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Abstract: The development of the future French and European bioeconomies will involve developing
new green chemical processes in which catalytic transformations are key. The VAALBIO team
(valorization of alkanes and biomass) of the UCCS laboratory (Unité de Catalyse et Chimie du Solide)
are working on various catalytic processes, either developing new catalysts and/or designing the
whole catalytic processes. Our research is focused on both the fundamental and applied aspects of
the processes. Through this review paper, we demonstrate the main topics developed by our team
focusing mostly on oxygen- and hydrogen-related processes as well as on green hydrogen production
and hybrid catalysis. The social impacts of the bioeconomy are also discussed applying the concept
of the institutional compass.
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1. Introduction

Since its creation in 2006, the VAALBIO group, standing for valorization of alkanes
and biomass, has constantly been conducting dynamic research at UCCS (Unité de Catalyse
et Chimie du Solide–UCCS UMR CNRS 8181), located in Lille, on catalysis for biomass
valorization. This topic is indeed a pillar of bioeconomy development not only in France but
also in Europe. The VAALBIO team today comprises more than 40 researchers. The group is
internationally recognized in the field of heterogeneous catalysis and catalytic processes [1].
Recently, the VAALBIO team extended its research areas to chemo-enzymatic catalysis [2],
hybrid catalysis and, even more recently, to human sciences [3] to be able to measure the
impact of the implementation of new sustainable processes in future biorefineries. In this
Special Issue of Molecules dedicated to “Sustainable Chemistry in France”, a few examples
of our recent results are presented. For the sake of clarity, this review paper is divided based
on the catalytic process. In the first part, the valorization of biosourced platform molecules
such as alcohols, polyols or furanics using different atmospheres (oxidative, reductive,
or neutral) is presented. In the second part, biomass fractionation and green hydrogen
production are discussed. The combination of enzymatic catalysis and chemo-catalysis to
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carry out hybrid catalysis may lead to a real breakthrough in the field of catalysis in the
coming years. The most recent advances of our group in this field are detailed hereafter.
Finally, the new concept of institutional compass, a tool to assess the impact of the new
renewable processes is also presented.

2. Recent Works and Results
2.1. Reactions Involving Oxygen
2.1.1. Selective Oxidation of Glycerol

Glycerol is a waste product of biodiesel production. It is obtained as a byproduct of
the reaction of the transesterification of triglycerides, which yields biodiesel (ca. 1 kg of
glycerol is produced per 9 kg of biodiesel). Glycerol is considered as an important platform
molecule due to (i) its high potential, thanks to the presence of three hydroxyl groups,
which provide a high reactivity, and (ii) numerous upgrading possibilities (various target
molecules) [4]. Figure 1 presents some of the molecules of interest that can be produced
from glycerol such as epichlorohydrin through halogenation (epichlorohydrin), to diols as
monomers for subsequent polymerization through reduction, acrolein which is a synthon
that can be used to produce feed (DL-methionine) or super-adsorbent polymers for diapers
(acrylates) through dehydration, and a variety of aldehydes, ketones or carboxylic acids of
interest through selective oxidation to.
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Figure 1. Examples of molecules of interest obtained through upgrading glycerol.

Among the aforementioned reactions, many studies have especially been published on
the glycerol oxidation reaction in the liquid phase [5]. Most authors used noble metal-based
catalysts (i.e., Pt, Au) in a basic medium to produce mainly glyceric and tartronic acids [6–9].
In our lab, mechanistic and kinetic studies have been carried out to compare the effects
of various metals [10,11]. It has generally been observed that Au-based catalysts are only
active in basic media, while Pt-based catalysts are more active and can be operated in
a wide pH range (i.e., from basic to acid media). Because the price of glycerin strongly
depends on its purity, we studied the effect of the different impurities present in crude
glycerol [8]. The conclusion of such a study is that “impurities” such as methanol or the
base used during the transesterification process help the oxidation of glycerol, but sulfides
and MONG (i.e., Matter Organic Non-Glycerol: triglycerides and free fatty acids) hinder the
catalytic performances drastically, mainly in terms of glycerol conversion, while selectivity
is not impacted. Thus, prior to a catalytic reaction, it is highly recommended to at least
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remove MONG from crude glycerol, as it induces a strong deactivation of most catalysts by
physically blocking their access to the active sites.

In the literature, only a few studies focusing on the production of glyceraldehyde from
glycerol have been carried out [12–14], even though this aldehyde could be applied in many
sectors (e.g., pharmaceuticals, cosmetics, etc.). Among the conventional metals used for
glycerol oxidation in the liquid phase, only Pt shows a good activity toward glyceraldehyde
formation. We performed our first study [15] on Pt/Al2O3 prepared using various methods,
leading to various Pt nanoparticles sizes. We evidenced that in base-free conditions (but
also in basic ones), selectivity is glycerol conversion dependent. Then, we dedicated a
full study to the aforementioned reaction [16], keeping Pt as an active metal deposited
on various supports and evidenced clearly that the selectivity toward glyceraldehyde is
inversely linearly proportional to the glycerol conversion, irrespective of the support. Our
lab-made Pt catalysts supported on SiO2, Al2O3 or TiO2 exhibited different initial glycerol
conversion rates, highlighting them as good catalysts for the production of glyceraldehyde
(i.e., Pt/TiO2). The Pt/TiO2 catalyst presents the smallest initial conversion rate and also
the highest glyceraldehyde selectivity.

Glycerol oxidation with C-C bond cleavage can lead to glycolic acid. This molecule
finds applications as a tanning agent or in cosmetic formulations, for example. Only very
few studies focus on the production of glycolic acid. This is due to the fact that over
conventional noble metal-based catalysts under basic conditions, the formation of C3 acids
is mainly observed (especially tartronic and glyceric acids). We demonstrated that by using
Ag-based catalysts and choosing the ad hoc support, it is possible to favor the formation
of glycolic acid [17,18]. Like for the aforementioned reaction, we first focused on a low
glycerol concentration (i.e., 0.3 M) using a 1.4 wt.% Ag/Al2O3 catalyst. We chose different
types of Al2O3 presenting different acid–basic characters (i.e., basic Al2O3, acidic Al2O3 and
α-Al2O3). We showed that it is very important that the support presents a basic character
in order to efficiently transform glycerol to glycolic acid. The evolution of glycolic acid
yield follows the following order: basic Al2O3 > acidic Al2O3 > α-Al2O3 [18]. In order to
optimize the catalyst formulation, we thus worked on different kinds of basic supports,
keeping the other potential variables constant (e.g., the quantity of Ag, reaction conditions,
etc.) [19]. As illustrated in Figure 2, the catalysts constituted of 1.4 wt.% Ag deposited
on hydrotalcite (HPA) or on La2O3, well known for their basic characters, orientated the
selectivity toward glyceric acid. In this figure, we can see that using ZrO2 and CeO2 allows
us to increase the glycolic yield compared to the aforementioned basic alumina (first catalyst
presented in Figure 2). The next step of the study was to prepare a new support by mixing
the two aforementioned ones and increasing the quantity of silver [20], which led to an
optimal composition, 5 wt.%/Ce0.75Zr0.25O2. Owing to this formulation, we worked on the
optimization of glycolic acid productivity by increasing the initial glycerol concentration up
to 2 M. Using a Design of Experiments (DOE) methodology, we thus optimized the reaction
conditions in order to maximize glycolic acid productivity. We obtained 0.88 M of glycolic
acid, starting from a 2 M glycerol solution. Increasing the initial glycerol conversion led to
the need for an increase in O2 in the batch reactor.

