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Exploring crop spatial organizations within landscapes is a promising solution for agroecolog-12 ical transitions and climate change adaptation in Mediterranean rainfed hilly agrosystems. A 13 prerequisite is to ensure that crop models can simulate a range of agrohydrological processes 14 in such agrosystems. The current study deepened the evaluation of the AquaCrop model by 15 conducting a multicriteria evaluation (canopy cover CC, dry aboveground biomass AGB, ac-16 tual evapotranspiration ETa, runoff R, soil water content SWC) for a range of crop and soil 17 combinations, and for contrasted hydroclimatic years in northeastern Tunisia. The data were 18 collected in the Kamech catchment (OMERE Observatory) during nine measurement cam-19 paigns on predominant soils and crops. AquaCrop simulations were based on field observations 20 and parameters from the literature.

Introduction 38

Mediterranean agriculture is an important sector from economic, social and environmental per-39 spectives, especially for the southern and eastern Mediterranean countries. It is a significant 40 contributor to gross domestic product (GDP) in these countries; it ensures food security, and it

The model calculates soil evaporation (Es) and crop transpiration (Tr) separately, which per-147 mits the quantification of the amount of water unused by vegetation [START_REF] Steduto | AquaCrop-The FAO Crop Model to Sim-996 ulate Yield Response to Water: I. Concepts and Underlying Principles[END_REF]. The soil water content at each time step results from the balance of drainage, infiltration from 156 rainfall/irrigation, soil evaporation and crop transpiration. AquaCrop accounts for four types 157 of stress that affect crop growth: water stress, heat stress, fertilization stress and salinity stress.

Datasets 197

The current study benefits from a large database collected over the last three decades in the 198 framework of the OMERE Observatory. This database includes meteorological, pedological, 199 hydrological and agronomic observations (Mekki et al., 2006(Mekki et al., , 2018;;Zitouna-Chebbi et al., 200 2018;Inoubli et al., 2017). This permitted to perform a thorough, multicriteria evaluation of 201 the AquaCrop model.

202

We chose wheat/barley, oats and faba bean as representative species of grain cereals, fodder 203 cereals and legumes, respectively. For each of these crops, some datasets were available be-204 tween 2001 and 2013. Each of these datasets included a range of observations collected 205 throughout a crop cycle on a given plot from September to August that also corresponded to a 10/52 hydrological year. We selected the nine most complete datasets for conducting the AquaCrop 207 multicriteria evaluation. This resulted in the combination of five years and eight plots. Table 1 208 shows the available datasets, including the panel of data available in each of the nine datasets 209 for the AquaCrop multicriteria evaluation. Fig. 1 shows the location of the plots within the 210 Kamech catchment. In the panel of plots presented in Fig. 1, plot A differs from the others. 211 Indeed, this plot has been dedicated for two decades to regular monitoring as part of the 212 OMERE Observatory. This monitoring included meteorological forcing, surface and subsur-213 face hydrological monitoring, vegetation monitoring and soil characterization.

214

In the remainder of this section, we present the climatic, pedological, agronomic and hydrolog-215 ical data, by distinguishing between (1) the data used as inputs to the AquaCrop model and

216

(2) the data used for the multicriteria evaluation of the model simulations. 

AquaCrop input data

The climatic data were collected by the meteorological station located near the outlet of the 230 catchment area (see Fig. 1). First, ET0 was calculated at the half-hourly time step by using the 231 FAO-56 method along with measurements of solar radiation, air temperature, air humidity and 232 wind speed. Next, estimates calculated at the half-hourly time step were integrated at the daily 233 timescale.

showed relative differences of approximately 15% on average (Table SP1 in supplementary 250 materials), which corresponds to the precision and spatial representativeness of local field 251 measurements, approximately 15% [START_REF] Susha Lekshmi | A critical review of soil moisture measurement[END_REF][START_REF] Walker | In situ measurement of soil moisture: a comparison of techniques[END_REF]Robinson et al., 2008). Next, we verified the consistency of the HWP and HFC estimates with the time 253 series of SWC (SWC data are presented in Section 3.3.6). This led to the use of the estimates 254 from the laboratory measurements for plot A, and to the estimates from the agroclimatic 255 method for the other plots. bean (Yuan et al., 2013;Zeleke, 2019), but they need to be tested and confirmed in other geo-266 climatic contexts and for other crop varieties to ensure that they are reliable, as is the case for 267 those related to wheat or corn crops.

268

For wheat, barley and faba bean, we used parameters proposed in the literature that were rather 269 suitable for the local varieties of our study site, as indicated in Table 2 of Alaya et al. (2019).

270

For oats, we used the values proposed by Yuan et al. (2013) , (2012;[START_REF] Tanyeri-Abur | Food Security in the Southern Mediterranean/North Africa[END_REF]2018), and Boudhina et al., (2017a, 2017b, 2018)). ETa data were finally ag- Coefficient k is an extinction coefficient that quantifies the light interception by canopy cover 295 [START_REF] Pereira | Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models[END_REF]. We used a k value equal to 0.57 for all cereals. The determination of this 296 k value is discussed in Section 2 of the supplementary materials.

297

We also used measurements of dry aboveground biomass (AGB), except for barley in plot D offset can be equal to 1 and 0, respectively). If the critical values (p value) were larger than 361 5%, then the null hypothesis could not be rejected with 95% confidence, and model perfor-362 mances could be considered satisfactory.
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where Pi and Oi, are the simulated and observed variables at time step i, respectively. Ō is the 364 averaged value of the observations, and n is the observation number.

365

MBE indicates whether the model simulations underestimate or overestimate the observations.

366

NRMSE gives an indication of the relative difference between simulations and observations. 

384

To study these results in detail, we analysed the temporal evolution of CC for each simulation 414 Finally, we could not conclude on any possible trend to over-or under-estimation according 415 to the magnitude of observations. Indeed, the regression slope could be larger or lower than 416 one from one soil class to another, in contrast to results reported on a crop type basis for which 417 the regression slope was systematically lower than one. 

