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DIRECTED DEGENERACY MAPS FOR PRECUBICAL SETS

PHILIPPE GAUCHER

Abstract. Transverse (symmetric precubical) sets were introduced to make the con-

struction of the parallel product with synchronization for process algebras functorial. It

is proved that one can do directed homotopy on transverse sets in the following sense.

A q-realization functor from transverse sets to flows is introduced using a q-cofibrant

replacement functor of flows. By topologizing the cotransverse maps, the cotransverse

topological cube is constructed. It can be regarded both as a cotransverse topological

space and as a cotransverse Lawvere metric space. A natural realization functor from

transverse sets to flows is introduced using Raussen’s notion of natural d-path extended

to transverse sets thanks to their structure of Lawvere metric space. It is proved that

these two realization functors are homotopy equivalent by using the fact that the small

category defining transverse sets is c-Reedy in Shulman’s sense. This generalizes to

transverse sets results previously obtained for precubical sets. Note that a precubical

set and the free transverse set generated by it have isomorphic realizations as flows.
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1. Introduction

Presentation. Precubical sets are an important combinatorial model for directed homo-

topy [7]. The n-cube represents the concurrent execution of n actions. It has been known

for a long time that the usual degeneracy maps used in non-directed homotopy theory

are not convenient for directed homotopy. The purpose of this paper is to introduce a

convenient notion of degeneracy map for doing directed homotopy.

In fact, this paper is the second paper, and not the first one, about transverse (sym-

metric precubical) sets. This notion is introduced in [11] to make the construction of the

parallel product with synchronization of process algebras functorial. It is proved in [11,
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metric space, generalized Reedy category, accessible model category, projective model category.

1

http://arxiv.org/abs/2209.02667v1


Theorem 3.1.15] that is is the only solution to achieve such a goal. A transverse symmet-

ric precubical set is a presheaf on the category �̂ generated by the posets [n] = {0 < 1}n

for n > 0 and by all cotransverse maps which are the strictly increasing maps preserving

adjacency (Definition 3.3). Note that to avoid cumbersome and inconsistent terminology,

the terminologies adjacency-preserving map and transverse symmetric precubical set of

[11] are replaced in this paper by cotransverse map and transverse set respectively.

In [15], two realization functors from precubical sets to flows, the q-realization functor

using a q-cofibrant replacement functor of the q-model structure of flows (recalled in

Section 6) and the natural realization functor using Raussen’s notion of natural d-path,

are compared and are proved to be homotopy equivalent. The technical goal of this paper

is to generalize these results to transverse sets.

Two obstacles must be overcome before reaching this goal. The first obstacle is to

find a way of topologizing the cotransverse maps. It is the purpose of Proposition 4.1.

We obtain the cotransverse topological cube which is a cotransverse object both in the

category of topological spaces and in the category of Lawvere metric spaces. The point is

that the cotransverse maps are quasi-isometric. They preserve finite distances indeed. It

implies that the topological version of the cotransverse maps takes natural d-paths of the

topological cube to natural d-paths. It enables us to define natural d-paths for transverse

sets in Section 7. We then obtain the natural realization functor of a transverse set as a

flow similarly to [15, Section 5]. The q-realization functor of a transverse set as a flow is

already defined in [11, Definition 2.2.9]. The second obstacle is that the small category

�̂ is not Reedy. It is not even Reedy in Berger-Moerdijk’s sense [3, Definition 1.1]

or in Cisinski’s sense [5, Definition 8.1.1]. However, it is c-Reedy in Shulman’s sense

[27, Definition 8.25]. It is the key point to compare the q-realization and the natural

realization of a transverse set as a flow. We give now the main result of the paper.

Theorem. (Theorem 8.3) The natural realization functor | − |nat from transverse sets

to flow defined in Definition 8.2 is a m-realization functor. It is homotopy equivalent

to the q-realization functor | − |q of Theorem 6.10 in the following sense. There exists

a m-realization functor F : �̂opSet → Flow and two natural transformations inducing

bijections on the sets of states

| − |q ⇐ F (−)⇒ | − |nat

such that for all transverse sets K and all (α, β) ∈ K0×K0, there is the zig-zag of natural

homotopy equivalences between m-cofibrant topological spaces

Pα,β|K|q Pα,βF (K)
≃oo ≃ // Pα,β|K|nat .

The link between the precubical and transverse settings is described as follows. For a

given q-cofibrant replacement functor of the q-model structure of flows, the q-realization

of a precubical set is isomorphic to the q-realization of the free transverse set generated

by the precubical set (see Notation 3.13) and the natural realization of a precubical set is

isomorphic to the natural realization of the free transverse set generated by the precubical

set.

Subsequent papers will study directed homotopy on transverse sets and will show how

it is possible to extend most of the results proved for precubical sets.
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Outline of the paper. Section 2 recalls some basic facts about Lawvere metric spaces.

The Lawvere metric
−→
d 1 plays an important role in many places of the paper, in par-

ticular for defining the natural d-paths of a transverse set as some particular kind of

quasi-isometry in Section 7. Section 3 recalls some basic facts about precubical sets and

transverse (symmetric precubical) sets. It also expounds in Proposition 3.15 a missing ar-

gument in the proof of [11, Corollary 2.2.11]. Section 4 starts from the observation made

in Proposition 4.1 to topologize the cotransverse maps and proves some useful properties

about them. It culminates with Theorem 4.9 which expounds the cotransverse topolog-

ical cube and Theorem 4.14 which expounds the cotransverse Lawvere cube. Section 5

proves that the category of cotransverse objects of a model category satisfying some mild

conditions has a structure of a c-Reedy model category and that it coincides with the

projective model structure. It enables us to give a necessary and sufficient condition for

a cotransverse object to be projective cofibrant in Theorem 5.10. The latter condition

is used in Proposition 6.6 to prove that the projective r-cofibrant replacement of the co-

transverse flow associated with a r-realization functor gives rise to a r-realization functor.

It is the key fact to prove Theorem 6.8 and Theorem 8.3. Section 6 defines the notions of

q-realization, m-realization and h-realization of a transverse set as a flow. Theorem 6.10

provides an example of a q-realization functor from transverse sets to flows. Section 7 is

devoted to defining the notion of natural d-path of a transverse set. It requires to recall

what is the underlying topological space of a Lawvere metric space and to make some

calculations about the cubes and more generally about the transverse sets. Geometrically,

the natural d-paths of a transverse set are locally, on each cube, a quasi-isometry for the

Lawvere metric. Section 8 concludes this paper by defining the natural realization of a

transverse set in Definition 8.2 and by proving in Theorem 8.3 that it is a m-realization

functor which is homotopy equivalent to the q-realization functor from transverse sets to

flows of Theorem 6.10.

Prerequisites and notations. All necessary reminders are made throughout the paper.

We refer to [1] for locally presentable categories, to [25] for combinatorial model categories.

We refer to [20] and to [19] for more general model categories. We work with the category

Top of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces (cf. [13, Section 2 and

Appendix B]). The category Top is equipped with its q-model structure (we use the

terminology of [23]). The m-model structure [6] and the h-model structure [2] of Top are

also used in various places of the paper. The set of maps from X to Y of a category C is

denoted by C(X, Y ). Set is the category of sets with all set maps. CI is the category of

functor from a small category I to a category C together with the natural transformations.
∼= means isomorphism, ≃ means weak equivalence or homotopy equivalence, depending

on the context.

2. The Lawvere directed n-cube

Since there are several variants of the notion of metric space in the mathematical

literature, the one which is used in this paper is recalled. The symmetric version will

have to be recalled in Section 7.

2.1. Definition. [21] A Lawvere metric space (X, d) is a set X equipped with a map

d : X ×X → [0,∞] called a (Lawvere) metric such that:
3



• ∀x ∈ X, d(x, x) = 0

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) 6 d(x, z) + d(z, y).

A map f : (X, d) → (Y, d) of Lawvere metric spaces is a set map f : X → Y which

is short, i.e. ∀(x, y) ∈ X × X, d(f(x), f(y)) 6 d(x, y). The category of Lawvere metric

spaces is denoted by LvMet. A short map f : (X, d) → (Y, d) is quasi-isometric if

∀(x, y) ∈ X ×X, d(x, y) <∞⇒ d(f(x), f(y)) = d(x, y).

The category of Lawvere metric spaces is bicomplete since it is the category of enriched

small categories over a bicomplete closed symmetric monoidal structure on [0,∞] [21].

2.2. Notation. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention, one has

{0, 1}0 = [0] = {()}. In the sequel, for all n > 1, both the sets [n] and [0, 1]n are equipped

with the product order. By convention, [0, 1]0 is a singleton.

2.3. Definition. Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n with

n > 1. Let
−→
d 1 : [0, 1]n × [0, 1]n → [0,∞] be the set map defined by

−→
d 1(x, x′) =





n∑
i=1
|xi − x

′
i| if x 6 x′

∞ otherwise.

2.4. Proposition. Let n > 0. The set map
−→
d 1 : [0, 1]n × [0, 1]n → [0,∞] is a Lawvere

metric. It restricts to a Lawvere metric on {0, 1}n.

