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Transverse (symmetric precubical) sets were introduced to make the construction of the parallel product with synchronization for process algebras functorial. It is proved that one can do directed homotopy on transverse sets in the following sense. A q-realization functor from transverse sets to flows is introduced using a q-cofibrant replacement functor of flows. By topologizing the cotransverse maps, the cotransverse topological cube is constructed. It can be regarded both as a cotransverse topological space and as a cotransverse Lawvere metric space. A natural realization functor from transverse sets to flows is introduced using Raussen's notion of natural d-path extended to transverse sets thanks to their structure of Lawvere metric space. It is proved that these two realization functors are homotopy equivalent on cofibrant transverse sets by using the fact that the small category defining transverse sets is c-Reedy in Shulman's sense. This generalizes to transverse sets results previously obtained for precubical sets. 2020

Introduction

Presentation. Precubical sets are an important combinatorial model for directed homotopy [START_REF] Fajstrup | Directed algebraic topology and concurrency[END_REF]. The n-cube represents the concurrent execution of n actions. It has been known for a long time that the usual degeneracy maps used in non-directed homotopy theory are not convenient for directed homotopy. The purpose of this paper is to introduce a convenient notion of degeneracy map for doing directed homotopy.

This paper is the second paper about transverse (symmetric precubical) sets. This notion is introduced in [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF] to make the construction of the parallel product with synchronization of process algebras functorial. It is proved in [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF]Theorem 3.1.15] that it is the only solution to achieve such a goal. A transverse symmetric precubical set is a presheaf on the category generated by the posets [n] = {0 < 1} n for n 0 and by all cotransverse maps. The latter are the strictly increasing maps preserving adjacency (Definition 2.3). Note that to avoid cumbersome and inconsistent terminology, the words adjacency-preserving map and transverse symmetric precubical set of [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF] are replaced in this paper by cotransverse map and transverse set respectively.

All coface maps and all symmetry maps are cotransverse. The latter cannot be regarded as degeneracy maps. However, a map like γ 1 : [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF] → [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF] defined by γ 1 (ǫ 1 , ǫ 2 ) = (max(ǫ 1 , ǫ 2 ), min(ǫ 1 , ǫ 2 )) is also cotransverse. Since γ 1 (1, 0) = γ 1 (0, 1) = (1, 0), the map γ 1 adds a degenerate 2-cube by crushing the 2-cube transversally to the direction of time which goes from (0, 0) to [START_REF] Adámek | Locally presentable and accessible categories[END_REF][START_REF] Adámek | Locally presentable and accessible categories[END_REF]. The transverse degeneracy maps are exactly the cotransverse maps from [n] to itself for n 2 which are not one-to-one. All examples coming from computer science are transverse sets freely generated by precubical sets, and even most of them are freely generated by non-positively curved precubical sets [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Proposition 1.29]. The interest of transverse sets is to provide a setting for having degeneracy maps in directed homotopy. It does not provide new examples for computer science: there does not seem to be any interpretation in computer science of a degenerate cube like the one given by γ 1 .

The first goal of this paper is to prove that the notion of transverse set is a convenient framework for Raussen's notion of natural d-path. After translating the cotransverse maps into continuous maps thanks to a max-min formula, we obtain the cotransverse topological cube which is a cotransverse object both in the category of topological spaces and in the category of Lawvere metric spaces. The point is that the cotransverse maps are quasi-isometric: they preserve finite distances indeed. It implies that the topological version of the cotransverse maps takes natural d-paths of the topological cube to natural d-paths. It enables us to define a natural d-path between two vertices of a transverse set K as a quasi-isometry from --→ [0, n] for some integer n 1 to the realization |K| - In [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF], two realization functors from precubical sets to flows, a q-realization functor using a q-cofibrant replacement functor of the q-model structure of flows and the natural realization functor using Raussen's notion of natural d-path, are compared and are proved to be homotopy equivalent. The second goal of this paper is to generalize these results to transverse sets. The small category is not Reedy. It is not Reedy in Berger-Moerdijk's sense [START_REF] Berger | On an extension of the notion of reedy category[END_REF]Definition 1.1] or in Cisinski's sense [START_REF] Cisinski | Les préfaisceaux comme modèles des types d'homotopie[END_REF]Definition 8.1.1] either. However, it is c-Reedy in Shulman's sense [START_REF] Shulman | Reedy categories and their generalizations[END_REF]Definition 8.25]. It is the key point to compare a q-realization and the natural realization of a transverse set as a flow. The difference with the setting of precubical sets studied in [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF] is that there is in general only a zigzag of natural transformations between the two realization functors and that the second part of the main theorem holds only for cofibrant transverse sets in the sense of Definition 2.18. The following theorem summarizes the results of Part II:

Theorem. (Theorem 6.7, Proposition 7.3,Theorem 7.4) The natural realization functor | -| nat from transverse sets to flows defined in Definition 7.2 is a m-realization functor which extends the natural realization of precubical sets. Let |-| q be a q-realization functor of transverse sets. There exists a m-realization functor F : op Set → Flow and two natural transformations inducing bijections on the sets of states

| -| q ⇐= F (-) =⇒ | -| nat
such that for all cofibrant transverse sets K, and in particular for all transverse sets freely generated by a precubical set, and all (α, β) ∈ K 0 × K 0 , there is the zigzag of natural homotopy equivalences between m-cofibrant topological spaces

P α,β |K| q P α,β F (K) ≃ o o ≃ / / P α,β |K| nat .
If | -| q is cofibrant as a q-realization functor, then one can suppose that F = | -| q .

By Theorem 6.17, the zigzag of homotopy equivalences on the spaces of execution paths would hold for non-cofibrant transverse sets by considering a cofibrant q-realization functor in the sense of Definition 6.10 if the natural realization functor was cofibrant as well. It is unlikely that it is true but we cannot prove it.

Subsequent papers will study directed homotopy on transverse sets and will show how it is possible to extend most of the results proved for precubical sets.

Outline of the paper. Part I studies transverse sets from a metric point of view. Section 1 recalls some basic facts about Lawvere metric spaces. The Lawvere metric -→ d 1 defined in Definition 1.4 plays an important role in many places of the paper. Section 2 recalls some basic facts about precubical sets and transverse (symmetric precubical) sets and the relations between one another. It also expounds in Proposition 2.16 a missing argument in the proof of [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF]Corollary 2.2.11]. Finally, the section ends by introducing the notion of cofibrant transverse set in Definition 2.18 and by giving the basic properties. This notion has no analogue for precubical sets because, in some sense, all precubical sets are cofibrant. Section 3 starts from the observation made in Proposition 3.1 to topologize the cotransverse maps and proves some useful properties about them. It culminates with Theorem 3.9 which expounds the cotransverse topological cube and Theorem 3.15 which expounds the cotransverse Lawvere cube. Section 4 is devoted to define the notion of natural d-path of a transverse set. It requires to recall what is the underlying topological space of a Lawvere metric space and to make some calculations about the cubes and more generally about the transverse sets. It is proved in Proposition 4.13 that natural d-paths of a topological cube are quasi-isometry for the Lawvere metric -→ d 1 . It enables us to define the natural d-paths of a transverse set as being locally, on each cube, a quasi-isometry. Part II studies realization functors of transverse sets. Section 5 proves that the category of cotransverse objects of a model category satisfying some mild conditions has a structure of a c-Reedy model category and that it coincides with the projective model structure. It enables us to give a necessary and sufficient condition for a cotransverse object to be projective cofibrant in Theorem 5.12. The latter condition is used in Proposition 6.9 to prove that the projective r-cofibrant replacement of the cotransverse flow associated with a r-realization functor gives rise to a r-realization functor. It is the key fact to prove Theorem 6.16 and Theorem 7.4. Section 6 defines the notions of (cofibrant or not) q-realization, m-realization and h-realization of a transverse set as a flow and explains how to compare them in Theorem 6.16 in the non-cofibrant case and in Theorem 6.17 in the cofibrant case. Theorem 6.7 provides an example of a q-realization functor from transverse sets to flows. Section 7 concludes this paper by defining the natural realization of a transverse set in Definition 7.2 and by comparing it in Theorem 7.4 with a q-realization functor.

Prerequisites and notations. All necessary reminders are made throughout the paper. The reading of [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF] is not required to understand this paper. We refer to [START_REF] Adámek | Locally presentable and accessible categories[END_REF] for locally presentable categories, to [START_REF] Rosický | On combinatorial model categories[END_REF] for combinatorial model categories. We refer to [START_REF] Hovey | Model categories[END_REF] and to [START_REF] Hirschhorn | Model categories and their localizations[END_REF] for more general model categories. We work with the category Top of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces (cf. [16, Section 2 and Appendix B]). The category Top is equipped with its q-model structure (we use the terminology of [START_REF] May | Parametrized homotopy theory[END_REF]). The m-model structure [START_REF] Cole | Mixing model structures[END_REF] and the h-model structure [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF] of Top are also used in various places of the paper. The set of maps from X to Y of a category C is denoted by C(X, Y ). ∅ denotes the initial object and 1 the final object of a category. Set is the category of sets with all set maps. C I is the category of functor from a small category I to a category C together with the natural transformations. ∼ = means isomorphism, ≃ means weak equivalence or homotopy equivalence, depending on the context. For an object X of a category C and a set S, S.X denotes S X and X S denotes S X. The notation f g means that g satisfies the right lifting property (RLP) with respect to f ; Since there are several variants of the notion of metric space in the mathematical literature, the one which is used in this paper is recalled. The symmetric version will have to be recalled in Section 4.

C = {g, ∀f ∈ C, g f }; C = inj(C) = {g, ∀f ∈ C, f g}; cof (C) = (C ); cell(C)
1.1. Definition. [START_REF] Lawvere | Metric spaces, generalized logic, and closed categories[END_REF] A Lawvere metric space (X, d) is a set X equipped with a map d : X × X → [0, ∞] called a (Lawvere) metric such that:

• ∀x ∈ X, d(x, x) = 0 • ∀(x, y, z) ∈ X × X × X, d(x, y) d(x, z) + d(z, y). A map f : (X, d) → (Y, d) of Lawvere metric spaces is a set map f : X → Y which is non-expansive, i.e. ∀(x, y) ∈ X × X, d(f (x), f (y)) d(x, y). A non-expansive map f : (X, d) → (Y, d) is quasi-isometric if ∀(x, y) ∈ X × X, d(x, y) < ∞ ⇒ d(f (x), f (y)) = d(x, y).
1.2. Notation. The category of Lawvere metric spaces is denoted by LvMet.

The category of Lawvere metric spaces is bicomplete since it is the category of small categories enriched over ([0, ∞], , +, 0) [START_REF] Lawvere | Metric spaces, generalized logic, and closed categories[END_REF].

1.3. Notation. Let [0] = {()} and [n] = {0, 1} n for n 1.
By convention, one has {0, 1} 0 = [0] = {()}. In the sequel, for all n 1, both the sets [n] and [0, 1] n are equipped with the product order. By convention, [0, 1] 0 is a singleton. 

