Directed degeneracy maps for precubical sets
 Philippe Gaucher

- To cite this version:

Philippe Gaucher. Directed degeneracy maps for precubical sets. 2022. hal-03771404v2

HAL Id: hal-03771404
 https://hal.science/hal-03771404v2

Preprint submitted on 31 Oct 2022 (v2), last revised 20 Mar 2024 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIRECTED DEGENERACY MAPS FOR PRECUBICAL SETS

PHILIPPE GAUCHER

Abstract

Transverse (symmetric precubical) sets were introduced to make the construction of the parallel product with synchronization for process algebras functorial. It is proved that one can do directed homotopy on transverse sets in the following sense. A q-realization functor from transverse sets to flows is introduced using a q-cofibrant replacement functor of flows. By topologizing the cotransverse maps, the cotransverse topological cube is constructed. It can be regarded both as a cotransverse topological space and as a cotransverse Lawvere metric space. A natural realization functor from transverse sets to flows is introduced using Raussen's notion of natural d-path extended to transverse sets thanks to their structure of Lawvere metric space. It is proved that these two realization functors are homotopy equivalent on cofibrant transverse sets by using the fact that the small category defining transverse sets is c-Reedy in Shulman's sense. This generalizes to transverse sets results previously obtained for precubical sets.

Contents

Introduction 1
Part I. Metric study of transverse sets1. The Lawvere directed n-cube2. Precubical and transverse set4
3. Cotransverse topological cube12
4. Natural d-path of a transverse set 17
Part II. Realization of transverse sets 21
5. The c-Reedy model structure of cotransverse objects 21
6. Realizing a transverse set as a flow 27
7. Natural realization of a transverse set 34
References36

Introduction

Presentation. Precubical sets are an important combinatorial model for directed homotopy [9]. The n-cube represents the concurrent execution of n actions. It has been known for a long time that the usual degeneracy maps used in non-directed homotopy theory

[^0]are not convenient for directed homotopy. The purpose of this paper is to introduce a convenient notion of degeneracy map for doing directed homotopy.

This paper is the second paper about transverse (symmetric precubical) sets. This notion is introduced in [14] to make the construction of the parallel product with synchronization of process algebras functorial. It is proved in [14, Theorem 3.1.15] that it is the only solution to achieve such a goal. A transverse symmetric precubical set is a presheaf on the category $\hat{\square}$ generated by the posets $[n]=\{0<1\}^{n}$ for $n \geqslant 0$ and by all cotransverse maps. The latter are the strictly increasing maps preserving adjacency (Definition 2.3). Note that to avoid cumbersome and inconsistent terminology, the words adjacency-preserving map and transverse symmetric precubical set of [14] are replaced in this paper by cotransverse map and transverse set respectively.

All coface maps and all symmetry maps are cotransverse. The latter cannot be regarded as degeneracy maps. However, a map like $\gamma_{1}:[2] \rightarrow[2]$ defined by $\gamma_{1}\left(\epsilon_{1}, \epsilon_{2}\right)=$ $\left(\max \left(\epsilon_{1}, \epsilon_{2}\right), \min \left(\epsilon_{1}, \epsilon_{2}\right)\right)$ is also cotransverse. Since $\gamma_{1}(1,0)=\gamma_{1}(0,1)=(1,0)$, the map γ_{1} adds a degenerate 2-cube by crushing the 2-cube transversally to the direction of time which goes from $(0,0)$ to $(1,1)$. The transverse degeneracy maps are exactly the cotransverse maps from $[n]$ to itself for $n \geqslant 2$ which are not one-to-one. All examples coming from computer science are transverse sets freely generated by precubical sets, and even most of them are freely generated by non-positively curved precubical sets [20, Proposition 1.29]. The interest of transverse sets is to provide a setting for having degeneracy maps in directed homotopy. It does not provide new examples for computer science: there does not seem to be any interpretation in computer science of a degenerate cube like the one given by γ_{1}.

The first goal of this paper is to prove that the notion of transverse set is a convenient framework for Raussen's notion of natural d-path. After translating the cotransverse maps into continuous maps thanks to a max-min formula, we obtain the cotransverse topological cube which is a cotransverse object both in the category of topological spaces and in the category of Lawvere metric spaces. The point is that the cotransverse maps are quasi-isometric: they preserve finite distances indeed. It implies that the topological version of the cotransverse maps takes natural d-paths of the topological cube to natural d-paths. It enables us to define a natural d-path between two vertices of a transverse set K as a quasi-isometry from $\overrightarrow{[0, n]}$ for some integer $n \geqslant 1$ to the realization $|K|_{\vec{d}_{1}}$ of K as a Lawvere metric space. The following theorem summarizes the results of Part I:

Theorem. (Theorem 3.9, Theorem 3.15 and Corollary 4.8) For every cotransverse map $f:[m] \rightarrow[n]$, the map $\mathrm{T}(f):[0,1]^{m} \rightarrow[0,1]^{n}$ of Definition 3.2 gives rise to a quasiisometry of Lawvere metric spaces for the Lawvere metric \vec{d}_{1} of Definition 1.4 and enables us to define cotransverse objects both in the category of topological spaces and in the category of Lawvere metric spaces.

In [18], two realization functors from precubical sets to flows, a q-realization functor using a q-cofibrant replacement functor of the q-model structure of flows and the natural realization functor using Raussen's notion of natural d-path, are compared and are proved to be homotopy equivalent. The second goal of this paper is to generalize these results to transverse sets. The small category $\hat{\square}$ is not Reedy. It is not Reedy in Berger-Moerdijk's sense [4, Definition 1.1] or in Cisinski's sense [7, Definition 8.1.1] either. However, it
is c-Reedy in Shulman's sense [32, Definition 8.25]. It is the key point to compare a q-realization and the natural realization of a transverse set as a flow. The difference with the setting of precubical sets studied in [18] is that there is in general only a zigzag of natural transformations between the two realization functors and that the second part of the main theorem holds only for cofibrant transverse sets in the sense of Definition 2.18, The following theorem summarizes the results of Part III:

Theorem. (Theorem 6.7, Proposition [7.3, Theorem (7.4) The natural realization functor
 which extends the natural realization of precubical sets. Let $|-|_{q}$ be a q-realization functor of transverse sets. There exists a m-realization functor $F: \hat{\square}^{o p}$ Set \rightarrow Flow and two natural transformations inducing bijections on the sets of states
such that for all cofibrant transverse sets K, and in particular for all transverse sets freely generated by a precubical set, and all $(\alpha, \beta) \in K_{0} \times K_{0}$, there is the zigzag of natural homotopy equivalences between m-cofibrant topological spaces

$$
\mathbb{P}_{\alpha, \beta}|K|_{q} \stackrel{\simeq}{\simeq} \mathbb{P}_{\alpha, \beta} F(K) \xrightarrow{\simeq} \mathbb{P}_{\alpha, \beta}|K|_{\text {nat }}
$$

If $|-|_{q}$ is cofibrant as a q-realization functor, then one can suppose that $F=|-|_{q}$.
By Theorem 6.17, the zigzag of homotopy equivalences on the spaces of execution paths would hold for non-cofibrant transverse sets by considering a cofibrant q-realization functor in the sense of Definition 6.10 if the natural realization functor was cofibrant as well. It is unlikely that it is true but we cannot prove it.

Subsequent papers will study directed homotopy on transverse sets and will show how it is possible to extend most of the results proved for precubical sets.

Outline of the paper. Part \square studies transverse sets from a metric point of view. Section 11 recalls some basic facts about Lawvere metric spaces. The Lawvere metric \vec{d}_{1} defined in Definition 1.4 plays an important role in many places of the paper. Section 2 recalls some basic facts about precubical sets and transverse (symmetric precubical) sets and the relations between one another. It also expounds in Proposition 2.16 a missing argument in the proof of [14, Corollary 2.2.11]. Finally, the section ends by introducing the notion of cofibrant transverse set in Definition 2.18 and by giving the basic properties. This notion has no analogue for precubical sets because, in some sense, all precubical sets are cofibrant. Section 3 starts from the observation made in Proposition 3.1 to topologize the cotransverse maps and proves some useful properties about them. It culminates with Theorem 3.9 which expounds the cotransverse topological cube and Theorem 3.15 which expounds the cotransverse Lawvere cube. Section 4 is devoted to define the notion of natural d-path of a transverse set. It requires to recall what is the underlying topological space of a Lawvere metric space and to make some calculations about the cubes and more generally about the transverse sets. It is proved in Proposition 4.13 that natural d-paths of a topological cube are quasi-isometry for the Lawvere metric \vec{d}_{1}. It enables us to define the natural d-paths of a transverse set as being locally, on each cube, a quasi-isometry. Part II studies realization functors of transverse sets. Section 5
proves that the category of cotransverse objects of a model category satisfying some mild conditions has a structure of a c-Reedy model category and that it coincides with the projective model structure. It enables us to give a necessary and sufficient condition for a cotransverse object to be projective cofibrant in Theorem 5.12, The latter condition is used in Proposition 6.9 to prove that the projective r-cofibrant replacement of the cotransverse flow associated with a r-realization functor gives rise to a r-realization functor. It is the key fact to prove Theorem 6.16 and Theorem [7.4. Section 6 defines the notions of (cofibrant or not) q-realization, m-realization and h-realization of a transverse set as a flow and explains how to compare them in Theorem6.16 in the non-cofibrant case and in Theorem 6.17 in the cofibrant case. Theorem 6.7 provides an example of a q-realization functor from transverse sets to flows. Section 7 concludes this paper by defining the natural realization of a transverse set in Definition 7.2 and by comparing it in Theorem [7.4] with a q-realization functor.

Prerequisites and notations. All necessary reminders are made throughout the paper. The reading of [18] is not required to understand this paper. We refer to [1] for locally presentable categories, to [30] for combinatorial model categories. We refer to [25] and to [24] for more general model categories. We work with the category Top of Δ-generated spaces or of Δ-Hausdorff Δ-generated spaces (cf. [16, Section 2 and Appendix B]). The category Top is equipped with its q-model structure (we use the terminology of [28]). The m-model structure [8] and the h-model structure [2] of Top are also used in various places of the paper. The set of maps from X to Y of a category \mathcal{C} is denoted by $\mathcal{C}(X, Y)$. \varnothing denotes the initial object and $\mathbf{1}$ the final object of a category. Set is the category of sets with all set maps. \mathcal{C}^{I} is the category of functor from a small category I to a category \mathcal{C} together with the natural transformations. \cong means isomorphism, \simeq means weak equivalence or homotopy equivalence, depending on the context. For an object X of a category \mathcal{C} and a set $S, S . X$ denotes $\amalg_{S} X$ and X^{S} denotes $\Pi_{S} X$. The notation $f \boxtimes g$ means that g satisfies the right lifting property (RLP) with respect to $f ;{ }^{\boxtimes} \mathcal{C}=$ $\{g, \forall f \in \mathcal{C}, g \boxtimes f\} ; \mathcal{C}^{\boxtimes}=\operatorname{inj}(\mathcal{C})=\{g, \forall f \in \mathcal{C}, f \boxtimes g\} ; \operatorname{cof}(\mathcal{C})={ }^{\boxtimes}\left(\mathcal{C}^{\boxtimes}\right) ; \operatorname{cell}(\mathcal{C})$ is the class of transfinite compositions of pushouts of elements of \mathcal{C}. A cellular object X of a combinatorial model category is an object such that the canonical map $\varnothing \rightarrow X$ belongs to $\operatorname{cell}(I)$ where I is the set of generating cofibrations. Let $n \geqslant 1$. Denote by $\mathbf{D}^{n}=\left\{b \in \mathbb{R}^{n},|b| \leqslant 1\right\}$ the n-dimensional disk, and by $\mathbf{S}^{n-1}=\left\{b \in \mathbb{R}^{n},|b|=1\right\}$ the $(n-1)$-dimensional sphere. By convention, let $\mathbf{D}^{0}=\{0\}$ and $\mathbf{S}^{-1}=\varnothing$.

Part I. Metric study of transverse sets

1. The Lawvere directed n-cube

Since there are several variants of the notion of metric space in the mathematical literature, the one which is used in this paper is recalled. The symmetric version will have to be recalled in Section 4.
1.1. Definition. [26] A Lawvere metric space (X, d) is a set X equipped with a map $d: X \times X \rightarrow[0, \infty]$ called a (Lawvere) metric such that:

- $\forall x \in X, d(x, x)=0$
- $\forall(x, y, z) \in X \times X \times X, d(x, y) \leqslant d(x, z)+d(z, y)$.

A map $f:(X, d) \rightarrow(Y, d)$ of Lawvere metric spaces is a set map $f: X \rightarrow Y$ which is non-expansive, i.e. $\forall(x, y) \in X \times X, d(f(x), f(y)) \leqslant d(x, y)$. A non-expansive map $f:(X, d) \rightarrow(Y, d)$ is quasi-isometric if $\forall(x, y) \in X \times X, d(x, y)<\infty \Rightarrow d(f(x), f(y))=$ $d(x, y)$.

1.2. Notation. The category of Lawvere metric spaces is denoted by LvMet.

The category of Lawvere metric spaces is bicomplete since it is the category of small categories enriched over $([0, \infty], \geqslant,+, 0)$ [26].
1.3. Notation. Let $[0]=\{()\}$ and $[n]=\{0,1\}^{n}$ for $n \geqslant 1$. By convention, one has $\{0,1\}^{0}=[0]=\{()\}$. In the sequel, for all $n \geqslant 1$, both the sets $[n]$ and $[0,1]^{n}$ are equipped with the product order. By convention, $[0,1]^{0}$ is a singleton.
1.4. Definition. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be two elements of $[0,1]^{n}$ with $n \geqslant 1$. Let $\vec{d}_{1}:[0,1]^{n} \times[0,1]^{n} \rightarrow[0, \infty]$ be the set map defined by

$$
\vec{d}_{1}\left(x, x^{\prime}\right)= \begin{cases}\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right| & \text { if } x \leqslant x^{\prime} \\ \infty & \text { otherwise }\end{cases}
$$

For $n=1$, it is $\overrightarrow{[0,1]}$ of [2d, Example 3.2].
1.5. Proposition. Let $n \geqslant 0$. The set map $\vec{d}_{1}:[0,1]^{n} \times[0,1]^{n} \rightarrow[0, \infty]$ is a Lawvere metric. It restricts to a Lawvere metric on $\{0,1\}^{n}$.
Proof. Let $x, y, z \in[0,1]^{n}$. If $\vec{d}_{1}(x, z)+\vec{d}_{1}(z, y)$ is finite, then $x \leqslant z \leqslant y$, which implies that $\vec{d}_{1}(x, y)$ is finite and that $\vec{d}_{1}(x, y)=\vec{d}_{1}(x, z)+\vec{d}_{1}(z, y)$. If $\vec{d}_{1}(x, z)+\vec{d}_{1}(z, y)$ is infinite, then the inequality $\vec{d}_{1}(x, y) \leqslant \vec{d}_{1}(x, z)+\vec{d}_{1}(z, y)$ always holds.

2. Precubical and transverse set

2.1. Notation. Let $A \subset\{1, \ldots, n\}$. Denote by ϵ_{A} the tuple $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ with $\epsilon_{i}=0$ if $i \notin A$ and $\epsilon_{i}=1$ of $i \in A$. Let $0_{n}=\epsilon_{\varnothing}$ and $1_{n}=\epsilon_{\{1, \ldots, n\}}$.

Let $\delta_{i}^{\alpha}:[n-1] \rightarrow[n]$ be the coface map defined for $1 \leqslant i \leqslant n$ and $\alpha \in\{0,1\}$ by $\delta_{i}^{\alpha}\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)=\left(\epsilon_{1}, \ldots, \epsilon_{i-1}, \alpha, \epsilon_{i}, \ldots, \epsilon_{n-1}\right)$. The small category \square is by definition the subcategory of the category of posets with the set of objects $\{[n], n \geqslant 0\}$ and generated by the morphisms δ_{i}^{α}. The maps of \square are called the cocubical maps.
2.2. Definition. [5] The category of presheaves over \square, denoted by $\square^{o p}$ Set, is called the category of precubical sets. Let $\square[n]:=\square(-,[n])$. For $K \in \square^{o p}$ Set, denote by $K_{n}=K([n])$ the set of n-cubes of K. For $c \in K_{n}$, let $n=\operatorname{dim}(c)$. Let $f:[m] \rightarrow[n]$ be a cocubical map. It gives rise to a set map denote by $f^{*}: K_{n} \rightarrow K_{m}$. An element of K_{0} is called a vertex of K.

The following definition is equivalent to [14, Definition 2.1.5].
2.3. Definition. A set map $f:[m] \rightarrow[n]$ is cotransverse if it is strictly increasing and if $\forall x, y \in[m], \vec{d}_{1}(x, y)=1$ implies $\vec{d}_{1}(f(x), f(y))=1$.

