is that

the cotransverse maps are quasi-isometric: they preserve finite distances indeed. This

implies that the topological version of the cotransverse maps takes natural d-paths of the

topological cube to natural d-paths. This enables us to define a natural d-path between

two vertices of a symmetric transverse set K as a Moore composition of quasi-isometries

from
−−→
[0, n] for some integer n > 1 to the realization |K|−→

d1
of K as a Lawvere metric space.

The following theorem summarizes the results of Part I:

Theorem. (Theorem 3.9, Theorem 3.16 and Corollary 4.8) For every cotransverse map

f : [m] → [n], the map T(f) : [0, 1]m → [0, 1]n of Definition 3.2 gives rise to a quasi-

isometry of Lawvere metric spaces for the Lawvere metric
−→
d1 of Definition 1.4 and enables

us to define cotransverse objects both in the category of topological spaces and in the

category of Lawvere metric spaces.

In [20], two realization functors from precubical sets to flows, a q-realization functor

using a q-cofibrant replacement functor of the q-model structure of flows and the natural

realization functor using Raussen’s notion of natural d-path, are compared and are proved

to be homotopy equivalent. The second goal of this paper is to generalize these results

to symmetric transverse sets. The small category �̂ is not Reedy. It is not Reedy
2



in Berger-Moerdijk’s sense [4, Definition 1.1] or in Cisinski’s sense [7, Definition 8.1.1]

either. However, it is c-Reedy in Shulman’s sense [36, Definition 8.25]. It is the key point

to compare a q-realization and the natural realization of a symmetric transverse set as a

flow. The difference with the setting of precubical sets studied in [20] is that there is in

general only a zigzag of natural transformations between the two realization functors and

that the second part of the main theorem holds only for cofibrant symmetric transverse

sets in the sense of Definition 2.18. The following theorem summarizes the results of

Part II:

Theorem. (Theorem 6.7, Proposition 7.3, Theorem 7.4) The natural realization functor

|−|nat from symmetric transverse sets to flows defined in Definition 7.2 is an m-realization

functor which extends the natural realization of precubical sets. Let |−|q be a q-realization

functor of symmetric transverse sets. There exists an m-realization functor F : �̂opSet→

Flow and two natural transformations inducing bijections on the sets of states

| − |q ⇐= F (−) =⇒ | − |nat

such that for all cofibrant symmetric transverse sets K, and in particular for all symmetric

transverse sets freely generated by a precubical set, and all (α, β) ∈ K0 ×K0, there is the

zigzag of natural homotopy equivalences between m-cofibrant topological spaces

Pα,β|K|q Pα,βF (K)
≃

oo
≃

// Pα,β|K|nat .

If | − |q is cofibrant as a q-realization functor, then one can suppose that F = | − |q.

By Theorem 6.19, the zigzag of homotopy equivalences between the spaces of execution

paths would hold for non-cofibrant symmetric transverse sets (by considering a cofibrant

q-realization functor in the sense of Definition 6.12) if the natural realization functor was

cofibrant as well. It is unlikely that it is true but we cannot prove it.

Future works. Subsequent papers will study the homotopical properties of transverse

degeneracies. The terminology of symmetric transverse set is used throughout the paper.

The correct definition of a transverse set without symmetry maps is given in [22]. A

convenient notion of labelled symmetric transverse set should lead to a notion of higher

dimensional transition system with degenerate higher dimensional transitions. The latter

should yield model categories of higher dimensional transition systems which are not

Quillen equivalent to discrete model categories, unlike e.g. in [16, Theorem 7.5]. On the

other hand, the non-symmetric transverse sets defined in [22] should provide a convenient

combinatorial setting for doing Directed Algebraic Topology.

Outline of the paper. Part I studies symmetric transverse sets from a metric point of

view.

Section 1 recalls some basic facts about Lawvere metric spaces. The Lawvere metric
−→
d1 (Definition 1.4) plays an important role in many places of the paper.

Section 2 recalls some basic facts about precubical sets and symmetric transverse sets

and the relations between one another. It also expounds in Proposition 2.16 a missing

argument in the proof of [15, Corollary 2.2.11]. The section ends by introducing the

notion of cofibrant symmetric transverse set in Definition 2.18 and by giving the basic
3



properties. This notion has no analogue for precubical sets because, in some sense, all

precubical sets are cofibrant.

Section 3 starts from the observation made in Proposition 3.1 to topologize the cotrans-

verse maps and proves some useful properties about them. It culminates with Theorem 3.9

and 3.16 which expound the cotransverse topological cube and the cotransverse Lawvere

cube.

Section 4 is devoted to define the notion of natural d-path of a symmetric transverse set.

It requires to recall what is the underlying topological space of a Lawvere metric space

and to make some calculations about the cubes and more generally about the symmetric

transverse sets. It is proved in Proposition 4.15 that natural d-paths of a topological cube

are quasi-isometry for the Lawvere metric
−→
d1. It enables us to define the natural d-paths

of a symmetric transverse set as being locally, on each cube, a quasi-isometry.

Part II studies realization functors of symmetric transverse sets.

Section 5 proves that the category of cotransverse objects of a model category sat-

isfying some mild conditions has a structure of a c-Reedy model category and that it

coincides with the projective model structure. It enables us to give a necessary and

sufficient condition for a cotransverse object to be projective cofibrant in Theorem 5.17.

The latter condition is used in Proposition 6.11 to prove that the projective r-cofibrant

replacement of the cotransverse flow associated with an r-realization functor gives rise to

an r-realization functor. It is the key fact to prove Theorem 6.18 and Theorem 7.4.

Section 6 defines the notions of q-realization, m-realization and h-realization of a sym-

metric transverse set as a flow and compares them both in the non-cofibrant case in

Theorem 6.18 and in the cofibrant case in Theorem 6.19. Theorem 6.7 provides an exam-

ple of a q-realization functor from symmetric transverse sets to flows.

Section 7 concludes this paper by defining the natural realization of a symmetric trans-

verse set in Definition 7.2 and by comparing it in Theorem 7.4 with a q-realization functor.

Prerequisites and notations. The reading of [20] is not required to understand this

paper. A model category is a bicomplete categoryM equipped with a class of cofibrations

C, a class of fibrations F and a class of weak equivalences W such that: 1) W is closed

under retract and satisfies two-out-of-three property, 2) the pairs (C,W ∩ F) and (C ∩

W,F) are functorial weak factorization systems. We refer to [28, Chapter 1] and to [27,

Chapter 7] for the basic notions about general model categories. We refer to [1] for locally

presentable categories and to [34] for combinatorial model categories.

Let I be a set of maps of a cocomplete category C. The notation f � g means that

g satisfies the right lifting property (RLP) with respect to f ; �I = {g, ∀f ∈ I, g � f};

I� = inj(I) = {g, ∀f ∈ I, f � g}; cof(I) = �(I�); cell(I) is the class of transfinite

compositions of pushouts of elements of I. A cellular object (with respect to I) is an

object X such that the canonical map ∅→ X belongs to cell(I). A cofibrant object (with

respect to I) is an object X such that the canonical map ∅→ X belongs to cof(I). By

[28, Corollary 2.1.15], if the category C is locally presentable, then the cofibrant objects

with respect to I are exactly the retracts of the cellular objects with respect to I.

The set of maps from X to Y of a category C is denoted by C(X, Y ). ∅ denotes the

initial object and 1 the final object of a category. Set is the category of sets with all

set maps. CI is the category of functor from a small category I to a category C together
4



with the natural transformations. ∼= means isomorphism, ≃ means weak equivalence or

homotopy equivalence, depending on the context. For an object X of a category C and a

set S, S.X denotes the sum
∐
S X and XS denotes the product

∏
SX.

The category Top denotes either the category of ∆-generated spaces or of ∆-Hausdorff

∆-generated spaces (cf. [18, Section 2 and Appendix B]).

Warnings. All d-paths considered in this paper are tame in the sense of [37, Section 2.9]

and nonconstant. These adjectives are therefore understood everywhere. See also the end

of Section 4 where the notions of d-path and natural d-path of a symmetric transverse

set are introduced.

Acknowledgments. I am very grateful to the anonymous referee for the extremely

detailed report.

I. Metric study of symmetric transverse sets

1. The Lawvere directed n-cube

Since there are several variants of the notion of metric space in the mathematical

literature, the one which is used in this paper is recalled. The symmetric version will

have to be recalled in Section 4.

1.1. Definition. [29] A Lawvere metric space (X, d) is a set X equipped with a map

d : X ×X → [0,∞] called a (Lawvere) metric such that:

• ∀x ∈ X, d(x, x) = 0

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) 6 d(x, z) + d(z, y).

A map f : (X, d) → (Y, d) of Lawvere metric spaces is a set map f : X → Y which

is non-expansive, i.e. ∀(x, y) ∈ X × X, d(f(x), f(y)) 6 d(x, y). A non-expansive map

f : (X, d)→ (Y, d) is quasi-isometric if ∀(x, y) ∈ X ×X, d(x, y) <∞⇒ d(f(x), f(y)) =

d(x, y).

1.2. Notation. The category of Lawvere metric spaces is denoted by LvMet.

The category of Lawvere metric spaces is bicomplete since it is the category of small

categories enriched over ([0,∞],>,+, 0) [29].

1.3. Notation. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention, one has

{0, 1}0 = [0] = {()}. In the sequel, for all n > 1, both the sets [n] and [0, 1]n are equipped

with the product order. By convention, [0, 1]0 is a singleton.

1.4. Definition. Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n

with n > 1. Let
−→
d1 : [0, 1]n × [0, 1]n → [0,∞] be the set map defined by

−→
d1(x, x′) =





n∑

i=1

|xi − x
′
i| if x 6 x′

∞ otherwise.

For n = 1, it is
−−→
[0, 1] of [23, Example 3.2].

1.5. Proposition. Let n > 0. The set map
−→
d1 : [0, 1]n × [0, 1]n → [0,∞] is a Lawvere

metric. It restricts to a Lawvere metric on {0, 1}n.
5



Proof. Let x, y, z ∈ [0, 1]n. If
−→
d1(x, z) +

−→
d1(z, y) is finite, then x 6 z 6 y, which implies

that
−→
d1(x, y) is finite and that

−→
d1(x, y) =

−→
d1(x, z) +

−→
d1(z, y). If

−→
d1(x, z) +

−→
d1(z, y) is

infinite, then the inequality
−→
d1(x, y) 6

−→
d1(x, z) +

−→
d1(z, y) always holds. �

2. Precubical and symmetric transverse set

2.1. Notation. Let A ⊂ {1, . . . , n}. Denote by ǫA the tuple (ǫ1, . . . , ǫn) with ǫi = 0 if

i /∈ A and ǫi = 1 of i ∈ A. Let 0n = ǫ∅ and 1n = ǫ{1,...,n}.

Let δαi : [n − 1] → [n] be the coface map defined for 1 6 i 6 n and α ∈ {0, 1} by

δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). The small category � is by definition the

subcategory of the category of posets with the set of objects {[n], n > 0} and generated

by the morphisms δαi . The maps of � are called the cocubical maps.

2.2. Definition. [5] The category of presheaves over �, denoted by �opSet, is called

the category of precubical sets. Let �[n] := �(−, [n]). For K ∈ �opSet, denote by

Kn = K([n]) the set of n-cubes of K. For c ∈ Kn, let n = dim(c). Let f : [m]→ [n] be a

cocubical map. It gives rise to a set map denoted by f ∗ : Kn → Km. An element of K0

is called a vertex of K.

The following definition is equivalent to [15, Definition 2.1.5].

2.3. Definition. A set map f : [m]→ [n] is cotransverse if it is strictly increasing and if

∀x, y ∈ [m],
−→
d1(x, y) = 1 implies

−→
d1(f(x), f(y)) = 1.

The adjective adjacency-preserving is used in [15] instead. The word cotransverse is

preferred because it is consistent with the terminology of symmetric transverse sets 1.

By [15, Proposition 2.1.6], for any n > 1, the coface map δαi : [n − 1] → [n] is

cotransverse and any strictly increasing map from [n] to itself is cotransverse as well. Let

σi : [n] → [n] be the set map defined for 1 6 i 6 n − 1 and n > 2 by σi(ǫ1, . . . , ǫn) =

(ǫ1, . . . , ǫi−1, ǫi+1, ǫi, ǫi+2, . . . , ǫn). These maps are called the symmetry maps [24]. The

symmetry maps are clearly cotransverse.

2.4. Notation. Let �̂ be the small subcategory of the category of posets generated by

the cotransverse maps.