Proof. Let x, y, z ∈ [0, 1]n. If
−→
d 1(x, z) +

−→
d 1(z, y) is finite, then x 6 z 6 y, which implies

that
−→
d 1(x, y) is finite and that

−→
d 1(x, y) =

−→
d 1(x, z) +

−→
d 1(z, y). If

−→
d 1(x, z) +

−→
d 1(z, y)

is infinite, then the inequality
−→
d 1(x, y) 6

−→
d 1(x, z) +

−→
d 1(z, y) always holds. �

3. Precubical and transverse set

3.1. Notation. Let A ⊂ {1, . . . , n}. Denote by ǫA the tuple (ǫ1, . . . , ǫn) with ǫi = 0 if

i /∈ A and ǫi = 1 of i ∈ A. Let 0n = ǫ∅ and 1n = ǫ{1,...,n}.

Let δαi : [n − 1] → [n] be the coface map defined for 1 6 i 6 n and α ∈ {0, 1} by

δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). The small category � is by definition the

subcategory of the category of posets with the set of objects {[n], n > 0} and generated

by the morphisms δαi . The maps of � are called the cocubical maps.

3.2. Definition. [4] The category of presheaves over �, denoted by �opSet, is called

the category of precubical sets. Let �[n] := �(−, [n]). For K ∈ �opSet, denote by

Kn = K([n]) the set of n-cubes of K. Let f : [m]→ [n] be a cocubical map. It gives rise

to a set map denote by f ∗ : Kn → Km. An element of K0 is called a vertex of K.

The following definition is equivalent to [11, Definition 2.1.5].

3.3. Definition. A set map f : [m] → [n] is cotransverse if it is strictly increasing and

if ∀x, y ∈ [m],
−→
d 1(x, y) = 1 implies

−→
d 1(f(x), f(y)) = 1.

The adjective adjacency-preserving is used in [11] instead. The word cotransverse is

preferred because it is consistent with the terminology of transverse (symmetric precubi-

cal) sets 1.

1Unlike in [11], the words symmetric and precubical are omitted.
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By [11, Proposition 2.1.6], for any n > 1, the coface map δαi : [n − 1] → [n] is

cotransverse and any strictly increasing map from [n] to itself is cotransverse as well. Let

σi : [n] → [n] be the set map defined for 1 6 i 6 n − 1 and n > 2 by σi(ǫ1, . . . , ǫn) =

(ǫ1, . . . , ǫi−1, ǫi+1, ǫi, ǫi+2, . . . , ǫn). These maps are called the symmetry maps [17]. The

symmetry maps are clearly cotransverse.

3.4. Notation. Let �̂ be the small subcategory of the category of posets generated by the

cotransverse maps.

The following proposition is crucial in many places of this paper.

3.5. Proposition. [11, Proposition 3.1.14] Let 0 6 m 6 n. Every cotransverse (resp.

cotransverse one-to-one) map f : [m] → [n] factors uniquely as a composite [m]
ψ
−→

[m]
φ
−→ [n] with φ ∈ � and ψ cotransverse (resp. cotransverse one-to-one).

By a cardinality argument, if ψ : [m] → [m] is one-to-one, then it is bijective and

therefore it is a symmetry map. Thus the one-to-one cotransverse maps are composites

of coface maps and symmetry maps.

3.6. Definition. [11, Definition 2.1.13] The category of presheaves over �̂, denoted by

�̂opSet, is called the category of transverse sets. Let �̂[n] := �̂(−, [n]). For K ∈ �̂opSet,

denote by Kn = K([n]) the set of n-cubes of K. Let f : [m]→ [n] be a cotransverse map.

It gives rise to a set map denote by f ∗ : Kn → Km. An element of K0 is called a vertex

of K.

3.7. Definition. Let C be a category. A cotransverse object of C is a functor �̂→ C.

There is the elementary proposition:

3.8. Proposition. Let C be a cocomplete category. Let X : �̂ → C be a cotransverse

object of C. Let

X̂(K) =
∫ [n]∈�̂

Kn.X([n])

The mapping X 7→ X̂ induces an equivalence of categories between the category of co-

transverse objects of C and the colimit-preserving preserving functors from �̂opSet to C.

3.9. Notation. For the sequel, the cotransverse object associated with a colimit-preserving

functor F : �̂opSet→ C is denoted by F (�̂[∗]).

Proof. Let us denote by F̃ = F (�̂[∗]) for this proof only the cotransverse object of

C associated with a colimit-preserving functor F : �̂opSet → C. Since F is colimit-

preserving, one has the isomorphisms

̂̃
F (K) =

∫ [n]∈�̂

Kn.F (�̂[n]) ∼= F

(∫ [n]∈�̂

Kn.�̂[n]

)
∼= F (K)

and the isomorphisms

˜̂
G = Ĝ(�̂[∗]) =

∫ [n]∈�̂

�̂([n], ∗).G([n]) ∼= G([∗]).

5



Finally, if K : i 7→ Ki is a small diagram of transverse sets over a small category I, one

has

X̂(lim
−→

Ki) =
∫ [n]∈�̂

(lim
−→

Ki
n).X([n])

∼=
∫ [n]∈�̂

lim
−→

(Ki
n.X([n])) ∼= lim

−→

( ∫ [n]∈�̂

Ki
n.X([n])

)
= lim
−→

X̂(Ki),

the first equality by definition of X̂ and since colimits are calculated objectwise in �̂opSet,

the first isomorphism because of the adjunction C(S.X, Y ) ∼= Set(S, C(X, Y )), the second

isomorphism by commuting the colimits, and finally the last equality by definition of

X̂. �

3.10. Notation. Let n > 1. Let h : [0, 1]n → [0, n] be the continuous map defined by

h(x1, . . . , xn) =
n∑

i=1

xi.

Note that for all x, y ∈ [0, 1]n, x 6 y implies h(x) 6 h(y) and that x 6 y and h(x) = h(y)

implies x = y.

3.11. Proposition. Let n > 1. Let f : [n] → [n] be a cotransverse map. Then for all

(ǫ1, . . . , ǫn) ∈ [n], one has h(ǫ1, . . . , ǫn) = h(f(ǫ1, . . . , ǫn)).

Proof. We proceed by induction on h(ǫ1, . . . , ǫn). Consider the increasing sequence

ǫ∅ < ǫ{1} < ǫ{1,2} < · · · < ǫ{1,2,...,n}

of elements of [n]. The map f being cotransverse by hypothesis, one has
−→
d 1

(
f(ǫ∅), f(ǫ{1})

)
= 1,

−→
d 1

(
f(ǫ{1}), f(ǫ{1,2})

)
= 1,

. . .
−→
d 1

(
f(ǫ{1,...,n−1}), f(ǫ{1,...,n})

)
= 1.

Since f : [n] → [n] is strictly increasing, we obtain f(ǫ∅) = ǫ∅ and f(ǫ{1,...,n}) = ǫ{1,...,n}.

We deduce that h(ǫ∅) = hf(ǫ∅) and that h(ǫ{1,...,n}) = hf(ǫ{1,...,n}). The formula is

therefore proved for h(ǫ1, . . . , ǫn) = 0 (and also for h(ǫ1, . . . , ǫn) = n). Suppose the

formula proved for all (ǫ1, . . . , ǫn) ∈ [n] such that h(ǫ1, . . . , ǫn) 6 H < n. Let (ǫ1, . . . , ǫn) ∈

[n] such that h(ǫ1, . . . , ǫn) = H+1 > 1. There exists (ǫ′1, . . . , ǫ
′
n) ∈ [n] with h(ǫ′1, . . . , ǫ

′
n) =

H and (ǫ′1, . . . , ǫ
′
n) < (ǫ1, . . . , ǫn). We deduce that

−→
d 1((ǫ

′
1, . . . , ǫ

′
n), (ǫ1, . . . , ǫn)) = 1. The

map f being cotransverse, we obtain
−→
d 1(f(ǫ′1, . . . , ǫ

′
n), f(ǫ1, . . . , ǫn)) = 1. We obtain the

equalities h(f(ǫ1, . . . , ǫn)) = h(f(ǫ′1, . . . , ǫ
′
n)) + 1 = H + 1, the first equality by definition

of d1 and the second equality by induction hypothesis. �

As a corollary, we obtain the following proposition.

3.12. Proposition. Let ψ : [m] → [n] be a cotransverse map. Then ψ induces a map of

Lawvere metric spaces from [m] to [n] which is quasi-isometric.
6



A cotransverse map is not necessarily an isometry. For example, the map γ1 : [2]→ [2]

defined by γ1(ǫ1, ǫ2) = (max(ǫ1, ǫ2),min(ǫ1, ǫ2)) is cotransverse and γ1(1, 0) = γ1(0, 1) =

(1, 0). Note that
−→
d 1((0, 1), (1, 0)) =∞.

3.13. Notation. The inclusion of small categories � ⊂ �̂ induces a forgetful functor

ω̂ : �̂opSet → �opSet which has a left adjoint L̂ : �opSet → �̂opSet which is called the

free transverse set generated by a precubical set.

3.14. Notation. For a precubical (transverse resp.) set K, let K6n be the precubical

(transverse resp.) set defined by

(K6n)p =




Kp if p 6 n

∅ if p > n.