1.4. Definition. Let x = (x 1 , . . . , x n ) and x ′ = (x ′ 1 , . . . , x ′ n ) be two elements of [0, 1] n with n 1. Let -→ d 1 : [0, 1] n × [0, 1] n → [0, ∞] be the set map defined by -→ d 1 (x, x ′ ) =        n i=1 |x i -x ′ i | if x x ′ ∞ otherwise. For n = 1, it is --→ [0, 1] of [20, Example 3.2]. 1.5. Proposition. Let n 0. The set map -→ d 1 : [0, 1] n × [0, 1] n → [0, ∞] is a Lawvere metric. It restricts to a Lawvere metric on {0, 1} n . Proof. Let x, y, z ∈ [0, 1] n . If -→ d 1 (x, z) + -→ d 1 (z, y) is finite, then x z y, which implies that -→ d 1 (x, y) is finite and that -→ d 1 (x, y) = -→ d 1 (x, z) + -→ d 1 (z, y). If -→ d 1 (x, z) + -→ d 1 (z, y) is infinite, then the inequality -→ d 1 (x, y) -→ d 1 (x, z) + -→ d 1 (z,
ǫ i = 0 if i / ∈ A and ǫ i = 1 of i ∈ A. Let 0 n = ǫ ∅ and 1 n = ǫ {1,...,n} . Let δ α i : [n -1] → [n] be the coface map defined for 1 i n and α ∈ {0, 1} by δ α i (ǫ 1 , . . . , ǫ n-1 ) = (ǫ 1 , . . . , ǫ i-1 , α, ǫ i , . . . , ǫ n-1 )
. The small category is by definition the subcategory of the category of posets with the set of objects {[n], n 0} and generated by the morphisms δ α i . The maps of are called the cocubical maps.

2.2. Definition. [START_REF] Brown | On the algebra of cubes[END_REF] The category of presheaves over , denoted by op Set, is called the category of precubical sets. Let [n] := (-, [n]). For K ∈ op Set, denote by

K n = K([n]) the set of n-cubes of K. For c ∈ K n , let n = dim(c). Let f : [m] → [n] be a cocubical map. It gives rise to a set map denote by f * : K n → K m . An element of K 0 is called a vertex of K.
The following definition is equivalent to [14, Definition 2.1.5].

Definition. A set map

f : [m] → [n] is cotransverse if it is strictly increasing and if ∀x, y ∈ [m], -→ d 1 (x, y) = 1 implies -→ d 1 (f (x), f (y)) = 1.
The adjective adjacency-preserving is used in [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF] instead. The word cotransverse is preferred because it is consistent with the terminology of transverse (symmetric precubical) sets 1 .

By [14, Proposition 2.1.6], for any n 1, the coface map δ α i : [n -1] → [n] is cotransverse and any strictly increasing map from [n] to itself is cotransverse as well. Let σ i : [n] → [n] be the set map defined for 1 i n -1 and n 2 by σ i (ǫ 1 , . . . , ǫ n ) = (ǫ 1 , . . . , ǫ i-1 , ǫ i+1 , ǫ i , ǫ i+2 , . . . , ǫ n ). These maps are called the symmetry maps [START_REF] Grandis | Cubical sets and their site[END_REF]. The symmetry maps are clearly cotransverse.

2.4. Notation. Let be the small subcategory of the category of posets generated by the cotransverse maps.

The following proposition is crucial in many places of this paper. By a cardinality argument, if ψ : [m] → [m] is one-to-one, then it is bijective and therefore it is a symmetry map. Thus the one-to-one cotransverse maps are composites of coface maps and symmetry maps in a unique way.

2.6. Definition. [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF]Definition 2.1.13] The category of presheaves over , denoted by op Set, is called the category of transverse sets.

Let [n] := (-, [n]). For K ∈ op Set, denote by K n = K([n]) the set of n-cubes of K. For c ∈ K n , let n = dim(c). Let f : [m] → [n
] be a cotransverse map. It gives rise to a set map denote by f * : K n → K m . An element of K 0 is called a vertex of K.

Definition. Let C be a category. A cotransverse object of C is a functor → C.

There is the elementary proposition: 2.8. Proposition. Let C be a cocomplete category. Let X :

→ C be a cotransverse object of C. Let

X(K) = [n]∈ K n .X([n])
The mapping X → X induces an equivalence of categories between the category of cotransverse objects of C and the colimit-preserving preserving functors from op Set to C. 2.9. Notation. For the sequel, the cotransverse object associated with a colimit-preserving functor F : op Set → C is denoted by F ( [ * ]).

Proof. Let us denote by F = F ( [ * ]) for this proof only the cotransverse object of C associated with a colimit-preserving functor F : op Set → C. Since F is colimitpreserving, one has the isomorphisms

F (K) = [n]∈ K n .F ( [n]) ∼ = F [n]∈
and the isomorphisms

G = G( [ * ]) = [n]∈ ([n], * ).G([n]) ∼ = G([ * ]).
Finally, if K : i → K i is a small diagram of transverse sets over a small category I, one has

X(lim -→ K i ) = [n]∈ (lim -→ K i n ).X([n]) ∼ = [n]∈ lim -→ (K i n .X([n])) ∼ = lim -→ [n]∈ K i n .X([n]) = lim -→ X(K i ),
the first equality by definition of X and since colimits are calculated objectwise in op Set, the first isomorphism because of the adjunction C(S.X, Y ) ∼ = Set(S, C(X, Y )), the second isomorphism by commuting the colimits, and finally the last equality by definition of X.

2.10. Notation. Let n 1. Let h : [0, 1] n → [0, n] be the continuous map defined by

h(x 1 , . . . , x n ) = n i=1 x i .
Note that for all x, y ∈ [0, 1] n , x y implies h(x) h(y) and that x y and h(x) = h(y) implies x = y.

2.11. Proposition. Let n 1. Let f : [n] → [n] be a cotransverse map. Then for all (ǫ 1 , . . . , ǫ n ) ∈ [n], one has h(ǫ 1 , . . . , ǫ n ) = h(f (ǫ 1 , . . . , ǫ n )).
Proof. We proceed by induction on h(ǫ 1 , . . . , ǫ n ). Consider the increasing sequence

ǫ ∅ < ǫ {1} < ǫ {1,2} < • • • < ǫ {1,2,...,n}
of elements of [n]. The map f being cotransverse by hypothesis, one has

-→ d 1 f (ǫ ∅ ), f (ǫ {1} ) = 1, -→ d 1 f (ǫ {1} ), f (ǫ {1,2} ) = 1, . . . -→ d 1 f (ǫ {1,...,n-1} ), f (ǫ {1,...,n} ) = 1. Since f : [n] → [n] is strictly increasing, we obtain f (ǫ ∅ ) = ǫ ∅ and f (ǫ {1,...,n} ) = ǫ {1,...,n} .
We deduce that h(ǫ ∅ ) = hf (ǫ ∅ ) and that h(ǫ {1,...,n} ) = hf (ǫ {1,...,n} ). The formula is therefore proved for h(ǫ 1 , . . . , ǫ n ) = 0 (and also for h(ǫ 1 , . . . , ǫ n ) = n). Suppose the formula proved for all (ǫ 1 , . . . ,

ǫ n ) ∈ [n] such that h(ǫ 1 , . . . , ǫ n ) H < n. Let (ǫ 1 , . . . , ǫ n ) ∈ [n] such that h(ǫ 1 , . . . , ǫ n ) = H +1 1. There exists (ǫ ′ 1 , . . . , ǫ ′ n ) ∈ [n] with h(ǫ ′ 1 , . . . , ǫ ′ n ) = H and (ǫ ′ 1 , . . . , ǫ ′ n ) < (ǫ 1 , . . . , ǫ n ). We deduce that -→ d 1 ((ǫ ′ 1 , . . . , ǫ ′ n ), (ǫ 1 , . . . , ǫ n )) = 1. The map f being cotransverse, we obtain -→ d 1 (f (ǫ ′ 1 , . . . , ǫ ′ n ), f (ǫ 1 , . . . , ǫ n )) = 1. We obtain the equalities h(f (ǫ 1 , . . . , ǫ n )) = h(f (ǫ ′ 1 , . . . , ǫ ′ n )) + 1 = H + 1
, the first equality by definition of -→ d 1 and the second equality by induction hypothesis.

As a corollary, we obtain the following proposition.

[p] A cotransverse map is not necessarily an isometry. For example, the map

❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ k ψ / / [p] h ′ g ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ψ ′ [p] ψ 1 / / k [r] ψ 3 [n] ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ [n] ψ 2 ❅ ❅ ❅ ❅ ❅ ❅ [n] ψ 2 / / [s]
γ 1 : [2] → [2] defined by γ 1 (ǫ 1 , ǫ 2 ) = (max(ǫ 1 , ǫ 2 ), min(ǫ 1 , ǫ 2 )) is cotransverse and γ 1 (1, 0) = γ 1 (0, 1) = (1, 0). Note that -→ d 1 ((0, 1), (1, 0)) = ∞.
2.13. Notation. The inclusion of small categories ⊂ induces a forgetful functor ω : op Set → op Set which has a left adjoint L : op Set → op Set which is called the free transverse set generated by a precubical set.

2.14. Proposition. For a precubical (transverse resp.) set K, the data

(K n ) p =    K p if p n ∅ if p > n.
assemble into a precubical (transverse resp.) set denoted by K n . Moreover, the functor

K → K n is colimit-preserving.
Proof. The first part is due to the fact that (

[m], [n]) = ([m], [n]) = ∅ when m > n.
The second part is due to the fact that colimits of presheaves are calculated objectwise. Proof. The first statement is [14, Proposition 2.1.14]. The short argument is repeated for the ease of the reader. For every transverse set K, one has K n = ( ωK) n for all n 0. Since the functor ⊂ is the identity on objects, we obtain for all n 0 the bijections

op Set( L( [n]), K) ∼ = op Set( [n], ωK) = ( ωK) n = K n = op Set( [n], K).
By the Yoneda lemma, one obtains the isomorphism L( [n]) ∼ = [n] for all n 0. The second statement is stated with an incorrect argument in the proof of [START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF]Corollary 2.2.11]. The missing argument is explained now. Consider the small category J ′ such that the objects are the coface maps [p] → [n] ∈ with p < n and such that the morphisms of J ′ are the commutative squares of the form

[p] / / ∈ [n] [q] / / [n] Since ([p], [n]) = ∅ for p > n and since L : op Set → op Set is colimit-preserving, we obtain the isomorphism of transverse sets lim -→ [p]→[n]∈J ′ [p] ∼ = L(∂ [n]).
Consider the small category J such that the objects are the maps [p] → [n] ∈ with p < n and such that the morphisms are the commutative squares of the form

[p] / / ∈ [n] [q] / / [n] Since ([p], [n]) = ∅ for p > n, we obtain the isomorphism of transverse sets lim -→ [p]→[n]∈J [p] ∼ = ∂ [n].
Consider the inclusion functor L : J ′ → J. It induces a map of transverse sets

L(∂ [n]) -→ ∂ [n].
By [27, Theorem 1 p. 213], it suffices to prove that the comma category (k↓L) is nonempty and connected for all objects k of J to complete the proof. Let k : [p] → [n] be an object of J. We see immediately that the comma category (k↓L) is nonempty because it contains the commutative square

[p] ψ / / k [p] ψ ′ ∈ [n] [n]
where the top map ψ : [p] → [p] is given by the unique factorization given by Proposition 2.5 of k : [p] → [n] as the composite of a map of ([p], [p]) followed by a coface map

ψ ′ . Consider another object [p] ψ 1 / / k [r] ψ 3 ∈ [n] ψ 2 / / [s]
of the comma category (k↓L). Consider the following diagram of :

[p] ψ / / [p] g ψ ′ ∈ / / [n] ψ 2 [p] gψ ) ) h 5 5 [p] h ′ ∈ g ′ ∈ / / [s] [p] ψ 1 / / [r] ψ 3 ∈ / / [s]
where the factorizations ψ 2 ψ ′ = g ′ g and ψ 1 = h ′ h are given by the factorization of Proposition 2.5. We obtain (ψ

3 h ′ )h = ψ 3 ψ 1 = ψ 2 ψ ′ ψ = g ′ (gψ)
. By uniqueness of the factorization of Proposition 2.5, we deduce that ψ 3 h ′ = g ′ and h = gψ. We deduce the map of (k↓L) depicted in Figure 1. We conclude that the comma category (k↓L) is connected.