The following proposition is crucial in many places of this paper.

2.5. Proposition. [15, Proposition 3.1.14] Let 0 6 m 6 n. Every cotransverse (resp.

cotransverse one-to-one) map f : [m] → [n] factors uniquely as a composite [m]
ψ
−→

[m]
φ
−→ [n] with φ ∈ � and ψ cotransverse (resp. cotransverse one-to-one).

By a cardinality argument, if ψ : [m] → [m] is one-to-one, then it is bijective and

therefore it is a symmetry map. Thus the one-to-one cotransverse maps are composites

of coface maps and symmetry maps in a unique way.

2.6. Definition. [15, Definition 2.1.13] The category of presheaves over �̂, denoted by

�̂opSet, is called the category of symmetric transverse sets. Let �̂[n] := �̂(−, [n]). For

K ∈ �̂opSet, denote by Kn = K([n]) the set of n-cubes of K. For c ∈ Kn, let n = dim(c).

1Unlike in [15], the word precubical is omitted.
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Let f : [m]→ [n] be a cotransverse map. It gives rise to a set map denote by f ∗ : Kn →

Km. An element of K0 is called a vertex of K.

2.7. Definition. Let C be a category. A cotransverse object of C is a functor �̂→ C.

There is the elementary proposition:

2.8. Proposition. Let C be a cocomplete category. Let X : �̂ → C be a cotransverse

object of C. Let

X̂(K) =
∫ [n]∈�̂

Kn.X([n])

The mapping X 7→ X̂ induces an equivalence of categories between the category of co-

transverse objects of C and the colimit-preserving preserving functors from �̂opSet to C.

Proposition 2.8 is a particular case of [30, Remark 3.2.3], a cotransverse object in a

cocomplete category being an example of a nerve-realization context as defined in [30,

Definition 3.2.1]. Proposition 2.8 holds for any small category instead of �̂. For the case

of cosimplicial objects, see [28, Proposition 3.1.5]. The reader might also be interested in

reading [33, Remark 6.5.9] for another presentation of the general case.

2.9. Notation. For the sequel, the cotransverse object associated with a colimit-preserving

functor F : �̂opSet→ C is denoted by F (�̂[∗]).

2.10. Notation. Let n > 1. Let h : [0, 1]n → [0, n] be the continuous map defined by

h(x1, . . . , xn) =
n∑

i=1

xi.

Note that for all x, y ∈ [0, 1]n, x 6 y implies h(x) 6 h(y) and that x 6 y and h(x) = h(y)

implies x = y.

2.11. Proposition. Let n > 1. Let f : [n] → [n] be a cotransverse map. Then for all

(ǫ1, . . . , ǫn) ∈ [n], one has h(ǫ1, . . . , ǫn) = h(f(ǫ1, . . . , ǫn)).

Proof. We proceed by induction on h(ǫ1, . . . , ǫn). Consider the increasing sequence

ǫ∅ < ǫ{1} < ǫ{1,2} < · · · < ǫ{1,2,...,n}

of elements of [n]. The map f being cotransverse by hypothesis, one has
−→
d1

(
f(ǫ∅), f(ǫ{1})

)
= 1,

−→
d1

(
f(ǫ{1}), f(ǫ{1,2})

)
= 1,

. . .
−→
d1

(
f(ǫ{1,...,n−1}), f(ǫ{1,...,n})

)
= 1.

Since f : [n] → [n] is strictly increasing, we obtain f(ǫ∅) = ǫ∅ and f(ǫ{1,...,n}) = ǫ{1,...,n}.

We deduce that h(ǫ∅) = hf(ǫ∅) and that h(ǫ{1,...,n}) = hf(ǫ{1,...,n}). The formula is

therefore proved for h(ǫ1, . . . , ǫn) = 0 (and also for h(ǫ1, . . . , ǫn) = n). Suppose the

formula proved for all (ǫ1, . . . , ǫn) ∈ [n] such that h(ǫ1, . . . , ǫn) 6 H < n. Let (ǫ1, . . . , ǫn) ∈

[n] such that h(ǫ1, . . . , ǫn) = H+1 > 1. There exists (ǫ′1, . . . , ǫ
′
n) ∈ [n] with h(ǫ′1, . . . , ǫ

′
n) =

H and (ǫ′1, . . . , ǫ
′
n) < (ǫ1, . . . , ǫn). We deduce that

−→
d1((ǫ

′
1, . . . , ǫ

′
n), (ǫ1, . . . , ǫn)) = 1. The

7
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Figure 1. (k↓L) is connected

map f being cotransverse, we obtain
−→
d1(f(ǫ′1, . . . , ǫ

′
n), f(ǫ1, . . . , ǫn)) = 1. We obtain the

equalities h(f(ǫ1, . . . , ǫn)) = h(f(ǫ′1, . . . , ǫ
′
n)) + 1 = H + 1, the first equality by definition

of
−→
d1 and the second equality by induction hypothesis. �

As a corollary, we obtain the following proposition.

2.12. Proposition. Let ψ : [m] → [n] be a cotransverse map. Then ψ induces a map of

Lawvere metric spaces from [m] to [n] which is quasi-isometric.

A cotransverse map is not necessarily an isometry. For example, the map γ1 : [2]→ [2]

defined by γ1(ǫ1, ǫ2) = (max(ǫ1, ǫ2),min(ǫ1, ǫ2)) is cotransverse and γ1(1, 0) = γ1(0, 1) =

(1, 0). Note that
−→
d1((0, 1), (1, 0)) =∞.

2.13. Notation. The inclusion of small categories � ⊂ �̂ induces a forgetful functor

ω̂ : �̂opSet → �opSet which has a left adjoint L̂ : �opSet → �̂opSet which is called the

free symmetric transverse set generated by a precubical set.

2.14. Proposition. For a precubical (symmetric transverse resp.) set K, the data

(K6n)p =




Kp if p 6 n

∅ if p > n.

assemble into a precubical (symmetric transverse resp.) set denoted by K6n. Moreover,

the functor K 7→ K6n is colimit-preserving.

Proof. The first part is due to the fact that �([m], [n]) = �̂([m], [n]) = ∅ when m > n.

The second part is due to the fact that colimits of presheaves are calculated objectwise.

�

2.15. Notation. Let ∂�[n] = �[n]6n−1 and ∂�̂[n] = �̂[n]6n−1 for all n > 0.

2.16. Proposition. For all n > 0, one has the isomorphism of symmetric transverse sets

L̂(�[n]) ∼= �̂[n].
8



There is the isomorphism of symmetric transverse sets

L̂(∂�[n]) ∼= ∂�̂[n]

for all n > 0.

Proof. The first statement is [15, Proposition 2.1.14]. The short argument is repeated for

the ease of the reader. For every symmetric transverse set K, one has Kn = (ω̂K)n for

all n > 0. Since the functor � ⊂ �̂ is the identity on objects, we obtain for all n > 0 the

bijections

�̂opSet(L̂(�[n]), K) ∼= �opSet(�[n], ω̂K) = (ω̂K)n = Kn = �̂opSet(�̂[n], K).

By Yoneda’s lemma, one obtains the isomorphism L̂(�[n]) ∼= �̂[n] for all n > 0. The

second statement is stated with an incorrect argument in the proof of [15, Corollary 2.2.11].

The missing argument is explained now. Consider the small category J ′ such that the

objects are the coface maps [p]→ [n] ∈ � with p < n and such that the morphisms of J ′

are the commutative squares of the form

[p] //

∈�

��

[n]

[q] // [n]

Since �([p], [n]) = ∅ for p > n and since L̂ : �opSet→ �̂opSet is colimit-preserving, we

obtain the isomorphism of symmetric transverse sets

lim
−→

[p]→[n]∈J ′

�̂[p] ∼= L̂(∂�[n]).

Consider the small category J such that the objects are the maps [p] → [n] ∈ �̂ with

p < n and such that the morphisms are the commutative squares of the form

[p] //

∈�̂

��

[n]

[q] // [n]

Since �̂([p], [n]) = ∅ for p > n, we obtain the isomorphism of symmetric transverse sets

lim
−→

[p]→[n]∈J

�̂[p] ∼= ∂�̂[n].

Consider the inclusion functor L : J ′ → J . It induces a map of symmetric transverse sets

L̂(∂�[n]) −→ ∂�̂[n].

By [31, Theorem 1 p. 213], it suffices to prove that the comma category (k↓L) is nonempty

and connected for all objects k of J to complete the proof. Let k : [p]→ [n] be an object

of J . We see immediately that the comma category (k↓L) is nonempty because it contains
9



the commutative square

[p]
ψ

//

k

��

[p]

ψ′∈�

��

[n] [n]

where the top map ψ : [p] → [p] is given by the unique factorization given by Proposi-

tion 2.5 of k : [p]→ [n] as the composite of a map of �̂([p], [p]) followed by a coface map

ψ′. Consider another object

[p]
ψ1

//

k

��

[r]

ψ3∈�

��

[n]
ψ2

// [s]

of the comma category (k↓L). Consider the following diagram of �̂:

[p]
ψ

// [p]

g

��

ψ′∈�
// [n]

ψ2

��

[p]

gψ

))

h 55 [p]

h′∈�

��

g′∈�
// [s]

[p]
ψ1

// [r]
ψ3∈�

// [s]

where the factorizations ψ2ψ
′ = g′g and ψ1 = h′h are given by the factorization of

Proposition 2.5. We obtain (ψ3h
′)h = ψ3ψ1 = ψ2ψ

′ψ = g′(gψ). By uniqueness of the

factorization of Proposition 2.5, we deduce that ψ3h
′ = g′ and h = gψ. We deduce

the map of (k↓L) depicted in Figure 1. We conclude that the comma category (k↓L) is

connected. �

2.17. Remark. In fact, we could prove that the comma category (k↓L) has an initial

object given by the factorization of k using Proposition 2.5.

2.18. Definition. A symmetric transverse set K is cellular if the canonical map ∅→ K

is a transfinite composition of pushouts of the maps ∂�̂[n] → �̂[n] for n > 0. Note

that the map ∂�̂[0] → �̂[0] is the map C : ∅ → {0}. A symmetric transverse set K is

cofibrant if it is a retract of a cellular symmetric transverse set.

The category of symmetric transverse sets is locally presentable by [1, Corollary 1.54],

being a presheaf category. Besides, the symmetric transverse sets ∂�̂[n] are cofibrant for

all n > 0 by Proposition 2.19. In other terms, the two sets of maps {∂�̂[n] → �̂[n] |

n > 0} and {∂�̂[n] → �̂[n] | n > 0} ∪ {R : {0, 1} → {0}} are tractable. By [25,
10



Theorem 1.4], the cofibrant symmetric transverse sets are therefore the cofibrant objects

of the minimal model categories generated by these two sets of maps. It is not clear

at this point whether R : {0, 1} → {0} must be added or not to the set of generating

cofibrations to have a non-trivial model category on the category of symmetric transverse

sets. Besides, [25, Theorem 1.4] does not provide any geometric information. It is known

by [21, Corollary 4.10] that removing R : {0, 1} → {0} from the generating cofibrations

of the q-model structure of flows (see Definition 6.2 and Theorem 6.4) leads to a minimal

category without homotopy on the category of flows. However, the (n + 1)-dimension

globe Glob(Dn) has two distinguished states whereas the (n + 1)-cube has 2n+1 states.

Thus, the induction which leads to [21, Corollary 4.10] does not work in the transverse

case.

The terminal symmetric transverse set T is not cofibrant. Indeed, Tn is a singleton

{cn} for all n > 0. If it was a retract of a cellular symmetric transverse set K, then

the identity of T would factor as a composite T → K → T . For all cotransverse maps

f : [n]→ [n], f ∗(cn) = cn. However f ∗ has no fix point in K: contradiction.

2.19. Proposition. Let K be a precubical set. Then the symmetric transverse set L̂(K)

freely generated by K is cellular. In particular, for all n > 0, the symmetric transverse

sets ∂�̂[n] and �̂[n] are cellular for all n > 0.

Proof. Let K be a precubical set. Construct a transfinite tower (Kα)α>0 with K0 = ∅

and such that there is a map of precubical sets Kα → K one-to-one on cubes as follows.