This definition makes sense because �([m], [n]) = �̂([m], [n]) = ∅ when m > n. Let

∂�[n] = �[n]6n−1 and ∂�̂[n] = �̂[n]6n−1 for all n > 0.

3.15. Proposition. For all n > 0, one has the isomorphism of transverse sets L̂(�[n]) ∼=
�̂[n]. There is the isomorphism of transverse sets L̂(∂�[n]) ∼= ∂�̂[n] for all n > 0.

Proof. The first statement is [11, Proposition 2.1.14]. The short argument is repeated for

the ease of the reader. For every transverse set K, one has Kn = (ω̂K)n for all n > 0.

Since the functor � ⊂ �̂ is the identity on objects, we obtain for all n > 0 the bijections

�̂opSet(L̂(�[n]), K) ∼= �opSet(�[n], ω̂K) = (ω̂K)n = Kn = �̂opSet(�̂[n], K).

By the Yoneda lemma, one obtains the isomorphism L̂(�[n]) ∼= �̂[n] for all n > 0. The

second statement is stated with an incorrect argument in the proof of [11, Corollary 2.2.11].

The missing argument is explained now. Consider the small category J ′ such that the

objects are the coface maps [p]→ [n] ∈ � with p < n and such that the morphisms of J ′

are the commutative squares of the form

[p] //

∈�

��

[n]

[q] // [n]

Since �([p],�[n]) = ∅ for p > n and since L̂ : �opSet → �̂opSet is colimit-preserving,

we obtain the isomorphism of transverse sets

lim
−→

[p]→[n]∈J ′

�̂[p] ∼= L̂(∂�[n]).

Consider the small category J such that the objects are the maps [p] → [n] ∈ �̂ with

p < n and such that the morphisms are the commutative squares of the form

[p] //

∈�̂

��

[n]

[q] // [n]
7



Since �̂([p],�[n]) = ∅ for p > n, we obtain the isomorphism of transverse sets

lim
−→

[p]→[n]∈J

�̂[p] ∼= ∂�̂[n].

Consider the inclusion functor L : J ′ → J . It induces a map of transverse sets

L̂(∂�[n]) −→ ∂�̂[n].

By [22, Theorem 1 p. 213], it suffices to prove that the comma category (k↓L) is nonempty

and connected for all objects k of J to complete the proof. Let k : [p]→ [n] be an object

of J . We see immediately that the comma category (k↓L) is nonempty because it contains

the commutative square

[p]
ψ

//

k

��

[p]

ψ′∈�

��
[n] [n]

where the top map ψ : [p] → [p] is given by the unique factorization given by Proposi-

tion 3.5 of k : [p]→ [n] as the composite of a map of �̂([p], [p]) followed by a coface map

ψ′. Consider another object

[p]
ψ1 //

k

��

[r]

ψ3∈�

��
[n]

ψ2 // [s]

of the comma category (k↓L). Consider the following diagram of �̂:

[p]
ψ

// [p]

g

��

ψ′∈�
// [n]

ψ2

��
[p]

gψ

))
h 55 [p]

h′∈�

��

g′∈�
// [s]

[p]
ψ1 // [r]

ψ3∈�
// [s]

where the factorizations ψ2ψ
′ = g′g and ψ1 = h′h are given by the factorization of

Proposition 3.5. We obtain (ψ3h
′)h = ψ3ψ1 = ψ2ψ

′ψ = g′(gψ). By uniqueness of the

factorization of Proposition 3.5, we deduce that ψ3h
′ = g′ and h = gψ. We deduce

the map of (k↓L) depicted in Figure 1. We conclude that the comma category (k↓L) is

connected. �

3.16. Remark. In fact, we could prove that the comma category (k↓L) has an initial

object given by the factorization of k using Proposition 3.5.
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[p]

❅❅
❅❅

❅❅
❅❅

❅❅

❅❅
❅❅

❅❅
❅❅

❅❅

k

��

ψ // [p]

h′g

��❅
❅❅

❅❅
❅❅

❅❅
❅

ψ′

��

[p]
ψ1 //

k

��

[r]

ψ3

��

[n]

❅❅
❅❅

❅❅
❅❅

❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
[n]

ψ2

��❅
❅

❅
❅

❅

[n]
ψ2 // [s]

Figure 1. (k↓L) is connected

4. Cotransverse topological cube

The purpose of this section is to topologize the cotransverse maps, i.e. to extend any

cotransverse map f : [m]→ [n] to a map of Lawvere metric spaces T (f) from ([0, 1]m,
−→
d 1)

to ([0, 1]n,
−→
d 1) which is quasi-isometric. The starting point is the following observation.

4.1. Proposition. Let n > 1. Let f = (f1, . . . , fn) : [n] → [n] be a cotransverse map.

Then there is the equality

fi(x1, . . . , xn) = max
(ǫ1,...,ǫn)∈f−1

i
(1)

min{xk | ǫk = 1}

for all 1 6 i 6 n.

Proof. There are two mutually exclusive cases: fi(x1, . . . , xn) = 0 or fi(x1, . . . , xn) = 1.

Let us treat the case fi(x1, . . . , xn) = 0 at first. For all (ǫ1, . . . , ǫn) ∈ f−1
i (1), min{xk | ǫk =

1} = 1 implies (x1, . . . , xn) > (ǫ1, . . . , ǫn), which implies fi(x1, . . . , xn) = 1: contradiction.

Thus fi(x1, . . . , xn) = 0 implies that for all (ǫ1, . . . , ǫn) ∈ f−1
i (1), one has min{xk |

ǫk = 1} = 0. Assume now that fi(x1, . . . , xn) = 1. Then (x1, . . . , xn) ∈ f−1
i (1). Since

min{xi | xi = 1} = 1, the proof is complete. �

To give the reader the intuition of Proposition 4.1, consider the cotransverse map

f : [3]→ [3] described in Figure 2 (it is the example [11, Figure 5]). Let f = (f1, f2, f3).

The reader must keep in mind that, for boolean values, there are the equalities

min(x, y) = x and y, max(x, y) = x or y.

If x1 = 1 and x3 = 1, or x1 = 1 and x2 = 1 and x3 = 1, then f1(x1, x2, x3) = 1. Thus

f1(x1, x2, x3) = max(min(x1, x3),min(x1, x2, x3)).

If x1 = 1 and x2 = 1, or x2 = 1 and x3 = 1, or x1 = 1 and x2 = 1 and x3 = 1, then

f2(x1, x2, x3) = 1. Thus

f2(x1, x2, x3) = max(min(x1, x2),min(x2, x3),min(x1, x2, x3)).
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(1, 0, 0) //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯
(1, 1, 0)

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

(0, 0, 0) //

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(0, 1, 0)

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(1, 0, 1) // (1, 1, 1)

(0, 0, 1) //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
(0, 1, 1)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(0, 0, 1) //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯
(0, 1, 1)

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯

(0, 0, 0) //

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(0, 0, 1)

99sssssssss

%%❑
❑❑

❑❑
❑❑

❑❑
(1, 0, 1) // (1, 1, 1).

(0, 0, 1) //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
(0, 1, 1)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Figure 2. The cotransverse map f : [3]→ [3]

Finally, if x1 = 1 and x2 = 1, or x1 = 1 and x3 = 1, or x2 = 1 and x3 = 1, or x1 = 1 and

x2 = 1 and x3 = 1, then f3(x1, x2, x3) = 1. Thus

f3(x1, x2, x3) = max(min(x1, x2),min(x1, x3),min(x2, x3),min(x1, x2, x3)).

4.2. Definition. Let f = (f1, . . . , fn) : [n]→ [n] be a cotransverse map. Let

T(f) : [0, 1]n → [0, 1]n

be the set map defined by

T(f)(x1, . . . , xn) = (T(f)1(x1, . . . , xn), . . . ,T(f)n(x1, . . . , xn))

with

T(f)i(x1, . . . , xn) = max
(ǫ1,...,ǫn)∈f−1

i
(1)

min{xk | ǫk = 1}

for all 1 6 i 6 n.

4.3. Proposition. Let n > 1. For all x ∈ [n] ⊂ [0, 1]n, one has T(f)(x) = f(x).

Proof. It is a consequence of Proposition 4.1. �

4.4. Proposition. For all cotransverse maps f : [n]→ [n], the set map

T(f) : [0, 1]n −→ [0, 1]n

is continuous and strictly increasing. Moreover it satisfies the properties

∀(x1, . . . , xn) ∈ [0, 1]n, h(x1, . . . , xn) = h(T(f)(x1, . . . , xn)).

Proof. By Proposition 4.3 and Proposition 3.11, the theorem holds for (x1, . . . , xn) ∈

[n] ⊂ [0, 1]n. From the fact that each projection map (x1, . . . , xn) 7→ xk from [0, 1]n

equipped with the product order to [0, 1] is continuous and nondecreasing, we deduce the

first sentence. Consider a tuple (x1, . . . , xn) ∈ [0, 1]n. There exists a permutation σ of
10



{1, . . . , n} such that xσ(1) > . . . > xσ(n). Using Proposition 3.11 again, write

f(ǫ{σ(1)}) = ǫ{σ′(1)},

f(ǫ{σ(1),σ(2)}) = ǫ{σ′(1),σ′(2)},

. . .

f(ǫ{σ(1),...,σ(n)}) = ǫ{σ′(1),...,σ′(n)}.