2.1.2. Allyl Alcohol Oxidation to Acrylic Acid

Acrylic acid is one of the most commonly used intermediates used today, with USD
12 billion being spent on it in 2020. The selective oxidation of allyl alcohol to acrylic acid
was studied over orthorhombic, trigonal, tetragonal and amorphous Mo3VOx [21]. The
orthorhombic and trigonal Mo3VOx catalysts showed very similar catalytic performances,
with an interesting shift in selectivity depending on the reaction temperature. In fact,
at low temperatures (<200 ◦C), propanal and acrolein were found as the main products.
Upon increasing the reaction temperature, the selectivity of the latter decreased gradu-
ally, giving rise to acrylic acid and propionic acid and yielding up to 66% acrylic acid at
350 ◦C for the orthorhombic Mo3VOx catalyst and 68% at 325 ◦C for the trigonal Mo3VOx
catalyst. On the other hand, the tetragonal Mo3VOx catalyst was much less active than
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the orthorhombic Mo3VOx and trigonal Mo3VOx catalysts, and exhibited a totally differ-
ent product distribution, mainly yielding acrolein (>70%), even at an increased reaction
temperature of 400 ◦C. Since all the studied catalysts have the same chemical composition,
the difference in the observed catalytic activity was ascribed to the structure, meaning
that the reaction is structure sensitive. In fact, Mo3VOx possesses the same layer-type
structure in the c-direction, but with a different arrangement of the pentagonal {Mo6O21}
units in the a-b plane (Figure 3) [22]. Orthorhombic, trigonal and amorphous Mo3VOx
exhibit heptagonal channels, whereas tetragonal Mo3VOx does not. The exposed section
surface and the side surface of the rod-shaped crystals provide different active sites for
oxidation reactions. Since the arrangement in the c-direction was identical for the four
catalysts, it was concluded that the side surface of the Mo3VOx catalysts was responsible for
the selective oxidation from allyl alcohol to acrolein, whereas the heptagonal arrangement
in the a-b plane catalyzed the oxidation of allyl alcohol to acrylic acid. It is further worth
pointing out that the catalysts exhibited stable performances throughout the whole catalytic
test cycle (>72 h), evidencing the high stability of the structure and the absence of any
sintering or phase rearrangement, also shown by the XRD and N2-physisorption of the
spent catalysts.
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2.1.3. Selective Oxidation of Furanics

Chemically speaking, furfural and 5-hydroxymethylfurfural are heteroaromatic molecules
(furan ring) that also contain an aldehyde group. The transformation of these molecules into
valuable chemicals is made possible by the presence of these functional groups [23]. The
aldehyde group can be oxidized to an acid or undergo direct oxidative esterification. Below,
we discuss the most important aspects that bring together works from the recent years of
research on the catalytic transformations of furfural (FF) and 5-hydroxymethylfurfural (HMF)
through oxidation processes. Given that Au-based catalysts have shown a high potential for
achieving the aerobic oxidation of many substrates in water, their use in furfural oxidation
would be advantageous [23–25]. However, the use of gold catalysts for the production of
furoic acid, maleic acid, or succinic acid under uncontrolled pH conditions (without the
addition of a base) is not well documented yet. Some of the first documents on this topic
were published by our group [26–35]. Over the last 10 years of research on furfural oxidation,
we have studied several factors that influence conversion and selectivity in this process. All
works were performed in base-free conditions. In addition, we have also developed an in
situ method to monitor the liquid phase oxidation of furfural via Raman spectroscopy [34].
Our first study focused on gold nanoparticles supported on different hydrotalcites [27]. It is
known that the basicity of a hydrotalcite carrier strongly depends on the Mg:Al ratio used
during synthesis. Hydrotalcite supports were prepared by a co-precipitation method using
different Mg:Al ratios (5:1, 4:1, 3:1 and 2:1). All catalysts were active in the liquid phase
oxidation of furfural at 110 ◦C and under 6 bar of oxygen. As expected, strong increases both
in the furfural conversion and the yield to furoic acid were observed using supported gold
nanoparticles catalysts as compared to the supports alone [27]. All catalysts were active in the
oxidation of furfural in the liquid phase at 110 ◦C and under 6 bar of oxygen (Table 1). As
expected, strong increases in both furfural conversion and furoic acid yield were observed
using gold nanoparticle catalysts compared to the supports alone [27].

Table 1. Comparison of furfural oxidation efficiency for Au/HT catalysts with supports of different
Mg: Al molar ratios. Reaction: p = 6 bar (O2); t = 110 ◦C; 2 h; 600 rpm; FF/Au molar ratio = 200:1;
[FF] = 22.7 mM; 25 mg catalyst. Adapted with permission from Ref. [27].

Catalyst Temperature
(◦C)

Conversion
(%)

FA Selectivity
(%)

Carbon Balance
(%)

Au/HT 2:1 110 82 86 89
Au/HT 3:1 110 76 88 91
Au/HT 4:1 110 99 100 100
Au/HT 5:1 110 99 100 100

Complete conversion and 100% selectivity to furoic acid were achieved with Au/HT
4:1 and Au/HT 5:1 catalysts. This was probably due to the increase in the overall alkalinity
of the support, which promoted the activity of the catalysts. No leaching of gold was
detected; however, the Mg concentration in the post-reaction mixture steadily increased
with reaction time, indicating gradual leaching. The pH of all samples after the reaction
was 7, which was not expected since both furfural and furoic acid solutions have a pH
of about 3 in water. This is strong evidence that a soluble base was formed in situ [27].
Our works showed that the presence of MgO is essential to achieve a high activity of the
catalysts due to the in situ -OH formation. However, the dissolution of the support is an
important issue. We tried to find a way to stabilize the MgO on the catalyst and to prevent
the leaching. Thus, we proposed a novel catalyst in which Au is supported on a Mg-based
support, a MgF2-MgO mixed phase solid [29]. Au/MgF2 displayed a rather low catalytic
activity, similar to those of titania-, zirconia- and ceria-based catalysts, although it was less
prone to the formation of FA.