Aboveground biomass (AGB)

430

The comparison between simulated and observed AGB (Fig. 4 and Table 5), for each crop type,

431

showed a good estimation of this variable by the model for cereals, with R 2 approximately 0.95 432 and RMSE approximately 0.6 ton ha -1 (16% relative). For faba bean, the simulations were less To better understand the poor results for faba bean, Fig. SP3 displays the temporal evolution 449 of AGB for both cereal crops and faba bean during the crop cycle. We noted that AquaCrop ments of ETa (Fig. 6 and Table 7) showed a slight overestimation of the observations. The overestimation was more important for oats (MBE = 0.28 mm day -1 ) than for wheat 479 (MBE = 0.17 mm day -1 ). The other indicators showed that the model performance was accepta- From the comparison between AquaCrop simulations and in situ measurements of runoff, for 540 each soil class (Fig. 8 and Table 9) we noted a better performance of the model for Vertisols noted that the regression slope could be far from the 1:1 line for wheat. Additionally, we could 564 not conclude on any possible trend to over-or underestimation according to the magnitude of 565 in situ measurements. Indeed, the regression slopes were lower than one, apart from oats (1.04).

566

For oats and barley, the t test provided p values larger than 5%. For wheat, the t test provided 567 p value lower than 5%. For faba bean, the t test provided a p value lower than 5% for slope. et al., 2014;[START_REF] Toumi | Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management[END_REF]. Beyond such differences during the senescence,

Discussion

611

the method used to convert LAI to CC for cereals might be an additional source of uncertainty,

612

since the conversion was calibrated on hemispherical photos and applied on planimetric meas-613 urements, both observation types leading to physical differences (Jonckheere et al (2005).

Aboveground Biomass (AGB)

615

AquaCrop simulated AGB well, with an overestimation trend at the end of the crop cycle (e.g.,

616

faba bean, Fig. SP3). This could be ascribed to the overestimation of CC observations by Aq- , 2018;[START_REF] Zitouna-Chebbi | Observing Actual Evapotranspiration from Flux Tower Eddy Covariance Measurements within a Hilly Watershed: Case Study of the Kamech Site[END_REF]. Besides, Katerji et al. (2013) recalled that the ETa 636 calculation method in AquaCrop has been subject to several criticisms, especially when applied 637 in semiarid Mediterranean regions (Katerji and Rana, 2006;Lovelli et al., 2007). A first source simulated runoff early in the crop cycle, but we did not observe coincident runoff events from 663 field observations. We observed the same difference between simulated and unobserved peak 664 runoff at the end of the crop cycle, for wheat in 2013 in plot A and for oats in 2002 in plot P6.

665

This could be explained by the presence of shrinkage cracks, which are known to generate 666 preferential infiltration at the expense of runoff (Inoubli et al., 2017).

667 [START_REF] Wolka | Soil and water conservation management on hill slopes in southwest Ethiopia. II. Modeling effects of soil bunds on surface runoff and maize yield using AquaCrop[END_REF] Table SP1 shows that HWP estimates from the agroclimatic method underestimated those from the laboratory method, with values of relative difference Δ between -26% and -18%, apart from plot D (32%). For HFC, the differences between the two methods were small, with values of relative difference Δ between -3% and 10%, apart from plot P8 (24%). In this case, HFC estimates from the agroclimatic method overestimated those from the laboratory method, apart from plot P6. Fig. SP1 displays the times series of soil moisture measurements, as well as the HFC and HWP estimates from (1) the laboratory measurements (HWP-lab and HFC-lab), and (2) the agroclimatic method (HWP-AC and HFC-AC) for each of all plots. Fig. SP1 shows that, apart from plot A, the soil moisture measurements before the harvest dates reach lower levels than the HWP estimates from the laboratory measurements.

As a result, we selected the estimates from the agroclimatic method for all plots apart from plot A. For plot A, the differences between estimates from both methods were very low (10% relative, comparable to measurement errors), and we selected the estimates from laboratory measurements that were collected in the framework of the OMERE observatory. 

148

  Another feature of the model is the description of canopy growth by using canopy cover (CC) 149 instead of leaf area index (LAI). The model calculates Tr as a function of CC, and biomass is 150 determined as a function of both Tr and normalized water productivity (WP*). The yield is 151 finally calculated by multiplying biomass by harvest index (HI). Water productivity (WP*) 152 accounts for atmospheric concentration [CO2] and therefore permit to apply AquaCrop in pro-153 spective climate contexts related to precipitation, air temperature, evaporative demand and 154 [CO2].

  155

Fig. 1 .

 1 Fig. 1. Map of the Kamech catchment with the location of the plots A, B, D, P5, P6, P7, P8
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385Fig. 2 .

 2 Fig. 2. Comparison between simulated and observed canopy cover (CC) on a crop type basis.

Fig. 3

 3 Fig. 3 Comparison between simulated and observed canopy cover (CC) on a soil class basis.

437 Fig. 4 .

 4374 Fig. 4. Comparison between simulated and observed aboveground biomass (AGB) on a crop

450

  appropriately simulated AGB for 2002 in plot P7. For the year 2001 in plots P5 and P8, the 451 model acceptably simulated AGB at the beginning of the crop cycle until Day 125 after sowing, Table6) for each soil class, showed that AquaCrop simulated AGB well for the 3 soil classes.456Bias values indicated that the model tended to overestimate observations for Vertisols and Lu-457 visols (MBE > 0) and to underestimate them for Cambisols (MBE < 0). The R 2 values were 458 above 0.84, with a small relative variation of 6% across the 3 soil classes. The RMSE values 459 were between 0.62 ton ha -1 (17% relative) and 0.95 ton ha -1 (21% relative). Additionally, all 460 regression slopes were close to one, as was the case when analysing results on a crop type basis.461This outcome agreed with the results of the t test that provided p values larger than 5% for all 462 soil classes.

Fig. 5 .

 5 Fig. 5. Comparison between simulated and observed aboveground biomass (AGB) on a soil

Fig. 6 .