Suppose that Kα is constructed. If there exists n > 0 such that Kα
n → Kn is not onto,

then take the least n satisfying this property. Then there exists a pushout Kα → Kα+1 of

�[n]6n−1 → �[n] such that Kα+1 → K is still one-to-one on cubes because �([n], [n]) is a

singleton for all n > 0 and because colimits are calculated objectwise on presheaves. The

transfinite induction stops eventually for a cardinality reason. Thus the proposition is a

consequence of Proposition 2.16 and of the fact that the functor L̂ : �opSet→ �̂opSet is

colimit-preserving, being a left adjoint. �

2.20. Proposition. There exists a cofibrant symmetric transverse set which is not freely

generated by a precubical set.

Proof. Consider the cotransverse map f : [3] → [3] defined as follows (it is the example

[15, Figure 5] and it is depicted in Figure 2):

f(x, y, z) =





(x, y, z) for (x, y, z) ∈ {(0, 0, 0), (1, 0, 1), (1, 1, 1)}

(0, 1, 1) for (x, y, z) ∈ {(1, 1, 0), (0, 1, 1)

(0, 0, 1) for h(x, y, z) = x+ y + z = 1

We immediately see that f is cotransverse, each arrow adding exactly 1 to the sum

of elements of the triple. The map f induces a map of symmetric transverse sets ∂f :

∂�̂[3]→ ∂�̂[3] which is not the image by L̂ of a map of precubical sets from ∂�[3] to ∂�[3]

because e.g. the 2-dimensional subcube (∗, ∗, 0) is crushed by ∂f to the concatenation

of two edges (0, 0, 0)→ (0, 0, 1)→ (0, 1, 1). Consider the pushout diagram of symmetric
11



(1, 0, 0) //

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
(1, 1, 0)

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯

(0, 0, 0) //

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(0, 1, 0)

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(1, 0, 1) // (1, 1, 1)

(0, 0, 1) //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(0, 1, 1)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(0, 0, 1) //

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
(0, 1, 1)

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯

(0, 0, 0) //

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(0, 0, 1)

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(1, 0, 1) // (1, 1, 1).

(0, 0, 1) //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(0, 1, 1)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Figure 2. The cotransverse map f : [3]→ [3]

transverse sets

∂�̂[3]

⊂

��

∂f
// ∂�̂[3]

��

�̂[3] // X

Then the symmetric transverse set X is cofibrant and it is not freely generated by a

precubical set because it contains a degenerate 2-cube. �

2.21. Proposition. Let K be a symmetric transverse set. It is cellular if and only if for

all n > 0, there is the pushout diagram of symmetric transverse sets
∐

x∈celln+1(K)

�̂[n+ 1]6n

��

// K6n

��∐

x∈celln+1(K)

�̂[n + 1] // K6n+1

where celln(K) is the set of n-cubes in the cellular decomposition of K.

Proof. If K satisfies the property of the proposition, and since K = lim
−→

K6n, then K

is cellular. Conversely, suppose that K is a cellular symmetric transverse set. By

Proposition 2.14, the restriction functor K 7→ K6n is colimit-preserving for all n > 0.

Thus each natural map ∅ → K6n is a transfinite composition of pushouts of the maps

∂�̂[p]6n → �̂[p]6n for p > 0. The point is that for all p > n, the map ∂�̂[p]6n → �̂[p]6n
is the identity of �̂[p]6n by definition of ∂�̂[p]6n. Moreover, each map of symmetric

12



transverse sets �̂[n+ 1]6n → K factors uniquely as a composite �̂[n+ 1]6n → K6n → K.

Hence the proof is complete. �

3. Cotransverse topological cube

The purpose of this section is to topologize the cotransverse maps, more precisely to

extend any cotransverse map f : [m]→ [n] to a map of Lawvere metric spaces T(f) from

([0, 1]m,
−→
d1) to ([0, 1]n,

−→
d1) which is quasi-isometric. The starting point is the following

observation.

3.1. Proposition. Let n > 1. Let f = (f1, . . . , fn) : [n] → [n] be a cotransverse map.

Then there is the equality

fi(x1, . . . , xn) = max
(ǫ1,...,ǫn)∈f−1

i
(1)

min{xk | ǫk = 1}

for all 1 6 i 6 n.

Proof. There are two mutually exclusive cases: fi(x1, . . . , xn) = 0 or fi(x1, . . . , xn) = 1.

Let us treat the case fi(x1, . . . , xn) = 0 at first. For all (ǫ1, . . . , ǫn) ∈ f−1
i (1), min{xk | ǫk =

1} = 1 implies (x1, . . . , xn) > (ǫ1, . . . , ǫn), which implies fi(x1, . . . , xn) = 1: contradiction.

Thus fi(x1, . . . , xn) = 0 implies that for all (ǫ1, . . . , ǫn) ∈ f−1
i (1), one has min{xk |

ǫk = 1} = 0. Assume now that fi(x1, . . . , xn) = 1. Then (x1, . . . , xn) ∈ f−1
i (1). Since

min{xi | xi = 1} = 1, the proof is complete. �

To give the reader the intuition of Proposition 3.1, consider the cotransverse map

f : [3] → [3] described in Figure 2. Let f = (f1, f2, f3). The reader must keep in mind

that, for boolean values, there are the equalities

min(x, y) = x and y, max(x, y) = x or y.

If x1 = 1 and x3 = 1, or x1 = 1 and x2 = 1 and x3 = 1, then f1(x1, x2, x3) = 1. Thus

f1(x1, x2, x3) = max(min(x1, x3),min(x1, x2, x3)).

If x1 = 1 and x2 = 1, or x2 = 1 and x3 = 1, or x1 = 1 and x2 = 1 and x3 = 1, then

f2(x1, x2, x3) = 1. Thus

f2(x1, x2, x3) = max(min(x1, x2),min(x2, x3),min(x1, x2, x3)).

Finally, if x1 = 1 and x2 = 1, or x1 = 1 and x3 = 1, or x2 = 1 and x3 = 1, or x1 = 1 and

x2 = 1 and x3 = 1, then f3(x1, x2, x3) = 1. Thus

f3(x1, x2, x3) = max(min(x1, x2),min(x1, x3),min(x2, x3),min(x1, x2, x3)).

3.2. Definition. Let f = (f1, . . . , fn) : [n]→ [n] be a cotransverse map. Let

T(f) : [0, 1]n → [0, 1]n

be the set map defined by

T(f)(x1, . . . , xn) = (T(f)1(x1, . . . , xn), . . . ,T(f)n(x1, . . . , xn))

with

T(f)i(x1, . . . , xn) = max
(ǫ1,...,ǫn)∈f−1

i
(1)

min{xk | ǫk = 1}

for all 1 6 i 6 n.
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3.3. Proposition. Let n > 1. For all x ∈ [n] ⊂ [0, 1]n, one has T(f)(x) = f(x).

Proof. It is a consequence of Proposition 3.1. �

3.4. Proposition. For all cotransverse maps f : [n]→ [n], the set map

T(f) : [0, 1]n −→ [0, 1]n

is continuous and strictly increasing. Moreover it satisfies the properties

∀(x1, . . . , xn) ∈ [0, 1]n, h(x1, . . . , xn) = h(T(f)(x1, . . . , xn)).

Proof. By Proposition 2.11 and Proposition 3.3, the theorem holds for (x1, . . . , xn) ∈

[n] ⊂ [0, 1]n. From the fact that each projection map (x1, . . . , xn) 7→ xk from [0, 1]n

equipped with the product order to [0, 1] is continuous and nondecreasing, we deduce

that T (f) is continuous and nondecreasing. Consider a tuple (x1, . . . , xn) ∈ [0, 1]n. There

exists a permutation σ of {1, . . . , n} such that xσ(1) > . . . > xσ(n). Using Proposition 2.11

again, write

f(ǫ{σ(1)}) = ǫ{σ′(1)},

f(ǫ{σ(1),σ(2)}) = ǫ{σ′(1),σ′(2)},

. . .

f(ǫ{σ(1),...,σ(n)}) = ǫ{σ′(1),...,σ′(n)}.

From the permutation σ of {1, . . . , n}, we therefore obtain a new permutation σ′ of

{1, . . . , n}. One has ǫ{σ(1)} ∈ f−1
σ′(1)(1). This means that T (f)σ′(1)(x1, . . . , xn) = xσ(1)

because xσ(1) > . . . > xσ(n). One then has ǫ{σ(1),σ(2)} ∈ f−1
σ′(1)(1). This means that

T (f)σ′(2)(x1, . . . , xn) = xσ(2) because xσ(1) > . . . > xσ(n). By repeating a finitely number

of times the same argument, we obtain the equality T (f)σ′(i)(x1, . . . , xn) = xσ(i) for all

1 6 i 6 n. This implies that T (f)(x1, . . . , xn) = (xσσ′−1(1), . . . , xσσ′−1(n)). This means

that

h(T (f)(x1, . . . , xn)) = xσσ′−1(1) + · · ·+ xσσ′−1(n) = h(x1, . . . , xn),

the first equality by definition of h and the second equality since σσ′−1 is a permuta-

tion of {1, . . . , n}. Let (x1, . . . , xn) 6 (y1, . . . , yn) ∈ [0, 1]n. We already know that

T(f)(x1, . . . , xn) 6 T(f)(y1, . . . , yn). Assume that T(f)(x1, . . . , xn) = T(f)(y1, . . . , yn).

From the previous calculation, we obtain

h(T(f)(y1, . . . , yn))− h(T(f)(x1, . . . , xn)) =
n∑

i=1

(yi − xi) = 0.

We deduce that (x1, . . . , xn) = (y1, . . . , yn). This means that T(f) : [0, 1]n −→ [0, 1]n is

strictly increasing. �

Before proving Proposition 3.8 which leads to the definition of the cotransverse topo-

logical cube in Theorem 3.9, we need to establish two lemmas.

3.5. Lemma. Let f : [n] → [n] and g : [n] → [n] be two cotransverse maps. Then there

is the equality

T(fg) = T(f) T(g).

Proof. Consider a tuple (x1, . . . , xn) ∈ [0, 1]n. We want to prove that

T(fg)(x1, . . . , xn) = T(f) T(g)(x1, . . . , xn).
14



Let σ be a permutation of {1, . . . , n} such that xσ(1) > . . . > xσ(n). Using Proposition 2.11,

write

g(ǫ{σ(1)}) = ǫ{σ′(1)},

g(ǫ{σ(1),σ(2)}) = ǫ{σ′(1),σ′(2)},

. . .

g(ǫ{σ(1),...,σ(n)}) = ǫ{σ′(1),...,σ′(n)}

for some permutation σ′ of {1, . . . , n}. From the calculation made in the proof of Propo-

sition 3.4, we obtain the equality

(y1, . . . , yn) = T(g)(x1, . . . , xn) = (xσσ′−1(1), . . . , xσσ′−1(n)).

One has yσ′(1) > . . . > yσ′(n) because yσ′(i) = xσ(i) for all 1 6 i 6 n. Using Proposition 2.11

again, write

f(ǫ{σ′(1)}) = ǫ{σ′′(1)},

f(ǫ{σ′(1),σ′(2)}) = ǫ{σ′′(1),σ′′(2)},

. . .

f(ǫ{σ′(1),...,σ′(n)}) = ǫ{σ′′(1),...,σ′′(n)}

for some permutation σ′′ of {1, . . . , n}. We obtain the equality

T(f)(y1, . . . , yn) = (yσ′σ′′−1(1), . . . , yσ′σ′′−1(n)) = (xσσ′′−1(1), . . . , xσσ′′−1(n)),

the left-hand equality by the calculation made in the proof of Proposition 3.4, the right-

hand equality by definition of yi. Since we have

fg(ǫ{σ(1)}) = f(ǫ{σ′(1)}) = ǫ{σ′′(1)},

fg(ǫ{σ(1),σ(2)}) = f(ǫ{σ′(1),σ′(2)}) = ǫ{σ′′(1),σ′′(2)},

. . .

fg(ǫ{σ(1),...,σ(n)}) = f(ǫ{σ′(1),...,σ′(n)}) = ǫ{σ′′(1),...,σ′′(n)},

we obtain using the calculation made in the proof of Proposition 3.4 that

T(f) T(g)(x1, . . . , xn) = T(f)(y1, . . . , yn) = T(fg)(x1, . . . , xn).

�

3.6. Notation. For δαi : [n− 1]→ [n] ∈ �, let

T(δαi ) =





[0, 1]n−1 → [0, 1]n

(ǫ1, . . . , ǫn−1) 7→ (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1)

for all n > 1 and α ∈ {0, 1}.