The adjective adjacency-preserving is used in [14] instead. The word cotransverse is preferred because it is consistent with the terminology of transverse (symmetric precubical) sets ${ }^{1}$.

By [14, Proposition 2.1.6], for any $n \geqslant 1$, the coface map $\delta_{i}^{\alpha}:[n-1] \rightarrow[n]$ is cotransverse and any strictly increasing map from $[n]$ to itself is cotransverse as well. Let $\sigma_{i}:[n] \rightarrow[n]$ be the set map defined for $1 \leqslant i \leqslant n-1$ and $n \geqslant 2$ by $\sigma_{i}\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=$ $\left(\epsilon_{1}, \ldots, \epsilon_{i-1}, \epsilon_{i+1}, \epsilon_{i}, \epsilon_{i+2}, \ldots, \epsilon_{n}\right)$. These maps are called the symmetry maps [21]. The symmetry maps are clearly cotransverse.
2.4. Notation. Let $\hat{\square}$ be the small subcategory of the category of posets generated by the cotransverse maps.

The following proposition is crucial in many places of this paper.
2.5. Proposition. [14, Proposition 3.1.14] Let $0 \leqslant m \leqslant n$. Every cotransverse (resp. cotransverse one-to-one) map $f:[m] \rightarrow[n]$ factors uniquely as a composite $[m] \xrightarrow{\psi}$ $[m] \xrightarrow{\phi}[n]$ with $\phi \in \square$ and ψ cotransverse (resp. cotransverse one-to-one).

By a cardinality argument, if $\psi:[m] \rightarrow[m]$ is one-to-one, then it is bijective and therefore it is a symmetry map. Thus the one-to-one cotransverse maps are composites of coface maps and symmetry maps in a unique way.
2.6. Definition. [14, Definition 2.1.13] The category of presheaves over $\hat{\square}$, denoted by $\hat{\square}^{o p}$ Set, is called the category of transverse sets. Let $\hat{\square}[n]:=\hat{\square}(-,[n])$. For $K \in \hat{\square}^{o p}$ Set, denote by $K_{n}=K([n])$ the set of n-cubes of K. For $c \in K_{n}$, let $n=\operatorname{dim}(c)$. Let $f:[m] \rightarrow[n]$ be a cotransverse map. It gives rise to a set map denote by $f^{*}: K_{n} \rightarrow K_{m}$. An element of K_{0} is called a vertex of K.
2.7. Definition. Let \mathcal{C} be a category. A cotransverse object of \mathcal{C} is a functor $\hat{\square} \rightarrow \mathcal{C}$.

There is the elementary proposition:
2.8. Proposition. Let \mathcal{C} be a cocomplete category. Let $X: \hat{\square} \rightarrow \mathcal{C}$ be a cotransverse object of \mathcal{C}. Let

$$
\widehat{X}(K)=\int^{[n] \in \widehat{\square}} K_{n} \cdot X([n])
$$

The mapping $X \mapsto \widehat{X}$ induces an equivalence of categories between the category of cotransverse objects of \mathcal{C} and the colimit-preserving preserving functors from $\hat{\square}^{o p}$ Set to \mathcal{C}.
2.9. Notation. For the sequel, the cotransverse object associated with a colimit-preserving functor $F: \hat{\square}^{o p}$ Set $\rightarrow \mathcal{C}$ is denoted by $F(\hat{\square}[*])$.
Proof. Let us denote by $\widetilde{F}=F(\widehat{\square}[*])$ for this proof only the cotransverse object of \mathcal{C} associated with a colimit-preserving functor $F: \hat{\square}^{o p}$ Set $\rightarrow \mathcal{C}$. Since F is colimitpreserving, one has the isomorphisms

$$
\widehat{\widetilde{F}}(K)=\int^{[n] \in \widehat{\square}} K_{n} \cdot F(\hat{\square}[n]) \cong F\left(\int^{[n] \in \widehat{\square}} K_{n} . \hat{\square}[n]\right) \cong F(K)
$$

[^1]and the isomorphisms
$$
\widetilde{\hat{G}}=\widehat{G}(\hat{\square}[*])=\int^{[n] \in \widehat{\square}} \hat{\square}([n], *) \cdot G([n]) \cong G([*]) .
$$

Finally, if $K: i \mapsto K^{i}$ is a small diagram of transverse sets over a small category I, one has

$$
\begin{aligned}
& \widehat{X}\left(\underset{\longrightarrow}{\lim } K^{i}\right)=\int^{[n] \in \widehat{\square}} \\
&\left(\underset{\longrightarrow}{\lim } K_{n}^{i}\right) \cdot X([n]) \\
& \cong \int^{[n] \in \widehat{\square}} \underset{\longrightarrow}{\lim }\left(K_{n}^{i} \cdot X([n])\right) \cong \underset{\longrightarrow}{\lim }\left(\int^{[n] \in \widehat{\square}} K_{n}^{i} \cdot X([n])\right)=\underset{\longrightarrow}{\lim } \widehat{X}\left(K^{i}\right),
\end{aligned}
$$

the first equality by definition of \widehat{X} and since colimits are calculated objectwise in $\hat{\square}^{o p}$ Set, the first isomorphism because of the adjunction $\mathcal{C}(S . X, Y) \cong \operatorname{Set}(S, \mathcal{C}(X, Y))$, the second isomorphism by commuting the colimits, and finally the last equality by definition of \widehat{X}.
2.10. Notation. Let $n \geqslant 1$. Let $h:[0,1]^{n} \rightarrow[0, n]$ be the continuous map defined by

$$
h\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} .
$$

Note that for all $x, y \in[0,1]^{n}, x \leqslant y$ implies $h(x) \leqslant h(y)$ and that $x \leqslant y$ and $h(x)=h(y)$ implies $x=y$.
2.11. Proposition. Let $n \geqslant 1$. Let $f:[n] \rightarrow[n]$ be a cotransverse map. Then for all $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in[n]$, one has $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=h\left(f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)\right)$.

Proof. We proceed by induction on $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. Consider the increasing sequence

$$
\epsilon_{\varnothing}<\epsilon_{\{1\}}<\epsilon_{\{1,2\}}<\cdots<\epsilon_{\{1,2, \ldots, n\}}
$$

of elements of $[n]$. The map f being cotransverse by hypothesis, one has

$$
\begin{aligned}
& \vec{d}_{1}\left(f\left(\epsilon_{\varnothing}\right), f\left(\epsilon_{\{1\}}\right)\right)=1, \\
& \vec{d}_{1}\left(f\left(\epsilon_{\{1\}}\right), f\left(\epsilon_{\{1,2\}}\right)\right)=1, \\
& \ldots \\
& \vec{d}_{1}\left(f\left(\epsilon_{\{1, \ldots, n-1\}}\right), f\left(\epsilon_{\{1, \ldots, n\}}\right)\right)=1 .
\end{aligned}
$$

Since $f:[n] \rightarrow[n]$ is strictly increasing, we obtain $f\left(\epsilon_{\varnothing}\right)=\epsilon_{\varnothing}$ and $f\left(\epsilon_{\{1, \ldots, n\}}\right)=\epsilon_{\{1, \ldots, n\}}$. We deduce that $h\left(\epsilon_{\varnothing}\right)=h f\left(\epsilon_{\varnothing}\right)$ and that $h\left(\epsilon_{\{1, \ldots, n\}}\right)=h f\left(\epsilon_{\{1, \ldots, n\}}\right)$. The formula is therefore proved for $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=0$ (and also for $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=n$). Suppose the formula proved for all $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in[n]$ such that $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \leqslant H<n$. Let $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in$ $[n]$ such that $h\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=H+1 \geqslant 1$. There exists $\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right) \in[n]$ with $h\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right)=$ H and $\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right)<\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. We deduce that $\vec{d}_{1}\left(\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right),\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)\right)=1$. The map f being cotransverse, we obtain $\vec{d}_{1}\left(f\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right), f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)\right)=1$. We obtain the equalities $h\left(f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)\right)=h\left(f\left(\epsilon_{1}^{\prime}, \ldots, \epsilon_{n}^{\prime}\right)\right)+1=H+1$, the first equality by definition of \vec{d}_{1} and the second equality by induction hypothesis.

As a corollary, we obtain the following proposition.

Figure 1. $(k \downarrow L)$ is connected
2.12. Proposition. Let $\psi:[m] \rightarrow[n]$ be a cotransverse map. Then ψ induces a map of Lawvere metric spaces from $[m]$ to $[n]$ which is quasi-isometric.

A cotransverse map is not necessarily an isometry. For example, the map $\gamma_{1}:[2] \rightarrow[2]$ defined by $\gamma_{1}\left(\epsilon_{1}, \epsilon_{2}\right)=\left(\max \left(\epsilon_{1}, \epsilon_{2}\right), \min \left(\epsilon_{1}, \epsilon_{2}\right)\right)$ is cotransverse and $\gamma_{1}(1,0)=\gamma_{1}(0,1)=$ $(1,0)$. Note that $\vec{d}_{1}((0,1),(1,0))=\infty$.
2.13. Notation. The inclusion of small categories $\square \subset \hat{\square}$ induces a forgetful functor $\widehat{\omega}: \widehat{\square}^{o p}$ Set $\rightarrow \square^{o p}$ Set which has a left adjoint $\hat{\mathcal{L}}: \square^{o p}$ Set $\rightarrow \hat{\square}^{o p}$ Set which is called the free transverse set generated by a precubical set.
2.14. Proposition. For a precubical (transverse resp.) set K, the data

$$
\left(K_{\leqslant n}\right)_{p}= \begin{cases}K_{p} & \text { if } p \leqslant n \\ \varnothing & \text { if } p>n\end{cases}
$$

assemble into a precubical (transverse resp.) set denoted by $K_{\leqslant n}$. Moreover, the functor $K \mapsto K_{\leqslant n}$ is colimit-preserving.

Proof. The first part is due to the fact that $\square([m],[n])=\hat{\square}([m],[n])=\varnothing$ when $m>n$. The second part is due to the fact that colimits of presheaves are calculated objectwise.
2.15. Notation. Let $\partial \square[n]=\square[n]_{\leqslant n-1}$ and $\partial \widehat{\square}[n]=\hat{\square}[n]_{\leqslant n-1}$ for all $n \geqslant 0$.
2.16. Proposition. For all $n \geqslant 0$, one has the isomorphism of transverse sets $\widehat{\mathcal{L}}(\square[n]) \cong$ $\hat{\square}[n]$. There is the isomorphism of transverse sets $\widehat{\mathcal{L}}(\partial \square[n]) \cong \partial \hat{\square}[n]$ for all $n \geqslant 0$.

Proof. The first statement is 14, Proposition 2.1.14]. The short argument is repeated for the ease of the reader. For every transverse set K, one has $K_{n}=(\widehat{\omega} K)_{n}$ for all $n \geqslant 0$. Since the functor $\square \subset \hat{\square}$ is the identity on objects, we obtain for all $n \geqslant 0$ the bijections

$$
\hat{\square}^{o p} \operatorname{Set}(\widehat{\mathcal{L}}(\square[n]), K) \cong \square^{o p} \operatorname{Set}(\square[n], \widehat{\omega} K)=(\widehat{\omega} K)_{n}=K_{n}=\hat{\square}^{o p} \operatorname{Set}(\widehat{\square}[n], K) .
$$

By the Yoneda lemma, one obtains the isomorphism $\hat{\mathcal{L}}(\square[n]) \cong \hat{\square}[n]$ for all $n \geqslant 0$. The second statement is stated with an incorrect argument in the proof of [14, Corollary 2.2.11]. The missing argument is explained now. Consider the small category J^{\prime} such that the objects are the coface maps $[p] \rightarrow[n] \in \square$ with $p<n$ and such that the morphisms of J^{\prime} are the commutative squares of the form

Since $\square([p],[n])=\varnothing$ for $p>n$ and since $\widehat{\mathcal{L}}: \square^{o p}$ Set $\rightarrow \hat{\square}^{o p}$ Set is colimit-preserving, we obtain the isomorphism of transverse sets

$$
\lim _{[p] \rightarrow[n] \in J^{\prime}} \hat{\square}[p] \cong \widehat{\mathcal{L}}(\partial \square[n]) .
$$

Consider the small category J such that the objects are the maps $[p] \rightarrow[n] \in \hat{\square}$ with $p<n$ and such that the morphisms are the commutative squares of the form

Since $\hat{\square}([p],[n])=\varnothing$ for $p>n$, we obtain the isomorphism of transverse sets

$$
\underset{[p] \rightarrow[n] \in J}{\lim } \hat{\square}[p] \cong \partial \widehat{\square}[n] .
$$

Consider the inclusion functor $L: J^{\prime} \rightarrow J$. It induces a map of transverse sets

$$
\widehat{\mathcal{L}}(\partial \square[n]) \longrightarrow \partial \widehat{\square}[n] .
$$

By [27, Theorem 1 p. 213], it suffices to prove that the comma category $(k \downarrow L)$ is nonempty and connected for all objects k of J to complete the proof. Let $k:[p] \rightarrow[n]$ be an object of J. We see immediately that the comma category $(k \downarrow L)$ is nonempty because it contains the commutative square

where the top map $\psi:[p] \rightarrow[p]$ is given by the unique factorization given by Proposition 2.5 of $k:[p] \rightarrow[n]$ as the composite of a map of $\hat{\square}([p],[p])$ followed by a coface map
ψ^{\prime}. Consider another object

of the comma category $(k \downarrow L)$. Consider the following diagram of $\hat{\square}$:

where the factorizations $\psi_{2} \psi^{\prime}=g^{\prime} g$ and $\psi_{1}=h^{\prime} h$ are given by the factorization of Proposition 2.5. We obtain $\left(\psi_{3} h^{\prime}\right) h=\psi_{3} \psi_{1}=\psi_{2} \psi^{\prime} \psi=g^{\prime}(g \psi)$. By uniqueness of the factorization of Proposition [2.5, we deduce that $\psi_{3} h^{\prime}=g^{\prime}$ and $h=g \psi$. We deduce the map of $(k \downarrow L)$ depicted in Figure 1. We conclude that the comma category $(k \downarrow L)$ is connected.
2.17. Remark. In fact, we could prove that the comma category $(k \downarrow L)$ has an initial object given by the factorization of k using Proposition 2.5.
2.18. Definition. A transverse set K is cellular if the canonical map $\varnothing \rightarrow K$ is a transfinite composition of pushouts of the maps $\partial \hat{\square}[n] \rightarrow \hat{\square}[n]$ for $n \geqslant 0$. Note that the map $\partial \widehat{\square}[0] \rightarrow \hat{\square}[0]$ is the map $C: \varnothing \rightarrow\{0\}$. A transverse set K is cofibrant if it is a retract of a cellular transverse set.
2.19. Proposition. Let K be a precubical set. Then the transverse set $\widehat{\mathcal{L}}(K)$ freely generated by K is cellular. In particular, for all $n \geqslant 0$, the transverse sets $\partial \hat{\square}[n]$ and $\hat{\square}[n]$ are cellular for all $n \geqslant 0$.

Proof. Let K be a precubical set. By induction on $p \geqslant 0$, we immediately see that the map $\varnothing \rightarrow K_{\leqslant p}$ is a transfinite composition of pushouts of the maps $\partial \square[n] \rightarrow \square[n]$ for $n \geqslant 0$ because $\square([n],[n])$ is a singleton for all $n \geqslant 0$. Thus the proposition is a consequence of Proposition 2.16 and of the fact that the functor $\widehat{\mathcal{L}}: \square^{o p}$ Set $\rightarrow \hat{\square}^{o p}$ Set is a left adjoint.

The justification of the terminology of cofibrant transverse set comes from the following fact. The category of transverse sets is locally presentable by [1, Corollary 1.54], being a presheaf category. Besides, the transverse sets $\partial \widehat{\square}[n]$ are cofibrant for all $n \geqslant 0$ by Proposition 2.19. In other terms, the two sets of maps $\{\partial \hat{\square}[n] \rightarrow \hat{\square}[n] \mid n \geqslant 0\}$ and

Figure 2. The cotransverse map $f:[3] \rightarrow[3]$
$\{\partial \widehat{\square}[n] \rightarrow \hat{\square}[n] \mid n \geqslant 0\} \cup\{R:\{0,1\} \rightarrow\{0\}\}$ are tractable. By [22, Theorem 1.4], the cofibrant transverse sets are therefore the cofibrant objects of the minimal model categories generated by these two sets of maps. It is not clear at this point whether $R:\{0,1\} \rightarrow\{0\}$ must be added or not to the set of generating cofibrations to have a nontrivial model category on the category of transverse sets. Besides, [22, Theorem 1.4] does not provide any geometric information. It is known by [19, Corollary 4.10] that removing $R:\{0,1\} \rightarrow\{0\}$ from the generating cofibrations of the q-model structure of flows (see Definition 6.1 and Theorem (6.3) leads to a minimal category without homotopy on the category of flows. However, the $(n+1)$-dimension globe $\operatorname{Glob}\left(\mathbf{D}^{n}\right)$ has two distinguished states whereas the $(n+1)$-cube has 2^{n+1} states. Thus, the induction which leads to 19 , Corollary 4.10] does not work in the transverse case.
2.20. Proposition. There exists a cofibrant transverse set which is not freely generated by a precubical set.