From the permutation σ of {1, . . . , n}, we therefore obtain a new permutation σ′ of

{1, . . . , n}. One has ǫ{σ(1)} ∈ f−1
σ′(1)(1). It means that T (f)σ′(1)(x1, . . . , xn) = xσ(1)

because xσ(1) > . . . > xσ(n). One then has ǫ{σ(1),σ(2)} ∈ f−1
σ′(1)(1). It means that

T (f)σ′(2)(x1, . . . , xn) = xσ(2) because xσ(1) > . . . > xσ(n). By repeating a finitely number

of times the same argument, we obtain the equality T (f)σ′(i)(x1, . . . , xn) = xσ(i) for all

1 6 i 6 n. It implies that T (f)(x1, . . . , xn) = (xσσ′−1(1), . . . , xσσ′−1(n)). It means that

h(T (f)(x1, . . . , xn)) = xσσ′−1(1) + · · ·+ xσσ′−1(n) = h(x1, . . . , xn),

the first equality by definition of h and the second equality since σσ′−1 is a permutation

of {1, . . . , n}. �

4.5. Proposition. Let f : [n] → [n] and g : [n] → [n] be two cotransverse maps. Then

there is the equality

T(fg) = T(f) T(g).

Proof. Consider a tuple (x1, . . . , xn) ∈ [0, 1]n. We want to prove that

T (fg)(x1, . . . , xn) = T (f)T (g)(x1, . . . , xn).

We use the calculation made in the proof of Proposition 4.4. Let σ be a permutation of

{1, . . . , n} such that xσ(1) > . . . > xσ(n). Using Proposition 3.11, write

g(ǫ{σ(1)}) = ǫ{σ′(1)},

g(ǫ{σ(1),σ(2)}) = ǫ{σ′(1),σ′(2)},

. . .

g(ǫ{σ(1),...,σ(n)}) = ǫ{σ′(1),...,σ′(n)}

for some permutation σ′ of {1, . . . , n}. There is the equality

T (g)(x1, . . . , xn) = (xσσ′−1(1), . . . , xσσ′−1(n)).

One has yσ′(1) > . . . > yσ′(n) because yσ′(i) = xσ(i) for all 1 6 i 6 n. Using Proposition 3.11

again, write

f(ǫ{σ′(1)}) = ǫ{σ′′(1)},

f(ǫ{σ′(1),σ′(2)}) = ǫ{σ′′(1),σ′′(2)},

. . .

f(ǫ{σ′(1),...,σ′(n)}) = ǫ{σ′′(1),...,σ′′(n)}

for some permutation σ′′ of {1, . . . , n}. There is the equality

T (f)(y1, . . . , yn) = (yσ′σ′′−1(1), . . . , yσ′σ′′−1(n)) = (xσσ′′−1(1), . . . , xσσ′′−1(n)),
11



the left-hand equality by the calculation made in the proof of Proposition 4.4, the right-

hand equality by definition of yi. Since we have

fg(ǫ{σ(1)}) = f(ǫ{σ′(1)}) = ǫ{σ′′(1)},

fg(ǫ{σ(1),σ(2)}) = f(ǫ{σ′(1),σ′(2)}) = ǫ{σ′′(1),σ′′(2)},

. . .

fg(ǫ{σ(1),...,σ(n)}) = f(ǫ{σ′(1),...,σ′(n)}) = ǫ{σ′′(1),...,σ′′(n)},

we obtain using the calculation made in the proof of Proposition 4.4 that

T (f)T (g)(x1, . . . , xn) = T (f)(y1, . . . , yn) = T (fg)(x1, . . . , xn).

�

4.6. Notation. For δαi : [n− 1]→ [n] ∈ �, let

T (δαi ) =





[0, 1]n−1 → [0, 1]n

(ǫ1, . . . , ǫn−1) 7→ (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1)

for all n > 1 and α ∈ {0, 1}.

4.7. Proposition. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps with

f ∈ � or g ∈ �. Then there is the equality

T(fg) = T(f) T(g).

Proof. It is well known if both f and g belong to �. If only one of the two maps f or g

belongs to �, we use Definition 4.2 of T (f) or T (g) for the map not belonging to � and

we add 0 or 1 to the other coordinates, depending on the coface map. �

4.8. Proposition. Let f : [n] → [p] and g : [m] → [n] be two cotransverse maps. Then

there is the equality

T(fg) = T(f) T(g).

Proof. Consider the commutative diagram of �̂ (the vertical maps are coface maps)

[m]
g

// [n]
f

// [p]

[m]
g′

// [m]

δ

OO

f ′

// [m]

δ′

OO

where the factorizations g = δg′ and f = δ′f ′ are given by Proposition 3.5. Then there is

the sequence of equalities (by repeatedly using Proposition 4.5 and Proposition 4.7)

T (fg) = T (δ′f ′g′) = T (δ′)T (f ′g′) = T (δ′)T (f ′)T (g′)

= T (δ′f ′)T (g′) = T (fδ)T (g′) = T (f)T (δ)T (g′) = T (f)T (δg′) = T (f)T (g).

�
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4.9. Theorem. The mappings

[n] 7→ [0, 1]n for all n > 0

f : [n]→ [n] ∈ �̂ 7→ T (f) for all n > 1

δαi : [n− 1]→ [n] 7→ T (δαi ) for all n > 1

give rise to a cotransverse topological space called the cotransverse topological cube and

denoted by |�̂[∗]|geom.

Proof. The functoriality is a consequence of Proposition 4.8. �

Proposition 3.8 and Theorem 4.9 lead to the following definition:

4.10. Definition. Let K be a transverse set. Let

|K|geom =
∫ [n]∈�̂

Kn.|�̂[n]|geom

This gives rise to a colimit-preserving functor | − |geom : �̂opSet→ Top.

One has |�̂[n]|geom ∼= |�[n]|geom for all n > 0 where |�[n]|geom is the geometric re-

alization of the precubical set �[n] [15, Notation 4.1]. Since all involved functors are

colimit-preserving, one obtains the natural homeomorphism |L̂K|geom ∼= |K|geom for

all precubical sets K. By Proposition 3.15, we deduce the natural homeomorphism

|∂�̂[n]|geom ∼= |∂�[n]|geom for all n > 0. For all n > 0, there is the pushout diagram

of topological spaces

∐

x∈Kn+1

|∂�̂[n+ 1]|geom

��

∐
x∈Kn+1

|x|geom

// |K6n|geom

��∐

x∈Kn+1

|�̂[n+ 1]|geom // |K6n+1|geom

It implies that the topological space |K|geom is a CW-complex for all transverse sets K,

and therefore that it is ∆-generated and Hausdorff.

4.11. Notation. Let |�̂[n]|−→
d 1

be the Lawvere metric space ([0, 1]n,
−→
d 1) for all n > 0.

There is a topological version of Proposition 3.12:

4.12. Proposition. Let n > 1. Let f : [n] → [n] be a cotransverse map. Then T (f) :

[0, 1]n → [0, 1]n yields a map of Lawvere metric spaces from |�̂[n]|−→
d 1

to itself which is

quasi-isometric.

Proof. Let x, y ∈ [0, 1]n. Suppose first that x 6 y are comparable. Then h(x) 6 h(y).

By Proposition 4.4, there is the inequality h(T (f)(x)) = h(x) 6 h(y) = h(T (f)(y)). We

deduce that
−→
d 1(x, y) = h(y)− h(x) = h(T (f)(y))− h(T (f)(x)) = d1(T (f)(x), T (f)(y)),

the first equality by definition of
−→
d 1, the second equality by the previous remark, and

the last equality by definition of
−→
d 1 and since T (f) is strictly increasing. Now suppose

13



that x 6 y is false. It means that
−→
d 1(x, y) =∞. It implies that

−→
d 1(T (f)(x), T (f)(y)) 6

−→
d 1(x, y). Thus, T (f) : [0, 1]n → [0, 1]n is a map of Lawvere metric spaces. �

4.13. Corollary. Let f : [m] → [n] be a cotransverse map. The induced map T (f) :

|�̂[m]|−→
d 1
→ |�̂[n]|−→

d 1
is a map of Lawvere metric spaces which is also quasi-isometric.

This leads to the theorem:

4.14. Theorem. The mappings

[n] 7→ [0, 1]n for all n > 0

f : [n]→ [n] ∈ �̂ 7→ T (f) for all n > 1

δαi : [n− 1]→ [n] 7→ T (δαi ) for all n > 1

give rise to a cotransverse Lawvere metric space called the cotransverse Lawvere cube and

denoted by |�̂[∗]|−→
d 1

.

Proposition 3.8 and Theorem 4.14 lead to the following definition:

4.15. Definition. Let K be a transverse set. Let

|K|−→
d 1

=
∫ [n]∈�̂

Kn.|�̂[n]|−→
d 1
.

This gives rise to a colimit-preserving functor | − |−→
d 1

: �̂opSet→ LvMet.