3.7. Lemma. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps with f ∈ �

or g ∈ �. Then there is the equality

T(fg) = T(f) T(g).
15



Proof. It is well known if both f and g belong to �. If only one of the two maps f or g

belongs to �, we use Definition 3.2 of T(f) or T(g) for the map not belonging to � and

we add 0 or 1 to the other coordinates, depending on the coface map. �

3.8. Proposition. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps. Then

there is the equality

T(fg) = T(f) T(g).

Proof. Consider the commutative diagram of �̂ (the vertical maps are coface maps)

[m]
g

// [n]
f

// [p]

[m]
g′

// [m]

δ

OO

f ′

// [m]

δ′

OO

where the factorizations g = δg′ and f = δ′f ′ are given by Proposition 2.5. Then there is

the sequence of equalities (by repeatedly using Lemma 3.5 and Lemma 3.7)

T(fg) = T(δ′f ′g′) = T(δ′) T(f ′g′) = T(δ′) T(f ′) T(g′)

= T(δ′f ′) T(g′) = T(fδ) T(g′) = T(f) T(δ) T(g′) = T(f) T(δg′) = T(f) T(g).

�

3.9. Theorem. The mappings

[n] 7→ [0, 1]n for all n > 0

f : [n]→ [n] ∈ �̂ 7→ T(f) for all n > 1

δαi : [n− 1]→ [n] 7→ T(δαi ) for all n > 1

give rise to a cotransverse topological space called the cotransverse topological cube and

denoted by |�̂[∗]|geom.

Proof. The functoriality is a consequence of Proposition 3.8. �

Proposition 2.8 and Theorem 3.9 lead to the following definition:

3.10. Definition. Let K be a symmetric transverse set. Let

|K|geom =
∫ [n]∈�̂

Kn.|�̂[n]|geom

This gives rise to a colimit-preserving functor | − |geom : �̂opSet→ Top.

A point of |K|geom may admit several presentations [c; x] = |c|geom(x) with c ∈ K and

x ∈ [0, 1]dim(c). One has |�̂[n]|geom ∼= [0, 1]n for all n > 0. This implies that for all

cotransverse maps f : [m] → [n], by identifying using Yoneda’s lemma with the map

f : �̂[m] → �̂[n], the continuous map |f |geom : [0, 1]m → [0, 1]n is the continuous map

T(f) : [0, 1]m → [0, 1]n. Since all involved functors are colimit-preserving, one obtains

the natural homeomorphism

|L̂(K)|geom ∼= |K|geom

for all precubical sets K where |K|geom is the geometric realization of the precubical set K

which is defined similarly [20, Notation 4.1]. By Proposition 2.16, we deduce the natural
16



homeomorphism |∂�̂[n]|geom ∼= |∂�[n]|geom for all n > 0. The topology of |K|geom is

always Hausdorff by Proposition 4.9. In the cellular case, there is a more direct proof of

this fact given in Proposition 3.12.

3.11. Notation. Let n > 1. Denote by Dn = {b ∈ R
n, |b| 6 1} the n-dimensional disk,

and by Sn−1 = {b ∈ R
n, |b| = 1} the (n − 1)-dimensional sphere. By convention, let

D0 = {0} and S−1 = ∅.

3.12. Proposition. For all cellular symmetric transverse sets K, the geometric realization

|K|geom is a CW-complex. In particular, the space |K|geom is Hausdorff.

Proof. There are the homeomorphisms |�̂[n + 1]|geom ∼= Dn+1 and |∂�̂[n + 1]|geom ∼= Sn

for n > 0 by Proposition 2.16. Consider the diagram of solid arrows of topological spaces

|∂�̂[n+ 1]|geom

⊂

��

f
//❴❴❴❴❴ Sn

⊂

��

|�̂[n+ 1]|geom
∼=

// Dn+1

Since the inclusions |∂�̂[n+ 1]|geom ⊂ |�̂[n+ 1]|geom and Sn ⊂ Dn+1 are closed inclusions,

the composite map |∂�̂[n + 1]|geom → Dn+1 induces a homeomorphism f : |∂�̂[n +

1]|geom → Sn such that the diagram above is commutative. The proof is complete with

Proposition 2.21. �

3.13. Notation. Let |�̂[n]|−→
d1

be the Lawvere metric space ([0, 1]n,
−→
d1) for all n > 0.

There is a topological version of Proposition 2.12:

3.14. Proposition. Let n > 1. Let f : [n] → [n] be a cotransverse map. Then T(f) :

[0, 1]n → [0, 1]n yields a map of Lawvere metric spaces from |�̂[n]|−→
d1

to itself which is

quasi-isometric.

Proof. Let x, y ∈ [0, 1]n. Suppose first that x 6 y are comparable. Then h(x) 6 h(y).

By Proposition 3.4, there is the inequality h(T(f)(x)) = h(x) 6 h(y) = h(T(f)(y)). We

deduce that
−→
d1(x, y) = h(y)− h(x) = h(T(f)(y))− h(T(f)(x)) =

−→
d1(T(f)(x),T(f)(y)),

the first equality by definition of
−→
d1, the second equality by the previous remark, and the

last equality by definition of
−→
d1 and since T(f) is strictly increasing. Now suppose that

x 6 y is false. This means that
−→
d1(x, y) =∞. This implies that

−→
d1(T(f)(x),T(f)(y)) 6

−→
d1(x, y) whatever the value of

−→
d1(T(f)(x),T(f)(y)) is. Thus, T(f) : [0, 1]n → [0, 1]n is

a map of Lawvere metric spaces. �

3.15. Corollary. Let f : [m] → [n] be a cotransverse map. The induced map T(f) :

|�̂[m]|−→
d1
→ |�̂[n]|−→

d1
is a map of Lawvere metric spaces which is also quasi-isometric.

This leads to the theorem:

3.16. Theorem. The mappings

[n] 7→ [0, 1]n for all n > 0

f : [n]→ [n] ∈ �̂ 7→ T(f) for all n > 1
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δαi : [n− 1]→ [n] 7→ T(δαi ) for all n > 1

give rise to a cotransverse Lawvere metric space called the cotransverse Lawvere cube and

denoted by |�̂[∗]|−→
d1

.

Proposition 2.8 and Theorem 3.16 lead to the following definition:

3.17. Definition. Let K be a symmetric transverse set. Let

|K|−→
d1

=
∫ [n]∈�̂

Kn.|�̂[n]|−→
d1
.

This gives rise to a colimit-preserving functor | − |−→
d1

: �̂opSet→ LvMet.

4. Natural d-path of a symmetric transverse set

It is necessary to consider the symmetric version of the notion of Lawvere metric space

to obtain a convenient notion of the underlying topological space of a Lawvere metric

space.

4.1. Definition. A pseudometric space (X, d) is a set X equipped with a map d : X×X →

[0,∞] called a pseudometric such that:

• ∀x ∈ X, d(x, x) = 0

• ∀(x, y) ∈ X ×X, d(x, y) = d(y, x) (symmetry axiom)

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) 6 d(x, z) + d(z, y).

A map f : (X, d) → (Y, d) of pseudometric spaces is a set map f : X → Y which is

non-expansive, i.e. ∀(x, y) ∈ X ×X, d(f(x), f(y)) 6 d(x, y).

4.2. Notation. The category of pseudometric spaces is denoted by PseudoMet.

The family of balls B(x, ǫ) = {y ∈ X | d(x, y) < ǫ}) of a pseudometric space (X, d)

with x ∈ X and ǫ > 0 generates a topology called the underlying topology of (X, d). This

construction gives rise to a functor from pseudometric spaces to general topological spaces

because maps of pseudometric spaces are non-expansive. It is not colimit-preserving by

[23, Remark 3.30]. The category of pseudometric spaces is bicomplete, being a reflective

full subcategory of the bicomplete category of Lawvere metric spaces by [23, Proposi-

tion 3.21]. Start from a Lawvere metric space (X, d). The image by the reflection is the

pseudometric space (X, d∧) defined for all (x, y) ∈ X ×X by

d∧(x, y) = min
n>0

min
x=x0,x1,...,xn+2=y

n∑

i=0

(
d(xi+1, xi) + d(xi+1, xi+2)

)

With (x0, x1, x2) = (x, x, y), we obtain d(x, y) = d(x, x) + d(x, y) > d∧(x, y) for all

(x, y) ∈ X ×X.

Since there is a mistake in the statement of [23, Proposition 3.21] (the formula giving d∧

is not correct) and no proof is given, a short explanation of the adjunction is provided in

this paragraph for the ease of the reader. By replacing xi by xn+2−i in the formula above,

we deduce that d∧(x, y) = d∧(y, x). Let us start from a map of Lawvere metric spaces

f : (X, d) → (Y, d) where (Y, d) is a pseudometric space. The map f∧ : (X, d∧) → (Y, d)

has the same underlying set map (so it is unique if it exists) and we just have to verify
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that it is non-expansive. Since f is non-expansive, one has d(f(x), f(y)) 6 d(x, y) for all

x, y ∈ X. We obtain

d(f(x0), f(xn+2)) 6

(
n−1∑

i=0

d(f(xi+1), f(xi))

)
+ d(f(xn+1), f(xn)) + d(f(xn+1), f(xn+2))

6

n∑

i=0

(
d(f(xi+1), f(xi)) + d(f(xi+1), f(xi+2))

)
6

n∑

i=0

(
d(xi+1, xi) + d(xi+1, xi+2)

)
,

the first inequality by the triangular inequality, the second inequality since one has

d(f(xi+1), f(xi+2)) > 0 for all i > 0, and the last inequality because f : (X, d) → (Y, d)

is non-expansive. We deduce that f∧ : (X, d∧) → (Y, d) is non-expansive. Conversely,

if g : (X, d∧) → (Y, d) is a map of pseudometric spaces, then for all x, y ∈ X, one has

d(g(x), g(y)) 6 d∧(x, y) 6 d(x, y), the left-hand inequality since g is non-expansive and

the right-hand inequality by the remark above. Thus the underlying set map of g induces

a map of Lawvere metric spaces from (X, d) to (Y, d).

4.3. Definition. The underlying topological space of a Lawvere metric space (X, d) is by

definition the underlying topological space of the pseudometric space (X, d∧).

4.4. Notation. Let K be a symmetric transverse set. The underlying set of |K|−→
d1

equipped with the pseudometric
−→
d∧

1 gives rise to a pseudometric space denoted by |K|−→
d∧

1
.

This gives rise to a colimit-preserving functor

| − |−→
d∧

1
: �̂opSet→ LvMet→ PseudoMet.

In particular, one has

|K|−→
d∧

1

∼=
∫ [n]∈�̂

Kn.|�̂[n]|−→
d∧

1
.

4.5. Notation. The underlying topological space of the pseudometric space |K|−→
d∧

1
is

denoted by |K|d1 . It is a first countable (and therefore sequential) topological space, the

family of balls (B(x, 1/n)n >1) being a neighborhood basis of x ∈ |K|d1 .

4.6. Notation. Let n > 1. Let (x1, . . . , xn), (x′
1, . . . , x

′
n) ∈ [0, 1]n. Let

d1((x1, . . . , xn), (x′
1, . . . , x

′
n)) =

n∑

i=1

|xi − x
′
i|.

4.7. Proposition. Let n > 1. For all x, y ∈ [0, 1]n, there is the equality
−→
d∧

1 (x, y) = d1(x, y).

Proof. By definition,
−→
d∧

1 (x, y) is the minimum of the sums of the form
(−→
d1(x1, x0) +

−→
d1(x1, x2)

)
+

(−→
d1(x2, x1) +

−→
d1(x2, x3)

)
+ · · ·+

(−→
d1(xn+1, xn) +

−→
d1(xn+1, xn+2)

)

with n > 0 and x0 = x and xn+2 = y. To have a finite sum, the only possibility is that

x1 = x2 = · · · = xn = xn+1 = z, z 6 x, z 6 y.
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Consequently, one has
−→
d∧

1 (x, y) = min
z6x
z6y

(−→
d1(z, x) +

−→
d1(z, y)

)
= min

z6x
z6y

(
d1(z, x) + d1(z, y)

)
.

From the triangular inequality, we obtain d1(x, y) 6
−→
d∧

1 (x, y). Write x = x0 + x1 and

y = y0 + y1 with x0 6 y0 and y1 6 x1. Let z = x0 + y1. Then one has
−→
d1(z, x) +

−→
d1(z, y) =

(
h(x1)− h(y1)

)
+
(
h(y0)− h(x0)

)
= d1(x, y).