 6 Fig. 6. Comparison between simulated and observed actual evapotranspiration (ETa) on a

Fig. 7 .

 7 Fig. 7. Comparison between simulated and observed runoff (R) on a crop type basis. Each

For a better understanding

  of these scatterplots, Fig. SP5 displays the temporal evolution of 531 observed and simulated runoff for each dataset. Apart from wheat in plot A in 2013, the ob-532 served runoff was usually low, with values below 15 mm day -1 . The most important differences 533 between observed and simulated accumulations were noted for wheat in plot P7 in 2001 (12 mm day -1 ) and for oats in plot P6 in 2002 (29 mm day -1 ). We also noted that the model simu-535 lated large runoff values at the beginning of the crop cycle compared to in situ measurements. 536 This was true for wheat in plot P9 in 2002 and in plot A in 2013, as well as for oats in plot P6 537 and faba bean in plot P7 in 2002. The same trend was also observed at the end of the crop cycle 538 (the last 40 days) for oats in plot P6 in 2002 and wheat in plot A in 2013.

  539

541(

  R 2 = 0.82, RMSE = 0.71 mm day -1 ), where the large R 2 value for Vertisols likely results from 542 a single large runoff event. The model performed worse for Cambisols (R 2 = 0.22 and 543 RMSE = 0.76 mm day -1 ) and Luvisols (R 2 = 0.21 and RMSE = 0.28 mm day -1 ). The t test pro-544 vided p values larger than 5% and lower than 5% for offset and slope, respectively.

Fig. 8 .

 8 Fig. 8. Comparison between simulated and observed runoff (R) on a soil class basis. Each

  568

Fig. 9 .

 9 Fig. 9. Comparison between simulated and observed soil water content (SWC) on a crop type

  and NRMSE values on CC were ascribed to an overestimation of CC obser-600 vations by AquaCrop simulations throughout the senescence phase. This overestimation could 601 result from the fact that the model disregarded the effect of high temperatures on crop func-602 tioning during the senescence phase (Andarzian et al., 2011). First, AquaCrop accounted for 603 the effect of heat stress (low and high temperatures) on the pollination and harvest index only. 604 Second, the early senescence we observed was not due to water stress: the seasonal courses of 605 ETa and ET0 observed for wheat in 2013 in plot A (Fig. SP4) started to diverge as of DAS 140 606 (19 Apr 2013), while senescence began at DAS 120 (30 Mar 2013). According to local farmers, 607 early or sudden senescence of vegetation after heat waves has been observed in Kamech. 608 Other studies reported overestimations of field observations by AquaCrop for CC at the end of 609 the crop cycle for wheat in arid / semiarid climates, with lower magnitudes (Andarzian et al., 610 2011; Sghaier

617

  uaCrop simulations during the senescence phase in relation to a possible delay in senescence 618 by model simulations. For faba bean plot P5 in 2001, this could not be shown due to the lack 619 of CC measurements at the end of the crop cycle. However, Fig. SP2 indicates a recurrent 620 overestimation of CC observations by AquaCrop simulations at the end of the crop cycle for 621 different crop types and soil classes. Other studies have reported an overestimation of AGB 622 observations by AquaCrop simulations, either at the end of the crop cycle (Katerji et al., 2013; 623 Ahmadi et al., 2015; Sandhu and Irmak, 2019) or during the growth phase (Sghaier et al., 2014). performance in simulating ETa for wheat and oats, with a trend 626 to slightly overestimate observations. The overestimation of ETa from DAS 130 (9 April 2013) 627 for wheat and DAS 140 (3 May 2005) for oats could be related to the overestimation of CC 628 observations during the senescence. Masasi et al. (2019) reported a similar trend for sorghum 629 in a semiarid climate, and they suspected large atmospheric evaporative demand and poor char-630 acterizations of soil hydrodynamic parameters. Despite this overestimation in ETa, AquaCrop 631 well reproduced the divergence between ETa and ET0 courses at the end of the crop cycle. 632 The differences between simulated and observed ETa values could also be due to (1) the eddy 633 covariance measurements that tend to underestimate ETa (Boudhina et al., 2019; Leuning et 634 al., 2012), and (2) the reconstruction of missing ETa data that induces uncertainties (Boudhina 635 et al.

988

  Silvestro, P.C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Guijun, Y., Huang, W., Casa, R., 989 2017. Estimating Wheat Yield in China at the Field and District Scale from the Assim-990 ilation of Satellite Data into the AquaCrop and Simple Algorithm for Yield (SAFY) 991 Models. Remote Sensing 9, 509.

Fig. SP1 .

 SP1 Fig. SP1. Time series of soil moisture data (dotted lines) for each of the eight plots. The horizontal lines indicate the soil moisture at wilting point (HWP) and soil moisture at field capacity (HFC) estimates from the laboratory measurements (Lab) (red lines) and agroclimatic method (AC) (blue lines) methods. The vertical lines indicate the harvest dates.

  

  

  

  

  

Table 1 .

 1 The nine available datasets for the multicriteria evaluation of AquaCrop. LAI_plan, ETa, R and SWC stand for LAI from planimetric measurements, canopy cover from 220 visual quantification, actual evapotranspiration, runoff and soil water content, respectively.The value Y of the label Year is related to harvesting year, and thus corresponds the crop cy-222 cle that spreads from September of year Y-1 to August of year Y.

	217

219

CC_visu, 221

Table 2 .

 2 Soil characteristics of the plots. Soil classes are taken fromMekki et al. (2006). We 257 used the same values of soil depth for plots A, B and D thanks to their spatial proximity.