5. The c-Reedy model structure of cotransverse objects

In this section, M is a model category such that the projective model structure on

M�̂=n exists for all n > 0 where �̂=n is the full subcategory of �̂ having one object [n]

(see Proposition 5.2). It is the case if M is an accessible model category in the sense

of [26, Definition 5.1] or [18, Definition 3.1.6] by [18, Theorem 3.4.1] or a cofibrantly

generated model category by [19, Theorem 11.6.1].

We want to give a necessary and sufficient condition for a cotransverse object ofM to

be projective cofibrant in Theorem 5.10. The latter theorem is the generalization of [9,

Proposition 2.3.1] from the setting of precubical sets to the one of transverse sets. The

key fact used in [9] is that the small category � is a direct Reedy category, which implies

that the projective model structure on cocubical objects exists and that it coincides with

the Reedy model structure for all model categories. The small category �̂ is not Reedy,

not even Reedy in Berger-Moerdijk’s sense [3, Definition 1.1] or in Cisinski’s sense [5,

Definition 8.1.1] because the factorization of a map is not unique up to isomorphism;

however the category of factorizations of a map has a final object by Proposition 5.3.

The small category �̂ turns out to be c-Reedy in Shulman’s sense [27, Definition 8.25].

5.1. Notation. Let
−→
�̂ = �̂

←→
�̂ =

←−
�̂ =

∐

n>0

{f : [n]→ [n] | f ∈ �̂}

We consider the degree function d([n]) = n for all n > 0.
14



Every morphism f : [m] → [n] of �̂ is basic in the sense of [27, Definition 6.12] since

every factorization of f as a composite [m] → [p] → [n] implies that m 6 p 6 n, and

therefore that every factorization is not fundamental in the sense of [27, Definition 6.12]:

p < min(m,n) = m is impossible indeed. Hence the following proposition:

5.2. Proposition. Let n > 0. The subcategory �̂=n of �̂ generated by the objects of

degree n and the basic morphisms in the sense of [27, Definition 6.12] between them is

the full subcategory of �̂ having one object [n]. In particular, one has

�̂=n([n], [n]) = �̂([n], [n]).

5.3. Proposition. Let f be a map of �̂. Consider the category of factorizations of f : its

objects are the pairs of morphisms (h, g) such that hg = f with h ∈
−→
�̂ and g ∈

←−
�̂ and its

morphisms k : (h, g)→ (h′, g′) are morphisms k (which are called connecting morphisms)

such that there is a commutative diagram

•
g

// •
h // •

•
g′

// •

k

OO

h′

// •

Note that k is necessarily degree-preserving. The category of factorizations of f has a

final object.

Proof. Let f be a map of �̂. Consider the factorization (h, g) given by Proposition 3.5: in

particular, h ∈ �. Consider another factorization (h′, g′) of f . Consider the commutative

diagram of solid arrows of �̂

•
g

// •
h // •

•
g′

// •

k

OO✤
✤

✤

✤
h′

// •

Proposition 3.5 yields the factorization h′ = h′′k with h′′ ∈ � and k which are unique.

We obtain hg = h′g′ = h′′kg′. By uniqueness of the factorization of f=hg given by

Proposition 3.5, we obtain h = h′′ and g = kg′, and therefore h′ = hk. �

5.4. Proposition. The small category �̂ is a c-Reedy category in the sense of [27, Defi-

nition 8.25].

Proof. One has
←→
�̂ ⊂

−→
�̂ ∩

←−
�̂ (first axiom). Every morphism of

←→
�̂ is degree-preserving

(second axiom). Every morphism of
−→
�̂\
←→
�̂ strictly raises degree and every morphism of

←−
�̂\
←→
�̂ = ∅ strictly lowers degree (third axiom). The category of factorizations of f with

connecting maps in
←→
�̂ is connected by Proposition 5.3 (fourth axiom). For every n > 0,

and any degree m < n, the functor
←−
�̂([n],−) : �̂=m → Set is an (empty) coproduct of

retracts of representables (fifth axiom). �

5.5. Notation. Let �̂<n be the full category of �̂ containing the objects [0], . . . , [n− 1] 2.

2This category should be denoted by �̂n with the notation of [27]; I find this notation a bit confusing.
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5.6. Notation. Let n > 0. Following the notations of [27, page 37], let

∂n�̂([p], [q]) =
∫ [m]∈�̂<n

�̂([m], [q])× �̂([p], [m])

The latching and matching object functors Ln,Mn :M�̂ →M�̂=n are given by

(MnA)[n] =
∫

[m]∈�̂

A([m])∂n�̂([n],[m])

(LnA)[n] =
∫ [p]∈�̂

∂n�̂([p], [n]).A([p])

We obtain:

5.7. Theorem. Suppose that the projective model structure onM�̂=n exists for all n > 0.

There exists a unique model structure on M�̂ such that

• The weak equivalences are objectwise.

• A map A → B of M�̂ is a fibration (trivial fibration resp.) if for all n > 0, the

map A([n]) → (MnA)[n] ⊔(MnB)[n]
B([n]) is a fibration (trivial fibration resp.) of

M.

• A map A → B of M�̂ is a cofibration (trivial cofibration resp.)if for all n > 0,

LnB ⊔LnA A → B is a projective cofibration (trivial cofibration resp.) of the

projective model structure of M�̂=n.

This model structure is called the c-Reedy model structure of M�̂.

Proof. By Proposition 5.4 and [27, Theorem 8.26], the small category �̂ is almost c-Reedy

in the sense of [27, Definition 8.8]. The proof is complete thanks to [27, Theorem 8.9]. �

5.8. Proposition. One has

∂n�̂([p], [q]) =




∅ if p > q or n 6 p

�̂([p], [q]) if p 6 q and p < n

Proof. The composition induces a set map �̂([m], [q])× �̂([p], [m])→ �̂([p], [q]). If p > q,

then �̂([p], [q]) = ∅, which implies that �̂([m], [q]) × �̂([p], [m]) = ∅ for all [m] ∈ �̂<n.

If n 6 p, then n− 1 < p. It means that for all [m] ∈ �̂n, one has �̂([p], [m]) = ∅, which

implies that �̂([m], [q]) × �̂([p], [m]) = ∅ for all [m] ∈ �̂<n as well. Assume now that

p 6 q and p < n. The set ∂n�̂([p], [q]) is the quotient of
∐

m<n

�̂([m], [q])× �̂([p], [m])

by the equivalence relation generated by identifying two pairs (h, g) and (h′, g′) such that

hg = h′g′ related by a connecting map, i.e. such that there exists a commutative diagram

of �̂ of the form

[p]
g

// •
h // [q]

[p]
g′

// •

k

OO✤
✤

✤

✤

✤
h′

// [q]
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Consider such a pair (h, g). By applying Proposition 3.5 to g : [p] → [m], we obtain a

commutative diagram of �̂ of the form

[p]
∈�̂ // [p]

k∈�

��

hk // [q]

[p]
g

// [m]
h // [q]

It means that in ∂n�̂([p], [q]), every element of �̂([m], [q])×�̂([p], [m]) is equivalent to an

element of �̂([p], [q])× �̂([p], [p]). Consider (h, g) ∈ �̂([p], [q])× �̂([p], [p]). By applying

Proposition 3.5 to h, we obtain a commutative diagram of �̂ of the form

[p]
kg

// [p]
∈� // [q]

[p]
g

// [p]

k

OO

h // [q].

It means that every element of �̂([p], [q])× �̂([p], [p]) is equivalent in ∂n�̂([p], [q]) to an

element of �([p], [q])×�̂([p], [p]). It means that ∂n�̂([p], [q]) is the quotient of �([p], [q])×

�̂([p], [p]) by the equivalence relation. If (h, g) and (h′, g′) are two equivalent elements

of �([p], [q])× �̂([p], [p]) in ∂n�̂([p], [q]), then it implies in particular that hg = h′g′. By

the uniqueness of the factorization given by Proposition 3.5, it implies that h = h′ and

g = g′. We obtain

∂n�̂([p], [q]) ∼= �([p], [q])× �̂([p], [p]) ∼= �̂([p], [q]),

the first isomorphism since the equivalence relation on �([p], [q])× �̂([p], [p]) restricts to

the equality by the previous arguments, the second isomorphism by the uniqueness of

Proposition 3.5. �

5.9. Proposition. For all n > 0, there is the isomorphism of transverse sets

∂�̂[n] ∼=
∫ [p]∈�̂<n

�̂([p], [n]).�̂[p]

Proof. This is due to the fact that �̂([m], [n]) = ∅ when m > n. �

5.10. Theorem. Suppose that the projective model structure onM�̂=n exists for all n > 0.

Then the projective model structure on M�̂ exists and coincides with the c-Reedy model

structure. Let A : �̂→M be a cotransverse object of M. It is projective cofibrant if and

only if for all n > 0, the map Â(∂�̂[−])→ Â(�̂[−]) is a projective cofibration of M�̂=n.

Note that � is also a c-Reedy category since it is a Reedy category. In this case,

there is the isomorphism of categories Flow ∼= Flow�̂=n for all n > 0 and we recover [9,

Proposition 2.3.1] of the precubical setting.