Proof. Consider the cotransverse map $f:[3] \rightarrow[3]$ of Figure 2 (it is the example 14, Figure 5]). It induces a map of transverse sets $\partial f: \partial \widehat{\square}[3] \rightarrow \partial \widehat{\square}[3]$ which is not the image by $\widehat{\mathcal{L}}$ of a map of precubical sets from $\partial \square[3]$ to $\partial \square[3]$ because e.g. the 2-dimensional subcube $(*, *, 0)$ is crushed by ∂f to the concatenation of two edges $(0,0,0) \rightarrow(0,0,1) \rightarrow$ $(0,1,1)$. Consider the pushout diagram of transverse sets

Then the transverse set X is cofibrant and it is not freely generated by a precubical set because it contains a degenerate 2 -cube.
2.21. Proposition. Let K be a transverse set. It is cellular if and only if for all $n \geqslant 0$, there is the pushout diagram of transverse sets

Proof. If K satisfies the property of the proposition, and since $K=\underset{\longrightarrow}{\lim } K_{\leqslant n}$, then K is cellular. Conversely, suppose that K is a cellular transverse set. By Proposition 2.14, the restriction functor $K \mapsto K_{\leqslant n}$ is colimit-preserving for all $n \geqslant 0$. Thus each natural $\operatorname{map} \varnothing \rightarrow K_{\leqslant n}$ is a transfinite composition of pushouts of the maps $\partial \hat{\square}[p]_{\leqslant n} \rightarrow \hat{\square}[p]_{\leqslant n}$ for $p \geqslant 0$. The point is that for all $p>n$, the map $\partial \widehat{\square}[p]_{\leqslant n} \rightarrow \hat{\square}[p]_{\leqslant n}$ is the identity of $\hat{\square}[p]_{\leqslant n}$ by definition of $\partial \widehat{\square}[p]_{\leqslant n}$. Moreover, each map of transverse sets $\hat{\square}[n+1]_{\leqslant n} \rightarrow K$ factors uniquely as a composite $\hat{\square}[n+1]_{\leqslant n} \rightarrow K_{\leqslant n} \rightarrow K$. Hence the proof is complete.

3. Cotransverse topological cube

The purpose of this section is to topologize the cotransverse maps, more precisely to extend any cotransverse map $f:[m] \rightarrow[n]$ to a map of Lawvere metric spaces $\mathrm{T}(f)$ from $\left([0,1]^{m}, \vec{d}_{1}\right)$ to $\left([0,1]^{n}, \vec{d}_{1}\right)$ which is quasi-isometric. The starting point is the following observation.
3.1. Proposition. Let $n \geqslant 1$. Let $f=\left(f_{1}, \ldots, f_{n}\right):[n] \rightarrow[n]$ be a cotransverse map. Then there is the equality

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\max _{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in f_{i}^{-1}(1)} \min \left\{x_{k} \mid \epsilon_{k}=1\right\}
$$

for all $1 \leqslant i \leqslant n$.
Proof. There are two mutually exclusive cases: $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ or $f_{i}\left(x_{1}, \ldots, x_{n}\right)=1$. Let us treat the case $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ at first. For all $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in f_{i}^{-1}(1), \min \left\{x_{k} \mid \epsilon_{k}=\right.$ $1\}=1$ implies $\left(x_{1}, \ldots, x_{n}\right) \geqslant\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, which implies $f_{i}\left(x_{1}, \ldots, x_{n}\right)=1$: contradiction. Thus $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ implies that for all $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in f_{i}^{-1}(1)$, one has $\min \left\{x_{k} \mid\right.$ $\left.\epsilon_{k}=1\right\}=0$. Assume now that $f_{i}\left(x_{1}, \ldots, x_{n}\right)=1$. Then $\left(x_{1}, \ldots, x_{n}\right) \in f_{i}^{-1}(1)$. Since $\min \left\{x_{i} \mid x_{i}=1\right\}=1$, the proof is complete.

To give the reader the intuition of Proposition 3.1, consider the cotransverse map $f:[3] \rightarrow$ [3] described in Figure 2, Let $f=\left(f_{1}, f_{2}, f_{3}\right)$. The reader must keep in mind that, for boolean values, there are the equalities

$$
\min (x, y)=x \text { and } y, \max (x, y)=x \text { or } y
$$

If $x_{1}=1$ and $x_{3}=1$, or $x_{1}=1$ and $x_{2}=1$ and $x_{3}=1$, then $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=1$. Thus

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\max \left(\min \left(x_{1}, x_{3}\right), \min \left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

If $x_{1}=1$ and $x_{2}=1$, or $x_{2}=1$ and $x_{3}=1$, or $x_{1}=1$ and $x_{2}=1$ and $x_{3}=1$, then $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=1$. Thus

$$
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\max \left(\min \left(x_{1}, x_{2}\right), \min \left(x_{2}, x_{3}\right), \min \left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

Finally, if $x_{1}=1$ and $x_{2}=1$, or $x_{1}=1$ and $x_{3}=1$, or $x_{2}=1$ and $x_{3}=1$, or $x_{1}=1$ and $x_{2}=1$ and $x_{3}=1$, then $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=1$. Thus

$$
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\max \left(\min \left(x_{1}, x_{2}\right), \min \left(x_{1}, x_{3}\right), \min \left(x_{2}, x_{3}\right), \min \left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

3.2. Definition. Let $f=\left(f_{1}, \ldots, f_{n}\right):[n] \rightarrow[n]$ be a cotransverse map. Let

$$
\mathrm{T}(f):[0,1]^{n} \rightarrow[0,1]^{n}
$$

be the set map defined by

$$
\mathrm{T}(f)\left(x_{1}, \ldots, x_{n}\right)=\left(\mathrm{T}(f)_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \mathrm{T}(f)_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

with

$$
\mathrm{T}(f)_{i}\left(x_{1}, \ldots, x_{n}\right)=\max _{\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in f_{i}^{-1}(1)} \min \left\{x_{k} \mid \epsilon_{k}=1\right\}
$$

for all $1 \leqslant i \leqslant n$.
3.3. Proposition. Let $n \geqslant 1$. For all $x \in[n] \subset[0,1]^{n}$, one has $\mathrm{T}(f)(x)=f(x)$.

Proof. It is a consequence of Proposition 3.1.
3.4. Proposition. For all cotransverse maps $f:[n] \rightarrow[n]$, the set map

$$
\mathrm{T}(f):[0,1]^{n} \longrightarrow[0,1]^{n}
$$

is continuous and strictly increasing. Moreover it satisfies the properties

$$
\forall\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}, h\left(x_{1}, \ldots, x_{n}\right)=h\left(\mathrm{~T}(f)\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Proof. By Proposition 3.3 and Proposition [2.11, the theorem holds for $\left(x_{1}, \ldots, x_{n}\right) \in$ $[n] \subset[0,1]^{n}$. From the fact that each projection map $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{k}$ from $[0,1]^{n}$ equipped with the product order to $[0,1]$ is continuous and nondecreasing, we deduce that $T(f)$ is continuous and nondecreasing. Consider a tuple $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$. There exists a permutation σ of $\{1, \ldots, n\}$ such that $x_{\sigma(1)} \geqslant \ldots \geqslant x_{\sigma(n)}$. Using Proposition 2.11] again, write

$$
\begin{aligned}
& f\left(\epsilon_{\{\sigma(1)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1)\right\}}, \\
& f\left(\epsilon_{\{\sigma(1), \sigma(2)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1), \sigma^{\prime}(2)\right\}}, \\
& \ldots \\
& f\left(\epsilon_{\{\sigma(1), \ldots, \sigma(n)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1), \ldots, \sigma^{\prime}(n)\right\}} .
\end{aligned}
$$

From the permutation σ of $\{1, \ldots, n\}$, we therefore obtain a new permutation σ^{\prime} of $\{1, \ldots, n\}$. One has $\epsilon_{\{\sigma(1)\}} \in f_{\sigma^{\prime}(1)}^{-1}(1)$. It means that $T(f)_{\sigma^{\prime}(1)}\left(x_{1}, \ldots, x_{n}\right)=x_{\sigma(1)}$ because $x_{\sigma(1)} \geqslant \ldots \geqslant x_{\sigma(n)}$. One then has $\epsilon_{\{\sigma(1), \sigma(2)\}} \in f_{\sigma^{\prime}(1)}^{-1}(1)$. It means that $T(f)_{\sigma^{\prime}(2)}\left(x_{1}, \ldots, x_{n}\right)=x_{\sigma(2)}$ because $x_{\sigma(1)} \geqslant \ldots \geqslant x_{\sigma(n)}$. By repeating a finitely number
of times the same argument, we obtain the equality $T(f)_{\sigma^{\prime}(i)}\left(x_{1}, \ldots, x_{n}\right)=x_{\sigma(i)}$ for all $1 \leqslant i \leqslant n$. It implies that $T(f)\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma \sigma^{\prime-1}(1)}, \ldots, x_{\sigma \sigma^{\prime-1}(n)}\right)$. It means that

$$
h\left(T(f)\left(x_{1}, \ldots, x_{n}\right)\right)=x_{\sigma \sigma^{\prime-1}(1)}+\cdots+x_{\sigma \sigma^{\prime \prime}(n)}=h\left(x_{1}, \ldots, x_{n}\right),
$$

the first equality by definition of h and the second equality since $\sigma \sigma^{\prime-1}$ is a permutation of $\{1, \ldots, n\}$. Let $\left(x_{1}, \ldots, x_{n}\right) \leqslant\left(y_{1}, \ldots, y_{n}\right) \in[0,1]^{n}$. We already know that $\mathrm{T}(f)\left(x_{1}, \ldots, x_{n}\right) \leqslant \mathrm{T}(f)\left(y_{1}, \ldots, y_{n}\right)$. Assume that $\mathrm{T}(f)\left(x_{1}, \ldots, x_{n}\right)=\mathrm{T}(f)\left(y_{1}, \ldots, y_{n}\right)$. From the previous calculation, we obtain

$$
h\left(\mathrm{~T}(f)\left(y_{1}, \ldots, y_{n}\right)\right)-h\left(\mathrm{~T}(f)\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)=0 .
$$

We deduce that $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$. It means that $\mathrm{T}(f):[0,1]^{n} \longrightarrow[0,1]^{n}$ is strictly increasing.
3.5. Proposition. Let $f:[n] \rightarrow[n]$ and $g:[n] \rightarrow[n]$ be two cotransverse maps. Then there is the equality

$$
\mathrm{T}(f g)=\mathrm{T}(f) \mathrm{T}(g)
$$

Proof. Consider a tuple $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$. We want to prove that

$$
\mathrm{T}(f g)\left(x_{1}, \ldots, x_{n}\right)=\mathrm{T}(f) \mathrm{T}(g)\left(x_{1}, \ldots, x_{n}\right) .
$$

Let σ be a permutation of $\{1, \ldots, n\}$ such that $x_{\sigma(1)} \geqslant \ldots \geqslant x_{\sigma(n)}$. Using Proposition 2.11, write

$$
\begin{aligned}
& g\left(\epsilon_{\{\sigma(1)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1)\right\}}, \\
& g\left(\epsilon_{\{\sigma(1), \sigma(2)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1), \sigma^{\prime}(2)\right\}}, \\
& \ldots \\
& g\left(\epsilon_{\{\sigma(1), \ldots, \sigma(n)\}}\right)=\epsilon_{\left\{\sigma^{\prime}(1), \ldots, \sigma^{\prime}(n)\right\}}
\end{aligned}
$$

for some permutation σ^{\prime} of $\{1, \ldots, n\}$. From the calculation made in the proof of Proposition 3.4, we obtain the equality

$$
\left(y_{1}, \ldots, y_{n}\right)=\mathrm{T}(g)\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma \sigma^{\prime-1}(1)}, \ldots, x_{\sigma \sigma^{\prime-1}(n)}\right)
$$

One has $y_{\sigma^{\prime}(1)} \geqslant \ldots \geqslant y_{\sigma^{\prime}(n)}$ because $y_{\sigma^{\prime}(i)}=x_{\sigma(i)}$ for all $1 \leqslant i \leqslant n$. Using Proposition [2.11] again, write

$$
\begin{aligned}
& f\left(\epsilon_{\left\{\sigma^{\prime}(1)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1)\right\}}, \\
& f\left(\epsilon_{\left\{\sigma^{\prime}(1), \sigma^{\prime}(2)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1), \sigma^{\prime \prime}(2)\right\}}, \\
& \ldots \\
& f\left(\epsilon_{\left\{\sigma^{\prime}(1), \ldots, \sigma^{\prime}(n)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1), \ldots, \sigma^{\prime \prime}(n)\right\}}
\end{aligned}
$$

for some permutation $\sigma^{\prime \prime}$ of $\{1, \ldots, n\}$. We obtain the equality

$$
\mathrm{T}(f)\left(y_{1}, \ldots, y_{n}\right)=\left(y_{\sigma^{\prime} \sigma^{\prime \prime-1}(1)}, \ldots, y_{14} y_{\sigma^{\prime} \sigma^{\prime \prime}-1}(n)\right)=\left(x_{\sigma \sigma^{\prime \prime-1}(1)}, \ldots, x_{\sigma \sigma^{\prime \prime-1}(n)}\right)
$$

the left-hand equality by the calculation made in the proof of Proposition [3.4 the righthand equality by definition of y_{i}. Since we have

$$
\begin{aligned}
& f g\left(\epsilon_{\{\sigma(1)\}}\right)=f\left(\epsilon_{\left\{\sigma^{\prime}(1)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1)\right\}}, \\
& f g\left(\epsilon_{\{\sigma(1), \sigma(2)\}}\right)=f\left(\epsilon_{\left\{\sigma^{\prime}(1), \sigma^{\prime}(2)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1), \sigma^{\prime \prime}(2)\right\}}, \\
& \ldots \\
& f g\left(\epsilon_{\{\sigma(1), \ldots, \sigma(n)\}}\right)=f\left(\epsilon_{\left\{\sigma^{\prime}(1), \ldots, \sigma^{\prime}(n)\right\}}\right)=\epsilon_{\left\{\sigma^{\prime \prime}(1), \ldots, \sigma^{\prime \prime}(n)\right\}},
\end{aligned}
$$

we obtain using the calculation made in the proof of Proposition 3.4 that

$$
\mathrm{T}(f) \mathrm{T}(g)\left(x_{1}, \ldots, x_{n}\right)=\mathrm{T}(f)\left(y_{1}, \ldots, y_{n}\right)=\mathrm{T}(f g)\left(x_{1}, \ldots, x_{n}\right) .
$$

3.6. Notation. For $\delta_{i}^{\alpha}:[n-1] \rightarrow[n] \in \square$, let

$$
\mathrm{T}\left(\delta_{i}^{\alpha}\right)=\left\{\begin{array}{l}
{[0,1]^{n-1} \rightarrow[0,1]^{n}} \\
\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \mapsto\left(\epsilon_{1}, \ldots, \epsilon_{i-1}, \alpha, \epsilon_{i}, \ldots, \epsilon_{n-1}\right)
\end{array}\right.
$$

for all $n \geqslant 1$ and $\alpha \in\{0,1\}$.
3.7. Proposition. Let $f:[n] \rightarrow[p]$ and $g:[m] \rightarrow[n]$ be two cotransverse maps with $f \in \square$ or $g \in \square$. Then there is the equality

$$
\mathrm{T}(f g)=\mathrm{T}(f) \mathrm{T}(g)
$$

Proof. It is well known if both f and g belong to \square. If only one of the two maps f or g belongs to \square, we use Definition 3.2 of $\mathrm{T}(f)$ or $\mathrm{T}(g)$ for the map not belonging to \square and we add 0 or 1 to the other coordinates, depending on the coface map.
3.8. Proposition. Let $f:[n] \rightarrow[p]$ and $g:[m] \rightarrow[n]$ be two cotransverse maps. Then there is the equality

$$
\mathrm{T}(f g)=\mathrm{T}(f) \mathrm{T}(g)
$$

Proof. Consider the commutative diagram of $\hat{\square}$ (the vertical maps are coface maps)

where the factorizations $g=\delta g^{\prime}$ and $f=\delta^{\prime} f^{\prime}$ are given by Proposition 2.5. Then there is the sequence of equalities (by repeatedly using Proposition 3.5 and Proposition 3.7)

$$
\begin{aligned}
\mathrm{T}(f g)= & \mathrm{T}\left(\delta^{\prime} f^{\prime} g^{\prime}\right)=\mathrm{T}\left(\delta^{\prime}\right) \mathrm{T}\left(f^{\prime} g^{\prime}\right)=\mathrm{T}\left(\delta^{\prime}\right) \mathrm{T}\left(f^{\prime}\right) \mathrm{T}\left(g^{\prime}\right) \\
& =\mathrm{T}\left(\delta^{\prime} f^{\prime}\right) \mathrm{T}\left(g^{\prime}\right)=\mathrm{T}(f \delta) \mathrm{T}\left(g^{\prime}\right)=\mathrm{T}(f) \mathrm{T}(\delta) \mathrm{T}\left(g^{\prime}\right)=\mathrm{T}(f) \mathrm{T}\left(\delta g^{\prime}\right)=\mathrm{T}(f) \mathrm{T}(g)
\end{aligned}
$$

3.9. Theorem. The mappings

$$
\begin{aligned}
& {[n] \mapsto[0,1]^{n} \text { for all } n \geqslant 0} \\
& f:[n] \rightarrow[n] \in \hat{\square} \mapsto \mathrm{T}(f) \text { for all } n \geqslant 1 \\
& \delta_{i}^{\alpha}:[n-1] \rightarrow[n] \mapsto \mathrm{T}\left(\delta_{i}^{\alpha}\right) \text { for all } n \geqslant 1
\end{aligned}
$$

give rise to a cotransverse topological space called the cotransverse topological cube and denoted by $|\hat{\square}[*]|_{\text {geom }}$.