	258				
	Plot	Class	Soil depth Soil hydrodynamic parameters (m 3 /m 3 )
				HWP	HFC
	P5	Vertisol	1.60	0.23	0.45
	P6	Cambisol	1.50	0.21	0.35
	P7	Cambisol	1.60	0.23	0.44
	P8	Cambisol	1.20	0.19	0.46
	P9	Luvisol	1.60	0.25	0.47
	A	Vertisol	1.15	0.34	0.43
	B	Vertisol	1.15	0.26	0.44
	D	Vertisol	1.15	0.23	0.44
	3.2.1.3. Crop parameters			

260

We chose wheat/barley, oats and faba bean as representative species of grain cereals, fodder 261 cereals and legumes, respectively. In the literature, there are some annual crops for which Aq-262 uaCrop parameterizations are not representative of various agro-environmental conditions. In-263 deed, some parameterizations are proposed in the literature for chickpeas (Mubvuma et al., 264 2021), leafy vegetables (Nyathi et al., 2018), table grape (Er-Raki et al., 2021), oats and faba 265

  for the conservative parameters (invariant from one variety to another), and we used values related to wheat for the noncon-272 servative parameters that describe the phenological stages throughout the crop cycle, due to the

	273	
	274	lack of data.
	275	3.2.2. AquaCrop multicriteria assessment
	276	3.2.2.1. Actual evapotranspiration (ETa)
	277	For actual evapotranspiration, two datasets were available (Table 1): the first dataset was col-
		lected in plot A in 2013 for wheat, and the second dataset was collected in plot B in 2005 for

278

oats. The time series were collected at the plot scale, with a 30 min timescale throughout the 279 crop cycle. The daily ETa measurements were derived from the energy balance closure method 280 in 2005 (Zitouna-Chebbi et al., 2015) and from the eddy covariance method in 2013 (Boudhina 281 et al., 2017a). For 2013, the missing latent heat flux data were reconstructed using the REddycessing and gap-filling are discussed in detail by Zitouna-Chebbi (2009); Zitouna-Chebbi et 284 al.

2.2.2. Crop variables (CC, AGB)

  

	289	
	290	canopy cover (CC) for faba bean (Table 1). Nevertheless, AquaCrop simulates CC to describe
	291	crop growth. For cereals, we therefore converted LAI measurements into CC estimates by using
	292	Equation 1, as done in numerous studies (Katerji et al., 2013; Yuan et al., 2013; Pereira et al.,
	293	2015):
		CC = 1 -e -k´LAI	(Equation 1)
			15/52

285

gregated at the daily timescale. 286 3.287 When dealing with vegetation growth throughout the crop cycle, we used planimetric meas-288 urements of the leaf area index (LAI) for cereals (wheat, barley, oats) and visual estimates of

.2.2.3. Soil water content (SWC) 304

  

	318	• For 2001 (end of December) and 2002 (November), runoff was measured in each plot using
	319	a 2 m² size harvesting frame that was connected to a tank with a 20-litre capacity (Mekki
	320	et al., 2006).
	298 321	• For 2013, runoff was measured by the hydrological station located at the outlet of plot A.
	299 322	in 2006. For each of the eight datasets, AGB was determined throughout the crop cycle using The experimental protocol is detailed in Inoubli et al. (2017).
	300	a destructive method (i.e., field samples to be weighed before and after oven drying). Spatial 3.3
	301	sampling varied across datasets, ranging from three to 10 replicates (Mekki, 2003; Boudhina
	302	et al., 2019). For each crop, the number of observation dates also varied across datasets, be-
		tween three and 11 dates at maximum.
	305	Time series of SWC measurements were available for all datasets (Table 1). For 2001, 2002
	306	and 2013, measurements were made using a neutron probe with a weekly frequency. For 2005
	307	and 2006, measurements were made by the gravimetric method, with a biweekly frequency
	308	throughout the crop cycle and with a bimonthly frequency during summer with bare soil. All
	309	measurements were carried out across 1 m depth profiles. To account for spatial variability in
	310	SWC, the samples were collected at different landscape positions (distributed across the top,
	311	middle and bottom of each plot), except for 2001 and 2002, with one measurement only per
	312	plot. The moisture values were obtained by plot-scale averaging of measurements. Detailed
	313	descriptions of the measurements are given in Mekki (2003); Zitouna-Chebbi (2009); Boudhina
	314	et al. (2019).
	315	3.2.2.4. Runoff (R)
	316	Runoff measurements were included in each of the datasets listed in Table 1, apart from oats
		in 2005 and barley in 2006. Runoff data were collected at the daily timescale.

303 3

. Determination of initial soil moisture and fertilization degree

  

	323	
	324	To obtain reliable AquaCrop simulations throughout the crop cycle for each of the nine datasets
	325	(Table 1), it was necessary to set the initial soil water content (SWCi). It was also necessary to
	326	set the fertilization rate (FR) for cereal crops, while no fertilization rate was required for faba
	327	bean that is a nitrogen-fixing legume crop (FR represents the effect of the soil nutrient level on
	328	canopy development and biomass production, and AquaCrop expresses the lack of soil nutrient
	329	from soil fertility stress, by means of stress coefficients). Given that no information was avail-
	330	able for either SWCi or FR, we determined them by minimizing the differences between ob-
	331	servations and simulations of CC, AGB and SWC (time series of ETa were available for only
	332	two datasets).
	333	For each of the nine datasets, we choose 15 SWCi values between HWP and HFC and 30 FR
	334	values ranging from 70 to 100% according to expert knowledge. We then created pairs (SWCi,
	335	FR) and generated the corresponding AquaCrop simulations. The optimal (SWCi, FR) pair was
	336	selected using two criteria. First, the NRMSE (normalized root mean square error) had to be
	337	lower than 15% for SWC, which corresponds to measurement error on soil moisture (Susha
	338	Lekshmi et al., 2014). Second, we minimized the quadratic error between the observations and
		simulations of CC and AGB simultaneously using the objective function F defined by Equation