2.17. Remark. In fact, we could prove that the comma category (k↓L) has an initial object given by the factorization of k using Proposition 2.5.

Definition. A transverse set

K is cellular if the canonical map ∅ → K is a trans- finite composition of pushouts of the maps ∂ [n] → [n] for n 0. Note that the map ∂ [0] → [0] is the map C : ∅ → {0}. A transverse set K is cofibrant if it is a retract of a cellular transverse set.
2.19. Proposition. Let K be a precubical set. Then the transverse set L(K) freely generated by K is cellular. In particular, for all n 0, the transverse sets ∂ [n] and [n] are cellular for all n 0.

Proof. Let K be a precubical set. By induction on p 0, we immediately see that the map ∅ → K p is a transfinite composition of pushouts of the maps ∂

[n] → [n] for n 0 because ([n], [n]
) is a singleton for all n 0. Thus the proposition is a consequence of Proposition 2.16 and of the fact that the functor L : op Set → op Set is a left adjoint.

The justification of the terminology of cofibrant transverse set comes from the following fact. The category of transverse sets is locally presentable by [1, Corollary 1.54], being a presheaf category. Besides, the transverse sets ∂ [n] are cofibrant for all n 0 by Proposition 2.19. In other terms, the two sets of maps

{∂ [n] → [n] | n 0} and
(1, 0, 0)

/ / * * ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ (1, 1, 0) * * ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ (0, 0, 0) / / 9 9 s s s s s s s s s % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ (0, 1, 0) 9 9 s s s s s s s s s % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ (1, 0, 1) / / (1, 1, 1) (0, 0, 1) / / 4 4 ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ (0, 1, 1) 4 4 ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ (0, 0, 1) / / * * ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ (0, 1, 1) * * ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ (0, 0, 0) / / 9 9 s s s s s s s s s % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑
(0, 0, 1)

9 9 s s s s s s s s s % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ (1, 0, 1) / / (1, 1 , 1). 
(0, 0, 1)

/ / 4 4 ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ (0, 1, 1) 4 4 ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ Figure 2. The cotransverse map f : [3] → [3] {∂ [n] → [n] | n 0} ∪ {R : {0, 1} → {0}} are tractable.
By [START_REF] Henry | Minimal model structures[END_REF]Theorem 1.4], the cofibrant transverse sets are therefore the cofibrant objects of the minimal model categories generated by these two sets of maps. It is not clear at this point whether R : {0, 1} → {0} must be added or not to the set of generating cofibrations to have a nontrivial model category on the category of transverse sets. Besides, [START_REF] Henry | Minimal model structures[END_REF]Theorem 1.4] does not provide any geometric information. It is known by [START_REF] Gaucher | Comparing the non-unital and unital settings for directed homotopy[END_REF]Corollary 4.10] that removing R : {0, 1} → {0} from the generating cofibrations of the q-model structure of flows (see Definition 6.1 and Theorem 6.3) leads to a minimal category without homotopy on the category of flows. However, the (n + 1)-dimension globe Glob(D n ) has two distinguished states whereas the (n + 1)-cube has 2 n+1 states. Thus, the induction which leads to [START_REF] Gaucher | Comparing the non-unital and unital settings for directed homotopy[END_REF]Corollary 4.10] does not work in the transverse case.

Proposition.

There exists a cofibrant transverse set which is not freely generated by a precubical set. [START_REF] Beke | Sheafifiable homotopy model categories[END_REF] which is not the image by L of a map of precubical sets from ∂ [START_REF] Beke | Sheafifiable homotopy model categories[END_REF] to ∂ [START_REF] Beke | Sheafifiable homotopy model categories[END_REF] because e.g. the 2-dimensional subcube ( * , * , 0) is crushed by ∂f to the concatenation of two edges (0, 0, 0) → (0, 0, 1) → (0, 1, 1). Consider the pushout diagram of transverse sets 

Proof. Consider the cotransverse map

f : [3] → [3] of Figure 2 (it is the example [14, Figure 5]). It induces a map of transverse sets ∂f : ∂ [3] → ∂
∂ [3] ⊂ ∂f / / ∂ [3] [3] / / X
x∈K n+1 [n + 1] n x∈K n+1 x / / K n x∈K n+1 [n + 1] / / K n+1
Proof. If K satisfies the property of the proposition, and since K = lim -→ K n , then K is cellular. Conversely, suppose that K is a cellular transverse set. By Proposition 2.14, the restriction functor K → K n is colimit-preserving for all n 0. Thus each natural map ∅ → K n is a transfinite composition of pushouts of the maps

∂ [p] n → [p] n for p 0. The point is that for all p > n, the map ∂ [p] n → [p] n is the identity of [p] n by definition of ∂ [p] n . Moreover, each map of transverse sets [n + 1] n → K factors uniquely as a composite [n + 1] n → K n → K.
Hence the proof is complete.

Cotransverse topological cube

The purpose of this section is to topologize the cotransverse maps, more precisely to extend any cotransverse map f : [m] → [n] to a map of Lawvere metric spaces T(f ) from

([0, 1] m , -→ d 1 ) to ([0, 1] n , -→ d 1 )
which is quasi-isometric. The starting point is the following observation.

3.1. Proposition. Let n 1. Let f = (f 1 , . . . , f n ) : [n] → [n]
be a cotransverse map. Then there is the equality

f i (x 1 , . . . , x n ) = max (ǫ 1 ,...,ǫn)∈f -1 i (1) min{x k | ǫ k = 1}
for all 1 i n.

Proof. There are two mutually exclusive cases:

f i (x 1 , . . . , x n ) = 0 or f i (x 1 , . . . , x n ) = 1. Let us treat the case f i (x 1 , . . . , x n ) = 0 at first. For all (ǫ 1 , . . . , ǫ n ) ∈ f -1 i (1), min{x k | ǫ k = 1} = 1 implies (x 1 , . . . , x n ) (ǫ 1 , . . . , ǫ n ), which implies f i (x 1 , . . . , x n ) = 1: contradiction. Thus f i (x 1 , . . . , x n ) = 0 implies that for all (ǫ 1 , . . . , ǫ n ) ∈ f -1 i (1), one has min{x k | ǫ k = 1} = 0. Assume now that f i (x 1 , . . . , x n ) = 1. Then (x 1 , . . . , x n ) ∈ f -1 i (1). Since min{x i | x i = 1} = 1, the proof is complete.
To give the reader the intuition of Proposition 3.1, consider the cotransverse map f : [3] → [START_REF] Beke | Sheafifiable homotopy model categories[END_REF] described in Figure 2. Let f = (f 1 , f 2 , f 3 ). The reader must keep in mind that, for boolean values, there are the equalities min(x, y) = x and y, max(x, y) = x or y.

If x 1 = 1 and x 3 = 1, or x 1 = 1 and x 2 = 1 and

x 3 = 1, then f 1 (x 1 , x 2 , x 3 ) = 1. Thus f 1 (x 1 , x 2 , x 3 ) = max(min(x 1 , x 3 ), min(x 1 , x 2 , x 3 )).
If x 1 = 1 and x 2 = 1, or x 2 = 1 and x 3 = 1, or x 1 = 1 and x 2 = 1 and

x 3 = 1, then f 2 (x 1 , x 2 , x 3 ) = 1. Thus f 2 (x 1 , x 2 , x 3 ) = max(min(x 1 , x 2 ), min(x 2 , x 3 ), min(x 1 , x 2 , x 3 )).
Finally, if x 1 = 1 and x 2 = 1, or x 1 = 1 and x 3 = 1, or x 2 = 1 and x 3 = 1, or x 1 = 1 and x 2 = 1 and

x 3 = 1, then f 3 (x 1 , x 2 , x 3 ) = 1. Thus f 3 (x 1 , x 2 , x 3 ) = max(min(x 1 , x 2 ), min(x 1 , x 3 ), min(x 2 , x 3 ), min(x 1 , x 2 , x 3 )). 3.2. Definition. Let f = (f 1 , . . . , f n ) : [n] → [n] be a cotransverse map. Let T(f ) : [0, 1] n → [0, 1] n
be the set map defined by

T(f )(x 1 , . . . , x n ) = (T(f ) 1 (x 1 , . . . , x n ), . . . , T(f ) n (x 1 , . . . , x n )) with T(f ) i (x 1 , . . . , x n ) = max (ǫ 1 ,...,ǫn)∈f -1 i (1) min{x k | ǫ k = 1}
for all 1 i n.

3.3. Proposition. Let n 1. For all x ∈ [n] ⊂ [0, 1] n , one has T(f )(x) = f (x).
Proof. It is a consequence of Proposition 3.1.

Proposition. For all cotransverse maps

f : [n] → [n], the set map T(f ) : [0, 1] n -→ [0, 1] n
is continuous and strictly increasing. Moreover it satisfies the properties

∀(x 1 , . . . , x n ) ∈ [0, 1] n , h(x 1 , . . . , x n ) = h(T(f )(x 1 , . . . , x n )).
Proof. By Proposition 3. 

f (ǫ {σ(1)} ) = ǫ {σ ′ (1)} , f (ǫ {σ(1),σ(2)} ) = ǫ {σ ′ (1),σ ′ (2)} , . . . f (ǫ {σ(1),...,σ(n)} ) = ǫ {σ ′ (1),...,σ ′ (n)} .
From the permutation σ of {1, . . . , n}, we therefore obtain a new permutation σ ′ of {1, . . . , n}. One has

ǫ {σ(1)} ∈ f -1 σ ′ (1) (1). It means that T (f ) σ ′ (1) (x 1 , . . . , x n ) = x σ(1) because x σ(1) . . . x σ(n) . One then has ǫ {σ(1),σ(2)} ∈ f -1 σ ′ (1) (1). It means that T (f ) σ ′ (2) (x 1 , . . . , x n ) = x σ(2) because x σ(1) . . . x σ(n)
. By repeating a finitely number of times the same argument, we obtain the equality

T (f ) σ ′ (i) (x 1 , . . . , x n ) = x σ(i) for all 1 i n. It implies that T (f )(x 1 , . . . , x n ) = (x σσ ′-1 (1) , . . . , x σσ ′-1 (n) ). It means that h(T (f )(x 1 , . . . , x n )) = x σσ ′-1 (1) + • • • + x σσ ′-1 (n) = h(x 1 , . . . , x n ),
the first equality by definition of h and the second equality since σσ ′-1 is a permutation of {1, . . . , n}.