Proof. The functoriality is a consequence of Proposition 3.8.
Proposition 2.8 and Theorem 3.9 lead to the following definition:
3.10. Definition. Let K be a transverse set. Let

$$
|K|_{\text {geom }}=\int^{[n] \in \widehat{\square}} K_{n} \cdot|\hat{\square}[n]|_{\text {geom }}
$$

This gives rise to a colimit-preserving functor $|-|_{\text {geom }}$: $\hat{\square}^{o p}$ Set \rightarrow Top.
A point of $|K|_{\text {geom }}$ may admit several presentations $[c ; x]=|c|_{\text {geom }}(x)$ with $c \in K$ and $x \in[0,1]^{\operatorname{dim}(c)}$. One has $|\hat{\square}[n]|_{\text {geom }} \cong[0,1]^{n}$ for all $n \geqslant 0$. It implies that for all cotransverse maps $f:[m] \rightarrow[n]$, by identifying using Yoneda with the map f : $\hat{\square}[m] \rightarrow \hat{\square}[n]$, there is the equality $|f|_{\text {geom }}=\mathrm{T}(f)$. Since all involved functors are colimit-preserving, one obtains the natural homeomorphism $|\widehat{\mathcal{L}}(K)|_{\text {geom }} \cong|K|_{\text {geom }}$ for all precubical sets K where $|K|_{\text {geom }}$ is the geometric realization of the precubical set K which is defined similarly [18, Notation 4.1]. By Proposition [2.16, we deduce the natural homeomorphism $|\partial \widehat{\square}[n]|_{\text {geom }} \cong|\partial \square[n]|_{\text {geom }}$ for all $n \geqslant 0$. The topology of $|K|_{\text {geom }}$ is described in full generality in Proposition 4.9. In the cellular case, there is a more direct proof.
3.11. Proposition. For all cellular transverse sets K, the geometric realization $|K|_{\text {geom }}$ is a $C W$-complex. In particular, the space $|K|_{\text {geom }}$ is equipped with the final topology and it is Hausdorff.

Proof. There are the homeomorphisms $|\hat{\square}[n+1]|_{\text {geom }} \cong \mathbf{D}^{n+1}$ and $|\partial \widehat{\square}[n+1]|_{\text {geom }} \cong \mathbf{S}^{n}$ for $n \geqslant 0$ by Proposition [2.16. Consider the diagram of solid arrows of topological spaces

Since the inclusions $|\partial \widehat{\square}[n+1]|_{\text {geom }} \subset|\hat{\square}[n+1]|_{\text {geom }}$ and $\mathbf{S}^{n} \subset \mathbf{D}^{n+1}$ are closed inclusions, the composite map $|\partial \widehat{\square}[n+1]|_{\text {geom }} \rightarrow \mathbf{D}^{n+1}$ induces a homeomorphism $f: \mid \partial \widehat{\square}[n+$ $\left.1\right|_{\text {geom }} \rightarrow \mathbf{S}^{n}$ such that the diagram above is commutative. The proof is complete with Proposition 2.21.
3.12. Notation. Let $|\hat{\square}[n]|_{\vec{d}_{1}}$ be the Lawvere metric space $\left([0,1]^{n}, \vec{d}_{1}\right)$ for all $n \geqslant 0$.

There is a topological version of Proposition 2.12.
3.13. Proposition. Let $n \geqslant 1$. Let $f:[n] \rightarrow[n]$ be a cotransverse map. Then $\mathrm{T}(f)$: $[0,1]^{n} \rightarrow[0,1]^{n}$ yields a map of Lawvere metric spaces from $|\hat{\square}[n]|_{\vec{d}_{1}}$ to itself which is quasi-isometric.

Proof. Let $x, y \in[0,1]^{n}$. Suppose first that $x \leqslant y$ are comparable. Then $h(x) \leqslant h(y)$. By Proposition 3.4, there is the inequality $h(\mathrm{~T}(f)(x))=h(x) \leqslant h(y)=h(\mathrm{~T}(f)(y))$. We deduce that $\vec{d}_{1}(x, y)=h(y)-h(x)=h(\mathrm{~T}(f)(y))-h(\mathrm{~T}(f)(x))=\vec{d}_{1}(\mathrm{~T}(f)(x), \mathrm{T}(f)(y))$, the first equality by definition of \vec{d}_{1}, the second equality by the previous remark, and the last equality by definition of \vec{d}_{1} and since $T(f)$ is strictly increasing. Now suppose that $x \leqslant y$ is false. It means that $\vec{d}_{1}(x, y)=\infty$. It implies that $\vec{d}_{1}(\mathrm{~T}(f)(x), \mathrm{T}(f)(y)) \leqslant$ $\vec{d}_{1}(x, y)$ whatever the value of $\vec{d}_{1}(\mathrm{~T}(f)(x), \mathrm{T}(f)(y))$ is. Thus, $\mathrm{T}(f):[0,1]^{n} \rightarrow[0,1]^{n}$ is a map of Lawvere metric spaces.
3.14. Corollary. Let $f:[m] \rightarrow[n]$ be a cotransverse map. The induced map $\mathrm{T}(f)$: $|\hat{\square}[m]|_{\vec{d}_{1}} \rightarrow|\hat{\square}[n]|_{\vec{d}_{1}}$ is a map of Lawvere metric spaces which is also quasi-isometric.

This leads to the theorem:
3.15. Theorem. The mappings

$$
\begin{aligned}
& {[n] \mapsto[0,1]^{n} \text { for all } n \geqslant 0} \\
& f:[n] \rightarrow[n] \in \hat{\square} \mapsto \mathrm{T}(f) \text { for all } n \geqslant 1 \\
& \delta_{i}^{\alpha}:[n-1] \rightarrow[n] \mapsto \mathrm{T}\left(\delta_{i}^{\alpha}\right) \text { for all } n \geqslant 1
\end{aligned}
$$

give rise to a cotransverse Lawvere metric space called the cotransverse Lawvere cube and denoted by $|\hat{\square}[*]|_{\vec{d}_{1}}$.

Proposition 2.8 and Theorem 3.15 lead to the following definition:
3.16. Definition. Let K be a transverse set. Let

$$
|K|_{\vec{d}_{1}}=\int^{[n] \in \widehat{\square}} K_{n} \cdot|\hat{\square}[n]|_{\vec{d}_{1}} .
$$

This gives rise to a colimit-preserving functor $|-|_{\vec{d}_{1}}: \hat{\square}^{o p}$ Set $\rightarrow \mathbf{L v M e t}$.

4. Natural d-path of a transverse set

It is necessary to consider the symmetric version of the notion of Lawvere metric space to obtain a convenient notion of the underlying topological space of a Lawvere metric space.
4.1. Definition. A pseudometric space (X, d) is a set X equipped with a map $d: X \times X \rightarrow$ $[0, \infty]$ called a pseudometric such that:

- $\forall x \in X, d(x, x)=0$
- $\forall(x, y) \in X \times X, d(x, y)=d(y, x)$ (symmetry axiom)
- $\forall(x, y, z) \in X \times X \times X, d(x, y) \leqslant d(x, z)+d(z, y)$.

A map $f:(X, d) \rightarrow(Y, d)$ of pseudometric spaces is a set map $f: X \rightarrow Y$ which is non-expansive, i.e. $\forall(x, y) \in X \times X, d(f(x), f(y)) \leqslant d(x, y)$.
4.2. Notation. The category of pseudometric spaces is denoted by PseudoMet.

The family of balls $B(x, \epsilon)=\{y \in X \mid d(x, y)<\epsilon\})$ of a pseudometric space (X, d) with $x \in X$ and $\epsilon>0$ generates a topology called the underlying topology of (X, d). This construction gives rise to a functor from pseudometric spaces to general topological spaces because maps of pseudometric spaces are non-expansive. It is not colimit-preserving by [20, Remark 3.30]. The category of pseudometric spaces is bicomplete, being a reflective full subcategory of the bicomplete category of Lawvere metric spaces by [20, Proposition 3.21]. Start from a Lawvere metric space (X, d). The image by the reflection is the pseudometric space (X, d^{\wedge}) defined for all $(x, y) \in X \times X$ by

$$
d^{\wedge}(x, y)=\min _{n \geqslant 0} \min _{x=x_{0}, x_{1}, \ldots, x_{n+2}=y} \sum_{i=0}^{n}\left(d\left(x_{i+1}, x_{i}\right)+d\left(x_{i+1}, x_{i+2}\right)\right)
$$

With $\left(x_{0}, x_{1}, x_{2}\right)=(x, x, y)$, we obtain $d(x, y)=d(x, x)+d(x, y) \geqslant d^{\wedge}(x, y)$ for all $(x, y) \in X \times X$.

Since there is a mistake in the statement of [20, Proposition 3.21] (the formula giving d^{\wedge} is not correct) and no proof is given, a short explanation of the adjunction is provided in this paragraph for the ease of the reader. By replacing x_{i} by x_{n+2-i} in the formula above, we deduce that $d^{\wedge}(x, y)=d^{\wedge}(y, x)$. Let us start from a map of Lawvere metric spaces $f:(X, d) \rightarrow(Y, d)$ where (Y, d) is a pseudometric space. The map $f^{\wedge}:\left(X, d^{\wedge}\right) \rightarrow(Y, d)$ has the same underlying set map (so it is unique if it exists) and we just have to verify that it is non-expansive. Since f is non-expansive, one has $d(f(x), f(y)) \leqslant d(x, y)$ for all $x, y \in X$. We obtain

$$
\begin{aligned}
& d\left(f\left(x_{0}\right), f\left(x_{n+2}\right)\right) \leqslant\left(\sum_{i=0}^{n-1} d\left(f\left(x_{i+1}\right), f\left(x_{i}\right)\right)\right)+d\left(f\left(x_{n+1}\right), f\left(x_{n}\right)\right)+d\left(f\left(x_{n+1}\right), f\left(x_{n+2}\right)\right) \\
& \quad \leqslant \sum_{i=0}^{n}\left(d\left(f\left(x_{i+1}\right), f\left(x_{i}\right)\right)+d\left(f\left(x_{i+1}\right), f\left(x_{i+2}\right)\right)\right) \leqslant \sum_{i=0}^{n}\left(d\left(x_{i+1}, x_{i}\right)+d\left(x_{i+1}, x_{i+2}\right)\right),
\end{aligned}
$$

the first inequality by the triangular inequality, the second inequality since one has $d\left(f\left(x_{i+1}\right), f\left(x_{i+2}\right)\right) \geqslant 0$ for all $i \geqslant 0$, and the last inequality because $f:(X, d) \rightarrow(Y, d)$ is non-expansive. We deduce that $f^{\wedge}:\left(X, d^{\wedge}\right) \rightarrow(Y, d)$ is non-expansive. Conversely, if $g:\left(X, d^{\wedge}\right) \rightarrow(Y, d)$ is a map of pseudometric spaces, then for all $x, y \in X$, one has $d(g(x), g(y)) \leqslant d^{\wedge}(x, y) \leqslant d(x, y)$, the left-hand inequality since g is non-expansive and the right-hand inequality by the remark above. Thus the underlying set map of g induces a map of Lawvere metric spaces from (X, d) to (Y, d).
4.3. Definition. The underlying topological space of a Lawvere metric space (X, d) is by definition the underlying topological space of the pseudometric space $\left(X, d^{\wedge}\right)$.
4.4. Notation. Let K be a transverse set. The underlying set of $|K|_{\vec{d}_{1}}$ equipped with the pseudometric $\overrightarrow{d_{1}}$ gives rise to a pseudometric space denoted by $|K|_{\vec{d}_{1}^{\wedge}}$.

This gives rise to a colimit-preserving functor

In particular, one has

$$
|K|_{\vec{d}_{\hat{1}}^{\wedge}} \cong \int_{18}^{[n] \in \widehat{\square}} K_{n} \cdot|\widehat{\square}[n]|_{\vec{d}_{\hat{1}}} .
$$

4.5. Notation. The underlying topological space of the pseudometric space $|K|_{\vec{d}_{\hat{1}}}$ is denoted by $|K|_{d_{1}}$.
4.6. Notation. Let $n \geqslant 1$. Let $\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in[0,1]^{n}$. Let

$$
d_{1}\left(\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)=\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right| .
$$

4.7. Proposition. Let $n \geqslant 1$. For all $x, y \in[0,1]^{n}$, there is the equality

$$
\overrightarrow{d_{1}^{\wedge}}(x, y)=d_{1}(x, y)
$$

Proof. By definition, $\vec{d}_{1}^{\wedge}(x, y)$ is the minimum of the sums of the form

$$
\begin{aligned}
& \left(\vec{d}_{1}\left(x_{1}, x_{0}\right)+\vec{d}_{1}\left(x_{1}, x_{2}\right)\right)+ \\
& \quad\left(\vec{d}_{1}\left(x_{2}, x_{1}\right)+\vec{d}_{1}\left(x_{2}, x_{3}\right)\right)+\cdots+\left(\vec{d}_{1}\left(x_{n+1}, x_{n}\right)+\vec{d}_{1}\left(x_{n+1}, x_{n+2}\right)\right)
\end{aligned}
$$

with $n \geqslant 0$ and $x_{0}=x$ and $x_{n+2}=y$. To have a finite sum, the only possibility is that

$$
x_{1}=x_{2}=\cdots=x_{n}=x_{n+1}=z, z \leqslant x, z \leqslant y
$$

Consequently, one has

$$
\vec{d}_{1}^{\wedge}(x, y)=\min _{\substack{z \leqslant x \\ z \leqslant y}}\left(\vec{d}_{1}(z, x)+\vec{d}_{1}(z, y)\right)=\min _{\substack{z \leqslant x \\ z \leqslant y}}\left(d_{1}(z, x)+d_{1}(z, y)\right) .
$$

From the triangular inequality, we obtain $d_{1}(x, y) \leqslant \vec{d}_{1}^{\wedge}(x, y)$. Write $x=x_{0}+x_{1}$ and $y=y_{0}+y_{1}$ with $x_{0} \leqslant y_{0}$ and $y_{1} \leqslant x_{1}$. Let $z=x_{0}+y_{1}$. Then one has

$$
\vec{d}_{1}(z, x)+\vec{d}_{1}(z, y)=\left(h\left(x_{1}\right)-h\left(y_{1}\right)\right)+\left(h\left(y_{0}\right)-h\left(x_{0}\right)\right)=d_{1}(x, y) .
$$

We deduce the inequality $\overrightarrow{d_{1}^{\wedge}}(x, y) \leqslant d_{1}(x, y)$.
4.8. Corollary. For all $n \geqslant 0$, there is the homeomorphism $|\hat{\square}[n]|_{d_{1}} \cong\left[0,1^{n}\right]$.
4.9. Proposition. Let K be a transverse set. Then we have the following properties:

- The underlying sets of the topological spaces $|K|_{g e o m}$ and $|K|_{d_{1}}$ are equal.
- The identity of the underlying set of $|K|_{\text {geom }}$ yields a continuous map from $|K|_{\text {geom }}$ to $|K|_{d_{1}}$.
- The topological spaces $|K|_{\text {geom }}$ and $|K|_{d_{1}}$ are Hausdorff.
- The topological space $|K|_{\text {geom }}$ is always equipped with the final topology.
- The topological spaces $|K|_{\text {geom }}$ and $|K|_{d_{1}}$ are Δ-generated.