We deduce the inequality
−→
d∧

1 (x, y) 6 d1(x, y). �

4.8. Corollary. For all n > 0, there is the homeomorphism |�̂[n]|d1
∼= [0, 1]n.

4.9. Proposition. Let K be a symmetric transverse set. Then we have the following

properties:

(1) The underlying sets of the topological spaces |K|geom and |K|d1 are equal.

(2) The identity of the underlying set of |K|geom yields a continuous map from |K|geom
to |K|d1.

(3) The topological spaces |K|geom and |K|d1 are Hausdorff.

(4) The topological space |K|d1 is ∆-generated.

Proof. Assume at first that Top is the category of ∆-generated spaces and let us prove

the four assertions.

(1) The forgetful functor PseudoMet → Set from pseudometric spaces to sets has a

right adjoint given by taking a set S to the pseudometric space (S, d0) with d0(x, y) = 0

for all x, y ∈ S. Consequently, the forgetful functor PseudoMet → Set is colimit-

preserving. The forgetful functor Top → Set is topological by [10, Proposition 3.5],

hence colimit-preserving, the category of ∆-generated spaces being the final closure in

the category of general topological spaces of the segment [0, 1]. Thus, the underlying set

of |K|geom is equal to the underlying set of |K|d1.

(2) From Corollary 4.8, we obtain the homeomorphism |�̂[n]|geom ∼= |�̂[n]|d1 . For each

c ∈ Kn, we obtain a composite continuous map

|�̂[n]|geom ∼= |�̂[n]|d1

|c|d1
// |K|d1

and, by the universal property of the colimit, we deduce that the identity yields a contin-

uous map |K|geom → |K|d1.

(3) It is easy to see that the pseudometric of |K|−→
d∧

1
restricts to a metric satisfying the

additional Fréchet axiom (i.e. the underlying topology is T1) on each path-connected

component thanks to the homeomorphisms |�̂[n]|d1
∼= [0, 1]n for all n > 0. Thus, the

topological space |K|d1 is Hausdorff. Since the identity map |K|geom → |K|d1 is one-to-

one, we deduce that |K|geom is Hausdorff as well.

(4) Let x ∈ |K|d1. The family of balls (B(x, 1/n)n >1) is a neighborhood basis of x.

Assume at first that x ∈ K0. Then for all ǫ ∈]0, 1[, B(x, ǫ) is path-connected because

each point is related to x by a continuous path. Assume now that x ∈ |K|d1\K0. From

the counit map L̂(ω̂(K)) → K we deduce that there exists n > 1 and c ∈ Kn such that

x = [c; (t1, . . . , tdim(c))] with (t1, . . . , tdim(c)) ∈]0, 1[dim(c). Let ǫ = min{t1, . . . , tdim(c)}. One

has ǫ ∈]0, 1[. For all η ∈]0, ǫ[, the ball B(x, η) is path-connected to x. We have proved
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that the first countable topological space |K|d1 is locally path-connected. It is therefore

∆-generated by [6, Proposition 3.11].

Assume now that Top is the category of ∆-Hausdorff ∆-generated spaces and let us

prove the four assertions.

(1) The inclusion functor Top ⊂ Top∆ where Top∆ is the category of ∆-generated

spaces has a left adjoint w∆ : Top∆ → Top by [18, Proposition B.7]. The topology of the

colimit |K|geom is now given at first by taking the colimit in the category of ∆-generated

spaces, and then by applying w∆ which may identify points in the underlying set. By

the above proof of (2) for Top∆, the second step is not required because the topology we

obtain by taking the colimit in the category of ∆-generated spaces is already Hausdorff,

and therefore ∆-Hausdorff. Hence the underlying sets of the topological spaces |K|geom
and |K|d1 are still equal.

The proofs of (2), (3) and (4) are unchanged in this new setting. �

4.10. Remark. It is not clear whether |K|geom is still a CW-complex, or at least a retract

of a CW-complex for any symmetric transverse set.

In general, the canonical map |K|geom → |K|d1 of Proposition 4.9 induced by the iden-

tity is not a homeomorphism, in particular for symmetric transverse sets freely generated

by a locally infinite precubical set by [11, Proposition 1.5.17]. The latter proposition

can be invoked because the restriction of the pseudometric
−→
d∧

1 to each path-connected

component of the topological space |K|d1 is a metric.

Let U be a topological space. A (Moore) path of U consists of a continuous map [0, ℓ]→

U with ℓ > 0. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths of a topological

space U such that γ1(ℓ1) = γ2(0). The Moore composition γ1 ∗ γ2 : [0, ℓ1 + ℓ2]→ U is the

Moore path defined by

(γ1 ∗ γ2)(t) =




γ1(t) for t ∈ [0, ℓ1]

γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].

The Moore composition of Moore paths is strictly associative.

4.11. Definition. Let n > 1. A (tame) d-path of |�̂[n]|geom = [0, 1]n is a nonconstant

continuous map γ : [0, ℓ] → [0, 1]n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1}n and such

that γ is nondecreasing with respect to each axis of coordinates. Let c ∈ Kn with

n > 1 be an n-cube of a general symmetric transverse set K. A (tame) d-path of c is

a composite continuous map denoted by [c; γ] : [0, ℓ] → |K|geom with ℓ > 0 such that

γ : [0, ℓ] → [0, 1]n is a d-path with [c; γ] = |c|geomγ. Let K be a general symmetric

transverse set. A (tame) d-path of K is a continuous path [0, ℓ] → |K|geom which is a

Moore composition [c1; γ1]∗· · ·∗ [cn; γn] of d-paths of the cubes c1, . . . , cn of K. γ(0) ∈ K0

is called the initial state of γ and γ(ℓ) ∈ K0 is called the final state of γ.

For all n-cubes c of K and for all cotransverse maps f , there are the equalities

|f ∗(c)|geom = |cf |geom = |c|geom|f |geom = |c|geom T(f)

by functoriality of | − |geom : �̂opSet → Top. This implies that there is the sequence of

equalities

[f ∗(c); γ] = |f ∗(c)|geomγ = [c; T(f)γ]
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on [0, ℓ]. By definition of the coend, there are also the equalities

[c; T(f)γ(t)] = [cf ; γ(t)] = [f ∗(c); γ(t)]

for all t ∈ [0, ℓ]. Therefore Definition 4.11 makes sense by definition of the coend and

because the continuous map T(f) is nondecreasing by Proposition 3.4.

4.12. Remark. By convention, all d-paths of a symmetric transverse set K start and end

at a vertex of K.

4.13. Definition. A d-path γ = (γ1, . . . , γn) : [0, n] → [0, 1]n of the topological n-cube

[0, 1]n is natural if Id[0,n] = hγ (see Notation 2.10), or more explicitly if for all t ∈ [0, n],

one has t = γ1(t) + · · ·+ γn(t). The set of natural d-paths of [0, 1]n is denoted by Nn. It

is equipped with the compact-open topology.

4.14. Proposition. ([20, Proposition 4.10]) The topological space Nn is ∆-generated and

∆-Hausdorff for all n > 0.

Another way to formulate Definition 4.13 is as follows:

4.15. Proposition. Equip ([0, n],6) with the Lawvere metric
−→
d1 : [0, n]× [0, n]→ [0,∞]

defined by

−→
d1(x, y) =




y − x if x 6 y

∞ if x > y.

The latter Lawvere metric space is denoted by
−−→
[0, n] in [23, Example 3.2]. A set map

γ : [0, n]→ [0, 1]n is a natural d-path if and only if it is a quasi-isometry for
−→
d1.

Proof. The equality t = γ1(t)+ · · ·+γn(t) for all t ∈ [0, n] implies that any natural d-path

is a quasi-isometry for
−→
d1. Conversely, suppose that the set map γ : [0, n] → [0, 1]n

is a quasi-isometry for
−→
d1. Then by Corollary 4.8, it is continuous for [0, 1]n equipped

with the standard topology. And being a quasi-isometry, it satisfies t =
−→
d1(0, t) =

−→
d1(γ(0), γ(t)) = γ1(t) + · · · + γn(t) for all t ∈ [0, n]. Consequently, the continuous map

γ : [0, n]→ [0, 1]n is a natural d-path. �

Using Proposition 4.15, it is now possible to generalize to symmetric transverse sets

the notion of natural d-path introduced by Raussen in [32, Definition 2.14] for precubical

sets as follows.

4.16. Definition. Let K be a general symmetric transverse set. A (tame) d-path of K of

the form [c1; γ1] ∗ · · · ∗ [cn; γn] is natural if each γi is a natural d-path of [0, 1]dim(ci) in the

sense of Definition 4.13 for 1 6 i 6 n.

Definition 4.16 makes sense because the identity induces a continuous map from |K|geom
to the underlying topological space |K|d1 of the Lawvere metric space |K|−→

d1
by Propo-

sition 4.9 and because for all cotransverse maps f , the map T(f) is a quasi-isometry by

Corollary 3.15.
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II. Realization of symmetric transverse sets

5. The c-Reedy model structure of cotransverse objects

5.1. Definition. [36, Definition 6.12] Let C be a category equipped with an ordinal degree

function on its objects.

• A morphism is level if its domain and codomain have the same degree.

• The degree of a factorization (h, g) of a morphism f is the degree of the interme-

diate object (i.e. the domain of h which is the codomain of g).

• A factorization of a morphism f is fundamental if its degree is strictly less than

the degrees of both the domain and codomain of f .

• A morphism is basic if it does not admit any fundamental factorization.

5.2. Definition. [36, page 37] Let C be a category equipped with an ordinal degree

function on its objects. The δ-th stratum of C, denoted by C=δ, is the subcategory of C

generated by the objects of degree δ and by the basic morphisms between them.

5.3. Definition. Let C be a category. Let f be a map of C. The category of factorizations

of f has for objects the pairs (h, g) such that hg = f and for morphisms k : (h, g)→ (h′, g′)

the morphisms k of C (which are called connecting morphisms) such that there is a

commutative diagram

•
g′

// •
h′

// •

•
g

// •

k

OO

h
// •

5.4. Definition. [36, Definition 8.25] A c-Reedy category C is a small category equipped

with an ordinal degree function d on its objects, and subcategories
←→
C ,
−→
C and

←−
C con-

taining all objects such that

(1)
←→
C ⊆

−→
C ∩
←−
C .

(2) Every morphism in
←→
C is level.

(3) Every morphism in
−→
C \
←→
C strictly raises degree, and every morphism in

←−
C \
←→
C

strictly lowers degree.

(4) Every morphism f factors as
−→
f
←−
f , where

−→
f ∈

−→
C and

←−
f ∈

←−
C . The subcategory

of the category of factorizations of f generated by the pairs (h, g) with h ∈
−→
C

and g ∈
←−
C and such that the connecting morphisms belong to

←→
C is connected

for all f .

(5) For any object x and any degree δ < d(x), the functor
←−
C (x,−) :

←→
C =δ → Set is

a coproduct of retracts of representables.

5.5. Notation. Let us equip the small category �̂ with the ordinal degree function

d([n]) = n for all n > 0. Let
−→
�̂ = �̂

←→
�̂ =

←−
�̂ =

∐

n>0

{f : [n]→ [n] | f ∈ �̂}
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5.6. Proposition. Let n > 0. The n-th stratum �̂=n is the full subcategory of �̂ having

one object [n]. In particular, one has

�̂=n([n], [n]) = �̂([n], [n]).

Proof. Every morphism f : [m] → [n] of �̂ is basic since every factorization of f as a

composite [m]→ [p]→ [n] implies that m 6 p 6 n, and therefore a factorization cannot

be fundamental. Hence the proof is complete. �

Let M be a model category. Let C be a small category. Recall that the projective

model structure is the unique model structure (if it exists) on the functor category MC

such that the weak equivalences and the fibrations are the objectwise ones.

The projective model structure on MC exists for any small category C when M is an

accessible model category in the sense of [35, Definition 5.1] or [26, Definition 3.1.6] by

[26, Theorem 3.4.1] or a cofibrantly generated model category by [27, Theorem 11.6.1].

5.7. Notation. In this section, M denotes a model category such that the projective

model structure onM�̂=n exists for all n > 0. where �̂=n is the n-th stratum.

Theorem 5.17 provides a necessary and sufficient condition for a cotransverse object of

M to be projective cofibrant; this is the analog of [13, Proposition 2.3.1] for symmetric

transverse sets.

The key fact used in [13] is that the small category � is a direct Reedy category.

This implies that the projective model structure on cocubical objects exists and that it

coincides with the Reedy model structure for all model categories. It turns out that the

small category �̂ is not Reedy, whether understood in the sense of Berger-Moerdijk [4,

Definition 1.1] or Cisinski [7, Definition 8.1.1].