The presence of the catalyst did not yield any change in the reaction pH, so there
was no evidence of support leaching. Therefore, the degradation and/or side reactions
and lower catalytic performance can be attributed to the acidic reaction medium, which
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does not favor Au-based solid catalytic functions. Decreasing the content of MgF2 in the
mixed-phase (MgF2-MgO) support resulted in higher conversions, FA yields and carbon
mass balances, as highlighted in Figure 4. Au/MgF2-MgO catalysts were very effective in
the oxidation of furfural to FA, reaching a 99% yield after 2 h of reaction. A value of 60 mol
% of magnesium oxide in the mixed system (MgF2-MgO) is enough to provide the same
activity as that of pure MgO under the same conditions [29].
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Figure 4. Base-free furfural oxidation using Au-based catalysts supported on the MgF2-MgO with
various relative amounts of MgF2 and MgO. (a) Furfural conversion and FA yield versus % MgO;
(b) furfural conversion and initial and final pH values versus % MgO (solid symbols) and blank test
(open symbol) (49.4 µmol, substrate/metal = 50 (mol/mol), air (26 bar), 110 ◦C, 600 rpm, 2 h). pHin

indicates the pH measured before reaction (furfural solution + catalyst) and pHfin indicates the pH
measured after reaction. Reprinted with permission from Ref. [29].

2.1.4. Adipic Acid Synthesis

Adipic acid is one of the most important chemical intermediates—with a foreseen
market of USD 8 billion in 2024—used in the preparation of nylon-6,6 polyamide, fibers
and plasticizers. It is generally obtained using HNO3 in a two-step process. The oxidation
process of cyclohexanone and cyclohexanol (KA oils) is seriously harmful to the envi-
ronment because of the nitrous oxide (N2O) produced in huge amounts. It is generally
thought to be a major factor of global warming and specifically of ozone depletion [36].
With this objective, we developed a new process which could be industrially applicable.
The VAALBIO group is working on two different routes to obtain adipic acid. Cyclohexane
was chosen as a starting reagent because it is largely available and not expensive.

Moreover, unlike to cyclohexene, it can be oxidized using air under solvent-free
conditions. Produced adipic acid is not soluble in cyclohexane and can be easily removed
from the reaction media (Figure 5a). The highest AA selectivity and yield in a 1 mol scale
reaction was obtained at 135 ◦C after 10 h of reaction using the VPO/CeO2 catalyst (Table 2).

Adipic acid can also be obtained through the oxidation of 1,6-hexanediol, as presented
in Figure 5b. We have investigated this reaction using supported gold nanoparticles with
different particle sizes and particle size distributions [37]. The mean diameters of the gold
nanoparticles varied from 3 to 8 nm. Various experimental parameters were studied for
the optimization of reaction conditions, such as the Au/HDO ratio, NaOH equivalent,
agitation and temperature (Figure 6), by applying the DoE approach. We showed that the
most important parameters are Au particle size, HDO to Au molar ratio and agitation.
The best results in terms of the adipic acid yield were obtained using Au obtained via
the sol-immobilization method with polyvinyl alcohol (PVA) catalysts (40% at 110 ◦C),
however, with a low HDO to Au molar ratio (100). Under basic conditions and with a high
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HDO to Au ratio, the adipic acid yield was about 20%, with a much higher carbon balance
(about 95%) [37].
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Table 2. Effect of the time of 1,6 hexanediol oxidation reaction at 120 ◦C and 135 ◦C. Adapted with
permission from Ref [36].

T a (◦C) t b (h) X Cha c

(%)

Selectivity d (%)

Chole Chone AA GA SA

120
4 1.2 84 11 5 0 0

10 5.2 66 17 13 4 0

135
4 3.7 65 15 18 2 0

10 12 13 38 33 11 5
a Temperature of reaction (◦C). b Time of reaction (h). c Conversion of cyclohexane (Cha). d Selectivities of
cyclohexanol (Chol), cyclohexanone (Chone), adipic acid (AA), glutaric acid (GA), and succinic acid (SA).

2.1.5. Selective Oxidation of H2S via Chemical Looping

The selective oxidation of H2S to elemental S is a very attractive alternative to the
Claus process but suffers several drawbacks. The selectivity can be affected by catalysts’
efficiency and operating conditions, and catalysts usually suffer from deactivation. Another
aspect to consider is that usually reactions must be performed at a low H2S concentration
(typically a few % at most). Indeed, due to safety issues, a high concentration of H2S
(mixed to oxygen) cannot be processed. Furthermore, the presence of oxygen does not
allow the treatment of H2S in the presence of other combustible compounds, meaning
that natural gas or biogas containing H2S cannot be treated directly. To overcome these
drawbacks, in 2016, UCCS proposed an innovative approach for the selective oxidation
of H2S to S using the “chemical looping” (CL) concept. Such processes involve an oxygen
carrier which is reduced in the presence of a reductant and produces the desired product.
Subsequently, the exposure of the reduced solid to an oxidant allows the re-oxidation and
regeneration of the carrier. This is intrinsically a transient process which involves the use
of circulating fluidized bed systems [38] or fixed-bed switching reactors. At the laboratory
scale, the fixed-bed reactor, which is fed alternatively with the gas reactants, is usually the
most appropriate, while circulating bed reactor systems are better adapted for industrial
applications, and are already used in fluid catalytic cracking [39]. CL processes were
initially proposed for total combustion but have since been studied for several reactions of
industrial interest, such as the reforming reaction [40,41]. When applied for the selective
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oxidation of H2S to elemental sulfur, the concept of CL consists of separating the reaction
into two distinct steps (1 and 2):

H2S + OCox→ 1/n Sn + H2O + OCred (1)

OCred +
1
2

O2 → OCox (2)

where OCox and OCred represent the oxygen carrier in the oxidized and reduced forms,
respectively.
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The advantages of CL with respect to direct, co-feed, and oxidation reactions are the
following: selectivity can be improved by avoiding a direct interaction between adsorbed
sulfur species and di-oxygen from the gas phase or adsorbed onto the surface of the material
and favoring the reactivity of lattice oxygen species; sulfur species deposited on the surface
of the carrier can be removed during the regeneration step, thus avoiding the deactivation
of the process; no mixing of H2S and O2 can improve the safety of the process and enlarge
the range of H2S concentrations which may be processed; the preferential oxidation of H2S
could be performed in the presence of other combustible gases such as methane.

In the last case, if the preferential oxidation of H2S is achieved in the presence of
methane, then the direct purification of natural or biogas could be performed without
the need of prior separation of H2S, presenting a major breakthrough in natural and
biogas treatments.

The idea of applying chemical looping to the selective oxidation of H2S was proposed
in 2016 through a patent application [42]. Since then, fundamental research has been
performed on the topic and the validity of this concept has also been tested in industrial
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process conditions and in the presence of impurities. The key to such a development is in
the oxygen carrier, which needs to fulfill specific requirements. It should have:

• A high reactivity in both the oxidation and the regeneration reactions;
• A good selectivity for the desired oxidation product, i.e., elemental sulfur;
• A good stability over many redox cycles;
• A good resistance towards sulfur deposition and removal.