Proof. Assume at first that Top is the category of Δ-generated spaces. The topology of $|K|_{\text {geom }}$ is given by the final topology on the colimit of the underlying set of the $|\hat{\square}[n]|_{\text {geom }}$, the Δ-generated spaces being finally closed in the category of general topological spaces. The forgetful functor PseudoMet \rightarrow Set from pseudometric spaces to sets has a right adjoint given by taking a set S to the pseudometric space (S, d_{0}) with $d_{0}(x, y)=0$ for all $x, y \in S$. Consequently, the forgetful functor PseudoMet \rightarrow Set is colimit-preserving. We deduce that the underlying sets of $|K|_{\text {geom }}$, of $|K|_{\vec{d}_{\hat{\wedge}}}$ and therefore of $|K|_{d_{1}}$ are equal. From Corollary 4.8, we obtain the homeomorphism $|\hat{\square}[n]|_{\text {geom }} \cong|\hat{\square}[n]|_{d_{1}}$. For each $c \in K_{n}$,
we obtain a composite continuous map

$$
|\widehat{\square}[n]|_{\text {geom }} \cong|\widehat{\square}[n]|_{d_{1}} \xrightarrow{|c|_{d_{1}}}|K|_{d_{1}}
$$

and, by the universal property of the colimit, a continuous map $|K|_{\text {geom }} \rightarrow|K|_{d_{1}}$. It is easy to see that the pseudometric of $|K|_{\vec{d}_{1}^{\wedge}}$ restricts to a metric satisfying the additional Frechet axioms on each path-connected component thanks to the homeomorphisms $|\hat{\square}[n]|_{d_{1}} \cong$ [$0,1^{n}$] for all $n \geqslant 0$. Thus, the topological space $|K|_{d_{1}}$ is Hausdorff. Since the identity maps $|K|_{\text {geom }} \rightarrow|K|_{d_{1}}$ is one-to-one, it implies that $|K|_{\text {geom }}$ is Hausdorff. The proof is therefore valid so far for Δ-Hausdorff Δ-generated spaces as well. It implies that $|K|_{\text {geom }}$ is always equipped with the final topology, whatever the choice of Top is. Let $x \in|K|_{d_{1}}$. The family of balls $\left(B(x, 1 / n)_{n \geqslant 1}\right)$ is a neighborhood basis of x. Assume at first that $x \in K_{0}$. Then for all $\left.\epsilon \in\right] 0,1[, B(x, \epsilon)$ is path-connected because each point is related to x by a continuous path. Assume now that $x \in|K|_{d_{1}} \backslash K_{0}$. From the counit map $\widehat{\mathcal{L}}(\widehat{\omega}(K)) \rightarrow K$ we deduce that there exists $n \geqslant 1$ and $c \in K_{n}$ such that $x=\left[c ;\left(t_{1}, \ldots, t_{\operatorname{dim}(c)}\right)\right]$ with $\left.\left(t_{1}, \ldots, t_{\operatorname{dim}(c)}\right) \in\right] 0,1\left[{ }^{\operatorname{dim}(c)}\right.$. Let $\epsilon=\min \left\{t_{1}, \ldots, t_{\operatorname{dim}(c)}\right\}$. One has $\epsilon \in] 0,1[$. For all $\eta \in] 0, \epsilon[$, the ball $B(x, \eta)$ is path-connected to x. We have proved that the topological space $|K|_{d_{1}}$ is first countable and locally path-connected. It is therefore Δ-generated by [6, Proposition 3.11].

In general, the canonical map $|K|_{\text {geom }} \rightarrow|K|_{d_{1}}$ of Proposition 4.9 is not a homeomorphism, in particular for transverse sets freely generated by a locally infinite precubical set by [10, Proposition 1.5.17]. The latter proposition can be invoked because the restriction of the pseudometric $\overrightarrow{d_{1}}$ to each path-connected component of the topological space $|K|_{d_{1}}$ is a metric.

Let U be a topological space. A (Moore) path of U consists of a continuous map $[0, \ell] \rightarrow$ U with $\ell>0$. Let $\gamma_{1}:\left[0, \ell_{1}\right] \rightarrow U$ and $\gamma_{2}:\left[0, \ell_{2}\right] \rightarrow U$ be two paths of a topological space U such that $\gamma_{1}\left(\ell_{1}\right)=\gamma_{2}(0)$. The Moore composition $\gamma_{1} * \gamma_{2}:\left[0, \ell_{1}+\ell_{2}\right] \rightarrow U$ is the Moore path defined by

$$
\left(\gamma_{1} * \gamma_{2}\right)(t)= \begin{cases}\gamma_{1}(t) & \text { for } t \in\left[0, \ell_{1}\right] \\ \gamma_{2}\left(t-\ell_{1}\right) & \text { for } t \in\left[\ell_{1}, \ell_{1}+\ell_{2}\right]\end{cases}
$$

The Moore composition of Moore paths is strictly associative.
Let $n \geqslant 1$. A d-path of $|\hat{\square}[n]|_{\text {geom }}=[0,1]^{n}$ is a nonconstant continuous map $\gamma:[0, \ell] \rightarrow$ $[0,1]^{n}$ with $\ell>0$ such that $\gamma(0), \gamma(\ell) \in\{0,1\}^{n}$ and such that γ is nondecreasing with respect to each axis of coordinates. Let $c \in K_{n}$ with $n \geqslant 1$ be a n-cube of a general transverse set K. A d-path of c is a composite continuous map denoted by $[c ; \gamma]:[0, \ell] \rightarrow$ $|K|_{\text {geom }}$ with $\ell>0$ such that $\gamma:[0, \ell] \rightarrow[0,1]^{n}$ is a d-path with $[c ; \gamma]=|c|_{\text {geom }} \gamma$. Let K be a general transverse set. A d-path of K is a continuous path $[0, \ell] \rightarrow|K|_{\text {geom }}$ which is the Moore composition $\left[c_{1} ; \gamma_{1}\right] * \cdots *\left[c_{n} ; \gamma_{n}\right]$ of d-paths of the cubes c_{1}, \ldots, c_{n} of K. $\gamma(0) \in K_{0}$ is called the initial state of γ and $\gamma(\ell) \in K_{0}$ is called the final state of γ. For all n-cubes c of K and for all cotransverse maps f, there is the equality $\left|f^{*}(c)\right|_{g e o m}=$ $|c f|_{\text {geom }}=|c|_{\text {geom }} \mathrm{T}(f)$ by functoriality of $|-|_{\text {geom }}: \hat{\square}^{o p}$ Set \rightarrow Top. It implies that there is the sequence of equalities $\left[f^{*}(c) ; \gamma\right]=\left|f^{*}(c)\right|_{\text {geom }} \gamma=[c ; \mathrm{T}(f) \gamma]$ on $[0, \ell]$. By definition of the coend, there is also the equality $[c ; \mathrm{T}(f) \gamma(t)]=[c f ; \gamma(t)]=\left[f^{*}(c) ; \gamma(t)\right]$ for all
$t \in[0, \ell]$. Therefore this definition makes sense by definition of the coend and because the continuous map $\mathrm{T}(f)$ is nondecreasing by Proposition 3.4.
4.10. Remark. By convention, all d-paths of a transverse set K start and end at a vertex of K.
4.11. Definition. Let $n \geqslant 1$. A natural d-path of the topological n-cube $[0,1]^{n}$ is a d-path $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right):[0, n] \rightarrow[0,1]^{n}$ such that for all $t \in[0, n]$, one has $t=\gamma_{1}(t)+\cdots+\gamma_{n}(t)$. The set of natural d-paths of $[0,1]^{n}$ is denoted by N_{n}. It is equipped with the compact-open topology.
4.12. Proposition. ([18, Proposition 4.10]) The topological space N_{n} is Δ-generated and Δ-Hausdorff for all $n \geqslant 0$.

Another way to formulate this definition is as follows:
4.13. Proposition. Equip $([0, n], \leqslant)$ with the Lawvere metric $\vec{d}_{1}:[0, n] \times[0, n] \rightarrow[0, \infty]$ defined by

$$
\vec{d}_{1}(x, y)= \begin{cases}y-x & \text { if } x \leqslant y \\ \infty & \text { if } x>y\end{cases}
$$

The latter Lawvere metric space is denoted by $\overrightarrow{[0, n]}$ in [2d, Example 3.2]. A set map $\gamma:[0, n] \rightarrow[0,1]^{n}$ is a natural d-path if and only if it is a quasi-isometry for \vec{d}_{1}.

Proof. The equality $t=\gamma_{1}(t)+\cdots+\gamma_{n}(t)$ for all $t \in[0, n]$ implies that any natural d path is a quasi-isometry for \vec{d}_{1}. Conversely, suppose that the set map $\gamma:[0, n] \rightarrow[0,1]^{n}$ is a quasi-isometry for \vec{d}_{1}. Then by Corollary 4.8, it is continuous for $[0,1]^{n}$ equipped with the standard topology. And being a quasi-isometry, it satisfies $t=\vec{d}_{1}(0, t)=$ $\vec{d}_{1}(\gamma(0), \gamma(t))=\gamma_{1}(t)+\cdots+\gamma_{n}(t)$ for all $t \in[0, n]$. Consequently, the continuous map $\gamma:[0, n] \rightarrow[0,1]^{n}$ is a natural d-path.

Using Proposition 4.13, it is now possible to generalize to transverse sets the notion of natural d-path introduced by Raussen in [29, Definition 2.14] for precubical sets as follows. Let K be a general transverse set. A natural d-path of $c \in K_{n}$ with $n \geqslant 1$ is a composite continuous map denoted by $[c ; \gamma]:[0, n] \rightarrow|K|_{\text {geom }}$ with $\ell>0$ such that $\gamma:[0, n] \rightarrow[0,1]^{n}$ is a natural d-path with $[c ; \gamma]=|c|_{\text {geom }} \gamma$. A natural d-path of K is a continuous path $[0, \ell] \rightarrow|K|_{\text {geom }}$ with $\ell>0$ which is the Moore composition $\left[c_{1} ; \gamma_{1}\right] * \cdots *\left[c_{n} ; \gamma_{n}\right]$ of natural d-paths of the cubes c_{1}, \ldots, c_{n} of $|K|_{\text {geom }} . \gamma(0) \in K_{0}$ is called the initial state of γ and $\gamma(\ell) \in K_{0}$ is called the final state of γ. This definition makes sense because the identity induces a continuous map from $|K|_{\text {geom }}$ to the underlying topological space $|K|_{d_{1}}$ of the Lawvere metric space $|K|_{\vec{d}_{1}}$ by Proposition 4.9 and because for all cotransverse maps f, the map $\mathrm{T}(f)$ is a quasi-isometry by Corollary 3.14.

Part II. Realization of transverse sets

5. The c-Reedy model structure of cotransverse objects

In this section, \mathcal{M} is a model category such that the projective model structure on $\mathcal{M}^{\widehat{\square}_{=n}}$ exists for all $n \geqslant 0$ where $\widehat{\square}_{=n}$ is the full subcategory of $\hat{\square}$ having one object $[n]$
(see Proposition 5.2). It is the case if \mathcal{M} is an accessible model category in the sense of [31, Definition 5.1] or [23, Definition 3.1.6] by [23, Theorem 3.4.1] or a cofibrantly generated model category by [24, Theorem 11.6.1].

5.1. Notation. Let

$$
\begin{aligned}
& \vec{\square}=\hat{\square} \\
& \overleftrightarrow{\square}=\overleftarrow{\square}=\coprod_{n \geqslant 0}\{f:[n] \rightarrow[n] \mid f \in \hat{\square}\}
\end{aligned}
$$

We consider the degree function $d([n])=n$ for all $n \geqslant 0$.

We want to give a necessary and sufficient condition for a cotransverse object of \mathcal{M} to be projective cofibrant in Theorem 5.12. The latter theorem is the generalization of [12, Proposition 2.3.1] from the setting of precubical sets to the one of transverse sets. The key fact used in [12] is that the small category \square is a direct Reedy category. It implies that the projective model structure on cocubical objects exists and that it coincides with the Reedy model structure for all model categories. The small category $\hat{\square}$ is not Reedy and not Reedy in Berger-Moerdijk's sense [4, Definition 1.1] or in Cisinski's sense [7, Definition 8.1.1] either. Indeed, the factorization of a map by a map of $\overleftarrow{\boxed{\square}}$ followed by a map of $\vec{\square}$ is not unique up to isomorphism. For example, the following commutative diagram of $\bar{\square}$ with $m<n$ gives rise to two non-isomorphic factorizations of $h k g$

when k is non-invertible. However the category of factorizations of a map has a final object by Proposition 5.3. In fact, the small category $\hat{\square}$ turns out to be c-Reedy in Shulman's sense [32, Definition 8.25].

Every morphism $f:[m] \rightarrow[n]$ of $\hat{\square}$ is basic in the sense of [32, Definition 6.12] since every factorization of f as a composite $[m] \rightarrow[p] \rightarrow[n]$ implies that $m \leqslant p \leqslant n$, and therefore that every factorization is not fundamental in the sense of [32, Definition 6.12]: $p<\min (m, n)=m$ is impossible indeed. Hence the following proposition:
5.2. Proposition. Let $n \geqslant 0$. The subcategory $\hat{\square}_{=n}$ of $\hat{\square}$ generated by the objects of degree n and the basic morphisms in the sense of [32, Definition 6.12] between them is the full subcategory of $\hat{\square}$ having one object $[n]$. In particular, one has

$$
\hat{\square}_{=n}([n],[n])=\hat{\square}([n],[n]) .
$$

5.3. Proposition. Let f be a map of $\hat{\square}$. Consider the category of factorizations of f : its objects are the pairs of morphisms (h, g) such that $h g=f$ with $h \in \vec{\square}$ and $g \in \overleftarrow{\square}$ and its morphisms $k:(h, g) \rightarrow\left(h^{\prime}, g^{\prime}\right)$ are morphisms k (which are called connecting morphisms)
such that there is a commutative diagram

Note that k is necessarily degree-preserving. The category of factorizations of f has a final object.

Proof. Let f be a map of $\hat{\square}$. Consider the factorization (h, g) given by Proposition 2.5, in particular, $h \in \square$. Consider another factorization $\left(h^{\prime}, g^{\prime}\right)$ of f. Consider the commutative diagram of solid arrows of $\hat{\square}$

Proposition 2.5y yields the factorization $h^{\prime}=h^{\prime \prime} k$ with $h^{\prime \prime} \in \square$ and k which are unique. We obtain $h g=h^{\prime} g^{\prime}=h^{\prime \prime} k g^{\prime}$. By uniqueness of the factorization of f given by Proposition 2.5, we obtain $h=h^{\prime \prime}$ and $g=k g^{\prime}$, and therefore $h^{\prime}=h k$. If

is another commutative diagram, then $h^{\prime}=h k=h \bar{k}$. By the uniqueness of Proposition [2.5], we deduce that $k=\bar{k}$.
5.4. Proposition. The small category $\hat{\square}$ is a c-Reedy category in the sense of [32, Definition 8.25].
Proof. One has $\overleftrightarrow{\square} \subset \vec{\square} \cap \overleftarrow{\square}$ (first axiom). Every morphism of $\overleftrightarrow{\square}$ is degree-preserving (second axiom). Every morphism of $\vec{\square} \backslash \overleftrightarrow{\square}$ strictly raises degree and every morphism of $\overleftarrow{\boxed{\square}} \backslash \overleftrightarrow{\square}=\varnothing$ strictly lowers degree (third axiom). The category of factorizations of f with connecting maps in $\overleftrightarrow{\square}$ is connected by Proposition 5.3 (fourth axiom). For every $n \geqslant 0$,
 retracts of representables because $\hat{\square}([n],[m])=\varnothing$ (fifth axiom).
5.5. Notation. Let $\hat{\square}_{<n}$ be the full category of $\hat{\square}$ containing the objects $[0], \ldots,[n-1]^{2}$. 5.6. Notation. Let $n \geqslant 0$. Following the notations of [32, page 37], let

$$
\partial_{n} \hat{\square}([p],[q])=\int^{[m] \in \hat{\square}_{<n}} \hat{\square}([m],[q]) \times \hat{\square}([p],[m])
$$

[^2]The latching and matching object functors $L_{n}, M_{n}: \mathcal{M}^{\widehat{\square}} \rightarrow \mathcal{M}^{\widehat{\square}=n}$ are given by

$$
\begin{aligned}
& \left(M_{n} A\right)_{[n]}=\int_{[m] \in \widehat{\square}} A([m])^{\partial_{n} \widehat{\square}([n],[m])} \\
& \left(L_{n} A\right)_{[n]}=\int^{[p] \in \widehat{\square}} \partial_{n} \widehat{\square}([p],[n]) \cdot A([p])
\end{aligned}
$$

We obtain:
5.7. Theorem. Suppose that the projective model structure on $\mathcal{M}^{\widehat{\square}_{=n}}$ exists for all $n \geqslant 0$. There exists a unique model structure on $\mathcal{M}^{\widehat{\square}}$ such that

- The weak equivalences are objectwise.
- A map $A \rightarrow B$ of $\mathcal{M}^{\widehat{『}}$ is a fibration (trivial fibration resp.) if for all $n \geqslant 0$, the map $A([n]) \rightarrow\left(M_{n} A\right)_{[n]} \times_{\left(M_{n} B\right)_{[n]}} B([n])$ is a fibration (trivial fibration resp.) of \mathcal{M}.
- A map $A \rightarrow B$ of $\mathcal{M}^{\widehat{\square}}$ is a cofibration (trivial cofibration resp.) if for all $n \geqslant 0$, $L_{n} B \sqcup_{L_{n} A} A \rightarrow B$ is a projective cofibration (trivial cofibration resp.) of the projective model structure of $\mathcal{M}^{\widehat{\mathrm{D}}=n}$.