Indeed, the factorization of a map of �̂ by a map of
←−
�̂ followed by a map of

−→
�̂ is not

unique up to isomorphism. For example, the following commutative diagram of �̂ with

m < n gives rise to two non-isomorphic factorizations of hkg

[m]
kg

// [m]
h

// [n]

[m]
g

// [m]

k

OO

hk
// [n]

when k is non-invertible.

However the category of such factorizations of a map has a final object by Proposi-

tion 5.8. In fact, the small category �̂ turns out to be c-Reedy by Proposition 5.9.

5.8. Proposition. Let f be a map of �̂. Consider the subcategory of the category of

factorizations of f generated by the pairs (h, g) with h ∈
−→
�̂ and g ∈

←−
�̂ . Note that the

connecting morphisms are necessarily level since
←→
�̂ =

←−
�̂ . Then this subcategory has a

final object.

Proof. Let f be a map of �̂. Consider the factorization (h, g) given by Proposition 2.5: in

particular, h ∈ �. Consider another factorization (h′, g′) of f . Consider the commutative
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diagram of solid arrows of �̂

•
g

// •
h

// •

•
g′

// •

k

OO✤

✤

✤

✤
h′

// •

Proposition 2.5 yields the factorization h′ = h′′k with h′′ ∈ � and k which are unique. We

obtain hg = h′g′ = h′′kg′. By uniqueness of the factorization of f given by Proposition 2.5,

we obtain h = h′′ and g = kg′, and therefore h′ = hk. If

•
g

// •
h

// •

•
g′

// •

k

OO✤

✤

✤

✤
h′

// •

is another commutative diagram, then h′ = hk = hk. By the uniqueness of Proposi-

tion 2.5, we deduce that k = k. �

5.9. Proposition. The small category �̂ is c-Reedy.

Proof. One has
←→
�̂ ⊂

−→
�̂ ∩
←−
�̂ (first axiom). Every morphism of

←→
�̂ is level (second axiom).

Every morphism of
−→
�̂\
←→
�̂ strictly raises degree and every morphism of

←−
�̂\
←→
�̂ = ∅ strictly

lowers degree (third axiom). The category of factorizations of f with connecting maps

in
←→
�̂ is connected by Proposition 5.8 (fourth axiom). For every n > 0, and any degree

m < n, the functor
←−
�̂ ([n],−) : �̂=m → Set is an (empty) coproduct of retracts of

representables because �̂([n], [m]) = ∅ (fifth axiom). �

5.10. Notation. Let �̂<n be the full category of �̂ containing the objects [0], . . . , [n−1] 2.

5.11. Notation. Let n > 0. Following the notations of [36, page 37], let

∂n�̂([p], [q]) =
∫ [m]∈�̂<n

�̂([m], [q])× �̂([p], [m])

The latching and matching object functors Ln,Mn :M�̂ →M�̂=n are given by

(MnA)[n] =
∫

[m]∈�̂

A([m])∂n�̂([n],[m])

(LnA)[n] =
∫ [p]∈�̂

∂n�̂([p], [n]).A([p])

We obtain:

5.12. Theorem. There exists a unique model structure on M�̂ such that

• The weak equivalences are objectwise.

• A map A → B of M�̂ is a fibration (trivial fibration resp.) if for all n > 0, the

map A([n]) → (MnA)[n] ×(MnB)[n]
B([n]) is a fibration (trivial fibration resp.) of

M.

2This category should be denoted by �̂n with the notation of [36]; I find this notation a bit confusing.
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• A map A → B of M�̂ is a cofibration (trivial cofibration resp.)if for all n > 0,

LnB ⊔LnA A → B is a projective cofibration (trivial cofibration resp.) of the

projective model structure of M�̂=n.

This model structure is called the c-Reedy model structure of M�̂.

Proof. By Proposition 5.9 and [36, Theorem 8.26], the small category �̂ is almost c-Reedy

in the sense of [36, Definition 8.8]. The proof is complete thanks to [36, Theorem 8.9]. �

5.13. Proposition. One has

∂n�̂([p], [q]) =




∅ if p > q or n 6 p

�̂([p], [q]) if p 6 q and p < n

Proof. The composition induces a set map �̂([m], [q])× �̂([p], [m])→ �̂([p], [q]). If p > q,

then �̂([p], [q]) = ∅, which implies that �̂([m], [q]) × �̂([p], [m]) = ∅ for all [m] ∈ �̂<n.

If n 6 p, then n − 1 < p. This means that for all [m] ∈ �̂n, one has �̂([p], [m]) = ∅,

which implies that �̂([m], [q])× �̂([p], [m]) = ∅ for all [m] ∈ �̂<n as well. Assume now

that p 6 q and p < n. The set ∂n�̂([p], [q]) is the quotient of
∐

m<n

�̂([m], [q])× �̂([p], [m])

by the equivalence relation generated by identifying two pairs (h, g) and (h′, g′) such that

hg = h′g′ related by a connecting map, i.e. such that there exists a commutative diagram

of �̂ of the form

[p]
g

// •
h

// [q]

[p]
g′

// •

k

OO✤

✤

✤

✤

✤
h′

// [q]

Consider such a pair (h, g). By applying Proposition 2.5 to g : [p] → [m], we obtain a

commutative diagram of �̂ of the form

[p]
∈�̂

// [p]

k∈�

��

hk
// [q]

[p]
g

// [m]
h

// [q]

This means that in ∂n�̂([p], [q]), every element of �̂([m], [q]) × �̂([p], [m]) is equivalent

to an element of �̂([p], [q]) × �̂([p], [p]). Consider (h, g) ∈ �̂([p], [q]) × �̂([p], [p]). By

applying Proposition 2.5 to h, we obtain a commutative diagram of �̂ of the form

[p]
kg

// [p]
∈�

// [q]

[p]
g

// [p]

k

OO

h
// [q]
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This means that every element of �̂([p], [q])× �̂([p], [p]) is equivalent in ∂n�̂([p], [q]) to

an element of �([p], [q]) × �̂([p], [p]). This means that ∂n�̂([p], [q]) is the quotient of

�([p], [q])× �̂([p], [p]) by the equivalence relation. If (h, g) and (h′, g′) are two equivalent

elements of �([p], [q]) × �̂([p], [p]) in ∂n�̂([p], [q]), then this implies in particular that

hg = h′g′. By the uniqueness of the factorization given by Proposition 2.5, this implies

that h = h′ and g = g′. We obtain

∂n�̂([p], [q]) ∼= �([p], [q])× �̂([p], [p]) ∼= �̂([p], [q]),

the first isomorphism since the equivalence relation on �([p], [q])× �̂([p], [p]) restricts to

the equality by the previous arguments, the second isomorphism by the uniqueness of

Proposition 2.5. �

Let C be a small category. Consider a small diagram X : C → M and a weight

W : C → Set. The weighted limit
∫
c∈C X(c)W (c) is a end which is characterized by the

adjunction

MC(W.Y,X) ∼=M

(
Y,
∫

c∈C
X(c)W (c)

)
.

We obtain the following lemma.

5.14. Lemma. Let C be a small category. Consider a small diagram X : C →M and the

empty weight W : C → Set with W (c) = ∅ for all c ∈ C. Then there is the isomorphism
∫

c∈C
X(c)∅ ∼= 1.

Proof. There are the isomorphisms

M(Y, 1) ∼= 1 ∼=MC(∅, X) ∼=MC(∅.Y,X) ∼=M

(
Y,
∫

c∈C
X(c)∅

)

for all objects Y ofM, the right-hand isomorphism by adjunction. The proof is complete

thanks to Yoneda’s lemma. �

Let C be a small category. Consider a small diagram X : C → M and a weight

U : Cop → Set. The weighted colimit
∫ c∈C U(c).X(c) is a coend which is characterized by

the adjunction

MC(X, Y U) ∼=M

(∫ c∈C

U(c).X(c), Y

)
.

We obtain the following lemma.

5.15. Lemma. Let C be a small category. Consider a small diagram X : C → M and a

weight U : Cop → Set. Let D be the full subcategory of C generated by the objects c such

that U(c) 6= ∅. Then there is the isomorphism
∫ c∈D

U(c).X(c) ∼=
∫ c∈C

U(c).X(c).

Proof. By definition of the weighted colimits, there are the isomorphisms

M

(∫ c∈D

U(c).X(c), Y

)
∼=MD(X, Y U)

M

(∫ c∈C

U(c).X(c), Y

)
∼=MC(X, Y U)
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for all objects Y of M. Let D be the full subcategory of C generated by the objects c

such that U(c) = ∅. Let c ∈ D, d ∈ D and f ∈ C(c, d). Then f gives rise to a set map

U(f) : U(d)→ U(c) = ∅, which implies that U(d) = ∅: contradiction. This means that

for all c ∈ D and d ∈ D, one has C(c, d) = ∅. By restriction, a map of MC(X, Y U) gives

rise to a map of MD(X, Y U). Conversely, start from a map of MD(X, Y U). To obtain a

map of MC(X, Y U), it remains to treat the case

X(c)

��

// (Y U)(c)

��

X(d) // (Y U)(d)

with c ∈ C and d ∈ D. In the latter case, (Y U)(d) = 1, which implies the natural bijection

MD(X, Y U) ∼=MC(X, Y U). The proof is complete thanks to Yoneda’s lemma. �

5.16. Proposition. For all n > 0, there is the isomorphism of symmetric transverse sets

∂�̂[n] ∼=
∫ [p]∈�̂<n

�̂([p], [n]).�̂[p]

Proof. There are the isomorphisms of symmetric transverse sets

∂�̂[n] ∼=
∫ [p]∈�̂

(∂�̂[n])p.�̂[p] ∼=
∫ [p]∈�̂<n

(∂�̂[n])p.�̂[p] ∼=
∫ [p]∈�̂<n

�̂([p], [n]).�̂[p],

the first isomorphism by applying K =
∫ [p]∈�̂Kp.�̂[p] to K = ∂�̂[n], the second isomor-

phism since (∂�̂[n])p = ∅ for p > n and by Lemma 5.15, and the last isomorphism by

definition of ∂�̂[n]. �

5.17. Theorem. The projective model structure on M�̂ exists and coincides with the

c-Reedy model structure. Let A : �̂→M be a cotransverse object of M. It is projective

cofibrant if and only if for all n > 0, the map Â(∂�̂[−]) → Â(�̂[−]) is a projective

cofibration of M�̂=n.

The small category � is also a c-Reedy category since it is a Reedy category. In this

case, there is the isomorphism of categoriesM∼=M�=n for all n > 0 and we recover [13,

Proposition 2.3.1] of the precubical setting.

Proof. The matching object functor Mn : M�̂ → M�̂=n for all n > 0 can be calculated

as follows. There is the sequence of isomorphisms of M

(MnA)[n]
∼=
∫

[m]∈�̂

A([m])∂n�̂([n],[m]) ∼=
∫

[m]∈�̂

A([m])∅ ∼= 1,

the first isomorphism by definition of the matching object functor (Notation 5.11), the sec-

ond isomorphism since ∂n�̂([n], [m]) = ∅ by Proposition 5.13, and the third isomorphism

by Lemma 5.14. Thus, the c-Reedy model structure of Theorem 5.12 on M�̂ coincides

with the projective model structure which therefore exists. There is the sequence of

isomorphisms of M

(LnA)[n]
∼=
∫ [p]∈�̂

∂n�̂([p], [n]).A([p]) ∼=
∫ [p]∈�̂<n

�̂([p], [n]).A([p]) ∼= Â(∂�̂[n]),
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the first isomorphism by definition of the latching object functor (Notation 5.11), the

second isomorphism by Lemma 5.15 and since ∂n�̂([p], [n]) = ∅ for p > n by Proposi-

tion 5.13, and finally the third isomorphism by Proposition 5.16 and since Â is colimit-

preserving. By Theorem 5.12, the cotransverse object A is projective cofibrant if and

only if for all n > 0, the map LnA→ A is a projective cofibration of the projective model

structure ofM�̂=n. Since A([n]) = Â(�̂[n]) by definition of Â, the proof is complete. �

6. Realizing a symmetric transverse set as a flow

The category Top can be equipped with its q-model structure where the weak equiv-

alences are the weak homotopy equivalences, the fibrations, called q-fibrations, are the

Serre fibrations and the cofibrations, called q-cofibrations, are the retracts of relative cell

complexes. The category Top can also be equipped with its h-model structure thanks

to [2, Corollary 5.23] where the weak equivalences are the homotopy equivalences, the

fibrations, called h-fibrations, are the Hurewicz fibrations and the cofibrations, called

h-cofibrations, are the strong Hurewicz cofibrations. The m-model structure of Top is

also used in various places of the paper. The latter is obtained by mixing the q-model

structure and the h-model structure using [8, Theorem 2.1]: the weak equivalences are

the weak homotopy equivalences and the fibrations are the Hurewicz fibrations. Further

details are given at the very end of [18, Appendix B].