339 2 (Montes et al., 2014): 340 F = NRMSECC 1/2

+ NRMSEAGB 1/2 (Equation 2) AquaCrop tends to overestimate CC observations during the senescence phase in the case of 342 heat waves (Andarzian et al., 2011), while early senescence is recurrent in Kamech. To avoid 343 the influence of any overestimation when minimizing the quadratic error, we calculated F over 344 a simulation period that spread from the beginning of the crop growth to the maximum plant 345 cover (CC = CC_max). Across the selected AquaCrop simulations, the obtained SWCi values 346 were larger than 0.75 ´ HFC, and those retained for FR were approximately 85%. According 347 to expert opinions, the FR values are representative of actual field conditions in the Kamech 348 watershed. 349 3.4. Model evaluation 350 AquaCrop was evaluated by comparing simulations against observations throughout the crop 351 cycle related to each of the nine datasets by considering the variables listed in Table 1 and 352 related to vegetation (AGB, CC), water fluxes (ETa, runoff as infiltration excess), and water 353 storage (SWC). Table 1 details the available data used for each crop, year and plot. 354 For the statistical evaluation of the simulations against observations, we selected the following 355 indicators: coefficient of determination (R 2 ), root mean square error (RMSE), normalized root 356 mean square error (NRMSE) and mean bias error (MBE). These are commonly used in the 357 literature for evaluating numerical models (Kustas et al., 1996; Jacob et al., 2002), including 358 hydrological (Moriasi et al., 2015) or crop (Yang et al., 2014) models. We also used the Stu-359 dent's t test for linear regressions on model validation, to test the null hypothesis (slope and 360

Results 374 4.1. Canopy cover (CC)

  

367

According to

Jamieson et al. (1991)

, a crop model is classified as excellent if NRMSE < 10%, 368 good if NRMSE ∈ [10% -20%[, acceptable if NRMSE ∈ [20% -30%[ and poor if NRMSE > 369 30%. Likewise, simulations are considered acceptable if the coefficient of determination R 2 is 370 greater than 0.5. For runoff, we did not consider the NRMSE in the evaluation of the AquaCrop 371 simulations because of the low values of this variable, which give very high NRMSE values (> 372 100%) that are difficult to interpret.

373 4. 375 According to the comparison between AquaCrop simulations and in situ measurements of CC 376 (Fig. 2 and Table

3

), for each crop type, AquaCrop simulations overestimated observations for 377 cereals and underestimated them for faba bean, with a positive MBE ranging between 0.03 and 378 0.23 for cereals and a negative MBE (-0.02) for faba bean. The R 2 values did not exceed 0.4, 379 apart from faba bean (0.9). The RMSE values varied between 0.11 (29% relative) and 0.37 380 (75% relative), with the lowest values being observed for faba bean. For wheat and faba bean, 381 the t test provided p values larger than 5% on slope and offset. For barley, the t test provided p 19/52 value lower than 5% on slope and offset. For oats, the t test provided a p value lower than 5% 383 on offset only.

Table 3 .

 3 Statistical indicators when comparing simulations against observations for canopy

	401							
	402	cover (CC) on a crop type basis. n is the observation number. R 2 is the correlation coeffi-
	403	cient. The t test corresponds to the p value of the Student's t test. The statistical indicators
	404		RMSE, NRMSE and MBE are defined in Section 3.4.	
		Crop	Var n	R 2	Offset	Slope	RMSE	NRMSE	MBE
				(-)	(-)	(-)	(-)	(%)	(-)
					Value t test Value	t test	

409

RMSE value (0.09, 18% relative) but a low R 2 value (0.05). Nevertheless, it was difficult to 410 conclude for Luvisols because of the dataset size, with only one plot and one year. Conversely, 411 the results for both Vertisols and Cambisols were similar, with relative changes in statistical 412 indicators of approximately 25%. Apart from t test on slope for Vertisols, all p values were 413 larger than 5%.

Table 4 .

 4 Statistical indicators when comparing simulations against observations for canopy

	425									
	426									
	427	cover (CC) on a soil class basis. n is the observation number. R 2 is the correlation coeffi-
		cient. The t test corresponds to the p value of the Student's t test. The statistical indicators
	429									
		Soil	Var	n	R 2	Offset		Slope		RMSE	NRMSE	MBE
					(-)	(-) Value t test	(-) Value t test	(-)	(%)	(-)
		Vertisols	CC	39	0.59	0.12	0.05	0.77	0.03 0.21	47	0.01
		Cambisols		23	0.76	0.01	0.90	1.06	0.64 0.16	45	0.03
		Luvisols		3	0.05	0.61	0.20	-0.09	0.21 0.09	17	0.05

428

RMSE, NRMSE and MBE are defined in Section 3.4.

Table 5 .

 5 Statistical

	448			
	Crop	Var	n	R 2
				(-)

indicators when comparing simulations against observations for above-445 ground biomass (AGB) on a crop type basis. n is the observation number. R 2 is the correla-446 tion coefficient. The t test corresponds to the p value of the Student's t test. The statistical in-447 dicators RMSE, NRMSE and MBE are defined in Section 3.4.

Offset (ton ha -1 ) Slope (-) RMSE (ton ha -1 ) NRMSE (%) MBE (ton ha -1 ) Value t test Value t test Wheat

  

		AGB 19 0.96	0.22	0.34	0.95 0.30 0.61	16	0.03
	Oats	14 0.95	0.31	0.25	0.94 0.33 0.53	15	0.10
	Faba	14 0.52	0.64	0.44	0.82 0.43 1.40	46	0.08

Table 6 .

 6 Statistical indicators when comparing simulations against observations for above-471 ground biomass (AGB) on a soil class basis. n is the observation number. R 2 is the correla-472 tion coefficient. The t test corresponds to the p value of the Student's t test. The statistical in-

	473						
	474	dicators RMSE, NRMSE and MBE are defined in Section 3.4.	
	Soil	Var n R 2	Offset	Slope	RMSE	NRMSE	MBE
		(-)	(ton ha -1 )	(-)	(ton ha -1 )	(%)	(ton ha -1 )
			Value t test Value t test			
	Vertisols AGB 25 0.86 0.35 0.24 0.94 0.42 0.92	33	0.17
	Cambisols	17 0.89 0.10 0.83 0.95 0.56 0.95	21	-0.13
	Luvisols	5 0.84 0.72 0.47 0.87 0.59 0.62	17	0.23
	4.3. Actual evapotranspiration (ETa)				
	477						

475

As shown in Table

1

, ETa measurements were only available for oats in 2005 (plot B) and for 476 wheat in 2013 (plot A). The comparison between AquaCrop simulations and in situ measure-

Table 7 .