Proof. The matching object functor Mn : M�̂ →M�̂=n for all n > 0 can be calculated

as follows. There is the sequence of isomorphisms of M

(MnA)[n]
∼=
∫

[m]∈�̂

A([m])∂n�̂([n],[m]) ∼=
∫

[m]∈�̂

A([m])∅ ∼= 1
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where 1 is the terminal object ofM, the first isomorphism by definition of the matching

object functor (Notation 5.6), the second isomorphism by Proposition 5.8, and the third

isomorphism by definition of the weighted limit. Thus, the c-Reedy model structure of

Theorem 5.7 onM�̂ coincides with the projective model structure which therefore exists.

There is the sequence of isomorphisms of M

(LnA)[n]
∼=
∫ [p]∈�̂

�̂([p], [n]).A([p]) ∼=
∫ [p]∈�̂<n

�̂([p], [n]).A([p]) ∼= Â(∂�̂[n]),

the first isomorphism by definition of the latching object functor (Notation 5.6), the

second isomorphism by definition of the weighted colimit and since ∂n�̂([p], [n]) = ∅

for p > n by Proposition 5.8, and finally the third isomorphism by Proposition 5.9 and

since Â is colimit-preserving. By Theorem 5.7, the cotransverse object A is projective

cofibrant if and only if for all n > 0, the map LnA → A is a projective cofibration of

the projective model structure of M�̂=n. Since A([n]) = Â(�̂[n]) by definition of Â, the

proof is complete. �

6. Realizing a transverse set as a flow

6.1. Definition. [8, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X0

of states, two continuous maps s and t from PX to X0 called the source and target

map respectively, and a continuous and associative map ∗ : {(x, y) ∈ PX × PX; t(x) =

s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX |

s(x) = α and t(x) = β}: it is the space of execution paths from α to β, α is called the

initial state and β is called the final state. Note that the composition is denoted by x ∗ y,

not by y ◦ x. The category Flow is locally presentable by [12, Theorem 6.11].

6.2. Theorem. [14, Theorem 7.4] With r ∈ {q,m, h}. Then there exists a unique model

structure on Flow such that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X0 → Y 0 is a

bijection and for all (α, β) ∈ X0 × X0, the continuous map Pα,βX → Pf(α),f(β)Y

is a weak equivalence of the r-model structure of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X0 ×X0,

the continuous map Pα,βX → Pf(α),f(β)Y is a fibration of the r-model structure of

Top.

This model structure is accessible and all objects are fibrant. It is called the r-model

structure of Flow.

By [14, Theorem 7.7], the m-model structure is the mixing of the q-model structure

and the h-model structure in the sense of [6, Theorem 2.1]. Every q-cofibration of flows is

a m-cofibration and every m-cofibration of flows is a h-cofibration by [6, Proposition 3.6].

Note that all involved model categories being accessible, the projective and injective

r-model structures on FlowI exists for all small categories I by [18, Theorem 3.4.1].

6.3. Proposition. With r ∈ {q,m, h}. Let f : X → Y be a weak equivalence of the

r-model structure of flows between r-cofibrant flows. Then for all (α, β) ∈ X0 ×X0, the
18



continuous map Pα,βX → Pf(α),f(β)Y is a homotopy equivalence between r-cofibrant spaces.

In particular, f is a weak equivalence of the h-model structure of flows.

Proof. If r = h, then the map Pα,βX → Pf(α),f(β)Y is a homotopy equivalence of spaces

by definition of the weak equivalences of the h-model structure of flows. If r = q, then the

spaces Pα,βX and Pf(α),f(β)Y are q-cofibrant by [13, Theorem 5.7]. Using Whitehead [19,

Theorem 7.5.10], we deduce that the map Pα,βX → Pf(α),f(β)Y is a homotopy equivalence

of spaces. It remains the case r = m. The spaces Pα,βX and Pf(α),f(β)Y are m-cofibrant by

[14, Theorem 8.7]. By [6, Corollary 3.4], we deduce that the weak homotopy equivalence

Pα,βX → Pf(α),f(β)Y is a homotopy equivalence of spaces as well. �

6.4. Definition. With r ∈ {q,m, h}. A functor F : �̂opSet → Flow is a r-realization

functor if it satisfies the following properties:

• F is colimit-preserving.

• For all n > 0, the map of diagrams of flows F (∂�̂[n])→ F (�̂[n]) is a r-cofibration

of Flow.

• There is an objectwise weak equivalence of cotransverse flows F (�̂[∗])→ {0 < 1}∗

in the r-model structure of Flow.

6.5. Lemma. (well-known 3) Let I be a small category. Let M be a model category (not

necessarily cofibrantly generated) such that both the projective model structure (MI)proj
and the injective model structure (MI)inj exist. Then the identity of M yields a left

Quillen functor (MI)proj → (MI)inj. In particular, every projective cofibration is an

injective cofibration.

Proof. Let A → B be a projective cofibration of MI . Let C → D be a trivial fibration

of M. Let i ∈ I. Consider a commutative diagram ofM of the form

A(i) //

��

C

��
B(i) //

ℓ

>>⑥
⑥

⑥
⑥

⑥
⑥

D

The lift ℓ exists if and only, by adjunction, the lift ℓ exists in the commutative diagram

of MI

A //

��

CI(−,i)

��

B //

ℓ

<<③
③

③
③

③
③

③

DI(−,i)

The point is that CI(−,i) → DI(−,i) is a projective trivial fibration. Thus the lift ℓ exists,

and so does the lift ℓ. We have proved that A → B is an injective cofibration and the

proof is complete. �

6.6. Proposition. With r ∈ {q,m, h}. Let F : �̂opSet→ Flow be a r-realization functor.

Then for all transverse sets K, the flow F (K) is r-cofibrant and there is a natural bijection

3I am unable to find a textbook expounding this elementary result.
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K0
∼= F (K)0. A projective r-cofibrant replacement of the cotransverse flow F (�̂[∗]), let

us denote it by F cof(�̂[∗]), gives rise to a r-realization functor as well.

Proof. Let K be a transverse set. Let n > 0. There is the pushout diagram of transverse

sets

∐

x∈Kn+1

�̂[n+ 1]6n

��

∐
x∈Kn+1

x

// K6n

��∐

x∈Kn+1

�̂[n+ 1] // K6n+1

because ∂�̂[n + 1] = �̂[n+ 1]6n for all n > 0. By applying F , we see that the canonical

map ∅ → F (K) = lim
−→

F (K6n) is a transfinite composition of r-cofibrations of flows.

Hence, F (K) is r-cofibrant. From the objectwise weak equivalence of cocubical flows

F (�̂[∗])→ {0 < 1}∗, we deduce the objectwise bijection of cotransverse sets F (�̂[∗])0 ∼=
{0, 1}∗ ∼= �̂[∗]0. We obtain the natural bijection F (K)0 ∼= K0. By Theorem 5.10, the

map F cof(∂�̂[−])→ F cof(�̂[−]) is a projective r-cofibration of Flow�̂=n for all n > 0. By

Lemma 6.5, the map F cof(∂�̂[−])→ F cof(�̂[−]) is an injective r-cofibration of Flow�̂=n

for all n > 0. Since the composite map F cof(�̂[∗]) → F (�̂[∗]) → {0 < 1}∗ is a weak

equivalence in the projective r-model structure of Flow�̂, the proof is complete. �

6.7. Theorem. With r ∈ {q,m, h}. Let F1, F2 : �̂opSet → Flow be two r-realization

functors. Suppose that there exists a commutative diagram of cotransverse flows

F1(�̂[∗]) //

��

F2(�̂[∗])

��
{0 < 1}∗ {0 < 1}∗

Then for all transverse sets K, the natural map of flows F1(K) → F2(K) is a weak

equivalence of the r-model structure of Flow between r-cofibrant flows. Moreover, for all

(α, β) ∈ K0×K0, the continuous map Pα,βF1(K)→ Pα,βF2(K) is a homotopy equivalence

between r-cofibrant topological spaces.

Proof. By the two-out-of-three property, for all n > 0, the map of flows F1(�̂[n]) →

F2(�̂[n]) is a weak equivalence of the r-model structure of Flow. By Proposition 3.8, the

hypotheses yield a natural transformation µ : F1 ⇒ F2. Let us prove by induction on

n > 0 that the canonical map F1(K6n)→ F2(K6n) is a weak equivalence of the r-model

structure of flows between r-cofibrant flows for all transverse sets K. The case n = 0 is a

consequence of Proposition 6.6. Let n > 0. There is the pushout diagram of transverse
20



∐

x∈Kn+1

F1(�̂[n + 1]6n)

≃

((❘❘
❘❘❘

❘❘❘
❘❘

❘❘
❘

��

// F1(K6n)

≃

$$■
■■

■■
■■

■■
■■

■■
■

��

∐

x∈Kn+1

F2(�̂[n + 1]6n) //

��

F2(K6n)

��

∐

x∈Kn+1

F1(�̂[n + 1])

≃

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

// F1(K6n+1)

$$■
■

■
■

■
■

■

∐

x∈Kn+1

F2(�̂[n + 1]) // F2(K6n+1)

Figure 3. From n to n + 1

sets

∐

x∈Kn+1

�̂[n+ 1]6n

��

∐
x∈Kn+1

x

// K6n

��∐

x∈Kn+1

�̂[n+ 1] // K6n+1

because ∂�̂[n + 1] = �̂[n + 1]6n for all n > 0. Using the existence of the natural

transformation F1 ⇒ F2, the passage from n to n + 1 can be depicted by the following

diagram of flows of Figure 3. By the induction hypothesis, the maps of flows F1(�̂[n +

1]6n) → F2(�̂[n + 1]6n) and F1(K6n) → F2(K6n) are weak equivalences of the r-model

structure of flows between r-cofibrant flows. We have already seen above that the map

of flows F1(�̂[n+ 1])→ F2(�̂[n+ 1]) is also a weak equivalence of the r-model structure

of flows. By definition of a r-realization functor, we can apply the cube lemma [19,

Proposition 15.10.10] [20, Lemma 5.2.6] in the r-model structure of Flow to conclude

that the map F1(K6n+1) → F2(K6n+1) is a weak equivalence of the r-model structure

of Flow between r-cofibrant flows. Since the colimits lim
−→

F1(K6n) and lim
−→

F2(K6n) are

colimits of towers of r-cofibrations between r-cofibrant flows, they are homotopy colimits

by [19, Proposition 15.10.12]. We conclude that the map of flows F1(K) → F2(K) is a

weak equivalence of the r-model structure of Flow between r-cofibrant flows. The proof

is complete thanks to Proposition 6.3. �

6.8. Theorem. With r ∈ {q,m, h}. Consider two r-realization functors

F1, F2 : �̂opSet −→ Flow.