This model structure is called the c-Reedy model structure of $\mathcal{M}^{\widehat{\square}}$.

Proof. By Proposition 5.4 and [32, Theorem 8.26], the small category $\hat{\square}$ is almost c-Reedy in the sense of [32, Definition 8.8]. The proof is complete thanks to [32, Theorem 8.9].
5.8. Proposition. One has

$$
\partial_{n} \hat{\square}([p],[q])= \begin{cases}\varnothing & \text { if } p>q \text { or } n \leqslant p \\ \hat{\square}([p],[q]) & \text { if } p \leqslant q \text { and } p<n\end{cases}
$$

Proof. The composition induces a set map $\hat{\square}([m],[q]) \times \hat{\square}([p],[m]) \rightarrow \hat{\square}([p],[q])$. If $p>q$, then $\hat{\square}([p],[q])=\varnothing$, which implies that $\hat{\square}([m],[q]) \times \hat{\square}([p],[m])=\varnothing$ for all $[m] \in \hat{\square}_{<n}$. If $n \leqslant p$, then $n-1<p$. It means that for all $[m] \in \hat{\square}_{n}$, one has $\hat{\square}([p],[m])=\varnothing$, which implies that $\hat{\square}([m],[q]) \times \hat{\square}([p],[m])=\varnothing$ for all $[m] \in \hat{\square}_{<n}$ as well. Assume now that $p \leqslant q$ and $p<n$. The set $\partial_{n} \widehat{\square}([p],[q])$ is the quotient of

$$
\coprod_{m<n} \hat{\square}([m],[q]) \times \hat{\square}([p],[m])
$$

by the equivalence relation generated by identifying two pairs (h, g) and $\left(h^{\prime}, g^{\prime}\right)$ such that $h g=h^{\prime} g^{\prime}$ related by a connecting map, i.e. such that there exists a commutative diagram of $\hat{\square}$ of the form

Consider such a pair (h, g). By applying Proposition [2.5 to $g:[p] \rightarrow[m]$, we obtain a commutative diagram of $\hat{\square}$ of the form

It means that in $\partial_{n} \hat{\square}([p],[q])$, every element of $\hat{\square}([m],[q]) \times \hat{\square}([p],[m])$ is equivalent to an element of $\hat{\square}([p],[q]) \times \hat{\square}([p],[p])$. Consider $(h, g) \in \hat{\square}([p],[q]) \times \hat{\square}([p],[p])$. By applying Proposition 2.5 to h, we obtain a commutative diagram of $\hat{\square}$ of the form

It means that every element of $\hat{\square}([p],[q]) \times \hat{\square}([p],[p])$ is equivalent in $\partial_{n} \hat{\square}([p],[q])$ to an element of $\square([p],[q]) \times \hat{\square}([p],[p])$. It means that $\partial_{n} \hat{\square}([p],[q])$ is the quotient of $\square([p],[q]) \times$ $\hat{\square}([p],[p])$ by the equivalence relation. If (h, g) and $\left(h^{\prime}, g^{\prime}\right)$ are two equivalent elements of $\square([p],[q]) \times \hat{\square}([p],[p])$ in $\partial_{n} \hat{\square}([p],[q])$, then it implies in particular that $h g=h^{\prime} g^{\prime}$. By the uniqueness of the factorization given by Proposition [2.5, it implies that $h=h^{\prime}$ and $g=g^{\prime}$. We obtain

$$
\partial_{n} \hat{\square}([p],[q]) \cong \square([p],[q]) \times \hat{\square}([p],[p]) \cong \hat{\square}([p],[q]),
$$

the first isomorphism since the equivalence relation on $\square([p],[q]) \times \hat{\square}([p],[p])$ restricts to the equality by the previous arguments, the second isomorphism by the uniqueness of Proposition 2.5.

Let \mathcal{M} be a bicomplete category. Let \mathcal{C} be a small category. Consider a small diagram $X: \mathcal{C} \rightarrow \mathcal{M}$ and a weight $W: \mathcal{C} \rightarrow$ Set. The weighted limit $\int_{c \in \mathcal{C}} X(c)^{W(c)}$ is a end which is characterized by the adjunction

$$
\mathcal{M}^{\mathcal{C}}(W . Y, X) \cong \mathcal{M}\left(Y, \int_{c \in \mathcal{C}} X(c)^{W(c)}\right)
$$

We obtain the following lemma.
5.9. Lemma. Let \mathcal{M} be a bicomplete category. Let \mathcal{C} be a small category. Consider a small diagram $X: \mathcal{C} \rightarrow \mathcal{M}$ and the empty weight $W: \mathcal{C} \rightarrow$ Set with $W(c)=\varnothing$ for all $c \in \mathcal{C}$. Then there is the isomorphism

$$
\int_{c \in \mathcal{C}} X(c)^{\varnothing} \cong 1 .
$$

Proof. There are the isomorphisms

$$
\mathcal{M}(Y, \mathbf{1}) \cong \mathbf{1} \cong \mathcal{M}^{\mathcal{C}}(\varnothing, X) \cong \mathcal{M}^{\mathcal{C}}(\varnothing . Y, X) \cong \mathcal{M}\left(Y, \int_{c \in \mathcal{C}} X(c)^{\varnothing}\right)
$$

for all objects Y of \mathcal{M}, the right-hand isomorphism by adjunction. The proof is complete thanks to the Yoneda lemma.

Let \mathcal{M} be a bicomplete category. For a weight $U: \mathcal{C}^{o p} \rightarrow$ Set, the weighted colimit $\int^{c \in \mathcal{C}} U(c) \cdot X(c)$ is a coend which is characterized by the adjunction

$$
\mathcal{M}^{\mathcal{C}}\left(X, Y^{U}\right) \cong \mathcal{M}\left(\int^{c \in \mathcal{C}} U(c) \cdot X(c), Y\right)
$$

We obtain the following lemma.
5.10. Lemma. Let \mathcal{M} be a bicomplete category. Let \mathcal{C} be a small category. Consider a small diagram $X: \mathcal{C} \rightarrow \mathcal{M}$ and a weight $U: \mathcal{C}^{o p} \rightarrow$ Set. Let \mathcal{D} be the full subcategory of \mathcal{C} generated by the objects c such that $U(c) \neq \varnothing$. Then there is the isomorphism

$$
\int^{c \in \mathcal{D}} U(c) \cdot X(c) \cong \int^{c \in \mathcal{C}} U(c) \cdot X(c) .
$$

Proof. By definition of the weighted colimits, there are the isomorphisms

$$
\begin{aligned}
& \mathcal{M}\left(\int^{c \in \mathcal{D}} U(c) \cdot X(c), Y\right) \cong \mathcal{M}^{\mathcal{D}}\left(X, Y^{U}\right) \\
& \mathcal{M}\left(\int^{c \in \mathcal{C}} U(c) \cdot X(c), Y\right) \cong \mathcal{M}^{\mathcal{C}}\left(X, Y^{U}\right)
\end{aligned}
$$

for all objects Y of \mathcal{M}. Let $\overline{\mathcal{D}}$ be the full subcategory of \mathcal{C} generated by the objects c such that $U(c)=\varnothing$. Let $c \in \overline{\mathcal{D}}, d \in \mathcal{D}$ and $f \in \mathcal{C}(c, d)$. Then f gives rise to a set map $U(f): U(d) \rightarrow U(c)=\varnothing$, which implies that $U(d)=\varnothing$: contradiction. It means that for all $c \in \overline{\mathcal{D}}$ and $d \in \mathcal{D}$, one has $\mathcal{C}(c, d)=\varnothing$. By restriction, a map of $\mathcal{M}^{\mathcal{C}}\left(X, Y^{U}\right)$ gives rise to a map of $\mathcal{M}^{\mathcal{D}}\left(X, Y^{U}\right)$. Conversely, start from a map of $\mathcal{M}^{\mathcal{D}}\left(X, Y^{U}\right)$. To obtain a map of $\mathcal{M}^{\mathcal{C}}\left(X, Y^{U}\right)$, it remains to treat the case

with $c \in \mathcal{C}$ and $d \in \overline{\mathcal{D}}$. In the latter case, $\left(Y^{U}\right)(d)=\mathbf{1}$, which implies the natural bijection $\mathcal{M}^{\mathcal{D}}\left(X, Y^{U}\right) \cong \mathcal{M}^{\mathcal{C}}\left(X, Y^{U}\right)$. The proof is complete thanks to the Yoneda lemma.
5.11. Proposition. For all $n \geqslant 0$, there is the isomorphism of transverse sets

$$
\partial \widehat{\square}[n] \cong \int^{[p] \in \hat{\square}_{<n}} \hat{\square}([p],[n]) . \hat{\square}[p]
$$

Proof. There are the isomorphisms of transverse sets

$$
\partial \hat{\square}[n] \cong \int^{[p] \in \widehat{\square}}(\partial \hat{\square}[n])_{p} \cdot \hat{\square}[p] \cong \int^{[p] \in \hat{\square}_{<n}}(\partial \hat{\square}[n])_{p} \cdot \hat{\square}[p] \cong \int^{[p] \in \in \hat{\square}_{<n}} \hat{\square}([p],[n]) . \hat{\square}[p],
$$

the first isomorphism by applying $K=\int^{[p] \in \widehat{\square}} K_{p}$. $\widehat{\square}[p]$ to $K=\partial \widehat{\square}[n]$, the second isomorphism since $(\partial \widehat{\square}[n])_{p}=\varnothing$ for $p \geqslant n$ and by Lemma [5.10, and the last isomorphism by definition of $\partial \widehat{\square}[n]$.
5.12. Theorem. Suppose that the projective model structure on $\mathcal{M}^{\widehat{\square}=n}$ exists for all $n \geqslant 0$. Then the projective model structure on $\mathcal{M}^{\widehat{\boxed{~}}}$ exists and coincides with the c-Reedy model structure. Let $A: \hat{\square} \rightarrow \mathcal{M}$ be a cotransverse object of \mathcal{M}. It is projective cofibrant if and only if for all $n \geqslant 0$, the map $\widehat{A}(\partial \widehat{\square}[-]) \rightarrow \widehat{A}(\widehat{\square}[-])$ is a projective cofibration of $\mathcal{M}^{\widehat{\square}_{=n}}$.

The small category \square is also a c-Reedy category since it is a Reedy category. In this case, there is the isomorphism of categories $\mathcal{M} \cong \mathcal{M}^{\square=n}$ for all $n \geqslant 0$ and we recover [12, Proposition 2.3.1] of the precubical setting.

Proof. The matching object functor $M_{n}: \mathcal{M}^{\widehat{\square}} \rightarrow \mathcal{M}^{\widehat{\square}=n}$ for all $n \geqslant 0$ can be calculated as follows. There is the sequence of isomorphisms of \mathcal{M}

$$
\left(M_{n} A\right)_{[n]} \cong \int_{[m] \in \widehat{\square}} A([m])^{\partial_{n} \widehat{\square}([n],[m])} \cong \int_{[m] \in \widehat{\square}} A([m])^{\varnothing} \cong \mathbf{1},
$$

the first isomorphism by definition of the matching object functor (Notation 5.6), the second isomorphism since $\partial_{n} \hat{\square}([n],[m])=\varnothing$ by Proposition [5.8, and the third isomorphism by Lemma 5.9. Thus, the c-Reedy model structure of Theorem 5.7 on $\mathcal{M}^{\widehat{\imath}}$ coincides with the projective model structure which therefore exists. There is the sequence of isomorphisms of \mathcal{M}

$$
\left(L_{n} A\right)_{[n]} \cong \int^{[p] \in \widehat{\square}} \partial_{n} \hat{\square}([p],[n]) \cdot A([p]) \cong \int^{[p] \in \widehat{\square}<n} \hat{\square}([p],[n]) \cdot A([p]) \cong \widehat{A}(\partial \widehat{\square}[n]),
$$

the first isomorphism by definition of the latching object functor (Notation 5.6), the second isomorphism by Lemma 5.10 and since $\partial_{n} \hat{\square}([p],[n])=\varnothing$ for $p \geqslant n$ by Proposition 5.8, and finally the third isomorphism by Proposition 5.11 and since \widehat{A} is colimit-preserving. By Theorem 5.7, the cotransverse object A is projective cofibrant if and only if for all $n \geqslant 0$, the map $L_{n} A \rightarrow A$ is a projective cofibration of the projective model structure of $\mathcal{M}^{\widehat{\square}=n}$. Since $A([n])=\widehat{A}(\widehat{\square}[n])$ by definition of \widehat{A}, the proof is complete.

6. Realizing a transverse set as a flow

6.1. Definition. [11, Definition 4.11] A flow is a small semicategory enriched over the closed monoidal category (Top, \times). The corresponding category is denoted by Flow.

A flow X consists of a topological space $\mathbb{P} X$ of execution paths, a discrete space X^{0} of states, two continuous maps s and t from $\mathbb{P} X$ to X^{0} called the source and target map respectively, and a continuous and associative map $*:\{(x, y) \in \mathbb{P} X \times \mathbb{P} X ; t(x)=$ $s(y)\} \longrightarrow \mathbb{P} X$ such that $s(x * y)=s(x)$ and $t(x * y)=t(y)$. Let $\mathbb{P}_{\alpha, \beta} X=\{x \in \mathbb{P} X \mid$ $s(x)=\alpha$ and $t(x)=\beta\}$: it is the space of execution paths from α to β, α is called the initial state and β is called the final state. Note that the composition is denoted by $x * y$, not by $y \circ x$. The category Flow is locally presentable by [15, Theorem 6.11].
6.2. Example. For a topological space Z, let $\operatorname{Glob}(Z)$ be the flow defined by

$$
\operatorname{Glob}(Z)^{0}=\{0,1\}, \mathbb{P G l o b}(Z)=\mathbb{P}_{0,1} \operatorname{Glob}(Z)=Z, s=0, t=1
$$

This flow has no composition law.
6.3. Theorem. [17, Theorem 7.4] Let $r \in\{q, m, h\}$. There exists a unique model structure on Flow such that:

- A map of flows $f: X \rightarrow Y$ is a weak equivalence if and only if $f^{0}: X^{0} \rightarrow Y^{0}$ is a bijection and for all $(\alpha, \beta) \in X^{0} \times X^{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a weak equivalence of the r-model structure of Top.
- A map of flows $f: X \rightarrow Y$ is a fibration if and only if for all $(\alpha, \beta) \in X^{0} \times X^{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a fibration of the r-model structure of Top.
This model structure is accessible and all objects are fibrant. It is called the r-model structure of Flow.

By [17, Theorem 7.7], the m-model structure is the mixing of the q-model structure and the h-model structure in the sense of [8, Theorem 2.1]. Every q-cofibration of flows is a m-cofibration and every m-cofibration of flows is a h-cofibration by [8, Proposition 3.6]. Every h-fibration of flows is a m-fibration and every m-fibration of flows is a q-fibration by [8, Theorem 2.1]. All involved model categories being accessible, the projective and injective r-model structures on $\mathbf{F l o w}^{I}$ exists for all small categories I by [23, Theorem 3.4.1].
6.4. Proposition. Let $r \in\{q, m, h\}$. Let $f: X \rightarrow Y$ be a weak equivalence of the r model structure of flows between r-cofibrant flows. Then for all $(\alpha, \beta) \in X^{0} \times X^{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a homotopy equivalence between r-cofibrant spaces. In particular, f is a weak equivalence of the h-model structure of flows.