6.1. Notation. In the whole section, r stands for q, m or h.

6.2. Definition. [12, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X0

of states, two continuous maps s and t from PX to X0 called the source and target

map respectively, and a continuous and associative map ∗ : {(x, y) ∈ PX × PX; t(x) =

s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX |

s(x) = α and t(x) = β}: it is the space of execution paths from α to β, α is called the

initial state and β is called the final state. Note that the composition is denoted by x ∗ y,

not by y ◦ x. The category Flow is locally presentable by [17, Theorem 6.11].

6.3. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1}, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1.

This flow has no composition law.

6.4. Theorem. [19, Theorem 7.4] There exists a unique model structure on Flow such

that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X0 → Y 0 is a

bijection and for all (α, β) ∈ X0 × X0, the continuous map Pα,βX → Pf(α),f(β)Y

is a weak equivalence of the r-model structure of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X0 ×X0,

the continuous map Pα,βX → Pf(α),f(β)Y is a fibration of the r-model structure of

Top.

This model structure is accessible and all objects are fibrant. It is called the r-model

structure of Flow.
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By [19, Theorem 7.7], the m-model structure is the mixing of the q-model structure

and the h-model structure in the sense of [8, Theorem 2.1]. Every q-cofibration of flows

is an m-cofibration and every m-cofibration of flows is an h-cofibration by [8, Proposi-

tion 3.6]. Every h-fibration of flows is an m-fibration and every m-fibration of flows is

a q-fibration by [8, Theorem 2.1]. All involved model categories being accessible, the

projective and injective r-model structures on FlowC exists for all small categories C by

[26, Theorem 3.4.1].

6.5. Proposition. Let f : X → Y be a weak equivalence of the r-model structure of flows

between r-cofibrant flows. Then f is a weak equivalence of the h-model structure of flows.

Proof. For r = h, there is nothing to prove. If r = q, then the spaces Pα,βX and Pf(α),f(β)Y

are q-cofibrant by [18, Theorem 5.7]. Using Whitehead’s theorem [27, Theorem 7.5.10,

p. 124], we deduce that the map Pα,βX → Pf(α),f(β)Y is a homotopy equivalence of

spaces. It remains the case r = m. The spaces Pα,βX and Pf(α),f(β)Y are m-cofibrant by

[19, Theorem 8.7]. By [8, Corollary 3.4], we deduce that the weak homotopy equivalence

Pα,βX → Pf(α),f(β)Y is a homotopy equivalence of spaces as well. �

6.6. Definition. A functor F : �̂opSet→ Flow is an r-realization functor (of symmetric

transverse sets) if it satisfies the following properties:

• F is colimit-preserving.

• For all n > 0, the map F (∂�̂[n])→ F (�̂[n]) is an r-cofibration of Flow.

• There is an objectwise weak equivalence of cotransverse flows F (�̂[∗])→ {0 < 1}∗

in the r-model structure of Flow.

Theorem 6.7, Proposition 6.13 and Theorem 7.4 prove that r-realization functors exist.

6.7. Theorem. Let (−)cof be a q-cofibrant replacement functor of Flow. The functor

|K|q =
∫ [n]∈�̂

Kn.({0 < 1}n)cof

is a q-realization functor | − |q : �̂opSet→ Flow.

Proof. By [15, Proposition 2.2.10], there is the isomorphism |K|q ∼= |L̂(K)|q for all pre-

cubical sets K where the left-hand term is the q-realization of the precubical set K with

the same q-cofibrant replacement functor and which is defined by

|K|q =
∫ [n]∈�

Kn.({0 < 1}n)cof

([20, Theorem 3.9]). Using Proposition 2.16, we deduce the isomorphims of flows |�[n]|q ∼=
|�̂[n]|q and |∂�[n]|q ∼= |∂�̂[n]|q for all n > 0. The proof is complete thanks to [14,

Proposition 7.4]. �

6.8. Proposition. Let F : �̂opSet → Flow be an r-realization functor of symmetric

transverse sets. Then the composite functor F L̂ : �opSet → Flow is an r-realization

functor of precubical sets in the sense of [20, Definition 3.6].

Proof. A r-realization of precubical sets is a functor G : �opSet → Flow which sat-

isfies the following properties: 1) G is colimit-preserving; 2) For all n > 0, the map
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G(∂�[n]) → G(�[n]) is an r-cofibration of Flow; 3) There is an objectwise weak equiv-

alence of cotransverse flows G(�̂[∗])→ {0 < 1}∗ in the r-model structure of Flow. The

proposition is therefore a consequence of Proposition 2.16. �

6.9. Remark. The composite functor |L̂(−)|q : �opSet → Flow is the q-realization

functor of precubical sets of [20, Theorem 3.9] with the same q-cofibrant replacement of

flows.

Recall that the injective model structure is the unique model structure (if it exists)

on a functor category MI such that the weak equivalences and the cofibrations are the

objectwise ones.

6.10. Lemma. (well-known 3) Let I be a small category. LetM be a model category (not

necessarily cofibrantly generated) such that both the projective model structure (MI)proj
and the injective model structure (MI)inj exist. Then the identity of M yields a left

Quillen functor (MI)proj → (MI)inj. In particular, every projective cofibration is an

injective cofibration.

Proof. Let A → B be a projective cofibration of MI . Let C → D be a trivial fibration

of M. Let i ∈ I. Consider a commutative diagram ofM of the form

A(i) //

��

C

��

B(i) //

ℓ

>>⑥
⑥

⑥
⑥

⑥
⑥

D

The lift ℓ exists if and only, by adjunction, the lift ℓ exists in the commutative diagram

of MI

A //

��

CI(−,i)

��

B //

ℓ

<<③
③

③
③

③
③

③

DI(−,i)

The point is that CI(−,i) → DI(−,i) is a projective trivial fibration. Thus the lift ℓ exists,

and so does the lift ℓ. We have proved that A → B is an injective cofibration and the

proof is complete. �

6.11. Proposition. Let F : �̂opSet → Flow be an r-realization functor. Then for all

symmetric transverse sets K, there is a natural bijection K0
∼= F (K)0. A projective

r-cofibrant replacement of the cotransverse flow F (�̂[∗]), let us denote it by F cof(�̂[∗]),

gives rise to an r-realization functor as well.

Proof. From the objectwise weak equivalence of cotransverse flows F (�̂[∗]) → {0 < 1}∗,

we deduce the objectwise bijection of cotransverse sets F (�̂[∗])0 ∼= {0, 1}∗ ∼= �̂[∗]0. We

obtain the natural bijection F (K)0 ∼= K0 for all symmetric transverse sets K. By The-

orem 5.17, the map F cof(∂�̂[−]) → F cof(�̂[−]) is a projective r-cofibration of Flow�̂=n

for all n > 0. By Lemma 6.10, the map F cof(∂�̂[−]) → F cof(�̂[−]) is an injec-

tive r-cofibration of Flow�̂=n for all n > 0. Since the composite map F cof(�̂[∗]) −→

3I am unable to find a textbook expounding this elementary result.
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F (�̂[∗]) −→ {0 < 1}∗ is a weak equivalence in the projective r-model structure of Flow�̂,

the proof is complete. �

Thanks to Proposition 6.11, the following definition makes sense.

6.12. Definition. A cofibrant r-realization is an r-realization functor F : �̂opSet→ Flow

such that the cotransverse flow F (�̂[∗]) is projective r-cofibrant. For an r-realization

functor F : �̂opSet→ Flow, the r-realization functor associated to the cotransverse flow

F cof(�̂[∗]) is called a cofibrant replacement of F . It is denoted by F cof .

The map of cotransverse sets F cof(�̂[∗])→ F (�̂[∗]) gives rise to a natural transforma-

tion of r-realization functor F cof ⇒ F by Proposition 2.8.

6.13. Proposition. Every (cofibrant resp.) q-realization functor is a (cofibrant resp.)

m-realization functor. Every (cofibrant resp.) m-realization functor is a (cofibrant resp.)

h-realization functor.

Proof. Let us prove at first the statements without the adjective “cofibrant”. Every q-

realization functor is an m-realization functor because every q-cofibration of flows is an

m-cofibration of flows and because the weak equivalences are the same in the two model

structures. Let F : �̂opSet → Flow be an m-realization functor. Then for all n > 0,

the map of flows F (∂�̂[n])→ F (�̂[n]) is an h-cofibration. The map of flows F (�̂[n])→

{0 < 1}n is a weak equivalence of the h-model structure of flows by Proposition 6.5.

We have proved that F is an h-realization functor. Since every m-fibration of flows is

a q-fibration, every projective q-cofibration of Flow�̂=n is a projective m-cofibration of

Flow�̂=n. Since every h-fibration of flows is a m-fibration, every projective m-cofibration

of Flow�̂=n is a projective h-cofibration of Flow�̂=n. We obtain the statements with the

adjective “cofibrant”. �

6.14. Corollary. For all cofibrant symmetric transverse sets K and all r-realization func-

tors F : �̂opSet→ Flow, the flow F (K) is r-cofibrant. In particular, the flows F (∂�̂[n])

and F (�̂[n]) are r-cofibrant for all n > 0.

Proof. Since K is cofibrant and F colimit-preserving, the map ∅→ F (K) is a retract of

a transfinite composition of pushouts of maps of the form F (∂�̂[n])→ F (�̂[n]) for n > 0.

Thus, F (K) is r-cofibrant. The second statement is a consequence of Proposition 2.19. �

6.15. Proposition. Let F1, F2 : �̂opSet → Flow be two r-realization functors. Suppose

that there exists a commutative diagram of cotransverse flows

F1(�̂[∗]) //

��

F2(�̂[∗])

��

{0 < 1}∗ {0 < 1}∗

Then the above hypothesis yields a natural map of flows F1(K) → F2(K) for all sym-

metric transverse sets K which is, for all cofibrant symmetric transverse sets K, a weak

equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all
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∐

x∈celln+1(K)

F1(�̂[n+ 1]6n)

≃

**❚❚
❚❚❚

❚❚❚
❚❚❚

��

// F1(K6n)

≃

$$■
■■

■■
■■

■■
■■

■

��

∐

x∈celln+1(K)

F2(�̂[n+ 1]6n) //

��

F2(K6n)

��

∐

x∈celln+1(K)

F1(�̂[n+ 1])

≃

**❚❚
❚❚❚

❚❚❚
❚❚❚

❚

// F1(K6n+1)

$$■
■

■
■

■
■

∐

x∈celln+1(K)

F2(�̂[n+ 1]) // F2(K6n+1)

Figure 3. From n to n + 1

(α, β) ∈ K0×K0, the continuous map Pα,βF1(K)→ Pα,βF2(K) is a homotopy equivalence

between r-cofibrant topological spaces for all cofibrant symmetric transverse sets K.

Proof. By the two-out-of-three property, for all n > 0, the map of flows F1(�̂[n]) →

F2(�̂[n]) is a weak equivalence of the r-model structure of Flow, and moreover between

r-cofibrant flows by Corollary 6.14. By Proposition 2.8, the hypotheses of the proposi-

tion yield a natural transformation µ : F1 ⇒ F2. Let us prove by induction on n > 0

that the canonical map F1(K6n) → F2(K6n) is a weak equivalence of the r-model struc-

ture of flows between r-cofibrant flows for all cellular symmetric transverse sets K. By

Proposition 6.11, there are the natural bijections Fi(K60) = K0
∼= Fi(K)0 for i = 1, 2.