Then there exists a r-realization functor F3 and a zigzag of natural transformations

F1 ⇐ F3 ⇒ F2
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such that there is a commutative diagram of cotransverse flows

F1(�̂[∗])

��

F3(�̂[∗])oo

��

// F2(�̂[∗])

��
{0 < 1}∗ {0 < 1}∗ {0 < 1}∗

and such that for all transverse sets K, the maps F3(K) → F1(K) and F3(K) → F2(K)

natural with respect to K are weak equivalences of the r-model structure of Flow between

r-cofibrant flows. Moreover, for all (α, β) ∈ K0 ×K0, the natural maps Pα,βF3(K)
≃
−→

Pα,βF1(K) and Pα,βF3(K)
≃
−→ Pα,βF2(K) are homotopy equivalences between r-cofibrant

topological spaces.

Proof. Consider a projective r-cofibrant replacement F3 of F1 in the projective r-model

structure of Flow�̂. By Proposition 6.6, F3 is a r-realization functor. Consider the

diagram of solid arrows of Flow�̂

F3(�̂[∗])
µ

//❴❴❴❴

��

F2(�̂[∗])

��
F1(�̂[∗]) // {0 < 1}∗

Since all spaces of execution paths of {0 < 1}∗ are discrete, the right vertical map is a

trivial projective r-fibration of Flow�̂. Thus, there exists a map of cotransverse flows

µ : F3(�̂[∗])→ F2(�̂[∗]) making commutative the diagram above. The proof is complete

thanks to Theorem 6.7. �

Note the difference with the precubical case of [15, Theorem 3.8]. There is, in general,

in the transverse setting, no natural transformation from F1 to F2. The point is that, in

the precubical setting, the category �=n (see Proposition 5.2) is the terminal category

for all n > 0. Thus, in the precubical setting, every r-realization functor corresponds to

a projective r-cofibrant cocubical flow. It is not true in the transverse setting since the

set �̂([n], [n]) is not a singleton for all n > 2.

6.9. Proposition. Every q-realization functor is a m-realization functor. Every m-realization

functor is a h-realization functor.

Proof. Every q-realization functor is a m-realization functor because every q-cofibration of

flows is a m-cofibration of flows by [14, Proposition 7.8] and because the weak equivalences

are the same in the two model structures. Let F : �̂opSet → Flow be a m-realization

functor. Then for all n > 0, the map of flows F (∂�̂[n])→ F (�̂[n]) is a h-cofibration by

[6, Proposition 3.6]. The map of flows F (�̂[n])→ {0 < 1}n is a weak equivalence of the

h-model structure of flows by Proposition 6.3. We have proved that F is a h-realization

functor. �

6.10. Theorem. There exists a q-realization functor | − |q : �̂opSet→ Flow.
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Proof. Let (−)cof be a q-cofibrant replacement functor of Flow. Let

|K|q =
∫ [n]∈�̂

Kn.({0 < 1}n)cof

By [11, Proposition 2.2.10], there is the isomorphism |K|q ∼= |L̂K|q for all precubical sets

K where the left-hand term is the q-realization of the precubical set K with the same

q-cofibrant replacement functor. Using Proposition 3.15, we deduce the isomorphims of

flows |�[n]|q ∼= |�̂[n]|q and |∂�[n]|q ∼= |∂�̂[n]|q for all n > 0. The proof is complete

thanks to [10, Proposition 7.4]. �

7. Natural d-path of a transverse set

It is necessary to consider the symmetric version of the notion of Lawvere metric space

to obtain a convenient notion of the underlying topological space of a Lawvere metric

space.

7.1. Definition. A pseudometric space (X, d) is a set X equipped with a map d : X×X →

[0,∞] called a pseudometric such that:

• ∀x ∈ X, d(x, x) = 0

• ∀(x, y) ∈ X ×X, d(x, y) = d(y, x) (symmetry axiom)

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) 6 d(x, z) + d(z, y).

A map f : (X, d)→ (Y, d) of pseudometric spaces is a set map f : X → Y which is short,

i.e. ∀(x, y) ∈ X × X, d(f(x), f(y)) 6 d(x, y). The category of pseudometric spaces is

denoted by PseudoMet.

The family of balls B(x, ǫ) = {y ∈ X | d(x, y) < ǫ}) of a pseudometric space (X, d)

with x ∈ X and ǫ > 0 generates a topology called the underlying topology of (X, d). This

construction gives rise to a functor from pseudometric spaces to general topological spaces

which is not colimit-preserving by [16, Remark 3.30]. The category of pseudometric spaces

is bicomplete, being a reflective full subcategory of the bicomplete category of Lawvere

metric spaces by [16, Proposition 3.21] 4. Start from a Lawvere metric space (X, d). The

image by the reflection is the pseudometric space (X, d∧) defined for all (x, y) ∈ X ×X

by

d∧(x, y) = min
n>0

min
x=x0,x1,...,xn+2=y

(
n∑

i=0

d(xi+1, xi) + d(xi+1, xi+2)

)

With (x0, x1, x2) = (x, x, y), we obtain d(x, y) = d(x, x) + d(x, y) > d∧(x, y) for all

(x, y) ∈ X ×X.

7.2. Definition. The underlying topological space of a Lawvere metric space (X, d) is by

definition the underlying topological space of the pseudometric space (X, d∧).

7.3. Notation. Let K be a transverse set. The underlying set of |K|−→
d 1

equipped with the

pseudometric
−→
d ∧

1 gives rise to a pseudometric space denoted by |K|d∧

1
. One has

|K|d∧

1

∼=
∫ [n]∈�̂

Kn.|�̂[n]|d∧

1
.

4Note that there is a typo in the statement of [16, Proposition 3.21] which is corrected here.
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This gives rise to a colimit-preserving functor | − |−→
d ∧

1
: �̂opSet → PseudoMet. The

underlying topological space of the pseudometric space |K|d∧

1
is denoted by |K|d1.

7.4. Notation. Let n > 1. Let (x1, . . . , xn), (x′
1, . . . , x

′
n) ∈ [0, 1]n. Let

d1((x1, . . . , xn), (x′
1, . . . , x

′
n)) =

n∑

i=1

|xi − x
′
i|.

7.5. Proposition. Let n > 1. For all x, y ∈ [0, 1]n, there is the equality
−→
d ∧

1 (x, y) = d1(x, y).

Proof. By definition,
−→
d ∧

1 (x, y) is the minimum of the sums of the form
(−→
d 1(x1, x0) +

−→
d 1(x1, x2)

)
+

(−→
d 1(x2, x1) +

−→
d 1(x2, x3)

)
+ · · ·+

(−→
d 1(xn+1, xn) +

−→
d 1(xn+1, xn+2)

)

with n > 0 and x0 = x and xn+2 = y. To have a finite sum, the only possibility is that

x1 = x2 = · · · = xn = xn+1 = z, z 6 x, z 6 y.

Consequently, one has
−→
d ∧

1 (x, y) = min
z6x
z6y

(−→
d 1(z, x) +

−→
d 1(z, y)

)
= min

z6x
z6y

(
d1(z, x) + d1(z, y)

)
.

From the triangular inequality, we obtain d1(x, y) 6
−→
d ∧

1 (x, y). Write x = x0 + x1 and

y = y0 + y1 with x0 6 y0 and y1 6 x1. Let z = x0 + y1. Then one has
−→
d 1(z, x) +

−→
d 1(z, y) =

(
h(x1)− h(y1)

)
+
(
h(y0)− h(x0)

)
= d1(x, y).

We deduce the inequality
−→
d ∧

1 (x, y) 6 d1(x, y). �

7.6. Corollary. For all n > 0, there is the homeomorphism |�̂[n]|d1
∼= [0, 1n].

7.7. Proposition. For all transverse sets K, the underlying sets of the topological spaces

|K|geom and |K|d1 are equal. Moreover, the identity of the underlying set of |K|geom yields

a continuous map from |K|geom to |K|d1 and the topological space |K|d1 is Hausdorff.