 7 Statistical indicators when comparing simulations against observations for actual

	486							
	487	dicators RMSE, NRMSE and MBE are defined in Section 3.4.
	Crop Var	n	R 2	Offset		Slope		RMSE	NRMSE	MBE
			(-)	(mm day -1 )	(-)		(mm day -1 )	(%)	(mm day -1 )
				Value t test Value t test	
	Wheat ETa	134 0.59 0.54	0	0.82	0	0.69	33	0.17
	Oats	150 0.64 0.33	0.03	0.98	0.72	0.84	38	0.28

480

ble for both crops, with R 2 ≥ 0.6 and RMSE ≤ 0.84 mm day -1 (35% relative on average). Addi-481 tionally, we noted scatterings around the regression lines that were close to the 1:1 line. Apart 482 from slope for wheat, the t test provided p values lower than 5%. 483 484 evapotranspiration (ETa) on a crop type basis. n is the observation number. R 2 is the correla-485 tion coefficient. The t test corresponds to the p value of the Student's t test. The statistical in-

  ).

	506	
	507	4.4. Runoff (R)
	508	For runoff (infiltration excess), in situ measurements were available for all datasets, except for
	509	barley in plot D in 2006 and oats in plot B in 2005 (Table 1). The comparison between Aqua-
	510	Crop simulations and in situ measurements (Fig. 7 and Table 8) for each crop type showed that
		the model overestimated observations. The magnitude of the overestimation varied from one

511

crop to another, and it was larger for oats (MBE = 0.2 mm day -1 ). AquaCrop acceptably simu-512 lated runoff for wheat and faba bean, with R 2 values larger than 0.8 and RMSE values lower 513 than 0.63 mm day -1 . The simulations were less effective for oats (R 2 = 0.41; RMSE = 514 1.44 mm day -1 ). According to Fig. 7, the overestimation of runoff observations by AquaCrop 515 simulations mainly occurred for low runoff values. For wheat in 2013 in plot A, the model 516 acceptably simulated a significant runoff event (27 mm day -1 ) with a slight underestimation.

517

For all crops, the t test on slope provided p values equal to 0. Apart from wheat, the t test on 518 offset provided p values larger than 5%.

Table 8 .

 8 Statistical indicators when comparing simulations against observations for runoff

	530							
	Crop	Var n	R 2	Offset		Slope		RMSE	MBE
				(-)	(mm day -1 )	(-)		(mm day -1 )	(mm day -1 )
					Value t test Value t test
	Wheat	R	478 0.80 0.06	0.03	0.83	0	0.63	0.02
	Oats		147 0.41 -0.03	0.76	14.26 0	1.44	0.20
	Faba		453 0.84 0.01	0.25	1.32	0	0.19	0.02

527

(R) on a crop type basis. n is the observation number. R 2 is the correlation coefficient. The 528 t test corresponds to the p value of the Student's t test. The statistical indicators RMSE, 529 NRMSE and MBE are defined in Section 3.4.

Table 9 .

 9 Statistical indicators when comparing simulations against observations for runoff 553 (R) on a soil class basis. n is the observation number. R 2 is the correlation coefficient. The t 554 test corresponds to the p values of the Student's t test. The statistical indicators RMSE,

	555							
	556			NRMSE and MBE are defined in Section 3.4.
	Soil	Var n	R 2	Offset		Slope		RMSE	MBE
				(-)	(mm day -1 )	(-)		(mm day -1 )	(mm day -1 )
					Value t test Value t test
	Vertisols	R	331 0.82 0.05	0.15	0.83	0	0.71	0.01
	Cambisols		587 0.22 0.06	0.07	1.54	0	0.76	0.08
	Luvisols		160 0.21 0.01	0.61	1.97	0	0.28	0.03
	4.5. Soil water content (SWC)				

557

From the comparison between AquaCrop simulations and in situ measurements of soil water 558 content (SWC) (Fig.

9

and Table

10

), for each crop type, we noted that AquaCrop simulated 559 this variable very well, with R 2 values between 0.76 and 0.95 and RMSE values between 18.5 560 mm and 32 mm. The best simulations were observed with oats. The MBE values indicated that 561 the model simulations slightly underestimated the SWC observations for oats and faba beans 562 and slightly overestimated them for wheat and barley. Despite these favourable results, we 563

Table 10 .

 10 Statistical indicators when comparing simulations against observations for soil wa-

	576								
	577	ter content (SWC) on a crop type basis. n is the observation number. R 2 is the correlation co-
	578	efficient. The t test corresponds to the p values of the Student's t test. The statistical indica-
	579			tors RMSE, NRMSE and MBE are defined in Section 3.4.	
		Crop	Var	n	R 2	Offset	Slope	RMSE	NRMSE	MBE
					(-)	(mm)	(-)	(mm)	(%)	(mm)
						Value	t test Value t test		

Analysis by crop type and soil class that

  reported one of the few assessments on the ability of AquaCrop to simulate AquaCrop showed good performance in simulating soil water content. For oats, the underesti-673 mation of SWC observations was ascribed to the overestimations of ETa and runoff. The dif-AquaCrop performances could be considered satisfactory. For some crop/soil combina-Although there were gaps in database on which the current study relied, it was rich enough to stages of the crop cycle when the cracks were closed. Despite this, the simulations For some soil/crop combinations that have been little studied to date, AquaCrop can acceptably 733 simulate their functioning in terms of vegetation growth and water consumption, as well as in 734 terms of soil water balance, by using parameters available in the literature. Additionally, Aq-The results of the current study are in good agreement with those reported in the literature, Mekki, I., 2003. Analyse et modélisation de la variabilité des flux hydriques à l'échelle d'un Term Observatory of Soil Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the 969 separation of net ecosystem exchange into assimilation and ecosystem respiration: re-970 view and improved algorithm. Global Change Biology 11, 1424-1439. Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., 972 Ogden, F., Selker, J., Wendroth, O., 2008. Soil Moisture Measurement for Ecological 973 and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone Journal 7, Pender, J., 2004. Rural diversity and heterogeneity in less-favoured areas: the quest 976 for policy targeting. Food Policy 29, 303-320. García-Vila, M., Fereres, E., Raes, D., Steduto, P., 2021. The AquaCrop model-Shrestha, S., Deb, P., Bui, T.T.T., 2016. Adaptation strategies for rice cultivation under climate 986 change in Central Vietnam. In: Climate Change Impacts and Adaptation in Water Re-987 sources and Water Use Sectors. Springer Water. Springer, Cham 21, 15-37.