Other properties such as a good mechanical resistance in circulating bed systems will
be required for the industrial implementation of the process. V2O5 is well known for its
oxygen mobility and storage capacity and catalytic reactivity for H2S oxidation [43]. It was
therefore chosen as a potential oxygen carrier in the chemical looping mode after checking
the thermodynamic feasibility of the process on this material. V2O5 proved to be highly
reactive and selective towards elemental sulfur at rather low temperatures (150–200 ◦C) [44].
It could be seen that even at such low temperatures, sub-surface V species are involved
in the looping process and not only surface species. On the contrary, it is suspected that
uppermost surface species would be responsible for unselective SO2 production in the
reductant step (i.e., during exposure to H2S). Depending on the reaction conditions, some
deactivation of the system could be observed, but characterizations performed on used
samples suggest that sulfur accumulation should not be responsible for this. The typical
oxide materials used for supporting catalysts, such as TiO2, SiO2, CeO2, Al2O3 or ZrO2,
have been considered for supporting the V2O5 active phase [45]. Some of these materials
show their own redox capacity, which may interfere with the looping process, as in the case
of CeO2. Otherwise, TiO2 and SiO2 have been identified as the most promising supports as
they provide analogous or even better performances in comparison with bulk V2O5.

A deeper investigation into V2O5 supported on TiO2 [46] has shown that optimal
performances could be reached for the carrier containing the equivalent of two monolayers
of V2O5 dispersed on the surface of the support. Lower loadings tend to generate very
reactive but less selective active species. Furthermore, as the absolute oxygen capacity of
the carrier is dependent on the amount of V2O5, low-loading carriers rapidly reach the
limit of H2S transformation. This induces adsorbed H2S to be converted to SO2 in the
regeneration step. Furthermore, it may also lead to the over-reduction of the vanadium
species, which are suspected to be less selective towards elemental S. For higher loading,
the formation of tower-like V2O5 structures on the surface of the support seems to be
detrimental to the reactivity of the carrier. Several phenomena may occur. First, larger
crystallites exhibit a higher proportion of V5+ species (with respect to V4+), which are less
reactive or less selective, in particular for surface species with respect to bulk ones. Second,
in the case of tower-like structures, bare TiO2 can still be exposed, even at high loadings.
This can lead to H2S adsorption generating higher amounts of SO2 produced during the
oxidant (regeneration) step. Finally, the textural properties of the support have been proved
to be very important for this process with respect to the selectivity towards elemental sulfur.
A support with higher porosity may induce consecutive reactions in the reductant step and
thus the over-oxidation of product, but also the accumulation of adsorbed sulfur species
(e.g., elemental S produced, or unreacted H2S). These would then be oxidized in SO2 during
the regeneration steps, contributing to low selectivity. The study performed on the optimal
loading of V2O5 (two monolayers) onto TiO2 with a low surface area further confirms the
importance of finding a good balance between vanadium species in different valence states.
All results suggest that the best selectivity in elemental sulfur is obtained when V5+ to V4+

reduction occurs, whereas V4+ to V3+ reduction seems to be more favorable for unselective
oxidation. On the other hand, highly oxidized systems with high proportions of V5+ seem
to be less reactive and slightly less selective, as already mentioned. The optimal situation is
when approx. 30% of V is converted from V5+ to V4+, but starting from materials which
already contain significant proportions of V4+ (>30%).
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2.2. Reactions Involving Hydrogen
2.2.1. Carbohydrate Hydrogenation

The hydrogenation of the carbonyl groups of carbohydrates leads to the formation of
polyols. Industrially, the three most important polyols are: sorbitol (from glucose) [47,48],
xylitol (from xylose) [49] and maltitol (from maltose) [50]. In the case of xylitol, for ex-
ample, the global industrial production is estimated to be about around 200 kt/year. The
hydrogenation of xylose is usually performed in aqueous solutions using batch reactors at
temperatures between 100 and 150 ◦C under high pressures of H2 (up to 50 bar). Compara-
ble conditions are also applied in the case of glucose and maltose hydrogenations. Generally,
these hydrogen-related processes are carried out on noble metals such as Ru, Pd, Pt and
Ru, but Raney Ni is also used, especially in industrial applications. The VAALBIO group is
working on different aspects of these processes: developing new catalysts, improving the
stability of the existing catalysts and studying the kinetic aspects of the reaction. Recently,
we studied new Ni-Fe-based catalysts for maltose and xylose hydrogenation in water.
The Ni-Fe alloy is a good option to replace nickel catalysts. A Ni62Fe38/SiO2 bimetallic
catalyst prepared by deposition–precipitation with urea (DPU) showed high activity in the
hydrogenation of xylose and maltose in water [49,50]. We showed that the temperatures of
50–80 ◦C are most favored due to the limitation of the metal leaching and the presence of a
kinetic regime even for high masses of the catalyst. The Ni62-Fe38/SiO2 catalyst exhibits a
higher catalytic activity than the monometallic Ni catalyst. The selectivity to xylitol and
maltitol (in the case of maltose hydrogenation) remained optimal and constant (~100%),
even after three consecutive runs. The stability of the bimetallic catalysts was also better as
compared to the Ni100/SiO2 catalyst (Figure 7), which showed a decrease in the catalytic
activity after the first catalytic test, which is associated with a more pronounced formation
of the initial Ni2+-phyllosilicate phase [49].
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Figure 7. Catalyst recyclability study: (a) blue bars represent xylose conversion; green bars represent
xylitol selectivity. Reaction conditions: Xylose—0.26 mol L−1; 20 bar H2; 80 ◦C; 108 mg catalyst;
90 min reaction time; nxylose/nNi = 9.7; nxylose/nNi + nFe = 10.6. (b) Blue bars represent maltose
conversion; green bars represent maltitol selectivity. Reaction conditions: 8.8 wt.% maltose; 20 bar
H2; 80 ◦C; 108 mg catalyst; reaction time = 8 h; nmaltose/nNi = 9.8; nmaltose/nNi + nFe = 10.0. Adapted
with permission from Refs. [49,50].

In the case of the glucose hydrogenation, we applied the high-throughput (HT)
methodology for each step of the process: synthesis, characterization and catalytic testing.
In total, 36 Ni and Cu catalysts were prepared by chemical reduction with the hydrazine
method [48]. We chose the amount of Ni or Cu deposited on the support as the discrim-
inative parameter. The results showed that the deposition of nickel and cooper on the
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oxide strongly depended on the nature of the support (SiO2 or Al2O3), the hydrazine/H2O
ratio and the temperature of the reduction. The optimal conditions were as follows: high
temperature (70 ◦C) and low N2H4/H2O ratio (0.04 mol/mol), irrespective of the metal
precursors. The best catalytic results were obtained for the 5%Ni deposited on Al2O3 and
5% Cu deposited on SiO2 (Figure 8), synthetized at 70 ◦C.
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Figure 8. Sorbitol yields with (a) alumina-supported and (b) silica-supported catalysts synthesized at
temperatures of 50 and 70 ◦C. (Test conditions: catalyst amount = 10 mg; 3 mL of glucose solution
(1 wt.%); T = 130 ◦C; PH2 = 30 bar; t = 4 h). Adapted with permission from Ref. [48].