Let (x 1 , . . . , x n ) (y 1 , . . . , y n ) ∈ [0, 1] n . We already know that T(f )(x 1 , . . . , x n ) T(f )(y 1 , . . . , y n ). Assume that T(f )(x 1 , . . . , x n ) = T(f )(y 1 , . . . , y n ).
From the previous calculation, we obtain

h(T(f )(y 1 , . . . , y n )) -h(T(f )(x 1 , . . . , x n )) = n i=1 (y i -x i ) = 0. We deduce that (x 1 , . . . , x n ) = (y 1 , . . . , y n ). It means that T(f ) : [0, 1] n -→ [0, 1] n is strictly increasing. 3.5. Proposition. Let f : [n] → [n] and g : [n] → [n] be two cotransverse maps. Then there is the equality T(f g) = T(f ) T(g).
Proof. Consider a tuple (x 1 , . . . , x n ) ∈ [0, 1] n . We want to prove that

T(f g)(x 1 , . . . , x n ) = T(f ) T(g)(x 1 , . . . , x n ).
Let σ be a permutation of {1, . . . , n} such that x σ(1) . . . x σ(n) . Using Proposition 2.11, write

g(ǫ {σ(1)} ) = ǫ {σ ′ (1)} , g(ǫ {σ(1),σ(2)} ) = ǫ {σ ′ (1),σ ′ (2)} , . . . g(ǫ {σ(1),...,σ(n)} ) = ǫ {σ ′ (1),...,σ ′ (n)}
for some permutation σ ′ of {1, . . . , n}. From the calculation made in the proof of Proposition 3.4, we obtain the equality

(y 1 , . . . , y n ) = T(g)(x 1 , . . . , x n ) = (x σσ ′-1 (1) , . . . , x σσ ′-1 (n) ).
One has

y σ ′ (1) . . . y σ ′ (n) because y σ ′ (i) = x σ(i) for all 1 i n. Using Proposition 2.11 again, write f (ǫ {σ ′ (1)} ) = ǫ {σ ′′ (1)} , f (ǫ {σ ′ (1),σ ′ (2)} ) = ǫ {σ ′′ (1),σ ′′ (2)} , . . . f (ǫ {σ ′ (1),...,σ ′ (n)} ) = ǫ {σ ′′ (1),...,σ ′′ (n)}
for some permutation σ ′′ of {1, . . . , n}. We obtain the equality

T(f )(y 1 , . . . , y n ) = (y σ ′ σ ′′-1 (1) , . . . , y σ ′ σ ′′-1 (n) ) = (x σσ ′′-1 (1) , . . . , x σσ ′′-1 (n) ),
the left-hand equality by the calculation made in the proof of Proposition 3.4, the righthand equality by definition of y i . Since we have

f g(ǫ {σ(1)} ) = f (ǫ {σ ′ (1)} ) = ǫ {σ ′′ (1)} , f g(ǫ {σ(1),σ(2)} ) = f (ǫ {σ ′ (1),σ ′ (2)} ) = ǫ {σ ′′ (1),σ ′′ (2)} , . . . f g(ǫ {σ(1),...,σ(n)} ) = f (ǫ {σ ′ (1),...,σ ′ (n)} ) = ǫ {σ ′′ (1),...,σ ′′ (n)} ,
we obtain using the calculation made in the proof of Proposition 3.4 that

T(f ) T(g)(x 1 , . . . , x n ) = T(f )(y 1 , . . . , y n ) = T(f g)(x 1 , . . . , x n ). 3.6. Notation. For δ α i : [n -1] → [n] ∈ , let T(δ α i ) =    [0, 1] n-1 → [0, 1] n (ǫ 1 , . . . , ǫ n-1 ) → (ǫ 1 , . . . , ǫ i-1 , α, ǫ i , . . . , ǫ n-1 )
for all n 1 and α ∈ {0, 1}. 

T(f g) = T(f ) T(g).
Proof. It is well known if both f and g belong to . If only one of the two maps f or g belongs to , we use Definition 3.2 of T(f ) or T(g) for the map not belonging to and we add 0 or 1 to the other coordinates, depending on the coface map. Proof. Consider the commutative diagram of (the vertical maps are coface maps)

[m] g / / [n] f / / [p] [m] g ′ / / [m] δ O O f ′ / / [m] δ ′ O O
where the factorizations g = δg ′ and f = δ ′ f ′ are given by Proposition 2.5. Then there is the sequence of equalities (by repeatedly using Proposition 3.5 and Proposition 3.7)

T(f g) = T(δ ′ f ′ g ′ ) = T(δ ′ ) T(f ′ g ′ ) = T(δ ′ ) T(f ′ ) T(g ′ ) = T(δ ′ f ′ ) T(g ′ ) = T(f δ) T(g ′ ) = T(f ) T(δ) T(g ′ ) = T(f ) T(δg ′ ) = T(f ) T(g).
3.9. Theorem. The mappings There is a topological version of Proposition 2.12:

[n] → [0, 1] n for all n 0 f : [n] → [n] ∈ → T(f ) for all n 1 δ α i : [n -1] → [n] → T(δ α i ) for
|∂ [n + 1]| geom ⊂ f / / ❴ ❴ ❴ ❴ ❴ S n ⊂ | [n + 1]| geom ∼ = / / D n+1
3.13. Proposition. Let n 1. Let f : [n] → [n] be a cotransverse map. Then T(f ) : [0, 1] n → [0, 1] n yields a map of Lawvere metric spaces from | [n]| - → d 1 to itself which is quasi-isometric.
Proof. Let x, y ∈ [0, 1] n . Suppose first that x y are comparable. Then h(x) h(y). By Proposition 3.4, there is the inequality h(T(f

)(x)) = h(x) h(y) = h(T(f )(y)). We deduce that -→ d 1 (x, y) = h(y) -h(x) = h(T(f )(y)) -h(T(f )(x)) = -→ d 1 (T(f )(x), T(f )(y)
), the first equality by definition of -→ d 1 , the second equality by the previous remark, and the last equality by definition of -→ d 1 and since T(f ) is strictly increasing. Now suppose that x y is false. It means that Lawvere metric spaces which is also quasi-isometric. This leads to the theorem: 3.15. Theorem. The mappings 

-→ d 1 (x, y) = ∞. It implies that -→ d 1 (T(f )(x), T(f )(y)) -→ d 1 (x, y) whatever the value of -→ d 1 (T(f )(x), T(f )(y)) is. Thus, T(f ) : [0, 1] n → [0, 1] n is a map of Lawvere metric spaces. 3.14. Corollary. Let f : [m] → [n] be a cotransverse map. The induced map T(f ) : | [m]| - → d 1 → | [n]| - → d 1 is a map of
[n] → [0, 1] n for all n 0 f : [n] → [n] ∈ → T(f ) for all n 1 δ α i : [n -1] → [n] → T(δ α i ) for all
|K| - → d 1 = [n]∈ K n .| [n]| - → d 1 .

This gives rise to a colimit-preserving functor

| -| - → d 1 : op Set → LvMet.

Natural d-path of a transverse set

It is necessary to consider the symmetric version of the notion of Lawvere metric space to obtain a convenient notion of the underlying topological space of a Lawvere metric space.

4.1. Definition. A pseudometric space (X, d) is a set X equipped with a map d : X ×X → [0, ∞] called a pseudometric such that:

• ∀x ∈ X, d(x, x) = 0 • ∀(x, y) ∈ X × X, d(x, y) = d(y, x) (symmetry axiom) • ∀(x, y, z) ∈ X × X × X, d(x, y) d(x, z) + d(z, y). A map f : (X, d) → (Y, d) of pseudometric spaces is a set map f : X → Y which is non-expansive, i.e. ∀(x, y) ∈ X × X, d(f (x), f (y)) d(x, y).

Notation. The category of pseudometric spaces is denoted by PseudoMet.

The family of balls B(x, ǫ) = {y ∈ X | d(x, y) < ǫ}) of a pseudometric space (X, d) with x ∈ X and ǫ > 0 generates a topology called the underlying topology of (X, d). This construction gives rise to a functor from pseudometric spaces to general topological spaces because maps of pseudometric spaces are non-expansive. It is not colimit-preserving by [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Remark 3.30]. The category of pseudometric spaces is bicomplete, being a reflective full subcategory of the bicomplete category of Lawvere metric spaces by [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Proposition 3.21]. Start from a Lawvere metric space (X, d). The image by the reflection is the pseudometric space (X, d ∧ ) defined for all (x, y) ∈ X × X by

d ∧ (x, y) = min n 0 min x=x 0 ,x 1 ,...,x n+2 =y n i=0 d(x i+1 , x i ) + d(x i+1 , x i+2 ) With (x 0 , x 1 , x 2 ) = (x, x, y), we obtain d(x, y) = d(x, x) + d(x, y) d ∧ (x, y) for all (x, y) ∈ X × X.
Since there is a mistake in the statement of [20, Proposition 3.21] (the formula giving d ∧ is not correct) and no proof is given, a short explanation of the adjunction is provided in this paragraph for the ease of the reader. By replacing x i by x n+2-i in the formula above, we deduce that d ∧ (x, y) = d ∧ (y, x). Let us start from a map of Lawvere metric spaces f : (X, d) → (Y, d) where (Y, d) is a pseudometric space. The map f ∧ : (X, d ∧ ) → (Y, d) has the same underlying set map (so it is unique if it exists) and we just have to verify that it is non-expansive. Since f is non-expansive, one has d(f (x), f (y)) d(x, y) for all x, y ∈ X. We obtain

d(f (x 0 ), f (x n+2 )) n-1 i=0 d(f (x i+1 ), f (x i )) + d(f (x n+1 ), f (x n )) + d(f (x n+1 ), f (x n+2 )) n i=0 d(f (x i+1 ), f (x i )) + d(f (x i+1 ), f (x i+2 )) n i=0 d(x i+1 , x i ) + d(x i+1 , x i+2 ) ,
the first inequality by the triangular inequality, the second inequality since one has d(f (x i+1 ), f (x i+2 )) 0 for all i 0, and the last inequality because f : ( d) is a map of pseudometric spaces, then for all x, y ∈ X, one has d(g(x), g(y)) d ∧ (x, y) d(x, y), the left-hand inequality since g is non-expansive and the right-hand inequality by the remark above. Thus the underlying set map of g induces a map of Lawvere metric spaces from (X, d) to (Y, d). This gives rise to a colimit-preserving functor

X, d) → (Y, d) is non-expansive. We deduce that f ∧ : (X, d ∧ ) → (Y, d) is non-expansive. Conversely, if g : (X, d ∧ ) → (Y,
| -| - → d ∧ 1 : op Set → LvMet → PseudoMet.
In particular, one has

|K| - → d ∧ 1 ∼ = [n]∈ K n .| [n]| - → d ∧ 1 .

Notation. The underlying topological space of the pseudometric space |K|

- → d ∧ 1 is de- noted by |K| d 1 . 4.6. Notation. Let n 1. Let (x 1 , . . . , x n ), (x ′ 1 , . . . , x ′ n ) ∈ [0, 1] n . Let d 1 ((x 1 , . . . , x n ), (x ′ 1 , . . . , x ′ n )) = n i=1 |x i -x ′ i |.
4.7. Proposition. Let n 1. For all x, y ∈ [0, 1] n , there is the equality

-→ d ∧ 1 (x, y) = d 1 (x, y). Proof. By definition, -→ d ∧ 1 (x, y) is the minimum of the sums of the form -→ d 1 (x 1 , x 0 ) + -→ d 1 (x 1 , x 2 ) + -→ d 1 (x 2 , x 1 ) + -→ d 1 (x 2 , x 3 ) + • • • + -→ d 1 (x n+1 , x n ) + -→ d 1 (x n+1 , x n+2 )
with n 0 and x 0 = x and x n+2 = y. To have a finite sum, the only possibility is that

x 1 = x 2 = • • • = x n = x n+1 = z, z x, z y.
Consequently, one has

-→ d ∧ 1 (x, y) = min z x z y -→ d 1 (z, x) + -→ d 1 (z, y) = min z x z y d 1 (z, x) + d 1 (z, y) .
From the triangular inequality, we obtain d 1 (x, y) -→ d ∧ 1 (x, y). Write x = x 0 + x 1 and y = y 0 + y 1 with x 0 y 0 and y

1 x 1 . Let z = x 0 + y 1 . Then one has -→ d 1 (z, x) + -→ d 1 (z, y) = h(x 1 ) -h(y 1 ) + h(y 0 ) -h(x 0 ) = d 1 (x, y).
We deduce the inequality -→ d ∧ 1 (x, y) d 1 (x, y).

4.8.