		and crops across contrasted hydroclimatic years. uaCrop. Journal of the American Water Resources Association 55(4), 976-993.
	712 735 900	
	713 736 901	draw several lessons. According to the results we obtained, the model performance was closely uaCrop can simultaneously simulate several variables in an acceptable manner, namely, above-bassin versant cultivé alimentant un lac collinaire du domaine semi-aride méditerranéen
	714 737 902	related to the formalism used for simulations. AquaCrop showed good performance in simu-ground biomass, evapotranspiration, and soil water content. We highlight some limitations of (Oued Kamech, Cap Bon, Tunisie) (Thèse de doctorat). Montpellier 2.
	668 715 738 903 974	lating biomass and soil water content for all crops, on the basis of parameterizations and forcing AquaCrop in terms of vegetation cover and runoff in relation to delayed senescence and disre-Mekki, I., Albergel, J., Ben Mechlia, N., Voltz, M., 2006. Assessment of overland flow varia-
	669 716 904	runoff. They noted that AquaCrop simulated runoff with RMSE values ranging from 9.8 mm (1) that were as adequate as possible for the crops and soils to be studied, and (2) that were in gard of swelling soils, respectively. tion and blue water production in a farmed semi-arid water harvesting catchment. Phys-358-389.
	670	to 61.5 mm. However, it was difficult to compare these results with ours, because of larger line with literature recommendations. The performance of the model was moderate for the sim-ics and Chemistry of the Earth, Parts A/B/C 31, 1048-1061.
	671	rainfall and runoff accumulations for Wolka et al. (2021).
		5.5. Soil water content (SWC)
	674	
	675 745	ferences between simulations and observations could be due to (1) inaccurate soil moisture
	676 746	initialisations, (2) poor characterizations of soil hydrodynamic properties (HWP and HFC) and we focused, with forthcoming efforts on water availability and water productivity in relation
	677	(3) inadequate AquaCrop formalisms when simulating water fluxes (ETa, runoff, drainage). to plot hydrological connectivities within hilly terrains.
	678	Additionally, disregarding capillary rise was not critical because most plots were located at
	679 703	slope tops and therefore relatively far from possible shallow aquifers. Overall, the errors in
	680 704	SWC simulations were ascribed to the characterization of soil hydrodynamic properties (HWP tions, the t test provided p values lower than 5% (e.g., ETa, R, SWC), although the offset re-
	681 705	and HFC), given the accuracies of AquaCrop simulations for water fluxes and crop variables. mained relatively low (e.g., ETa and SWC offset for oats and Cambisols, respectively).
	916	
	706 682 917	Previous studies reported overestimations of SWC observations by AquaCrop simulations, no-5.7. Main outcomes Gomez, C., Hamdi, R., Huttel, O., Jacob, F., Jenhaoui, Z., Lagacherie, P., Le Bis-
	683 707 918	tably for wheat (Andarzian et al., 2011), maize (Nyakudya and Stroosnijder, 2014) and barley To our knowledge, the present work is the first study using AquaCrop for faba bean and oats sonnais, Y., Louati, R., Louchart, X., Mekki, I., Moussa, R., Negro, S., Pépin, Y., Pré-
	684 708	(El Mokh et al., 2017). These overestimations were often noticed during dry periods, which in a semiarid Mediterranean climate. According to the results we obtained, AquaCrop can ac-vot, L., Samouelian, A., Seidel, J.L., Trotoux, G., Troiano, S., Vinatier, F., Zante, P.,
		can be explained by constraints on SWC, since the latter cannot drop below HWP. ceptably simulate the functioning of these two crops by using crop parameters available in the

672 685 5.6. 711 717 ulation of CC, with a possible delay in senescence for most of the crops we addressed. The 718 model showed acceptable performance in simulating ETa, although it was delicate to conclude 719 according to the dataset size (2 years -plots). 720 Runoff was poorly simulated at both the beginning and end of the crop cycle because of shrinkage cracks for clay soils. Soil cracking is a complex phenomenon that is very difficult to include 722 in numerical modelling, especially in simplified models. Runoff simulations were acceptable 723 for the other 739 740 knowing that the previous studies mainly addressed flat terrains. Our study also showed that 741 AquaCrop was able to acceptably simulate crop dynamics and water fluxes for contrasted hy-742 droclimatic years, with a slight dependence on soil class and a significant dependence on crop 743 type, including large differences from one variable to another. 744 Our results open the path for further use of AquaCrop in the Mediterranean context, on which 899 905 Mekki, I., Bailly, J.S., Jacob, F., Chebbi, H., Ajmi, T., Blanca, Y., Zairi, A., Biarnès, A., 2018. 906 Impact of farmland fragmentation on rainfed crop allocation in Mediterranean land-907 scapes: A case study of the Lebna watershed in Cap Bon, Tunisia. Land Use Policy 75, 908 772-783. 909 Mkhabela, M.S., Bullock, P.R., 2012. Performance of the FAO AquaCrop model for wheat 910 grain yield and soil moisture simulation in Western Canada. Agricultural Water Man-911 agement 110, 16-24.
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Table SP1 .

 SP1 Comparison between soil moisture at wilting point (HWP) and soil moisture at field capacity (HFC) estimates by the laboratory measurements (Lab) and the agroclimatic method (AC) methods.