Proof. Assume at first that Top is the category of ∆-generated spaces. The topology of

|K|geom is given by the final topology on the colimit of the underlying set of the |�̂[n]|geom.

The forgetful functor PseudoMet → Set from pseudometric spaces to sets has a right

adjoint given by taking a set S to the pseudometric space (S, d0) with d0(x, y) = 0

for all x, y ∈ S. Thus, the forgetful functor PseudoMet → Set is colimit-preserving.

We deduce that the underlying sets of |K|geom, of |K|−→
d ∧

1
and therefore of |K|d1 are equal.

From Corollary 7.6, we obtain the homeomorphism |�̂[n]|geom ∼= |�̂[n]|d1 . For each c ∈ Kn,

we obtain a composite continuous map

|�̂[n]|geom ∼= |�̂[n]|d1

|c|d1 // |K|d1

and, by the universal property of the colimit, a continuous map |K|geom → |K|d1. It is

easy to see that the pseudometric of |K|d∧

1
restricts to a metric on each path-connected

component thanks to the homeomorphisms |�̂[n]|d1
∼= [0, 1n] for all n > 0. Thus, the
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topological space |K|d1 is Hausdorff. Since |K|geom is Hausdorff as well, the proof is valid

for ∆-Hausdorff ∆-generated spaces and the proof is complete. �

Let U be a topological space. A (Moore) path of U consists of a continuous map [0, ℓ]→

U with ℓ > 0. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths of a topological

space U such that γ1(ℓ1) = γ2(0). The Moore composition γ1 ∗ γ2 : [0, ℓ1 + ℓ2]→ U is the

Moore path defined by

(γ1 ∗ γ2)(t) =




γ1(t) for t ∈ [0, ℓ1]

γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].

The Moore composition of Moore paths is strictly associative.

Let n > 1. A d-path of |�̂[n]|geom = [0, 1]n is a nonconstant continuous map γ : [0, ℓ]→

[0, 1]n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1}n and such that γ is nondecreasing with

respect to each axis of coordinates. Let K be a general transverse set. A d-path of K is a

path [0, ℓ]→ |K|geom which is the Moore composition γ1 ∗ · · · ∗ γn of d-paths of cubes of

|K|geom. γ(0) ∈ K0 is called the initial state of γ and γ(ℓ) ∈ K0 is called the final state

of γ. This definition makes sense because for all cotransverse maps f : [m] → [n], the

continuous map T (f) : [0, 1]m → [0, 1]n is nondecreasing by Proposition 4.4.

7.8. Remark. All d-paths of a transverse set K start and end at a vertex of K.

7.9. Definition. Let n > 1. A natural d-path of the topological n-cube [0, 1]n is a d-path

γ = (γ1, . . . , γn) : [0, n]→ [0, 1]n such that for all t ∈ [0, n], one has t = γ1(t)+ · · ·+γn(t).

The set of natural d-paths of [0, 1]n is denoted by Nn. It is equipped with the compact-open

topology. By [15, Proposition 4.10], the space Nn is ∆-generated and ∆-Hausdorff.

Another way to formulate this definition is as follows:

7.10. Proposition. Equip ([0, n],6) with the metric
−→
d 1 : [0, n]× [0, n]→ [0,∞] defined

by

−→
d 1(x, y) =




y − x if x 6 y

∞ if x > y.

A set map γ : [0, n] → [0, 1]n is a natural d-path if and only if it is a quasi-isometry for
−→
d 1.

Proof. The equality t = γ1(t)+ · · ·+γn(t) for all t ∈ [0, n] implies that any natural d-path

is a quasi-isometry for
−→
d 1. Conversely, suppose that the set map γ : [0, n] → [0, 1]n is

a quasi-isometry for
−→
d 1. Then by Corollary 7.6, it is continuous for [0, 1]n equipped

with the standard topology. And being a quasi-isometry, it satisfies t =
−→
d 1(0, t) =

−→
d 1(γ(0), γ(t)) = γ1(t) + · · ·+ γn(t) for all t ∈ [0, n]. Consequently, the continuous map

γ : [0, n]→ [0, 1]n is a natural d-path. �

We can now generalize to transverse set the notion of natural d-path introduced by

Raussen in [24, Definition 2.14] for precubical sets. Let K be a general transverse set. A

natural d-path of K is a path [0, ℓ]→ |K|geom with ℓ > 0 which is the Moore composition

γ1 ∗ · · · ∗ γn of natural d-paths of cubes of |K|geom. γ(0) ∈ K0 is called the initial state

of γ and γ(ℓ) ∈ K0 is called the final state of γ. This definition makes sense because the

identity induces a continuous map from |K|geom to the underlying topological space |K|d1
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of the Lawvere metric space |K|−→
d 1

by Proposition 7.7 and because for all cotransverse

maps f : [m]→ [n], the map T (f) : [0, 1]m → [0, 1]n is a quasi-isometry by Corollary 4.13.

8. Natural realization of a transverse set

We want to use the notion of natural d-path of a transverse set introduced in Section 7

to build the natural realization functor from transverse sets to flows, exactly as we proceed

in [15, Section 5]. The definition is almost a copy-pasting. However, the verification

of the functoriality is a little bit more complicated than in the precubical setting: see

Proposition 8.1.

We define a flow |�̂[n]|nat for n > 0 called the natural n-cube as follows. The set

of states is {0, 1}n. Let n > 1 and α, β ∈ {0, 1}n. Assume that
−→
d 1(α, β) = m > 1,

which implies that α < β. Then let Pα,β|�̂[n]|nat = Nm which must be understood as

the space of natural d-paths in the m-subcube from α to β. Assume that α > β. Let

Pα,β|�̂[n]|nat = ∅. The composition law is defined by the Moore composition of natural

d-paths, which is still a natural d-path.

Let f : [m] → [n] be a cotransverse map. Let α, β ∈ {0, 1}m. Assume that k =
−→
d 1(α, β) > 1. There exists a unique coface map δ : [k]→ [m] with takes 0k to α and 1k
to β. Consider the commutative diagram of �̂ where the vertical maps are coface maps

[m]
f

// [n]

[k]

δ

OO

[f ]α,β // [k]

δ′

OO

obtained by applying Proposition 3.5 to fδ. Then the continuous map Pα,β|�̂[m]|nat →

Pf(α),f(β)|�̂[n]|nat induced by f is the continuous map T ([f ]α,β) : Nk → Nk.

8.1. Proposition. We obtain a well-defined cotransverse flow |�̂[∗]|nat.

Proof. Let f : [m] → [n] and g : [n] → [p] be two cotransverse maps. Let α, β ∈ {0, 1}m.

Assume that k =
−→
d 1(α, β) > 1. Consider the commutative diagram of �̂ where the

vertical maps are coface maps:

[m]
f

// [n]
g

// [p]

[k]

δ

OO

[f ]α,β // [k]

δ′

OO

[g]f(α),f(β)
// [k]

δ′′

OO

Because of the uniqueness of the factorization given by Proposition 3.5, we have

[gf ]α,β = [g]f(α),f(β)[f ]α,β.

We obtain

T ([gf ]α,β) = T ([g]f(α),f(β))T ([f ]α,β)

by Proposition 4.8. �

Using Proposition 3.8 and Proposition 8.1, we obtain:
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8.2. Definition. Let K be a transverse set. Consider the colimit-preserving functor

|K|nat =
∫ [n]∈�̂

Kn.|�̂[n]|nat.

It is called the natural realization of K as a flow.

The following theorem concludes the paper.

8.3. Theorem. The natural realization functor |−|nat from transverse sets to flow defined

in Definition 8.2 is a m-realization functor. It is homotopy equivalent to the q-realization

functor |−|q of Theorem 6.10 in the following sense. There exists a m-realization functor

F : �̂opSet → Flow and two natural transformations inducing bijections on the sets of

states

| − |q ⇐ F (−)⇒ | − |nat

such that for all transverse sets K and all (α, β) ∈ K0×K0, there is the zig-zag of natural

homotopy equivalences between m-cofibrant topological spaces

Pα,β|K|q Pα,βF (K)
≃oo ≃ // Pα,β|K|nat .

Note that in fact, Pα,β|K|q is even q-cofibrant for all (α, β) ∈ K0 ×K0.

Proof. One has |�[n]|nat = |�̂[n]|nat: the natural realization of the precubical set �[n] is

equal to the natural realization of the transverse set �̂[n] because it is exactly the same

definition. Using Proposition 3.15, we deduce for all n > 0 the natural isomorphism

|�[n]|nat ∼= |L̂(�[n])|nat. Since all involved functors are colimit-preserving, we obtain for

all precubical sets K the isomorphism of flows |K|nat ∼= |L̂(K)|nat. Using Proposition 3.15,

we deduce the isomorphism of flows |∂�[n]|nat ∼= |∂�̂[n]|nat for all n > 0. Thus the

natural realization functor from transverse sets to flow is a m-realization functor because

the natural realization functor of precubical sets as a flow is a m-realization functor by [15,

Theorem 5.9]. Every q-realization functor is a m-realization functor by Proposition 6.9.

The proof is complete thanks to Theorem 6.8. �
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