Corollary. For all n 0, there is the homeomorphism

| [n]| d 1 ∼ = [0, 1 n ].
4.9. Proposition. Let K be a transverse set. Then we have the following properties: Proof. Assume at first that Top is the category of ∆-generated spaces. The topology of |K| geom is given by the final topology on the colimit of the underlying set of the | [n]| geom , the ∆-generated spaces being finally closed in the category of general topological spaces. The forgetful functor PseudoMet → Set from pseudometric spaces to sets has a right adjoint given by taking a set S to the pseudometric space (S, d 0 ) with d 0 (x, y) = 0 for all x, y ∈ S. Consequently, the forgetful functor PseudoMet → Set is colimit-preserving. We deduce that the underlying sets of |K| geom , of |K| - ) . Let ǫ = min{t 1 , . . . , t dim(c) }. One has ǫ ∈]0, 1[. For all η ∈]0, ǫ[, the ball B(x, η) is path-connected to x. We have proved that the topological space |K| d 1 is first countable and locally path-connected. It is therefore ∆-generated by [START_REF] Christensen | The D-topology for diffeological spaces[END_REF]Proposition 3.11].

| [n]| geom ∼ = | [n]| d 1 |c| d 1 / / |K|
) ∈]0, 1[ dim(c
In general, the canonical map |K| geom → |K| d 1 of Proposition 4.9 is not a homeomorphism, in particular for transverse sets freely generated by a locally infinite precubical set by [START_REF] Fritsch | Cellular structures in topology[END_REF]Proposition 1.5.17]. The latter proposition can be invoked because the restriction of the pseudometric -→ d ∧ 1 to each path-connected component of the topological space |K| d 1 is a metric.

Let U be a topological space. A (Moore) path of U consists of a continuous map [0, ℓ] → U with ℓ > 0. Let γ 1 : [0, ℓ 1 ] → U and γ 2 : [0, ℓ 2 ] → U be two paths of a topological space U such that γ 1 (ℓ 1 ) = γ 2 (0). The Moore composition γ 1 * γ 2 : [0, ℓ 1 + ℓ 2 ] → U is the Moore path defined by

(γ 1 * γ 2 )(t) =    γ 1 (t) for t ∈ [0, ℓ 1 ] γ 2 (t -ℓ 1 ) for t ∈ [ℓ 1 , ℓ 1 + ℓ 2 ].
The Moore composition of Moore paths is strictly associative. 

Let n 1. A d-path of | [n]| geom = [0, 1] n is a nonconstant continuous map γ : [0, ℓ] → [0, 1] n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1} n and such that γ is nondecreasing with respect to each axis of coordinates. Let c ∈ K n with n 1 be a n-cube of a general transverse set K. A d-path of c is a composite continuous map denoted by [c; γ] : [0, ℓ] → |K| geom with ℓ > 0 such that γ : [0, ℓ] → [0, 1] n is a d-path with [c; γ] = |c| geom γ. Let K be a general transverse set. A d-path of K is a continuous path [0, ℓ] → |K| geom which is the Moore composition [c 1 ; γ 1 ] * • • • * [c n ; γ n ] of d-paths of the cubes c 1 , . . . , c n of K. γ(0) ∈ K 0 is
-cube [0, 1] n is a d-path γ = (γ 1 , . . . , γ n ) : [0, n] → [0, 1] n such that for all t ∈ [0, n], one has t = γ 1 (t) + • • • + γ n (t).
The set of natural d-paths of [0, 1] n is denoted by N n . It is equipped with the compact-open topology.

4.12. Proposition. [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF]Proposition 4.10]) The topological space N n is ∆-generated and ∆-Hausdorff for all n 0.

Another way to formulate this definition is as follows: 4.13. Proposition. Equip ([0, n], ) with the Lawvere metric -→

d 1 : [0, n] × [0, n] → [0, ∞] defined by -→ d 1 (x, y) =    y -x if x y ∞ if x > y.
The latter Lawvere metric space is denoted by

--→ [0, n] in [20, Example 3.2]. A set map γ : [0, n] → [0, 1] n is a natural d-path if and only if it is a quasi-isometry for -→ d 1 .
Proof.

The equality t = γ 1 (t) + • • • + γ n (t) for all t ∈ [0, n] implies that any natural d- path is a quasi-isometry for -→ d 1 . Conversely, suppose that the set map γ : [0, n] → [0, 1] n is a quasi-isometry for -→ d 1 .
Then by Corollary 4.8, it is continuous for [0, 1] n equipped with the standard topology. And being a quasi-isometry, it satisfies t = -→

d 1 (0, t) = -→ d 1 (γ(0), γ(t)) = γ 1 (t) + • • • + γ n (t) for all t ∈ [0, n]. Consequently, the continuous map γ : [0, n] → [0, 1] n is a natural d-path.
Using Proposition 4.13, it is now possible to generalize to transverse sets the notion of natural d-path introduced by Raussen in [29, Definition 2.14] for precubical sets as follows. Let K be a general transverse set. 

A natural d-path of c ∈ K n with n 1 is a composite continuous map denoted by [c; γ] : [0, n] → |K| geom with ℓ > 0 such that γ : [0, n] → [0, 1] n is a natural d-path with [c; γ] = |c| geom γ. A natural d-path of K is a continuous path [0, ℓ] → |K| geom with ℓ > 0 which is the Moore composition [c 1 ; γ 1 ] * • • • * [c n ; γ n ] of natural d-paths of the cubes c 1 , . . . , c n of |K| geom . γ(0) ∈ K 0 is called the initial state of γ and γ(ℓ) ∈ K 0 is

Part II. Realization of transverse sets

The c-Reedy model structure of cotransverse objects

In this section, M is a model category such that the projective model structure on M =n exists for all n 0 where =n is the full subcategory of having one object [n] (see Proposition 5.2). It is the case if M is an accessible model category in the sense of [START_REF] Rosický | Accessible model categories[END_REF]Definition 5.1] or [START_REF] Hess | A necessary and sufficient condition for induced model structures[END_REF]Definition 3.1.6] by [START_REF] Hess | A necessary and sufficient condition for induced model structures[END_REF]Theorem 3.4.1] or a cofibrantly generated model category by [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Theorem 11.6.1].

Notation. Let

-→ = ← → = ← - = n 0 {f : [n] → [n] | f ∈ }

We consider the degree function d([n])

= n for all n 0.

We want to give a necessary and sufficient condition for a cotransverse object of M to be projective cofibrant in Theorem 5.12. The latter theorem is the generalization of [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Proposition 2.3.1] from the setting of precubical sets to the one of transverse sets. The key fact used in [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF] is that the small category is a direct Reedy category. It implies that the projective model structure on cocubical objects exists and that it coincides with the Reedy model structure for all model categories. The small category is not Reedy and not Reedy in Berger-Moerdijk's sense [START_REF] Berger | On an extension of the notion of reedy category[END_REF]Definition 1.1] or in Cisinski's sense [START_REF] Cisinski | Les préfaisceaux comme modèles des types d'homotopie[END_REF]Definition 8.1.1] either. Indeed, the factorization of a map by a map of ←followed by a map of -→ is not unique up to isomorphism. For example, the following commutative diagram of with m < n gives rise to two non-isomorphic factorizations of hkg

[m] kg / / [m] h / / [n] [m] g / / [m] k O O hk / / [n]
when k is non-invertible. However the category of factorizations of a map has a final object by Proposition 5.3. In fact, the small category turns out to be c-Reedy in Shulman's sense [START_REF] Shulman | Reedy categories and their generalizations[END_REF]Definition 8.25].

Every morphism f : [m] → [n] of is basic in the sense of [32, Definition 6.12] since every factorization of f as a composite [m] → [p] → [n] implies that m p n, and therefore that every factorization is not fundamental in the sense of [32, Definition 6.12]: p < min(m, n) = m is impossible indeed. Hence the following proposition: 5.2. Proposition. Let n 0. The subcategory =n of generated by the objects of degree n and the basic morphisms in the sense of [START_REF] Shulman | Reedy categories and their generalizations[END_REF]Definition 6.12] between them is the full subcategory of having one object [n]. In particular, one has

=n ([n], [n]) = ([n], [n]).

Proposition.

Let f be a map of . Consider the category of factorizations of f : its objects are the pairs of morphisms (h, g) such that hg = f with h ∈ -→ and g ∈ ←and its morphisms k : (h, g) → (h ′ , g ′ ) are morphisms k (which are called connecting morphisms) such that there is a commutative diagram

• g / / • h / / • • g ′ / / • k O O h ′ / / •
Note that k is necessarily degree-preserving. The category of factorizations of f has a final object.

Proof. Let f be a map of . Consider the factorization (h, g) given by Proposition 2.5: in particular, h ∈ . Consider another factorization (h ′ , g ′ ) of f . Consider the commutative diagram of solid arrows of

• g / / • h / / • • g ′ / / • k O O ✤ ✤ ✤ ✤ h ′ / / •
Proposition 2.5 yields the factorization h ′ = h ′′ k with h ′′ ∈ and k which are unique. We obtain hg = h ′ g ′ = h ′′ kg ′ . By uniqueness of the factorization of f given by Proposition 2.5, we obtain h = h ′′ and g = kg ′ , and therefore h ′ = hk. If

• g / / • h / / • • g ′ / / • k O O ✤ ✤ ✤ ✤ h ′ / / • is another commutative diagram, then h ′ = hk = hk.
By the uniqueness of Proposition 2.5, we deduce that k = k. 5.6. Notation. Let n 0. Following the notations of [32, page 37], let

∂ n ([p], [q]) = [m]∈ <n ([m], [q]) × ([p], [m])
The latching and matching object functors L n , M n : M → M =n are given by

(M n A) [n] = [m]∈ A([m]) ∂n ([n],[m]) (L n A) [n] = [p]∈ ∂ n ([p], [n]).A([p])
We obtain: 5.7. Theorem. Suppose that the projective model structure on M =n exists for all n 0. There exists a unique model structure on M such that • The weak equivalences are objectwise. 

• A map A → B of M is a fibration (trivial fibration resp.) if for all n 0, the map A([n]) → (M n A) [n] × (MnB) [n] B([n]) is a fibration (trivial fibration resp.) of M. • A map A → B of M is a cofibration (trivial cofibration resp.)if for all n 0, L n B ⊔ LnA A → B is
∂ n ([p], [q]) =    ∅ if p > q or n p ([p], [q]) if p q and p < n Proof. The composition induces a set map ([m], [q]) × ([p], [m]) → ([p], [q]). If p > q, then ([p], [q]) = ∅, which implies that ([m], [q]) × ([p], [m]) = ∅ for all [m] ∈ <n . If n p, then n -1 < p. It means that for all [m] ∈ n , one has ([p], [m]) = ∅, which implies that ([m], [q]) × ([p], [m]) = ∅ for all [m]
∈ <n as well. Assume now that p q and p < n. The set

∂ n ([p], [q]) is the quotient of m<n ([m], [q]) × ([p], [m])
by the equivalence relation generated by identifying two pairs (h, g) and (h ′ , g ′ ) such that hg = h ′ g ′ related by a connecting map, i.e. such that there exists a commutative diagram of of the form

[p] g / / • h / / [q] [p] g ′ / / • k O O ✤ ✤ ✤ ✤ ✤ h ′ / / [q]
for all objects Y of M, the right-hand isomorphism by adjunction. The proof is complete thanks to the Yoneda lemma.

Let M be a bicomplete category. For a weight U : C op → Set, the weighted colimit c∈C U(c).X(c) is a coend which is characterized by the adjunction

M C (X, Y U ) ∼ = M c∈C U(c).X(c), Y .
We obtain the following lemma. 5.10. Lemma. Let M be a bicomplete category. Let C be a small category. Consider a small diagram X : C → M and a weight U : C op → Set. Let D be the full subcategory of C generated by the objects c such that U(c) = ∅. Then there is the isomorphism

c∈D U(c).X(c) ∼ = c∈C U(c).X(c).
Proof. By definition of the weighted colimits, there are the isomorphisms

M c∈D U(c).X(c), Y ∼ = M D (X, Y U ) M c∈C U(c).X(c), Y ∼ = M C (X, Y U )
for all objects Y of M. Let D be the full subcategory of C generated by the objects c such that 

U(c) = ∅. Let c ∈ D, d ∈ D and f ∈ C(c, d). Then f gives rise to a set map U(f ) : U(d) → U(c) = ∅,
X(c) / / (Y U )(c) X(d) / / (Y U )(d)
with c ∈ C and d ∈ D. In the latter case, (Y U )(d) = 1, which implies the natural bijection

M D (X, Y U ) ∼ = M C (X, Y U ).
The proof is complete thanks to the Yoneda lemma.