		HWP			HFC		
		AC	lab	∆	AC	lab	∆
		(m 3 /m 3 )	(m 3 /m 3 )	(%)	(m 3 /m 3 )	(m 3 /m 3 )	(%)
	P5	0.23	0.31	-26	0.45	0.41	10
	P6	0.21	0.27	-22	0.35	0.36	-3
	P7	0.23	0.31	-26	0.44	0.41	7
	P8	0.19	0.24	-21	0.46	0.37	24
	P9	0.25	0.33	-24	0.47	0.45	4
	A	0.28	0.34	-18	0.44	0.43	2
	B	0.26	0.34	-24	0.44	0.43	2
	D	0.23	0.34	-32	0.44	0.43	2

Proc gap-filling method(Reichstein et al., 2005). The experimentation, calibration, data pro-

Acknowledgements

but it overestimated observations at the end of the crop cycle. This could explain the low R 2 453 value given in Table 5.

454

The comparison between AquaCrop simulations and in situ measurements of AGB (Fig. 5 The comparison between simulated and in situ measurements of SWC (Fig. 10 and Table 11), between this value and those observed in situ (Katerji and Rana 2006).

643

In contrast to the present study, previous works reported an underestimation for ETa by Aqua-

644

Crop for maize and tomato (Katerji et al., 2013) and for wheat [START_REF] Toumi | Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management[END_REF] 

Supplementary materials -Section 1: materials and methods -soil parameters

Different approaches are proposed in the literature to determine soil moisture at wilting point (HWP) and at field capacity (HFC), including (1) pedotransfer functions (e.g., [START_REF] Saxton | Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions[END_REF] based on the texture of different soil horizons, (2) direct laboratory measurements from soil samples [START_REF] Cassel | Field Capacity and Available Water Capacity[END_REF]) and (3) the agroclimatic method which determines HFC and HWP from soil moisture time series throughout the crop growth cycle (Sreelash et al., 2017).

According to expert knowledge about the soil conditions within our study site [START_REF] Revaillot | Mesurer la capacité de rétention en eau d'un sol par centrifugation : une méthode fiable, facile et rapide à mettre en oeuvre dans un laboratoire[END_REF], the pedotransfer functions are not suitable for the Kamech soils, since the latter are typified by large instability due to poor silt structure. Therefore, we determine HWP and HFC using the laboratory method and the agroclimatic method, and we compared the resulting estimates in order to choose the most reliable ones.

For all plots, we had laboratory measurements of HFC and HWP carried out either on the plots or on neighbouring plots, along with soil moisture data. For the agroclimatic method proposed by Sreelash et al. (2017), HFC corresponds to the maximum soil moisture value without considering measurements after rainfalls or irrigation events, and HWP corresponds to the 5 th percentile of the minimum soil moisture measured throughout the crop growth cycle. To determine HFC and HWP by the agroclimatic method, we used all soil moisture data available for each of the eight plots, beyond the datasets used for AquaCrop evaluation. This led to include additional soil moisture data from 2002 on plot P5 and P8, from 2001 and plot P6 and P9, and from 2006 on plot A. All the soil moisture measurements we considered were collected using the same protocol described in the Section 3.3.6 of the article. For HFC, we assumed that a rainfall accumulation lower than 10 mm does not have a large influence, and we therefore excluded all measurements for which a rainfall accumulation larger than 10 mm was recorded in the previous 48 hours. For HWP, we take the 5th percentile of the minimum value measured throughout the crop growth cycle.

Table SP1 presents, for each plot, HWP and HFC estimates by laboratory measurements (Lab), and by the agroclimatic method (AC), as well as the relative difference Δ calculated as:

where AC (respectively Lab) represents the HWP or HFC estimates by the agroclimatic method (respectively the laboratory method).

Supplementary materials -Section 2: Materials and methods -Vegetation

When dealing with growth cycle of cereals (wheat, barley, oats), we could use leaf area index (LAI) measurements performed with planimeters. In order to validate the AquaCrop simulations of canopy cover (CC), we used Equation SP2 to convert planimetry-based LAI data into CC, considering that this equation had been used in many studies [START_REF] Araya | Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)[END_REF]Abrha et al., 2012;Yuan et al., 2013;[START_REF] Pereira | Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models[END_REF]Zeleke, 2019):

The coefficient k is an extinction coefficient related to the interception of light by crop canopy cover [START_REF] Jeuffroy | Crop physiology and productivity[END_REF][START_REF] Pereira | Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models[END_REF]. It varies according to crop and variety.

Different values of k have been proposed in literature for a given crop. For example, the proposed values for barley are k = 0.5 [START_REF] Pereira | Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models[END_REF], k = 0.48 [START_REF] Belhouchette | Integrating spatial soil organization data with a regional agricultural management simulation model: a case study in Northern Tunisia[END_REF] and k = 0.65 (Abrha et al., 2012). For wheat, [START_REF] Jin | Assessment of the AquaCrop Model for Use in Simulation of Irrigated Winter Wheat Canopy Cover, Biomass, and Grain Yield in the North China Plain[END_REF] proposed a k value of 0.65.

To determine a k value that was suitable to our conditions, we used hemispherical photos that permitted to simultaneously estimate LAI and CC. These photos were collected between 2018 and 2020 thanks to a camera equipped with a fisheye objective. Within each plot, between 10 and 15 photos were collected in a random manner. Table SP2 summarises the number of plots and measurements available per crop. [START_REF] Demarez | Estimation of leaf area and clumping indexes of crops with hemispherical photographs[END_REF][START_REF] Fang | Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications[END_REF]. Therefore, we choose true LAI for equation SP2.

For the present study, we decided to set a single k value for cereals (wheat, barley and oats), equal to 0.57 (R2 = 0.95; RMSE = 0.05). Indeed, the coefficient of variation between the different k values across cereal crops was about 15%, thus comparable to the measurement error [START_REF] Weiss | CAN-EYE, logiciel de traitement d'images pour l'estimation de l'indice foliaire[END_REF]. Moreover, the three cereal crops we considered were straw cereals with similar leaf geometry that induces similar radiative transfer processes within the canopy.