2.2.2. Furanics Hydrogenation

Quite a large number of metals can effectively catalyze furfural and HMF hydrogena-
tion: Pt, Pd, Ru, Au, Rh, Ni, Cu, Co, and Fe [23,51–53]. A variety of products can be
obtained. The selectivity of the transformation becomes, in this case, a key parameter. In
most cases, the excessive hydrogenation of the furan ring and hydrogenolysis, which may
involve (a) the alcohol group, (b) the opening of the heterocycle, and (c) the C-C bond of
the ring-aldehyde, should be avoided [23,51]. When the transformation requires consec-
utive steps, the order in the hydrogenation/hydrogenolysis sequence must be carefully
controlled. Thus, the key to realizing selective transformations is the proper tuning of
the reaction system, both in terms of catalytic and experimental conditions. Most of the
catalysts investigated in recent decades for the reductive conversion of FF and HMF are
noble metal-based catalysts [54–56]. Noble metals show high hydrogenation activity, but
their resources are limited. Base metals, such as iron, nickel and copper, are more available
and less expensive. These systems can be optimized by combining them with other metals
and by selecting the appropriate carrier, solvents, and/or co-catalysts (e.g., mineral acids).

Iron (Fe) and nickel (Ni) are two non-precious metals that can be used for the hydro-
genation of organic molecules. While monometallic Ni is known to promote undesirable
side reactions of hydrogenation and ring opening, Fe-Ni bimetallic catalysts have shown
interesting properties for the selective hydrogenation of alcohol and aldehyde groups [57].
Fe-Ni/SiO2 catalysts were tested in the liquid-phase furfural hydrogenation reaction at
150 ◦C under 20 bar H2 [58,59]. The conversion of furfural increased rapidly with an in-
creasing Ni content. The highest yield of furfuryl alcohol was obtained with Fe-Ni catalysts
containing 60–75% at. Ni. An increasing Ni content systematically increases the consump-
tion of furfuryl alcohol (FFA) through three parallel secondary reactions: etherification
with isopropanol solvent, possibly catalyzed by metal ions that remain unreduced after
activation. The formation rates of isopropyl furfuryl ether (iPrOMF), methylfurfural (MF),
and tetrahydroxyfurfuryl alcohol (THFFA) from FFA also increased with Ni content. For
catalysts with Ni content in the active phase lower than 84 wt.%, FFA is mainly consumed
in the hydrogenolysis reaction to MF, in the slower etherification reaction to iPrOMF, and
in the furan ring hydrogenation reaction to THFFA. For catalysts with a Ni content in the
active phase higher than 84 wt.%, FFA is consumed mainly by etherification to iPrOMF, by
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the slower second hydrogenolysis route to MF and by the even slower hydrogenation of
the furan ring to THFFA [59].

Nickel catalysts were also studied in HMF hydrogenation. We showed that a monometal-
lic Ni/SBA-15 catalyst, prepared by incipient wetness impregnation, is able to convert HMF to
2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) at 180 ◦C. This process
occurs in two consecutive steps [60]. By controlling the reaction time, high yields to DMF
(71%) or DMTHF (97%) at high conversion (97–100%) can be obtained (Figure 9).
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Figure 9. Evolution of HMF conversion and product yields with reaction time over Ni/SBA-15.
Reaction conditions: 0.144 mmol/mL HMF in 25 mL 1,4-dioxane; P(H2) = 30 bar; T = 180 ◦C;
HMF/Ni molar ratio of 3. Reprinted with permission from Ref. [60].

Kinetic studies suggest that 5-hydroxymethylfurfural is converted via MFFR as an
intermediate. It was shown that the C-O hydrogenolysis and C=O hydrogenation routes
are much faster than the furan ring hydrogenation.

2.2.3. Allyl Alcohol Synthesis from Glycerol

The use of sustainable resources for the synthesis of olefinic compounds is of much
interest due to the importance of the latter as platform chemicals. As example, allyl alcohol
is a promising platform molecule due to its broad range of applications. Its derivatives are
present in resins, pharmaceutical products, perfumes and food formulations. Furthermore,
allyl alcohol is considered as a promising starting material of important intermediates
for the chemical industry, such as acrylonitrile and acrylic acid, which have large-scale
applications for polymers and resins. Hereby, UCCS has developed catalysts for the whole
value chain, starting from glycerol to acrylic acid and acrylonitrile via allyl alcohol as an
intermediate (Figure 10).
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In fact, among the various bio-based pathways to allyl alcohol, those starting from
glycerol are particularly interesting since it is the main by-product of the biodiesel industry.
Glycerol is considered as a potential biorefinery feedstock to develop various processes of
valuables chemicals such as glyceric acid, acrolein 1,2-propanediol and polyglycerol [61–64].
With the growing demand for sustainability, there has been increased attention on glycerol
conversion toward less oxygenated derivatives, making it a preferred starting material
for the synthesis of allyl alcohol. The transformation of glycerol to allyl alcohol has
been focused on selective oxygen removal via the deoxydehydration reaction (DODH), a
very competitive methodology which has been poorly investigated. The DODH reaction
consists of the removal of two vicinal hydroxyl groups from a diol or polyol to yield the
corresponding alkene (C=C bond). Figure 11 displays the case of the DODH of glycerol to
allyl alcohol [65]. This reaction requires a stoichiometric reductant (red), which is oxidized
during the reaction (redO).
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An array of catalytic processes of the DODH of glycerol have been reported in the
literature, including homogeneous [67] and heterogeneous catalysis [66,68,69]. The iden-
tification of an optimal reductant/catalyst couple has been a focus of research at UCCS.
A catalyst for the DODH of glycerol to allyl alcohol using 2-hexanol as hydrogen was
developed based on alumina-supported rhenium oxide [66]. The main drawback of this
catalytic system is the co-produced ketone, namely, 2-hexanone. This molecule has a high
toxicity and no profitable value can be envisaged. Consequently, the alcohol has to be
regenerated in order to avoid ketone accumulation. Thus, a ceria-supported rhenium
oxide catalyst was developed in combination with an alternative secondary alcohol-methyl
isobutyl carbinol (MIBC). The employed mesoporous ceria support was synthetized via a
nanocasting process using SiO2 and activated carbon as hard templates and impregnated
with ReOx [70]. The resulting catalysts give excellent yields of up to 86%, with MIBC as a
hydrogen donor and solvent, forming not only allyl alcohol as a valuable product, but also
a stoichiometric amount of methyl isobutyl ketone (MIBK), a valuable organic solvent used
in liquid–liquid extraction.