5.11. Proposition. For all n 0, there is the isomorphism of transverse sets

∂ [n] ∼ = [p]∈ <n ([p]

, [n]). [p]

Proof. There are the isomorphisms of transverse sets

∂ [n] ∼ = [p]∈ (∂ [n]) p . [p] ∼ = [p]∈ <n (∂ [n]) p . [p] ∼ = [p]∈ <n ([p], [n]). [p],
the first isomorphism by applying K = 

[p]∈ K p . [p] to K = ∂ [n],
(∂ [-]) → A( [-]) is a projective cofibration of M =n .
The small category is also a c-Reedy category since it is a Reedy category. In this case, there is the isomorphism of categories M ∼ = M =n for all n 0 and we recover [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Proposition 2.3.1] of the precubical setting.

Proof. The matching object functor M n : M → M =n for all n 0 can be calculated as follows. There is the sequence of isomorphisms of M

(M n A) [n] ∼ = [m]∈ A([m]) ∂n ([n],[m]) ∼ = [m]∈ A([m]) ∅ ∼ = 1,
the first isomorphism by definition of the matching object functor (Notation 5.6), the second isomorphism since ∂ n ([n], [m]) = ∅ by Proposition 5.8, and the third isomorphism by Lemma 5.9. Thus, the c-Reedy model structure of Theorem 5.7 on M coincides with the projective model structure which therefore exists. There is the sequence of isomorphisms of M

(L n A) [n] ∼ = [p]∈ ∂ n ([p], [n]).A([p]) ∼ = [p]∈ <n ([p], [n]).A([p]) ∼ = A(∂ [n]),
the first isomorphism by definition of the latching object functor (Notation 5.6), the second isomorphism by Lemma 5.10 and since ∂ n ([p], [n]) = ∅ for p n by Proposition 5.8, and finally the third isomorphism by Proposition 5.11 and since A is colimit-preserving. By Theorem 5.7, the cotransverse object A is projective cofibrant if and only if for all n 0, the map L n A → A is a projective cofibration of the projective model structure of

M =n . Since A([n]) = A( [n]
) by definition of A, the proof is complete.

6. Realizing a transverse set as a flow 6.1. Definition. [START_REF] Gaucher | A model category for the homotopy theory of concurrency[END_REF]Definition 4.11] A flow is a small semicategory enriched over the closed monoidal category (Top, ×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X 0 of states, two continuous maps s and t from PX to X 0 called the source and target map respectively, and a continuous and associative map * : {(x, y) ∈ PX × PX; t(x) = s(y)} -→ PX such that s(x * y) = s(x) and t(x * y) = t(y). Let P α,β X = {x ∈ PX | s(x) = α and t(x) = β}: it is the space of execution paths from α to β, α is called the initial state and β is called the final state. Note that the composition is denoted by x * y, not by y • x. The category Flow is locally presentable by [START_REF] Gaucher | Homotopy theory of Moore flows (I)[END_REF]Theorem 6.11]. 6.2. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z) 0 = {0, 1}, PGlob(Z) = P 0,1 Glob(Z) = Z, s = 0, t = 1.
This flow has no composition law. 6.3. Theorem. [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 7.4] Let r ∈ {q, m, h}. There exists a unique model structure on Flow such that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X 0 → Y 0 is a bijection and for all (α, β) ∈ X 0 × X 0 , the continuous map P α,β X → P f (α),f (β) Y is a weak equivalence of the r-model structure of Top. • A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X 0 × X 0 , the continuous map P α,β X → P f (α),f (β) Y is a fibration of the r-model structure of Top.

This model structure is accessible and all objects are fibrant. It is called the r-model structure of Flow.

By [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 7.7], the m-model structure is the mixing of the q-model structure and the h-model structure in the sense of [START_REF] Cole | Mixing model structures[END_REF]Theorem 2.1]. Every q-cofibration of flows is a m-cofibration and every m-cofibration of flows is a h-cofibration by [START_REF] Cole | Mixing model structures[END_REF]Proposition 3.6]. Every h-fibration of flows is a m-fibration and every m-fibration of flows is a q-fibration by [START_REF] Cole | Mixing model structures[END_REF]Theorem 2.1]. All involved model categories being accessible, the projective and injective r-model structures on Flow I exists for all small categories I by [START_REF] Hess | A necessary and sufficient condition for induced model structures[END_REF]Theorem 3.4.1]. 6.4. Proposition. Let r ∈ {q, m, h}. Let f : X → Y be a weak equivalence of the rmodel structure of flows between r-cofibrant flows. Then for all (α, β) ∈ X 0 × X 0 , the continuous map P α,β X → P f (α),f (β) Y is a homotopy equivalence between r-cofibrant spaces. In particular, f is a weak equivalence of the h-model structure of flows.

Proof. If r = h, then the map P α,β X → P f (α),f (β) Y is a homotopy equivalence of spaces by definition of the weak equivalences of the h-model structure of flows. If r = q, then the spaces P α,β X and P f (α),f (β) Y are q-cofibrant by [START_REF] Gaucher | Left properness of flows[END_REF]Theorem 5.7]. Using Whitehead [24, Theorem 7.5.10], we deduce that the map P α,β X → P f (α),f (β) Y is a homotopy equivalence of spaces. It remains the case r = m. The spaces P α,β X and P f (α),f (β) Y are m-cofibrant by [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 8.7]. By [START_REF] Cole | Mixing model structures[END_REF]Corollary 3.4], we deduce that the weak homotopy equivalence P α,β X → P f (α),f (β) Y is a homotopy equivalence of spaces as well. 6.5. Definition. Let r ∈ {q, m, h}. A functor F : op Set → Flow is a r-realization functor (of transverse sets) if it satisfies the following properties:

• F is colimit-preserving. • For all n 0, the map F (∂ [n]) → F ( [n]) is a r-cofibration of Flow.
• There is an objectwise weak equivalence of cotransverse flows F ( [ * ]) → {0 < 1} * in the r-model structure of Flow.

6.6. Proposition. Let r ∈ {q, m, h}. Let F : op Set → Flow be a r-realization functor of transverse sets. Then the composite functor F L : op Set → Flow is a r-realization functor of precubical sets in the sense of [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF]Definition 3.6].

Proof. A r-realization of precubical sets is a functor G : op Set → Flow which satisfies the following properties: 1) G is colimit-preserving; 2) For all n 0, the map

G(∂ [n]) → G( [n]
) is a r-cofibration of Flow; 3) There is an objectwise weak equivalence of cotransverse flows G( [ * ]) → {0 < 1} * in the r-model structure of Flow. The proposition is therefore a consequence of Proposition 2.16.

6.7.

Theorem. There exists a q-realization functor | -| q : op Set → Flow.

obtain the natural bijection F (K) 0 ∼ = K 0 for all transverse sets K. By Theorem 5.12, the map

F cof (∂ [-]) → F cof ( [-]
) is a projective r-cofibration of Flow =n for all n 0. By Lemma 6.8, the map

F cof (∂ [-]) → F cof ( [-]
) is an injective r-cofibration of Flow =n for all n 0. Since the composite map F cof ( [ * ]) -→ F ( [ * ]) -→ {0 < 1} * is a weak equivalence in the projective r-model structure of Flow , the proof is complete.

Thanks to Proposition 6.9, the following definition makes sense. 6.11. Proposition. Every (cofibrant resp.) q-realization functor is a (cofibrant resp.) m-realization functor. Every (cofibrant resp.) m-realization functor is a (cofibrant resp.) h-realization functor.

Proof. Let us prove at first the statements without the adjective "cofibrant". Every qrealization functor is a m-realization functor because every q-cofibration of flows is a m-cofibration of flows and because the weak equivalences are the same in the two model structures. Let F : op Set → Flow be a m-realization functor. Then for all n 0, the map of flows

F (∂ [n]) → F ( [n]) is a h-cofibration. The map of flows F ( [n]) → {0 < 1} n
is a weak equivalence of the h-model structure of flows by Proposition 6.4. We have proved that F is a h-realization functor. Since every m-fibration of flows is a q-fibration, every projective q-cofibration of Flow =n is a projective m-cofibration of Flow =n . Since every h-fibration of flows is a m-fibration, every projective m-cofibration of Flow =n is a projective h-cofibration of Flow =n . We obtain the statements with the adjective "cofibrant". 6.12. Corollary. Let r ∈ {q, m, h}. For all cofibrant transverse sets K and all rrealization functors F : op Set → Flow, the flow F (K) is r-cofibrant. In particular, the flows F (∂ [n]) and F ( [n]) are r-cofibrant for all n 0.

Proof. Since K is cofibrant and F colimit-preserving, the map ∅ → F (K) is a transfinite composition of pushouts of maps of the form F (∂ [n]) → F ( [n]) for n 0. Thus, F (K) is r-cofibrant. The second statement is a consequence of Proposition 2.19. 6.13. Proposition. Let r ∈ {q, m, h}. Let F 1 , F 2 : op Set → Flow be two r-realization functors. Suppose that there exists a commutative diagram of cotransverse flows

F 1 ( [ * ]) / / F 2 ( [ * ]) {0 < 1} * {0 < 1} * / / F 1 (K n+1 ) $ $ ❏ ❏ ❏ ❏ ❏ ❏ ❏ x∈K n+1 F 2 ( [n + 1]) / / F 2 (K n+1 ) Figure 3. From n to n + 1
Then the above hypothesis yields a natural map of flows F 1 (K) → F 2 (K) for all transverse sets K which is, for all cofibrant transverse sets K, a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K 0 × K 0 , the continuous map P α,β F 1 (K) → P α,β F 2 (K) is a homotopy equivalence between r-cofibrant topological spaces for all cofibrant transverse sets K.