Thus the induction hypothesis is proved for n = 0. Let n > 0. Using the existence

of the natural transformation F1 ⇒ F2 and thanks to Proposition 2.21, the passage

from n to n + 1 can be depicted by the diagram of flows of Figure 3. By the induc-

tion hypothesis, and since �̂[n + 1]6n is cellular by Proposition 2.19, the maps of flows

F1(�̂[n+ 1]6n)→ F2(�̂[n+ 1]6n) and F1(K6n)→ F2(K6n) are weak equivalences of the

r-model structure of flows between r-cofibrant flows. We have already seen above that

the map of flows F1(�̂[n + 1]) → F2(�̂[n+ 1]) is also a weak equivalence of the r-model

structure of flows between r-cofibrant flows. By definition of an r-realization functor, we

can apply the cube lemma [27, Proposition 15.10.10] [28, Lemma 5.2.6] in the r-model

structure of Flow to conclude that the map F1(K6n+1) → F2(K6n+1) is a weak equiv-

alence of the r-model structure of Flow between r-cofibrant flows. Since the colimits

lim
−→

F1(K6n) and lim
−→

F2(K6n) are colimits of towers of r-cofibrations between r-cofibrant

flows, they are homotopy colimits by [27, Proposition 15.10.12]. We conclude that the

map of flows F1(K)→ F2(K) is a weak equivalence of the r-model structure of Flow be-

tween r-cofibrant flows for all cellular symmetric transverse sets K. We deduce the same

assertion for all cofibrant symmetric transverse sets K. The proof is complete thanks to

Proposition 6.5. �

Proposition 6.15 has two corollaries.
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6.16. Corollary. Let F : �̂opSet → Flow be an r-realization functor. Then for all

cofibrant symmetric transverse sets K, the map F cof(K) → F (K) is a weak equivalence

of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈

K0×K0, the continuous map Pα,βF
cof(K)→ Pα,βF (K) is a homotopy equivalence between

r-cofibrant topological spaces for all cofibrant symmetric transverse sets K.

By [3, Proposition 1.3], there exists a (non unique) functorial factorization ∅→ Kcof →

K by an element of cell({∂�̂[n]→ �̂[n] | n > 0}) followed by an element of inj({∂�̂[n]→

�̂[n] | n > 0}). The functor (−)cof : �̂opSet → �̂opSet is called a cofibrant replacement

of K. Corollary 6.17 is a reformulation of Corollary 6.16.

6.17. Corollary. Let F : �̂opSet → Flow be an r-realization functor. Then for all

symmetric transverse sets K, the map F cof(Kcof)→ F (Kcof) is a weak equivalence of the

r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K0 ×K0,

the continuous map Pα,βF
cof(Kcof) → Pα,βF (Kcof) is a homotopy equivalence between

r-cofibrant topological spaces for all symmetric transverse sets K.

6.18. Theorem. Consider two r-realization functors

F1, F2 : �̂opSet −→ Flow.

Then there exists a cofibrant r-realization functor F3 and a zigzag of natural transforma-

tions

F1 ⇐= F3 =⇒ F2

such that there is a commutative diagram of cotransverse flows

F1(�̂[∗])

��

F3(�̂[∗])oo

��

// F2(�̂[∗])

��

{0 < 1}∗ {0 < 1}∗ {0 < 1}∗

and such that for all cofibrant symmetric transverse sets K, the maps F3(K) → F1(K)

and F3(K) → F2(K) natural with respect to K are weak equivalences of the r-model

structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K0 × K0, the

natural maps Pα,βF3(K)
≃
−→ Pα,βF1(K) and Pα,βF3(K)

≃
−→ Pα,βF2(K) are homotopy

equivalences between r-cofibrant topological spaces for all cofibrant symmetric transverse

sets K. When e.g. F1 is already cofibrant as an r-realization functor, one can suppose

that F1 = F3.

Proof. Let F3 = F cof
1 . Consider the diagram of solid arrows of Flow�̂

F3(�̂[∗])
µ

//❴❴❴❴

��

F2(�̂[∗])

��

F1(�̂[∗]) // {0 < 1}∗

Since all spaces of execution paths of {0 < 1}∗ are discrete, the right vertical map is a

trivial projective r-fibration of Flow�̂. Thus, there exists a map of cotransverse flows
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µ : F3(�̂[∗])→ F2(�̂[∗]) making commutative the diagram above. The proof is complete

thanks to Proposition 2.8 and Proposition 6.15. Assume now that F1 is already cofibrant.

Consider the diagram of solid arrows of Flow�̂

F2(�̂[∗])

��

F1(�̂[∗])

µ

::t
t

t
t

t
t

t

// {0 < 1}∗

The cotransverse flow F1(�̂[∗]) is projective r-cofibrant. The vertical map is a trivial

projective r-fibration of Flow�̂. Hence the proof is complete. �

Note the difference with the precubical case of [20, Theorem 3.8]. There is, in general,

in the symmetric transverse setting, no natural transformation from F1 to F2. The

point is that, in the precubical setting, the category �=n (see Proposition 5.6) is the

terminal category for all n > 0. Thus, in the precubical setting, every r-realization

functor F corresponds to a projective r-cofibrant cocubical flow F (�[∗]). In fact there is

the proposition:

6.19. Theorem. Consider two cofibrant r-realization functors

F1, F2 : �̂opSet −→ Flow.

Then there exists a natural transformation F1 ⇒ F2 such that there is a commutative

diagram of cotransverse flows

F1(�̂[∗])

��

// F2(�̂[∗])

��

{0 < 1}∗ {0 < 1}∗

and such that for all symmetric transverse sets K (not necessarily cofibrant), the map

F1(K)→ F2(K) natural with respect to K is a weak equivalence of the r-model structure

of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K0 ×K0, the natural map

Pα,βF1(K)
≃
−→ Pα,βF2(K) is a homotopy equivalence between r-cofibrant topological spaces

for all symmetric transverse sets K (not necessarily cofibrant).

Proof. The existence of the natural transformation is given by Theorem 6.18. Let K be

a symmetric transverse set. Consider the comma category (�̂↓K) whose objects are the

maps of transverse sets �̂[n]→ K and whose maps are the commutative squares

�̂[m] //

��

K

�̂[n] // K
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We adapt Proposition 2.5 to the comma category (�̂↓K) as follows. Since there is the

equality �̂opSet(�̂[p], �̂[q]) = �̂([p], [q]) for all p, q > 0 by Yoneda’s lemma, a map

�̂[m] −→ �̂[n] −→ K

factors uniquely as a composite map

�̂[m] −→ �̂[m] −→ �̂[n] −→ K

such that the map �̂[m] → �̂[n] corresponds to a coface map by Yoneda’s lemma. We

obtain that the comma category (�̂↓K) is a c-Reedy category by mimicking the proof

of Proposition 5.9. From the isomorphisms of symmetric transverse sets (symmetric

transverse sets being presheaves over �̂)

K ∼=
∫ [n]∈�̂

Kn.�̂[n] ∼= lim
−→

�̂[n]→K

�̂[n],

we deduce for i = 1, 2 the isomorphisms of flows

Fi(K) ∼=
∫ [n]∈�̂

Kn.Fi(�̂[n]) ∼= lim
−→

�̂[n]→K

Fi(�̂[n])

since the functor Fi is colimit-preserving. Since Fi is a cofibrant r-realization by hypothe-

sis, we deduce that the right-hand colimit is a homotopy colimit in the r-model structure

of flows by adapting the proof of Theorem 5.17 to Flow(�̂↓K). By the two-out-of-three

property, the natural map

F1(�̂[n]) −→ F2(�̂[n])

is a weak equivalence of the r-model structure of Flow, and moreover between r-cofibrant

flows by Corollary 6.14. Hence the map

F1(K) −→ F2(K)

natural with respect to K is a weak equivalences of the r-model structure of Flow between

r-cofibrant flows for all symmetric transverse sets K. The proof is complete thanks to

Proposition 6.5. �

6.20. Question. For all symmetric transverse sets K, there is a natural map of flows

F cof(Kcof)→ F cof(K) for all r-realization functors F : �̂opSet→ Flow. Is this natural

map a weak equivalence of the r-model structure of flows ?

7. Natural realization of a symmetric transverse set

We want to use the notion of natural d-path of a symmetric transverse set introduced in

Section 4 to build the natural realization functor from symmetric transverse sets to flows,

exactly as we proceed in [20, Section 5] for precubical sets. The definition is almost a

copy-pasting. However, the verification of the functoriality is a little bit more complicated

than in the precubical setting: see Proposition 7.1.

We define a flow |�̂[n]|nat for n > 0 called the natural n-cube as follows. The set of

states is {0, 1}n. Let n > 1 and α, β ∈ {0, 1}n. Recall that the topological space Nm of
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natural d-paths of [0, 1]m for m > 1 is defined in Definition 4.13. Let

Pα,β|�̂[n]|nat =




Nm if

−→
d1(α, β) = m > 1 and α < β

∅ if α > β.

The map [0, 1]m1⊔[0, 1]m2 → [0, 1]m1+m2 defined by taking (t1, . . . , tm1) to (t1, . . . , tm1 , 0m2)

and (t′1, . . . , t
′
m2

) to (1m1 , t
′
1, . . . , t

′
m2

) induces a continuous map Nm1×Nm2 → Nm1+m2 by

using the fact that the Moore composition of two natural d-paths is still a natural d-path.

It yields the associative composition law of the flow |�̂[n]|nat.

Let f : [m] → [n] be a cotransverse map. Let α, β ∈ {0, 1}m. Assume that k =
−→
d1(α, β) > 1. There exists a unique coface map δ : [k]→ [m] with takes 0k to α and 1k
to β. Consider the commutative diagram of �̂ where the vertical maps are coface maps

[m]
f

// [n]

[k]

δ

OO

[f ]α,β
// [k]

δ′

OO

obtained by applying Proposition 2.5 to fδ. Then the continuous map Pα,β|�̂[m]|nat →

Pf(α),f(β)|�̂[n]|nat induced by f is the continuous map T([f ]α,β) : Nk → Nk.

7.1. Proposition. We obtain a well-defined cotransverse flow |�̂[∗]|nat.

Proof. Let f : [m] → [n] and g : [n] → [p] be two cotransverse maps. Let α, β ∈ {0, 1}m.

Assume that k =
−→
d1(α, β) > 1. Consider the commutative diagram of �̂ where the

vertical maps are coface maps:

[m]
f

// [n]
g

// [p]

[k]

δ

OO

[f ]α,β
// [k]

δ′

OO

[g]f(α),f(β)
// [k]

δ′′

OO

Because of the uniqueness of the factorization given by Proposition 2.5, we have

[gf ]α,β = [g]f(α),f(β)[f ]α,β.

We obtain

T([gf ]α,β) = T([g]f(α),f(β)) T([f ]α,β)

by Proposition 3.8. �

Using Proposition 2.8 and Proposition 7.1, we obtain:

7.2. Definition. Let K be a symmetric transverse set. Consider the colimit-preserving

functor

|K|nat =
∫ [n]∈�̂

Kn.|�̂[n]|nat.

It is called the natural realization of K as a flow.

7.3. Proposition. The composite functor |L̂(−)|nat : �opSet→ Flow (cf. Notation 2.13)

is the natural realization functor of precubical sets of [20, Definition 5.3].
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Proof. One has |�[n]|nat = |�̂[n]|nat: the natural realization of the precubical set �[n]

is equal to the natural realization of the symmetric transverse set �̂[n] because it is

exactly the same definition. Using Proposition 2.16, we deduce for all n > 0 the natural

isomorphism |�[n]|nat ∼= |L̂(�[n])|nat. Since all involved functors are colimit-preserving,

we obtain for all precubical sets K the isomorphism of flows |K|nat ∼= |L̂(K)|nat. �

The following theorem concludes the paper.

7.4. Theorem. The natural realization functor | − |nat from symmetric transverse sets to

flows defined in Definition 7.2 is an m-realization functor. Let | − |q : �̂opSet → Flow

be a q-realization functor. There exists an m-realization functor F : �̂opSet→ Flow and

two natural transformations inducing bijections on the sets of states

| − |q ⇐= F (−) =⇒ | − |nat

such that for all cofibrant symmetric transverse sets K and all (α, β) ∈ K0 ×K0, there

is the zigzag of natural homotopy equivalences between m-cofibrant topological spaces

Pα,β|K|q Pα,βF (K)
≃

oo
≃

// Pα,β|K|nat .

If | − |q is cofibrant as a q-realization functor, then one can suppose that F = | − |q.

Proof. Using Proposition 7.3 and Proposition 2.16, we obtain the isomorphism of flows

|∂�[n]|nat ∼= |∂�̂[n]|nat for all n > 0. Thus the natural realization functor from symmetric

transverse sets to flow is an m-realization functor because the natural realization functor

of precubical sets as a flow is an m-realization functor by [20, Theorem 5.9]. Every q-

realization functor is an m-realization functor by Proposition 6.13. The proof is complete

thanks to Theorem 6.18. �
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