Proof. If $r=h$, then the map $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a homotopy equivalence of spaces by definition of the weak equivalences of the h-model structure of flows. If $r=q$, then the spaces $\mathbb{P}_{\alpha, \beta} X$ and $\mathbb{P}_{f(\alpha), f(\beta)} Y$ are q-cofibrant by [16, Theorem 5.7]. Using Whitehead [24, Theorem 7.5.10], we deduce that the map $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a homotopy equivalence of spaces. It remains the case $r=m$. The spaces $P_{\alpha, \beta} X$ and $\mathbb{P}_{f(\alpha), f(\beta)} Y$ are m-cofibrant by [17, Theorem 8.7]. By [8, Corollary 3.4], we deduce that the weak homotopy equivalence $\mathbb{P}_{\alpha, \beta} X \rightarrow \mathbb{P}_{f(\alpha), f(\beta)} Y$ is a homotopy equivalence of spaces as well.
6.5. Definition. Let $r \in\{q, m, h\}$. A functor $F: \hat{\square}^{o p}$ Set \rightarrow Flow is a r-realization functor (of transverse sets) if it satisfies the following properties:

- F is colimit-preserving.
- For all $n \geqslant 0$, the map $F(\partial \widehat{\square}[n]) \rightarrow F(\hat{\square}[n])$ is a r-cofibration of Flow.
- There is an objectwise weak equivalence of cotransverse flows $F(\widehat{\square}[*]) \rightarrow\{0<1\}^{*}$ in the r-model structure of Flow.
6.6. Proposition. Let $r \in\{q, m, h\}$. Let $F: \hat{\square}^{o p}$ Set \rightarrow Flow be a r-realization functor of transverse sets. Then the composite functor $F \widehat{\mathcal{L}}: \square^{o p}$ Set \rightarrow Flow is a r-realization functor of precubical sets in the sense of [18, Definition 3.6].

Proof. A r-realization of precubical sets is a functor $G: \square^{o p}$ Set \rightarrow Flow which satisfies the following properties: 1) G is colimit-preserving; 2) For all $n \geqslant 0$, the map $G(\partial \square[n]) \rightarrow G(\square[n])$ is a r-cofibration of Flow; 3) There is an objectwise weak equivalence of cotransverse flows $G(\widehat{\square}[*]) \rightarrow\{0<1\}^{*}$ in the r-model structure of Flow. The proposition is therefore a consequence of Proposition 2.16.
6.7. Theorem. There exists a q-realization functor $|-|_{q}: \hat{\square}^{o p}$ Set \rightarrow Flow.

Proof. Let (- $)^{\text {cof }}$ be a q-cofibrant replacement functor of Flow. Let

$$
|K|_{q}=\int^{[n] \in \widehat{\square}} K_{n} \cdot\left(\{0<1\}^{n}\right)^{\operatorname{cof}}
$$

By [14, Proposition 2.2.10], there is the isomorphism $|K|_{q} \cong|\widehat{\mathcal{L}} K|_{q}$ for all precubical sets K where the left-hand term is the q-realization of the precubical set K with the same q -cofibrant replacement functor and which is defined by

$$
|K|_{q}=\int^{[n] \in \square} K_{n} \cdot\left(\{0<1\}^{n}\right)^{\operatorname{cof}}
$$

([18, Theorem 3.9]). Using Proposition [2.16, we deduce the isomorphims of flows $|\square[n]|_{q} \cong$ $|\hat{\square}[n]|_{q}$ and $|\partial \square[n]|_{q} \cong|\partial \hat{\square}[n]|_{q}$ for all $n \geqslant 0$. The proof is complete thanks to [13, Proposition 7.4].

Note that the composite functor $|\widehat{\mathcal{L}}(-)|_{q}: \square^{o p}$ Set \rightarrow Flow is the q-realization functor of precubical sets of [18, Theorem 3.9] with the same q-cofibrant replacement of flows.
6.8. Lemma. (well-known ${ }^{3}$) Let I be a small category. Let \mathcal{M} be a model category (not necessarily cofibrantly generated) such that both the projective model structure $\left(\mathcal{M}^{I}\right)_{\text {proj }}$ and the injective model structure $\left(\mathcal{M}^{I}\right)_{\text {inj }}$ exist. Then the identity of \mathcal{M} yields a left Quillen functor $\left(\mathcal{M}^{I}\right)_{\text {proj }} \rightarrow\left(\mathcal{M}^{I}\right)_{\text {inj }}$. In particular, every projective cofibration is an injective cofibration.
Proof. Let $A \rightarrow B$ be a projective cofibration of \mathcal{M}^{I}. Let $C \rightarrow D$ be a trivial fibration of \mathcal{M}. Let $i \in I$. Consider a commutative diagram of \mathcal{M} of the form

The lift ℓ exists if and only, by adjunction, the lift $\bar{\ell}$ exists in the commutative diagram of \mathcal{M}^{I}

The point is that $C^{I(-, i)} \rightarrow D^{I(-, i)}$ is a projective trivial fibration. Thus the lift $\bar{\ell}$ exists, and so does the lift ℓ. We have proved that $A \rightarrow B$ is an injective cofibration and the proof is complete.
6.9. Proposition. Let $r \in\{q, m, h\}$. Let $F: \hat{\square}^{o p}$ Set \rightarrow Flow be a r-realization functor. Then for all transverse sets K, there is a natural bijection $K_{0} \cong F(K)^{0}$. A projective r-cofibrant replacement of the cotransverse flow $F(\hat{\square}[*])$, let us denote it by $F^{c o f}(\widehat{\square}[*])$, gives rise to a r-realization functor as well.
Proof. From the objectwise weak equivalence of cotransverse flows $F(\widehat{\square}[*]) \rightarrow\{0<1\}^{*}$, we deduce the objectwise bijection of cotransverse sets $F(\widehat{\square}[*])^{0} \cong\{0,1\}^{*} \cong \hat{\square}[*]_{0}$. We

[^3]obtain the natural bijection $F(K)^{0} \cong K_{0}$ for all transverse sets K. By Theorem 5.12, the $\operatorname{map} F^{c o f}(\partial \widehat{\square}[-]) \rightarrow F^{c o f}(\widehat{\square}[-])$ is a projective r-cofibration of Flow ${ }^{\widehat{\mathrm{D}}=n}$ for all $n \geqslant 0$. By Lemma 6.8, the map $F^{c o f}(\partial \widehat{\square}[-]) \rightarrow F^{c o f}(\widehat{\square}[-])$ is an injective r-cofibration of Flow ${ }^{\widehat{\square}=n}$ for all $n \geqslant 0$. Since the composite map $F^{c o f}(\widehat{\square}[*]) \longrightarrow F(\widehat{\square}[*]) \longrightarrow\{0<1\}^{*}$ is a weak equivalence in the projective r-model structure of Flow $^{\boxed{ }}{ }^{\text {a }}$, the proof is complete.

Thanks to Proposition 6.9, the following definition makes sense.
6.10. Definition. Let $r \in\{q, m, h\}$. A cofibrant r-realization is a r-realization functor $F: \hat{\square}^{o p}$ Set \rightarrow Flow such that the cotransverse flow $F(\hat{\square}[*])$ is projective r-cofibrant. For a r-realization functor $F: \hat{\square}^{o p}$ Set \rightarrow Flow, the r-realization functor associated to the cotransverse flow $F^{c o f}(\hat{\square}[*])$ is called a cofibrant replacement of F. It is denoted by $F^{c o f}$.

The map of cotransverse sets $F^{c o f}(\hat{\square}[*]) \rightarrow F(\hat{\square}[*])$ gives rise to a natural transformation of r-realization functor $F^{c o f} \Rightarrow F$ by Proposition 2.8.
6.11. Proposition. Every (cofibrant resp.) q-realization functor is a (cofibrant resp.) m-realization functor. Every (cofibrant resp.) m-realization functor is a (cofibrant resp.) h-realization functor.

Proof. Let us prove at first the statements without the adjective "cofibrant". Every qrealization functor is a m-realization functor because every q-cofibration of flows is a m-cofibration of flows and because the weak equivalences are the same in the two model structures. Let $F: \hat{\square}^{o p}$ Set \rightarrow Flow be a m-realization functor. Then for all $n \geqslant 0$, the map of flows $F(\partial \hat{\square}[n]) \rightarrow F(\hat{\square}[n])$ is a h-cofibration. The map of flows $F(\hat{\square}[n]) \rightarrow$ $\{0<1\}^{n}$ is a weak equivalence of the h-model structure of flows by Proposition 6.4. We have proved that F is a h-realization functor. Since every m-fibration of flows is a q-fibration, every projective q-cofibration of $\mathbf{F l o w}^{\widehat{\mathrm{D}}_{=n}}$ is a projective m-cofibration of Flow ${ }^{\widehat{\mathrm{D}}=n}$. Since every h-fibration of flows is a m-fibration, every projective m-cofibration of Flow ${ }^{\widehat{\square}=n}$ is a projective h-cofibration of $\mathbf{F l o w}{ }^{\widehat{\square}=n}$. We obtain the statements with the adjective "cofibrant".
6.12. Corollary. Let $r \in\{q, m, h\}$. For all cofibrant transverse sets K and all r realization functors $F: \widehat{\square}^{o p}$ Set \rightarrow Flow, the flow $F(K)$ is r-cofibrant. In particular, the flows $F(\partial \widehat{\square}[n])$ and $F(\widehat{\square}[n])$ are r-cofibrant for all $n \geqslant 0$.

Proof. Since K is cofibrant and F colimit-preserving, the map $\varnothing \rightarrow F(K)$ is a transfinite composition of pushouts of maps of the form $F(\partial \widehat{\square}[n]) \rightarrow F(\hat{\square}[n])$ for $n \geqslant 0$. Thus, $F(K)$ is r-cofibrant. The second statement is a consequence of Proposition 2.19.
6.13. Proposition. Let $r \in\{q, m, h\}$. Let $F_{1}, F_{2}: \hat{\square}^{o p}$ Set \rightarrow Flow be two r-realization functors. Suppose that there exists a commutative diagram of cotransverse flows

Figure 3. From n to $n+1$
Then the above hypothesis yields a natural map of flows $F_{1}(K) \rightarrow F_{2}(K)$ for all transverse sets K which is, for all cofibrant transverse sets K, a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all $(\alpha, \beta) \in K_{0} \times K_{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} F_{1}(K) \rightarrow \mathbb{P}_{\alpha, \beta} F_{2}(K)$ is a homotopy equivalence between r-cofibrant topological spaces for all cofibrant transverse sets K.

Proof. By the two-out-of-three property, for all $n \geqslant 0$, the map of flows $F_{1}(\hat{\square}[n]) \rightarrow$ $F_{2}(\widehat{\square}[n])$ is a weak equivalence of the r-model structure of Flow, and moreover between r-cofibrant flows by Corollary 6.12. By Proposition 2.8, the hypotheses of the proposition yield a natural transformation $\mu: F_{1} \Rightarrow F_{2}$. Let us prove by induction on $n \geqslant 0$ that the canonical map $F_{1}\left(K_{\leqslant n}\right) \rightarrow F_{2}\left(K_{\leqslant n}\right)$ is a weak equivalence of the r -model structure of flows between r-cofibrant flows for all cellular transverse sets K. By Proposition 6.9, there are the natural bijections $F_{i}\left(K_{\leqslant 0}\right)=K_{0} \cong F_{i}(K)^{0}$ for $i=1,2$. Thus the induction hypothesis is proved for $n=0$. Let $n \geqslant 0$. Using the existence of the natural transformation $F_{1} \Rightarrow F_{2}$ and thanks to Proposition [2.21, the passage from n to $n+1$ can be depicted by the diagram of flows of Figure 3, By the induction hypothesis, and since $\hat{\square}[n+1]_{\leqslant n}$ is cellular by Proposition $\left[2.19\right.$, the maps of flows $F_{1}\left(\widehat{\square}[n+1]_{\leqslant n}\right) \rightarrow F_{2}\left(\hat{\square}[n+1]_{\leqslant n}\right)$ and $F_{1}\left(K_{\leqslant n}\right) \rightarrow F_{2}\left(K_{\leqslant n}\right)$ are weak equivalences of the r-model structure of flows between r-cofibrant flows. We have already seen above that the map of flows $F_{1}(\hat{\square}[n+1]) \rightarrow$ $F_{2}(\hat{\square}[n+1])$ is also a weak equivalence of the r-model structure of flows between rcofibrant flows. By definition of a r-realization functor, we can apply the cube lemma [24, Proposition 15.10.10] [25, Lemma 5.2.6] in the r-model structure of Flow to conclude that the map $F_{1}\left(K_{\leqslant n+1}\right) \rightarrow F_{2}\left(K_{\leqslant n+1}\right)$ is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Since the colimits $\underset{\longrightarrow}{\lim } F_{1}\left(K_{\leqslant n}\right)$ and $\underset{\longrightarrow}{\lim } F_{2}\left(K_{\leqslant n}\right)$ are colimits of towers of r-cofibrations between r-cofibrant flows, they are homotopy colimits by [24, Proposition 15.10.12]. We conclude that the map of flows $F_{1}(K) \rightarrow F_{2}(K)$ is a weak equivalence of the r-model structure of Flow between r-cofibrant flows for all cellular transverse sets K. We deduce the same assertion for all cofibrant transverse sets K. The proof is complete thanks to Proposition 6.4.

Proposition 6.13 has two corollaries.
6.14. Corollary. Let $r \in\{q, m, h\}$. Let $F: \hat{\square}^{o p}$ Set \rightarrow Flow be a r-realization functor. Then for all cofibrant transverse sets K, the map $F^{c o f}(K) \rightarrow F(K)$ is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all $(\alpha, \beta) \in$ $K_{0} \times K_{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} F^{c o f}(K) \rightarrow \mathbb{P}_{\alpha, \beta} F(K)$ is a homotopy equivalence between r-cofibrant topological spaces for all cofibrant transverse sets K.

By [3, Proposition 1.3], there exists a (non unique) functorial factorization $\varnothing \rightarrow K^{c o f} \rightarrow$ K by an element of $\operatorname{cell}(\{\partial \widehat{\square}[n] \rightarrow \hat{\square}[n] \mid n \geqslant 0\})$ followed by an element of $\mathbf{i n j}(\{\partial \widehat{\square}[n] \rightarrow$ $\hat{\square}[n] \mid n \geqslant 0\})$. The functor $(-)^{\text {cof }}: \hat{\square}^{o p}$ Set $\rightarrow \hat{\square}^{o p}$ Set is called a cofibrant replacement of K. Corollary 6.15 is a reformulation of Corollary 6.14.
6.15. Corollary. Let $r \in\{q, m, h\}$. Let $F: \hat{\square}^{o p}$ Set \rightarrow Flow be a r-realization functor. Then for all transverse sets K, the map $F^{c o f}\left(K^{c o f}\right) \rightarrow F\left(K^{c o f}\right)$ is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all $(\alpha, \beta) \in$ $K_{0} \times K_{0}$, the continuous map $\mathbb{P}_{\alpha, \beta} F^{c o f}\left(K^{c o f}\right) \rightarrow \mathbb{P}_{\alpha, \beta} F\left(K^{c o f}\right)$ is a homotopy equivalence between r-cofibrant topological spaces for all transverse sets K.
6.16. Theorem. Let $r \in\{q, m, h\}$. Consider two r-realization functors

$$
F_{1}, F_{2}: \hat{\square}^{o p} \text { Set } \longrightarrow \text { Flow. }
$$

Then there exists a cofibrant r-realization functor F_{3} and a zigzag of natural transformations

$$
F_{1} \Longleftarrow F_{3} \Longrightarrow F_{2}
$$

such that there is a commutative diagram of cotransverse flows

and such that for all cofibrant transverse sets K, the maps $F_{3}(K) \rightarrow F_{1}(K)$ and $F_{3}(K) \rightarrow$ $F_{2}(K)$ natural with respect to K are weak equivalences of the r-model structure of $\mathbf{F l o w}$ between r-cofibrant flows. Moreover, for all $(\alpha, \beta) \in K_{0} \times K_{0}$, the natural maps $\mathbb{P}_{\alpha, \beta} F_{3}(K) \xrightarrow{\simeq}$ $\mathbb{P}_{\alpha, \beta} F_{1}(K)$ and $\mathbb{P}_{\alpha, \beta} F_{3}(K) \xrightarrow{\simeq} \mathbb{P}_{\alpha, \beta} F_{2}(K)$ are homotopy equivalences between r-cofibrant topological spaces for all cofibrant transverse sets K. When e.g. F_{1} is already cofibrant as a r-realization functor, one can suppose that $F_{1}=F_{3}$.
Proof. Let $F_{3}=F_{1}^{\text {cof }}$. Consider the diagram of solid arrows of Flow ${ }^{\widehat{\square}}$

Since all spaces of execution paths of $\{0<1\}^{*}$ are discrete, the right vertical map is a trivial projective r-fibration of Flow $^{\widehat{\square}}$. Thus, there exists a map of cotransverse flows
$\mu: F_{3}(\hat{\square}[*]) \rightarrow F_{2}(\hat{\square}[*])$ making commutative the diagram above. The proof is complete thanks to Proposition 2.8 and Proposition 6.13. Assume now that F_{1} is already cofibrant. Consider the diagram of solid arrows of Flow ${ }^{\boxed{ }}$

The cotransverse flow $F_{1}(\hat{\square}[*])$ is projective r-cofibrant. The vertical map is a trivial projective r-fibration of Flow ${ }^{\boxed{\square}}$. Hence the proof is complete.