Proof. By the two-out-of-three property, for all n 0, the map of flows

F 1 ( [n]) → F 2 ( [n]
) is a weak equivalence of the r-model structure of Flow, and moreover between r-cofibrant flows by Corollary 6.12. By Proposition 2.8, the hypotheses of the proposition yield a natural transformation µ : F 1 ⇒ F 2 . Let us prove by induction on n 0 that the canonical map F 1 (K n ) → F 2 (K n ) is a weak equivalence of the r-model structure of flows between r-cofibrant flows for all cellular transverse sets K. By Proposition 6.9, there are the natural bijections F i (K 0 ) = K 0 ∼ = F i (K) 0 for i = 1, 2. Thus the induction hypothesis is proved for n = 0. Let n 0. Using the existence of the natural transformation F 1 ⇒ F 2 and thanks to Proposition 2.21, the passage from n to n + 1 can be depicted by the diagram of flows of Figure 3. By the induction hypothesis, and since [n + 1] n is cellular by Proposition 2.19, the maps of flows

F 1 ( [n + 1] n ) → F 2 ( [n + 1] n ) and F 1 (K n ) → F 2 (K n ) are
weak equivalences of the r-model structure of flows between r-cofibrant flows. We have already seen above that the map of flows

F 1 ( [n + 1]) → F 2 ( [n + 1]
) is also a weak equivalence of the r-model structure of flows between rcofibrant flows. By definition of a r-realization functor, we can apply the cube lemma [24, Proposition 15.10.10] [25, Lemma 5.2.6] in the r-model structure of Flow to conclude that the map F 1 (K n+1 ) → F 2 (K n+1 ) is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Since the colimits lim -→ F 1 (K n ) and lim -→ F 2 (K n ) are colimits of towers of r-cofibrations between r-cofibrant flows, they are homotopy colimits by [START_REF] Hirschhorn | Model categories and their localizations[END_REF]Proposition 15.10.12]. We conclude that the map of flows F 1 (K) → F 2 (K) is a weak equivalence of the r-model structure of Flow between r-cofibrant flows for all cellular transverse sets K. We deduce the same assertion for all cofibrant transverse sets K. The proof is complete thanks to Proposition 6.4. Proposition 6.13 has two corollaries. 6.14. Corollary. Let r ∈ {q, m, h}. Let F : op Set → Flow be a r-realization functor. Then for all cofibrant transverse sets K, the map F cof (K) → F (K) is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K 0 ×K 0 , the continuous map P α,β F cof (K) → P α,β F (K) is a homotopy equivalence between r-cofibrant topological spaces for all cofibrant transverse sets K. Then for all transverse sets K, the map F cof (K cof ) → F (K cof ) is a weak equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K 0 × K 0 , the continuous map P α,β F cof (K cof ) → P α,β F (K cof ) is a homotopy equivalence between r-cofibrant topological spaces for all transverse sets K. 6.16. Theorem. Let r ∈ {q, m, h}. Consider two r-realization functors

F 1 , F 2 : op Set -→ Flow.
Then there exists a cofibrant r-realization functor F 3 and a zigzag of natural transformations

F 1 ⇐= F 3 =⇒ F 2
such that there is a commutative diagram of cotransverse flows

F 1 ( [ * ]) F 3 ( [ * ]) o o / / F 2 ( [ * ]) {0 < 1} * {0 < 1} * {0 < 1} *
and such that for all cofibrant transverse sets K, the maps F 3 (K) → F 1 (K) and F 3 (K) → F 2 (K) natural with respect to K are weak equivalences of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K 0 ×K 0 , the natural maps P α,β F 3 (K) ≃ -→ P α,β F 1 (K) and P α,β F 3 (K) ≃ -→ P α,β F 2 (K) are homotopy equivalences between r-cofibrant topological spaces for all cofibrant transverse sets K. When e.g. F 1 is already cofibrant as a r-realization functor, one can suppose that F 1 = F 3 . From the isomorphisms of transverse sets (transverse sets being presheaves over )

Proof. Let

K ∼ = [n]∈ K n .
[n] ∼ = lim -→

[n]→K

[n],

we deduce for i = 1, 2 the isomorphisms of flows

F i (K) ∼ = [n]∈ K n .F i ( [n]) ∼ = lim -→ [n]→K F i ( [n])
since the functor F i is colimit-preserving. Since F i is a cofibrant r-realization by hypothesis, we deduce that the right-hand colimit is a homotopy colimit in the r-model structure of flows by adapting the proof of Theorem 5.12 to Flow ↓K . By the two-out-of-three property, the natural map

F 1 ( [n]) -→ F 2 ( [n])
is a weak equivalence of the r-model structure of Flow, and moreover between r-cofibrant flows by Corollary 6.12. Hence the map

F 1 (K) -→ F 2 (K)
natural with respect to K is a weak equivalences of the r-model structure of Flow between r-cofibrant flows for all transverse sets K. The proof is complete thanks to Proposition 6.4.

6.18. Question. Let r ∈ {q, m, h}. For all transverse sets K, there is a natural map of flows F cof (K cof ) → F cof (K) for all r-realization functors F : op Set → Flow. Is this natural map a weak equivalence of the r-model structure of flows ?

Natural realization of a transverse set

We want to use the notion of natural d-path of a transverse set introduced in Section 4 to build the natural realization functor from transverse sets to flows, exactly as we proceed in [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF]Section 5] for precubical sets. The definition is almost a copy-pasting. However, the verification of the functoriality is a little bit more complicated than in the precubical setting: see Proposition 7. 

|K| nat = [n]∈ K n .| [n]| nat .
It is called the natural realization of K as a flow. If | -| q is cofibrant as a q-realization functor, then one can suppose that F = | -| q .

Proof. Using Proposition 7.3 and Proposition 2.16, we obtain the isomorphism of flows

|∂ [n]| nat ∼ = |∂ [n]
| nat for all n 0. Thus the natural realization functor from transverse sets to flow is a m-realization functor because the natural realization functor of precubical sets as a flow is a m-realization functor by [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF]Theorem 5.9]. Every q-realization functor is a m-realization functor by Proposition 6.11. The proof is complete thanks to Theorem 6.16.

→ d 1

 1 of K as a Lawvere metric space. The following theorem summarizes the results of Part I: Theorem. (Theorem 3.9, Theorem 3.15 and Corollary 4.8) For every cotransverse map f : [m] → [n], the map T(f ) : [0, 1] m → [0, 1] n of Definition 3.2 gives rise to a quasiisometry of Lawvere metric spaces for the Lawvere metric -→ d 1 of Definition 1.4 and enables us to define cotransverse objects both in the category of topological spaces and in the category of Lawvere metric spaces.

  is the class of transfinite compositions of pushouts of elements of C. A cellular object X of a combinatorial model category is an object such that the canonical map ∅ → X belongs to cell(I) where I is the set of generating cofibrations. Let n 1. Denote by D n = {b ∈ R n , |b| 1} the n-dimensional disk, and by S n-1 = {b ∈ R n , |b| = 1} the (n -1)-dimensional sphere. By convention, let D 0 = {0} and S -1 = ∅. Part I. Metric study of transverse sets 1. The Lawvere directed n-cube

2. 5 .

 5 Proposition. [14, Proposition 3.1.14] Let 0 m n. Every cotransverse (resp. cotransverse one-to-one) map f : [m] → [n] factors uniquely as a composite [m] ψ -→ [m] φ -→ [n] with φ ∈ and ψ cotransverse (resp. cotransverse one-to-one).

Figure 1 .

 1 Figure 1. (k↓L) is connected

2. 15 .

 15 Notation. Let ∂ [n] = [n] n-1 and ∂ [n] = [n] n-1 for all n 0.2.16. Proposition. For all n 0, one has the isomorphism of transverse sets L( [n]) ∼ = [n]. There is the isomorphism of transverse sets L(∂ [n]) ∼ = ∂ [n] for all n 0.

3. 7 .

 7 Proposition. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps with f ∈ or g ∈ . Then there is the equality

3. 8 .

 8 Proposition. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps. Then there is the equality T(f g) = T(f ) T(g).

all n 1

 1 give rise to a cotransverse topological space called the cotransverse topological cube and denoted by | [ * ]| geom . Proof. The functoriality is a consequence of Proposition 3.8. Proposition 2.8 and Theorem 3.9 lead to the following definition: 3.10. Definition. Let K be a transverse set. Let |K| geom = [n]∈ K n .| [n]| geom This gives rise to a colimit-preserving functor | -| geom : op Set → Top. A point of |K| geom may admit several presentations [c; x] = |c| geom (x) with c ∈ K and x ∈ [0, 1] dim(c) . One has | [n]| geom ∼ = [0, 1] n for all n 0. It implies that for all cotransverse maps f : [m] → [n], by identifying using Yoneda with the map f : [m] → [n], there is the equality |f | geom = T(f ). Since all involved functors are colimit-preserving, one obtains the natural homeomorphism | L(K)| geom ∼ = |K| geom for all precubical sets K where |K| geom is the geometric realization of the precubical set K which is defined similarly [18, Notation 4.1]. By Proposition 2.16, we deduce the natural homeomorphism |∂ [n]| geom ∼ = |∂ [n]| geom for all n0. The topology of |K| geom is described in full generality in Proposition 4.9. In the cellular case, there is a more direct proof.3.11. Proposition. For all cellular transverse sets K, the geometric realization |K| geom is a CW-complex. In particular, the space |K| geom is equipped with the final topology and it is Hausdorff. Proof. There are the homeomorphisms | [n + 1]| geom ∼ = D n+1 and |∂ [n + 1]| geom ∼ = S n for n 0 by Proposition 2.16. Consider the diagram of solid arrows of topological spaces

  Since the inclusions |∂ [n + 1]| geom ⊂ | [n + 1]| geom and S n ⊂ D n+1 are closed inclusions, the composite map |∂ [n + 1]| geom → D n+1 induces a homeomorphism f : |∂ [n + 1]| geom → S n such that the diagram above is commutative. The proof is complete with Proposition 2.21. 3.12. Notation. Let | [n]| - → d 1 be the Lawvere metric space ([0, 1] n , -→ d 1 ) for all n 0.

1 .

 1 n 1 give rise to a cotransverse Lawvere metric space called the cotransverse Lawvere cube and denoted by | [ * ]| - → d Proposition 2.8 and Theorem 3.15 lead to the following definition: 3.16. Definition. Let K be a transverse set. Let

4. 3 .∧ 1 .

 31 Definition. The underlying topological space of a Lawvere metric space (X, d) is by definition the underlying topological space of the pseudometric space (X, d ∧ ). 4.4. Notation. Let K be a transverse set. The underlying set of |K| - → d 1 equipped with the pseudometric -→ d ∧ 1 gives rise to a pseudometric space denoted by |K| - → d

→ d ∧ 1 and

 1 therefore of |K| d 1 are equal. From Corollary 4.8, we obtain the homeomorphism | [n]| geom ∼ = | [n]| d 1 . For each c ∈ K n , we obtain a composite continuous map

  called the initial state of γ and γ(ℓ) ∈ K 0 is called the final state of γ. For all n-cubes c of K and for all cotransverse maps f , there is the equality |f * (c)| geom = |cf | geom = |c| geom T(f ) by functoriality of | -| geom : op Set → Top. It implies that there is the sequence of equalities [f * (c); γ] = |f * (c)| geom γ = [c; T(f )γ] on [0, ℓ]. By definition of the coend, there is also the equality [c; T(f )γ(t)] = [cf ; γ(t)] = [f * (c); γ(t)] for all t ∈ [0, ℓ]. Therefore this definition makes sense by definition of the coend and because the continuous map T(f ) is nondecreasing by Proposition 3.4. 4.10. Remark. By convention, all d-paths of a transverse set K start and end at a vertex of K. 4.11. Definition. Let n 1. A natural d-path of the topological n

  called the final state of γ. This definition makes sense because the identity induces a continuous map from |K| geom to the underlying topological space |K| d 1 of the Lawvere metric space |K| - → d 1 by Proposition 4.9 and because for all cotransverse maps f , the map T(f ) is a quasi-isometry by Corollary 3.14.

5. 4 .

 4 Proposition. The small category is a c-Reedy category in the sense of [32, Definition 8lowers degree (third axiom). The category of factorizations of f with connecting maps in ← → is connected by Proposition 5.3 (fourth axiom). For every n 0, and any degree m < n, the functor ← -([n], -) : =m → Set is an (empty) coproduct of retracts of representables because ([n], [m]) = ∅ (fifth axiom). 5.5. Notation. Let <n be the full category of containing the objects [0], . . . , [n -1] 2 .

  a projective cofibration (trivial cofibration resp.) of the projective model structure of M =n . This model structure is called the c-Reedy model structure of M . Proof. By Proposition 5.4 and [32, Theorem 8.26], the small category is almost c-Reedy in the sense of [32, Definition 8.8]. The proof is complete thanks to [32, Theorem 8.9]. 5.8. Proposition. One has

  which implies that U(d) = ∅: contradiction. It means that for all c ∈ D and d ∈ D, one has C(c, d) = ∅. By restriction, a map of M C (X, Y U ) gives rise to a map of M D (X, Y U ). Conversely, start from a map of M D (X, Y U ). To obtain a map of M C (X, Y U ), it remains to treat the case

6. 10 .