2.3. Reactions under Specific Atmosphere (CO2, NH3 and N2)
2.3.1. Direct Carboxylation

CO2 is also a valuable substrate for the synthesis of high-added-value molecules.
The direct catalytic and sustainable carboxylation of aromatic molecules using a “simple”
insertion of carbon dioxide into the sp2 C-H bond is highly desirable. In 1860, Kolbe
reported the direct carboxylation of phenol with CO2 (Kolbe–Schmitt synthesis) [71]. Kolbe
and Schmitt showed that the phenol group plays a crucial role in this reaction. Since then,
various carboxylation processes have been studied. The most important are: (i) the Henkel
reaction, (ii) enzymatic reactions, (iii) molten salts, (iv) homogeneous catalysis and (v) photo-
electrocatalytic processes. However, many challenges are faced in these processes [35].
2,5-Furandicarboxylic acid (FDCA) is a very important building block for the synthesis of
polymers such as poly(ethylene furandicarboxylate) (PEF). PEF is generally proposed as
an alternative to poly(ethylene terephthalate) (PET), a non-sustainable monomer [72]. The
possibility of FDCA production from hemicellulose is of high interest from an industrial
point of view. Furfural, which is already implemented in industrial production from
non-edible resources, could act as a substitute for HMF. As illustrated in Figure 12, the
catalytic oxidation of furfural forms 2-furoic acid. It can then undergo the direct C-H
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carboxylation with CO2 to produce FDCA [72,73]. These two catalytic processes can be
performed sequentially (Figure 12) [72,73].
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However, the main challenge of this process is inserting the carboxylate group into
the C-H bonds [72]. CO2 is a C1 feedstock and presents kinetic and thermodynamic lim-
itations [35,73]. Recently, we proposed a proof-of-concept process using heterogenous
catalysts for the direct carboxylation of furoic acid using Henkel reaction conditions (de-
vices, temperature, and catalyst/reactant ratio). The use of the Henkel reaction to selectively
produce FDCA from furoic acid salt (K2F) using CdI2 as a catalyst has already been re-
ported [72]. However, the minimum reaction temperature is 260 ◦C. At this, CdI2 starts to
decompose, which improves the interaction between the semi-melted catalyst and the solid
K2F. In order to reduce the working temperature, a heterogeneous catalyst was applied in
addition to the CdI2 co-catalyst (Table 3).

Table 3. Effect of the temperature on FDCA synthesis from K2F using Ag/SiO2 and CdI2 cata-
lysts. Conditions: 17 mg of CdI2; 35 mg of K2F; 50 mg of Ag/SiO2; FN2 = 45 mL/min; 20 rpm;
T = 200–260 ◦C; t = 20 h. Adapted with permission from Ref. [72].

Catalyst Temperature (◦C) Conversion (%) STYFDCA
(µmol kg−1 h−1)

STYDFF
(µmol kg−1 h−1)

CdI2 200 0 - -
Ag/SiO2 + CdI2 200 51 264 951
Ag/SiO2 + CdI2 230 74 145 -
Ag/SiO2 + CdI2 260 69 188 -

Ag/SiO2 200 20 1203 -

Using a dual catalytic system, the reaction temperature was decreased to 230 ◦C
since the K2F conversion did not change. The FDCA yield was not significantly affected
when using both catalysts. When a 2 M HCl solution was applied to extract the crude
product from the reaction medium, a higher STY yield was obtained. In addition, using the
heterogeneous Ag/SiO2 catalyst permitted us to decrease the temperature to 200 ◦C [72].

2.3.2. Ammoxidation

The ammoxidation of allyl alcohol to acrylonitrile is the subject of only very few
studies, notably due to the importance of acrylonitrile as an intermediate (USD 11.8 billion
in 2019). In 2013, our team reported the use of antimony-iron catalysts of different Fe/Sb
ratios (0.6 and 1) for the ammoxidation of acrolein with 36% yield [74]. The application
of the same catalyst was then studied in the ammoxidation of allyl alcohol, yielding up
to 86% acrylonitrile under optimized reaction conditions (0.16 s contact time, 450 ◦C,
AllylOH/O2/NH3 ratio 1/3.5/3) [75]. Surprisingly, both catalysts showed very similar
performances despite the different Fe/Sb ratios. A detailed study of the surface composition
by X-ray photoelectron spectroscopy (XPS) and low-energy ion scattering (LEIS) revealed
that the surface layer of the catalyst was enriched in antimony after testing. The latter
was ascribed to the formation of a FeSbO4 mixed phase under reaction—which was also
evidenced by an induction period of the catalytic test with the increasing formation of
acrylonitrile during the first hours on stream.
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2.3.3. Glycerol Polymerization

Glycerol polymers are highly demanded by industry. Different types of glycerol
polymers can be obtained and thus directed to various target applications. Solid bases
used as catalysts give the best performances, and, among them, the Ca-based catalysts
are particularly considered as efficient [63]. Based on the analysis of spent calcium oxide
and calcium hydroxide solids (X-ray powder diffraction and 13C solid-state NMR), we
evidenced that the active phase is actually not the initial solid added to the medium,
but rather a Ca-glycerolate phase (linear Ca(C3H7O3) or cyclic-branched Ca(C3H6O3))
formed in situ [76]. We explained the formation of Ca-glycerolate, e.g., from CaO through a
dissolution and precipitation followed by crystallization.

2.3.4. Butadiene Synthesis from Ethanol

1,3-Butadiene (1,3-BD) is a chemical intermediate of high interest in industry (USD
44.8 billion foreseen market value in 2026), especially due to its major application as a
monomer for manufacturing synthetic rubber. However, the 1,3-BD supply and sustain-
ability are at stake and alternative production routes are desired to at least partly get rid of
the steam cracking of naphtha dependency. Realizing 1,3-BD production from bioethanol
would fully unlock the value chain and enable a sustainable supply while, if correctly
handled, yielding a lower environmental impact [77,78]. By combining screening methods
to design experiment to optimize the catalytic formulations, [79] we rationalized the design
of highly productive catalysts. Lab-made Zn-Ta-TUD-1, with Zn:Ta (mol:mol) between 1.5
and 2 and presenting a high specific value of >600 m2·g−1 with an average pore diameter
of around 10 nm, was found to be very efficient [80]. With such a catalytic formulation, it
was possible to realize the remarkable 1,3-BD productivity of 2.45 g 1,3-BD gcat h−1 with
performances over 60 h being much more stable than those of conventional catalysts. We
found that the active phase is made up of highly dispersed Zn(II) species together with
tetrahedral isolated species and monolayered clusters of Ta(V) (FTIR, UV-Vis-DRS, XPS,
XRD and HR-STEM) [81].