Note the difference with the precubical case of [18, Theorem 3.8]. There is, in general, in the transverse setting, no natural transformation from F_{1} to F_{2}. The point is that, in the precubical setting, the category $\square_{=n}$ (see Proposition (5.2) is the terminal category for all $n \geqslant 0$. Thus, in the precubical setting, every r-realization functor F corresponds to a projective r-cofibrant cocubical flow $F(\square[*])$. In fact there is the proposition:
6.17. Theorem. Let $r \in\{q, m, h\}$. Consider two cofibrant r-realization functors

$$
F_{1}, F_{2}: \hat{\square}^{o p} \text { Set } \longrightarrow \text { Flow. }
$$

Then there exists a natural transformation $F_{1} \Rightarrow F_{2}$ such that there is a commutative diagram of cotransverse flows

and such that for all transverse sets K (not necessarily cofibrant), the maps $F_{1}(K) \rightarrow$ $F_{2}(K)$ natural with respect to K is a weak equivalences of the r-model structure of Flow between r-cofibrant flows. Moreover, for all $(\alpha, \beta) \in K_{0} \times K_{0}$, the natural map $\mathbb{P}_{\alpha, \beta} F_{1}(K) \xrightarrow{\simeq} \mathbb{P}_{\alpha, \beta} F_{2}(K)$ is a homotopy equivalence between r-cofibrant topological spaces for all transverse sets K (not necessarily cofibrant).
Proof. The existence of the natural transformation is given by Theorem 6.16, Let K be a transverse set. Consider the comma category $\hat{\square} \downarrow K$ whose objects are the maps of transverse sets $\hat{\square}[n] \rightarrow K$ and whose maps are the commutative squares

We adapt Proposition 2.5 to the comma category $\hat{\square} \downarrow K$ as follows. Since there is the equality $\hat{\square}^{o p} \operatorname{Set}(\hat{\square}[p], \hat{\square}[q])=\hat{\square}([p],[q])$ for all $p, q \geqslant 0$ by Yoneda, a map

$$
\hat{\square}[m] \longrightarrow \underset{33}{\hat{\square}}[n] \longrightarrow K
$$

factors uniquely as a composite map

$$
\hat{\square}[m] \longrightarrow \hat{\square}[m] \longrightarrow \hat{\square}[n] \longrightarrow K
$$

such that the map $\hat{\square}[m] \rightarrow \hat{\square}[n]$ corresponds to a coface map by Yoneda. We obtain that the comma category $\hat{\square} \downarrow K$ is a c-Reedy category by mimicking the proof of Proposition 5.4. From the isomorphisms of transverse sets (transverse sets being presheaves over $\hat{\square}$)

$$
K \cong \int^{[n] \in \widehat{\square}} K_{n} \cdot \hat{\square}[n] \cong \underset{\widehat{\square}[n] \rightarrow K}{\lim _{\longrightarrow}} \hat{\square}[n],
$$

we deduce for $i=1,2$ the isomorphisms of flows

$$
F_{i}(K) \cong \int^{[n] \in \widehat{\square}} K_{n} \cdot F_{i}(\widehat{\square}[n]) \cong \underset{\widehat{\square}[n] \rightarrow K}{\lim } F_{i}(\widehat{\square}[n])
$$

since the functor F_{i} is colimit-preserving. Since F_{i} is a cofibrant r-realization by hypothesis, we deduce that the right-hand colimit is a homotopy colimit in the r-model structure of flows by adapting the proof of Theorem 5.12 to Flow ${ }^{\widehat{\square} \downarrow K}$. By the two-out-of-three property, the natural map

$$
F_{1}(\hat{\square}[n]) \longrightarrow F_{2}(\hat{\square}[n])
$$

is a weak equivalence of the r-model structure of Flow, and moreover between r-cofibrant flows by Corollary 6.12. Hence the map

$$
F_{1}(K) \longrightarrow F_{2}(K)
$$

natural with respect to K is a weak equivalences of the r-model structure of Flow between r-cofibrant flows for all transverse sets K. The proof is complete thanks to Proposition 6.4,
6.18. Question. Let $r \in\{q, m, h\}$. For all transverse sets K, there is a natural map of flows $F^{c o f}\left(K^{c o f}\right) \rightarrow F^{c o f}(K)$ for all r-realization functors $F: \hat{\square}^{o p}$ Set \rightarrow Flow. Is this natural map a weak equivalence of the r-model structure of flows?

7. Natural realization of a transverse set

We want to use the notion of natural d-path of a transverse set introduced in Section 4 to build the natural realization functor from transverse sets to flows, exactly as we proceed in [18, Section 5] for precubical sets. The definition is almost a copy-pasting. However, the verification of the functoriality is a little bit more complicated than in the precubical setting: see Proposition 7.1,

We define a flow $|\hat{\square}[n]|_{\text {nat }}$ for $n \geqslant 0$ called the natural n-cube as follows. The set of states is $\{0,1\}^{n}$. Let $n \geqslant 1$ and $\alpha, \beta \in\{0,1\}^{n}$. Recall that the topological space N_{m} of natural d-paths of $[0,1]^{m}$ for $m \geqslant 1$ is defined in Definition 4.11. Let

$$
\mathbb{P}_{\alpha, \beta}|\hat{\square}[n]|_{\text {nat }}= \begin{cases}N_{m} & \text { if } \vec{d}_{1}(\alpha, \beta)=m \geqslant 1 \text { and } \alpha<\beta \\ \varnothing & \text { if } \alpha \geqslant \beta\end{cases}
$$

The map $[0,1]^{m_{1}} \sqcup[0,1]^{m_{2}} \rightarrow[0,1]^{m_{1}+m_{2}}$ defined by taking $\left(t_{1}, \ldots, t_{m_{1}}\right)$ to $\left(t_{1}, \ldots, t_{m_{1}}, 0_{m_{2}}\right)$ and $\left(t_{1}^{\prime}, \ldots, t_{m_{2}}^{\prime}\right)$ to $\left(1_{m_{1}}, t_{1}^{\prime}, \ldots, t_{m_{2}}^{\prime}\right)$ induces a continuous map $N_{m_{1}} \times N_{m_{2}} \rightarrow N_{m_{1}+m_{2}}$ by
using the fact that the Moore composition of two natural d-paths is still a natural d-path. It yields the associative composition law of the flow $|\hat{\square}[n]|_{\text {nat }}$.
Let $f:[m] \rightarrow[n]$ be a cotransverse map. Let $\alpha, \beta \in\{0,1\}^{m}$. Assume that $k=$ $\vec{d}_{1}(\alpha, \beta) \geqslant 1$. There exists a unique coface map $\delta:[k] \rightarrow[m]$ with takes 0_{k} to α and 1_{k} to β. Consider the commutative diagram of $\hat{\square}$ where the vertical maps are coface maps

obtained by applying Proposition [2.5 to $f \delta$. Then the continuous map $\mathbb{P}_{\alpha, \beta}|\hat{\square}[m]|_{\text {nat }} \rightarrow$ $\mathbb{P}_{f(\alpha), f(\beta)}|\hat{\square}[n]|_{\text {nat }}$ induced by f is the continuous map $\mathrm{T}\left([f]_{\alpha, \beta}\right): N_{k} \rightarrow N_{k}$.
7.1. Proposition. We obtain a well-defined cotransverse flow $\mid \hat{\square}[*]_{\text {nat }}$.

Proof. Let $f:[m] \rightarrow[n]$ and $g:[n] \rightarrow[p]$ be two cotransverse maps. Let $\alpha, \beta \in\{0,1\}^{m}$. Assume that $k=\vec{d}_{1}(\alpha, \beta) \geqslant 1$. Consider the commutative diagram of $\hat{\square}$ where the vertical maps are coface maps:

Because of the uniqueness of the factorization given by Proposition 2.5, we have

$$
[g f]_{\alpha, \beta}=[g]_{f(\alpha), f(\beta)}[f]_{\alpha, \beta} .
$$

We obtain

$$
\mathrm{T}\left([g f]_{\alpha, \beta}\right)=\mathrm{T}\left([g]_{f(\alpha), f(\beta)}\right) \mathrm{T}\left([f]_{\alpha, \beta}\right)
$$

by Proposition 3.8.
Using Proposition 2.8 and Proposition [7.1, we obtain:
7.2. Definition. Let K be a transverse set. Consider the colimit-preserving functor

$$
|K|_{\text {nat }}=\int^{[n] \in \widehat{\square}} K_{n} \cdot|\widehat{\square}[n]|_{\text {nat }} .
$$

It is called the natural realization of K as a flow.
7.3. Proposition. The composite functor $|\widehat{\mathcal{L}}(-)|_{\text {nat }}: \square^{o p}$ Set \rightarrow Flow is the natural realization functor of precubical sets of [18, Definition 5.3].

Proof. One has $|\square[n]|_{\text {nat }}=|\hat{\square}[n]|_{\text {nat }}$: the natural realization of the precubical set $\square[n]$ is equal to the natural realization of the transverse set $\hat{\square}[n]$ because it is exactly the same definition. Using Proposition [2.16, we deduce for all $n \geqslant 0$ the natural isomorphism $|\square[n]|_{\text {nat }} \cong|\widehat{\mathcal{L}}(\square[n])|_{\text {nat }}$. Since all involved functors are colimit-preserving, we obtain for all precubical sets K the isomorphism of flows $|K|_{\text {nat }} \cong|\widehat{\mathcal{L}}(K)|_{\text {nat }}$.

The following theorem concludes the paper.
7.4. Theorem. The natural realization functor $|-|_{\text {nat }}$ from transverse sets to flow defined in Definition 7.2 is a m-realization functor. Let $|-|_{q}: \hat{\square}^{o p}$ Set \rightarrow Flow be a q-realization functor. There exists a m-realization functor $F: \hat{\square}^{o p}$ Set \rightarrow Flow and two natural transformations inducing bijections on the sets of states
such that for all cofibrant transverse sets K and all $(\alpha, \beta) \in K_{0} \times K_{0}$, there is the zigzag of natural homotopy equivalences between m-cofibrant topological spaces

$$
\mathbb{P}_{\alpha, \beta}|K|_{q} \simeq \mathbb{P}_{\alpha, \beta} F(K) \xrightarrow{\simeq} \mathbb{P}_{\alpha, \beta}|K|_{\text {nat }} .
$$

If $|-|_{q}$ is cofibrant as a q-realization functor, then one can suppose that $F=|-|_{q}$.
Proof. Using Proposition 7.3 and Proposition [2.16, we obtain the isomorphism of flows $|\partial \square[n]|_{\text {nat }} \cong|\partial \widehat{\square}[n]|_{\text {nat }}$ for all $n \geqslant 0$. Thus the natural realization functor from transverse sets to flow is a m-realization functor because the natural realization functor of precubical sets as a flow is a m-realization functor by [18, Theorem 5.9]. Every q-realization functor is a m-realization functor by Proposition 6.11. The proof is complete thanks to Theorem 6.16.

References

[1] J. Adámek and J. Rosický. Locally presentable and accessible categories. Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/cbo9780511600579.004.
[2] T. Barthel and E. Riehl. On the construction of functorial factorizations for model categories. Algebraic \& Geometric Topology, 13(2):1089-1124, 2013. https://doi.org/10.2140/agt.2013.13.1089.
[3] T. Beke. Sheafifiable homotopy model categories. Mathematical Proceedings of the Cambridge Philosophical Society, 129(3):447-475, 2000. https://doi.org/10.1017/S0305004100004722.
[4] C. Berger and I. Moerdijk. On an extension of the notion of reedy category. Mathematische Zeitschrift, 269(3-4):977-1004, September 2010. https://doi.org/10.1007/s00209-010-0770-x.
[5] R. Brown and P. J. Higgins. On the algebra of cubes. Journal of Pure and Applied Algebra, 21(3):233-260, 1981. https://doi.org/10.1016/0022-4049(81)90018-9.
[6] D. Christensen, G. Sinnamon, and E. Wu. The D-topology for diffeological spaces. Pacific Journal of Mathematics, 272(1):87-110, 2014. https://doi.org/10.2140/pjm.2014.272.87.
[7] D-C. Cisinski. Les préfaisceaux comme modèles des types d'homotopie, volume 308 of Astérisque. Paris: Société Mathématique de France, 2006.
[8] M. Cole. Mixing model structures. Topology and its Applications, 153(7):1016-1032, 2006. https://doi.org/10.1016/j.topol.2005.02.004.
[9] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raussen. Directed algebraic topology and concurrency. With a foreword by Maurice Herlihy
and a preface by Samuel Mimram. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-15398-8.
[10] R. Fritsch and R. A. Piccinini. Cellular structures in topology, volume 19 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/cbo9780511983948.
[11] P. Gaucher. A model category for the homotopy theory of concurrency. Homology, Homotopy and Applications, 5(1):p.549-599, 2003. https://doi.org/10.4310/hha.2003.v5.n1.a20.
[12] P. Gaucher. Globular realization and cubical underlying homotopy type of time flow of process algebra. The New York Journal of Mathematics, 14:101-137, 2008.
[13] P. Gaucher. Towards a homotopy theory of process algebra. Homology, Homotopy and Applications, 10(1):353-388, 2008. https://doi.org/10.4310/HHA.2008.v10.n1.a16.
[14] P. Gaucher. Combinatorics of labelling in higher-dimensional automata. Theoretical Computer Science, 411(11-13):1452-1483, March 2010. https://doi.org/10.1016/j.tcs.2009.11.013.
[15] P. Gaucher. Homotopy theory of Moore flows (I). Compositionality, 3(3), 2021. https://doi.org/10.32408/compositionality-3-3.
[16] P. Gaucher. Left properness of flows. Theory and Applications of Categories, 37(19):562-612, 2021.
[17] P. Gaucher. Six model categories for directed homotopy. Categories and General Algebraic Structures with Applications, 15(1):145-181, 2021. https://doi.org/10.52547/cgasa.15.1.145.
[18] P. Gaucher. Comparing cubical and globular directed paths, 2022. https://doi.org/10.48550/arxiv.2207.01378.
[19] P. Gaucher. Comparing the non-unital and unital settings for directed homotopy, 2022. https://doi.org/10.48550/arXiv.2207.01371.
[20] E. Goubault and S. Mimram. Directed homotopy in non-positively curved spaces. Log. Methods Comput. Sci., 16(3):55, 2020. Id/No 4. https://doi.org/10.23638/LMCS-16(3:4)2020.
[21] M. Grandis and L. Mauri. Cubical sets and their site. Theory and Applications of Categories, 11(8):185-211, 2003.
[22] S. Henry. Minimal model structures. 2020. https://arxiv.org/abs/2011.13408.
[23] K. Hess, M. Kȩdziorek, E. Riehl, and B. Shipley. A necessary and sufficient condition for induced model structures. Journal of Topology, 10(2):324-369, 2017. https://doi.org/10.1112/topo.12011.
[24] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003. https://doi.org/10.1090/surv/099.
[25] M. Hovey. Model categories. American Mathematical Society, Providence, RI, 1999. https://doi.org/10.1090/surv/063.
[26] F. W. Lawvere. Metric spaces, generalized logic, and closed categories. Reprints in Theory and Applications of Categories, 2002(1):1-37, 2002.
[27] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, New York, second edition, 1998. $\frac{\text { https: } / / \mathrm{doi} . \mathrm{org} / 10.1007 / 978-1-4757-4721-8}{37}$.
[28] J. P. May and J. Sigurdsson. Parametrized homotopy theory, volume 132 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. https://doi.org/10.1090/surv/132.
[29] M. Raussen. Trace spaces in a pre-cubical complex. Topology and its Applications, 156(9):1718-1728, 2009. https://doi.org/10.1016/j.topol.2009.02.003.
[30] J. Rosický. On combinatorial model categories. Applied Categorical Structures, 17(3):303-316, 2009. https://doi.org/10.1007/s10485-008-9171-2.
[31] J. Rosický. Accessible model categories. Appl. Categ. Struct., 25(2):187-196, 2017. https://doi.org/10.1007/s10485-015-9419-6.
[32] M. Shulman. Reedy categories and their generalizations, 2015. https://doi.org/10.48550/arXiv.1507.01065.

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
URL: http://www.irif.fr/~gaucher

[^0]: 2020 Mathematics Subject Classification. 55U35,68Q85.
 Key words and phrases. directed path, precubical set, directed homotopy, pseudometric space, Lawvere metric space, generalized Reedy category, accessible model category, projective model category.

[^1]: $\overline{{ }^{1} \text { Unlike in [14] }}$, the words symmetric and precubical are omitted.

[^2]: $\overline{{ }^{2}}$ This category should be denoted by $\widehat{\square}_{n}$ with the notation of 32] ; I find this notation a bit confusing.

[^3]: ${ }^{3}$ I am unable to find a textbook expounding this elementary result.