 10 Definition. Let r ∈ {q, m, h}. A cofibrant r-realization is a r-realization functor F : op Set → Flow such that the cotransverse flow F ( [ * ]) is projective r-cofibrant. For a r-realization functor F : op Set → Flow, the r-realization functor associated to the cotransverse flow F cof ( [ * ]) is called a cofibrant replacement of F . It is denoted by F cof . The map of cotransverse sets F cof ( [ * ]) → F ( [ * ]) gives rise to a natural transformation of r-realization functor F cof ⇒ F by Proposition 2.8.

By [ 3 ,

 3 Proposition 1.3], there exists a (non unique) functorial factorization ∅ → K cof → K by an element of cell({∂ [n] → [n] | n 0}) followed by an element of inj({∂ [n] → [n] | n 0}). The functor (-) cof : op Set → op Set is called a cofibrant replacement of K. Corollary 6.15 is a reformulation of Corollary 6.14. 6.15. Corollary. Let r ∈ {q, m, h}. Let F : op Set → Flow be a r-realization functor.

F 3 = F cof 1 .F 3 (F 1

 131 Consider the diagram of solid arrows of Flow ( [ * ]) / / {0 < 1} * Since all spaces of execution paths of {0 < 1} * are discrete, the right vertical map is a trivial projective r-fibration of Flow . Thus, there exists a map of cotransverse flows factors uniquely as a composite map [m] -→ [m] -→ [n] -→ K such that the map [m] → [n] corresponds to a coface map by Yoneda. We obtain that the comma category ↓K is a c-Reedy category by mimicking the proof of Proposition 5.4.

1 .

 1 We define a flow | [n]| nat for n 0 called the natural n-cube as follows. The set of states is {0, 1} n . Let n 1 and α, β ∈ {0, 1} n . Recall that the topological space N m of natural d-paths of [0, 1] m for m 1 is defined in Definition 4.11. LetP α,β | [n]| nat =    N m if -→ d 1 (α, β) = m 1 and α < β ∅ if α β. The map [0, 1] m 1 ⊔[0, 1] m 2 → [0, 1]

m 1 +m 2 7 . 2 .

 272 by using the fact that the Moore composition of two natural d-paths is still a natural d-path. It yields the associative composition law of the flow | [n]| nat . Let f : [m] → [n] be a cotransverse map. Let α, β ∈ {0, 1} m . Assume that k = -→ d 1 (α, β) 1. There exists a unique coface map δ : [k] → [m] with takes 0 k to α and 1 k to β. Consider the commutative diagram of where the vertical maps are coface maps Proposition 2.5 to f δ. Then the continuous map Pα,β | [m]| nat → P f (α),f (β) | [n]| nat induced by f is the continuous map T([f ] α,β ) : N k → N k . 7.1. Proposition. We obtain a well-defined cotransverse flow | [ * ]| nat . Proof. Let f : [m] → [n] and g : [n] → [p] be two cotransverse maps. Let α, β ∈ {0, 1} m . Assume that k = -→ d 1 (α, β) 1.Consider the commutative diagram of where the vertical maps are coface maps:Because of the uniqueness of the factorization given by Proposition 2.5, we have[gf ] α,β = [g] f (α),f (β) [f ] α,β . We obtain T([gf ] α,β ) = T([g] f (α),f (β) ) T([f ] α,β )by Proposition 3.8.Using Proposition 2.8 and Proposition 7.1, we obtain: Definition. Let K be a transverse set. Consider the colimit-preserving functor

7. 3 .

 3 Proposition. The composite functor | L(-)| nat : op Set → Flow is the natural realization functor of precubical sets of [18, Definition 5.3]. Proof. One has | [n]| nat = | [n]| nat : the natural realization of the precubical set [n] is equal to the natural realization of the transverse set [n] because it is exactly the same definition. Using Proposition 2.16, we deduce for all n 0 the natural isomorphism | [n]| nat ∼ = | L( [n])| nat . Since all involved functors are colimit-preserving, we obtain for all precubical sets K the isomorphism of flows |K| nat ∼ = | L(K)| nat .The following theorem concludes the paper.7.4. Theorem. The natural realization functor |-| nat from transverse sets to flow defined in Definition 7.2 is a m-realization functor. Let | -| q :op Set → Flow be a q-realization functor. There exists a m-realization functor F : op Set → Flow and two natural transformations inducing bijections on the sets of states| -| q ⇐= F (-) =⇒ | -| natsuch that for all cofibrant transverse sets K and all (α, β) ∈ K 0 × K 0 , there is the zigzag of natural homotopy equivalences between m-cofibrant topological spacesP α,β |K| q P α,β F (K) ≃ o o ≃ / / P α,β |K| nat .

  Then the transverse set X is cofibrant and it is not freely generated by a precubical set because it contains a degenerate 2-cube.2.21. Proposition. Let K be a transverse set. It is cellular if and only if for all n 0, there is the pushout diagram of transverse sets

•

  The underlying sets of the topological spaces |K| geom and |K| d 1 are equal. • The identity of the underlying set of |K| geom yields a continuous map from |K| geom to |K| d 1 . • The topological spaces |K| geom and |K| d 1 are Hausdorff. • The topological space |K| geom is always equipped with the final topology. • The topological spaces |K| geom and |K| d 1 are ∆-generated.

  d 1 and, by the universal property of the colimit, a continuous map |K| geom → |K| d 1 . It is easy to see that the pseudometric of |K| - Thus, the topological space |K| d 1 is Hausdorff. Since the identity maps |K| geom → |K| d 1 is one-to-one, it implies that |K| geom is Hausdorff. The proof is therefore valid so far for ∆-Hausdorff ∆-generated spaces as well. It implies that |K| geom is always equipped with the final topology, whatever the choice of Top is. Let x ∈ |K| d 1 . The family of balls (B(x, 1/n) n 1 ) is a neighborhood basis of x. Assume at first that x ∈ K 0 . Then for all ǫ ∈]0, 1[, B(x, ǫ) is path-connected because each point is related to x by a continuous path. Assume now that x ∈ |K| d 1 \K 0 . From the counit map L( ω(K)) → K we deduce that there exists n 1 and c ∈ K n such that x = [c; (t 1 , . . . , t dim(c) )] with (t 1 , . . . , t dim(c)

	→ d ∧ 1 axioms on each path-connected component thanks to the homeomorphisms | [n]| d 1 restricts to a metric satisfying the additional Frechet ∼ =
	[0, 1 n ] for all n	0.

  the second isomorphism since (∂ [n]) p = ∅ for p n and by Lemma 5.10, and the last isomorphism by definition of ∂ [n].5.12. Theorem. Suppose that the projective model structure on M =n exists for all n 0. Then the projective model structure on M exists and coincides with the c-Reedy model structure. Let A : → M be a cotransverse object of M. It is projective cofibrant if and only if for all n 0, the map A

  m 1 +m 2 defined by taking (t 1 , . . . , t m 1 ) to (t 1 , . . . , t m 1 , 0 m 2 ) and (t ′ 1 , . . . , t ′ m 2 ) to (1 m 1 , t ′ 1 , . . . , t ′ m 2 ) induces a continuous map N m 1 × N m 2 → N

Unlike in[START_REF] Gaucher | Combinatorics of labelling in higher-dimensional automata[END_REF], the words symmetric and precubical are omitted.

This category should be denoted by n with the notation of[START_REF] Shulman | Reedy categories and their generalizations[END_REF]; I find this notation a bit confusing.

I am unable to find a textbook expounding this elementary result.

Consider such a pair (h, g). By applying Proposition 2.5 to g : [p] → [m], we obtain a commutative diagram of of the form

It means that in ∂ n ([p], [q]), every element of ([m], [q]) × ([p], [m]) is equivalent to an element of ([p], [q]) × ([p], [p]). Consider (h, g) ∈ ([p], [q]) × ([p], [p]). By applying Proposition 2.5 to h, we obtain a commutative diagram of of the form

It means that every element of (

), then it implies in particular that hg = h ′ g ′ . By the uniqueness of the factorization given by Proposition 2.5, it implies that h = h ′ and g = g ′ . We obtain

the first isomorphism since the equivalence relation on ([p], [q]) × ([p], [p]) restricts to the equality by the previous arguments, the second isomorphism by the uniqueness of Proposition 2.5.

Let M be a bicomplete category. Let C be a small category. Consider a small diagram X : C → M and a weight W : C → Set. The weighted limit c∈C X(c) W (c) is a end which is characterized by the adjunction

We obtain the following lemma. 5.9. Lemma. Let M be a bicomplete category. Let C be a small category. Consider a small diagram X : C → M and the empty weight

Proof. There are the isomorphisms

By [14, Proposition 2.2.10], there is the isomorphism |K| q ∼ = | LK| q for all precubical sets K where the left-hand term is the q-realization of the precubical set K with the same q-cofibrant replacement functor and which is defined by

([18, Theorem 3.9]). Using Proposition 2.16, we deduce the isomorphims of flows

Note that the composite functor | L(-)| q : op Set → Flow is the q-realization functor of precubical sets of [18, Theorem 3.9] with the same q-cofibrant replacement of flows. 

D

The lift ℓ exists if and only, by adjunction, the lift ℓ exists in the commutative diagram of

The point is that C I(-,i) → D I(-,i) is a projective trivial fibration. Thus the lift ℓ exists, and so does the lift ℓ. We have proved that A → B is an injective cofibration and the proof is complete. 6.9. Proposition. Let r ∈ {q, m, h}. Let F : op Set → Flow be a r-realization functor. Then for all transverse sets K, there is a natural bijection K 0 ∼ = F (K) 0 . A projective r-cofibrant replacement of the cotransverse flow F ( [ * ]), let us denote it by F cof ( [ * ]), gives rise to a r-realization functor as well.

Proof. From the objectwise weak equivalence of cotransverse flows F ( [ * ]) → {0 < 1} * , we deduce the objectwise bijection of cotransverse sets

) making commutative the diagram above. The proof is complete thanks to Proposition 2.8 and Proposition 6.13. Assume now that F 1 is already cofibrant. Consider the diagram of solid arrows of Flow

) is projective r-cofibrant. The vertical map is a trivial projective r-fibration of Flow . Hence the proof is complete.

Note the difference with the precubical case of [START_REF] Gaucher | Comparing cubical and globular directed paths[END_REF]Theorem 3.8]. There is, in general, in the transverse setting, no natural transformation from F 1 to F 2 . The point is that, in the precubical setting, the category =n (see Proposition 5.2) is the terminal category for all n 0. Thus, in the precubical setting, every r-realization functor F corresponds to a projective r-cofibrant cocubical flow F ( [ * ]). In fact there is the proposition: 6.17. Theorem. Let r ∈ {q, m, h}. Consider two cofibrant r-realization functors

Then there exists a natural transformation F 1 ⇒ F 2 such that there is a commutative diagram of cotransverse flows

and such that for all transverse sets K (not necessarily cofibrant), the maps F 1 (K) → F 2 (K) natural with respect to K is a weak equivalences of the r-model structure of Flow between r-cofibrant flows. Moreover, for all (α, β) ∈ K 0 × K 0 , the natural map

is a homotopy equivalence between r-cofibrant topological spaces for all transverse sets K (not necessarily cofibrant).

Proof. The existence of the natural transformation is given by Theorem 6.16. Let K be a transverse set. Consider the comma category ↓K whose objects are the maps of transverse sets [n] → K and whose maps are the commutative squares

We adapt Proposition 2.5 to the comma category ↓K as follows. Since there is the equality op Set( [p], [q]) = ([p], [q]) for all p, q 0 by Yoneda, a map

[m] -→ [n] -→ K