2.4. H2 Production from Bioresources (Biomass and Biogas)

Hydrogen is an important chemical product, as the most used gas in the industry
and also for the future “green” energy, that can be used directly by combustion or in
combination with a fuel cell, leading to electricity. Today, H2 is mainly produced from
fossil resources; it is urgent to produce it from renewable resources, not only so it can
really be “green” but also to follow its increasing demand. Even if some H2 sources
have been recently found, hydrogen is mainly found in numerous molecules (such as the
simplest one, water, hydrocarbons, alcohols, etc.), so H2 needs to be produced. Therefore,
at the international level, hydrogen production is largely studied, with the objective to
use renewable resources and/or renewable energies. In this context, H2 production from
ethanol (easily obtained from biomass) and from CH4 (biogas) are the subject of much
research. To perform these reactions, noble metals (Pd, Pt, and Rh) and transition metals
(Ni, Co, and Fe) with different bulk and supported catalysts have been extensively studied.
Research has revealed that the redox properties and the strong metal–support interactions
are the two key parameters to avoid sintering and carbon formation. Our objective was
the development of ex-hydrotalcite (HT) compounds to enable us to incorporate metal
cations for the selective production of hydrogen. Transition metal catalysts were preferred
compared to the much more expensive noble metals ones, where Ni catalysts showed the
best performances [82].

In the laboratory, H2 production is studied from ethanol by steam reforming (SRE), par-
tial oxidation and oxidative steam reforming (OSRE, including autothermal reforming) reac-
tions [82–86], and from CH4, by dry reforming (DRM) and oxidative dry reforming (ODRM)
reactions [40,87–90]. These last reactions are of particular interest because they allow the
transformation and valorization of two greenhouse gases (CH4 and CO2), and also can
be applied to fuel cells [90]. Different types of Ni-based catalysts such as CeNixAl0.5HzOy
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(0 < x ≤ 5, z = 0 or 0.5) [40,82,83,87–89] and NixMg2AlOy (0 < x ≤ 12) [82–84] compounds
were developed, with the objective to obtain highly performant, selective and stable cata-
lysts. Ni-based catalysts are particularly interesting due to their ability to promote C-C-bond
cleavage, participation in the water gas shift reaction and high performance in methane
reforming. The influence of different parameters was analyzed to optimize the catalytic
material (preparation, formulation, Ni content, and pretreatment) and the operational
conditions (reactant concentration, reaction temperature, presence of O2 in the feed, etc.),
including the chemical looping reaction [40,87–89].

Optimizing the proportion of Ni cations (Ni2+) in strong interactions with other cations
and the presence of anionic vacancies in the mixed oxides allow the formation of oxyhy-
dride compounds, leading to particularly interesting material properties and mechanisms,
involving the heterolytic abstraction of hydride species from ethanol (Figure 13a) [83] and
from CH4 (Figure 13b) [89].
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For example, using these properties, we developed particularly efficient cerium and
Ni-based catalysts for ethanol transformation at room temperature, as well as a new tech-
nology, in the presence of oxygen in the feed [82]. Mg2AlNixHzOy nano-oxyhydrides
were also shown to be highly performant in SRE and OSRE with high stability [86]. Car-
bon formation is decreased and a much lower input of energy of 50 ◦C is used to reach
a temperature of 300 ◦C when O2 is added. Moreover, a higher production of H2 can
be achieved at a reaction temperature of 300 ◦C in OSRE conditions compared to SRE
(60 instead of 10 L h−1 gcat

−1), mainly because of the beneficial use of a high concen-
tration of ethanol (14 mol. %) in the presence of O2. For H2 production from methane,
CeNixAl0.5HzOy (0.5 ≤ x ≤ 5) nano-oxyhydride catalysts were shown to be highly perfor-
mant in ODRM (CH4/CO2/O2/N2 = 1:0.7:α:N2 with 20% of CH4 and α varying from 0 up
to 0.5, 96,000 mL h−1 gcat

−1) [89]. At 500 ◦C, the CO2 conversion overcomes the predicted
value and the conversion of CH4 reaches the thermodynamic limit. At 600 ◦C, with an
O2/CH4 ratio of 0.3, the CeNixAl0.5HzOy catalyst allows CH4 and CO2 conversions of
about 63% and 50%, respectively, and a H2/CO ratio of about 1.3, without carbon formation.

2.5. Biomass Fractionation

Lignocellulosic biomass is an abundant, non-edible and renewable resource for the
production of high value-added chemicals and fuels in future biorefineries. However,
the use of this sustainable raw material as a feedstock requires the development of new
chemical processes and catalysts. The conversion of lignocellulosic biomass into chemicals
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and fuels in a biorefinery involves a multi-step process: the fractionation of lignocellulosic
biomass into its main components (cellulose, hemicellulose and lignin), followed by de-
polymerization and upgrading. These steps are performed separately or consecutively,
which increases the costs. In addition, lignin is most often considered to be a waste and is
burned for energy generation in first-generation biorefineries. These goals can be achieved
with novel fractionation technologies that operates at low temperatures, which opens
up the possibility for the integration of chemical and biological catalysis and the use of
hybrid catalysts, in which chemical and biological catalysts work in tandem in one-pot
and one-step reactions. However, these alternative processes require the design of more
efficient and selective catalysts. Recently, a two-step processing of lignocellulosic biomass
was previously carried out using acidic molten salt hydrate [91]. Inorganic molten salt
hydrates are concentrated inorganic salt solutions with a water to salt molar ratio close to
the coordination number of the strongest hydrated cation, with the water molecules bound
to the inner coordination sphere of the cation, while the anion is free in solution [92–94].
They are inexpensive, easy to prepare and environmentally friendly as no toxic and volatile
organic compounds are required to prepare such solvents. Moreover, the inorganic salts
can be recovered by evaporating the water after cellulose regeneration and can be recycled
for further use [95].

Inorganic molten salt hydrates are known to dissolve cellulose, which depends on
the water content as well as the structure of the cation coordination sphere [92,95–97].
The interaction between the cation and cellulose weakens and breaks the intra- and inter-
molecular hydrogen bonds of the cellulose chains. Different inorganic molten salt hydrates
have the ability to dissolve cellulose (Figure 14), such as: LiBr, LiCl, ZnBr2, ZnCl2, FeBr2,
and FeCl3 [92,97]. The dissolution of cellulose in inorganic molten salt hydrates decreases
its crystallinity, which improves the reactivity of cellulose. Various inorganic molten
salt hydrates have been used for cellulose hydrolysis under mild conditions (low acid
concentration and temperature) [95,98,99]. The hydrolysis rate and product distribution
are affected by the type and concentration of the inorganic molten salt hydrate, reaction
temperature and the concentration of acid. Glucose, fructose, levoglucosan, HMF and
levulinic acid are the major products reported, with the yield of each product depending
on the type of molten salt hydrate. Once cellulose and hemicellulose are extracted from the
biomass matrix, they are transformed into platform molecules by using a heterogeneous
catalyst. Different commercial solid acid catalysts with various acidity values could be
used (Amberlyst, Dowex, Nb2O5, NbPO4, ZrO2, SO3-ZrO2, ZSM-5, and USY). A catalyst
containing highly active transition metal nanoparticles and acid sites deposited on an
inorganic support was designed. The reaction involves the hydrolysis of the carbohydrates
on the sulfonic groups grafted onto the silica support followed by the hydrogenation of
the sugars produced on the metal (Ru and Pd) particles into sorbitol and xylitol, which are
platform molecules. Lignin remains in the solid residue produced and it is separated and
catalytically transformed into hydrocarbons by hydrodeoxygenation.
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2.6. Hybrid Catalysis

In recent years, industrial biotechnology has had a significant impact on the pharma-
ceutical and chemical industries, backed up by advances in the field of enzyme evolution
aimed at building new enzymes and catalysts. This has led to the development of more
efficient manufacturing processes, while producing less waste and avoiding the use of
harmful solvents and reagents [100]. Consumer demands for green and sustainable prod-
ucts with minimal environmental impact have been one of the biggest drivers of finding
more sustainable routes in order to obtain compounds of great industrial value. Within
this frame, chemical catalysis and enzymatic catalysis have moved closer to one to another,
towards the innovative interdisciplinary concept of hybrid catalysis that aims to couple
these different “worlds” in the same reactor [101]. This enables the improvement of re-
actions’ performances and yields new synthesis pathways through the combination of
the best characteristics of each system, which must be first optimized separately before
merging [102–104]. Such an approach is still rather scarcely developed at the international
scale, while considerable growth can be expected in the mid-term. In this context, we are
involved in some pioneering works. While such a combination has been long considered
as inconceivable, we have demonstrated its relevance through a few different variations of
the concept among the scope of possibilities it opens [2,105]. Hereafter is an overview of
the achieved results in the field of hybrid catalysis by the VAALBIO team.

2.6.1. Enhanced Dynamic Kinetic Resolution

Among the various strategies for separating two enantiomers in a racemic mixture,
the kinetic resolution (KR) and the dynamic kinetic resolution (DKR) have been of great
importance in global chemistry [106]. In a KR, enantiomers react with different reaction
rates and selectivities in reaction with a catalyst, biocatalyst or chiral reagent, resulting in an
enantio-enriched sample of the less reactive enantiomer. However, a crucial limitation of KR
is that the maximum theoretical yield is 50%. One solution is the combination of a chemical
catalyst capable of racemizing the unwanted enantiomer in situ. In this way, the racemate
obtained returns to the KR process [107,108]. This process is named dynamic kinetic
resolution (DKR) and a theoretical yield of 100% can be achieved. This strategy has been
successfully applied to a wide range of other compounds, such as chiral amines. Generally,
racemization requires thermal or strongly acidic or basic conditions that are incompatible
with a stereo-transformation into a single batch reactor or in continuous processes. On the
other hand, several transition metal complexes such as rhodium, ruthenium and iridium are
known to catalyze the racemization of optically active amines under mild conditions [109].
One solution to this is the use of hybrid catalysts, which involves cooperation between an
enzyme and metal catalyst [110]. Among the numerous enzymes that have been applied in
DKR for obtaining enantiomerically pure amines, lipases (triacylglycerol hydrolases, E.C.
3.1.1.3) are the most widespread group [110]. A number of published procedures that take
advantage of a reagent/chemical catalyst chemical to perform dynamic kinetic resolution
have been reported (Figure 15).
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For example, supported Pd nanoparticles with immobilized lipases have been shown
to facilitate this reaction, as shown below (Table 4) [111].
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Table 4. Dynamic kinetic resolution of α-methylbenzylamine catalyzed by hybrid catalyst.

Biocatalyst Conversion (%) ee Prod Productivity c

N435 a 99 >99 0.17
EnzPd_1% b 84 >99 2.21
EnzPd_5% b 76 98 2.00

EnzPd_10% b 78 95 2.17
EnzNoPd a 92 82 2.36

a Reaction conditions: 5% of Pd supported on BaSO4 as a racemization agent. A total of 3 mmol of α-
methylbenzylamine, 2 eq. of methyl methoxyacetate, biocatalyst (94 mg mmol−1 of substrate), molecular sieves
(30 mol%, 375 mg), Na2CO3 (12 mg), 15 eq. of ammonium formate and toluene (3 mL) at 70 °C for 17 h, according
to [112]. b Reaction conditions: 3 mmol of α-methylbenzylamine; 2 eq. of methyl methoxyacetate, biocatalyst
(94 mg mmol−1 of substrate); molecular sieves (30 mol%, 375 mg); Na2CO3 (12 mg); 15 eq. of ammonium formate
and toluene (3 mL) at 70 °C for 17 h; c expressed on mg of product h−1. mg of immobilized enzyme−1.

In this work, lipase CaLB was immobilized on functionalized Pd-SiO2 nanoparticles
containing Pd in order to simplify the DKR of α-methylbenzylamine. As a result, ee >99%
and conversion of 82% were found, with only 1% of Pd, generating a productivity of 2.21 mg
of product h−1 mg of support−1 against 0.76 found for N435®. Compared to commercial
N435®, the novel biocatalysts showed protein loads about 15-fold lower and higher activity,
demonstrating competitive performances and good industrial applications [111].

The biggest challenge in hybrid catalysis is to combine the best conditions of each
system. The hybrid catalyst was around 50−100 nm with nanoparticulated Pd (5−10 nm)
on its surface, and presented a superparamagnetic behavior without magnetization and
22 emu g−1 of saturation magnetization [112]. As a result, it was possible to achieve a
99% conversion, with 95% selectivity and 93% enantiomeric excess after 12 h in batch.
For a continuous flow system, it was possible to achieve a 95% conversion, with 71%
selectivity and an ee > 99% after 60 min of reaction. Because the fixed-bed reactor system
is pressurized, ammonium formate was used in this work as an in situ hydrogen source
(Table 5) [112].

Table 5. DKR of biocatalysts using ammonium formate in continuous-flow condition [112].

Entry Catalyst
(Pd + CALBimm)

Reaction Time
(h)

Conversion
(%)

ee Prod
(%) Selectivity(%)

1 MN@4.5%Pd a + MN@CALB 1 95 >99 91
2 MN@4.5%Pd + N435 b 4 >99 >99 96
3 Pd/BaSO4 + MN@CALB 1 65 >99 84
4 Pd/BaSO4 + N435 1 72 97 94
5 MN@4.5%Pd_CALB 9 65 >99 88

a MN@4.5%Pd = Magnetic nanoparticle with 4.5% palladium; MN@ = hybrid catalyst without enzyme;
b N435 = Novozym® 435 (Lipase B de Candida antarcticaimobilized) commercial; Pd/BaSO4 = palladium immo-
bilized on barium sulphate (commercial) and MN@4.5%Pd_CALB = optimized hybrid catalyst.

As a result, a magnetic hybrid biocatalyst was able to promote high conversions and
selectivities, close to systems where commercial lipase N435 was used as the enzyme
source. Thus, the newly constructed hybrid biocatalyst becomes an interesting and robust
alternative for obtaining chiral blocks containing amines [112].

We additionally developed two hybrid catalysis-based approaches to optimize the
conversion reaction of d-glucose to 5-hydroxymethylfurfural (HMF). HMF is a platform
molecule [113] opening the way to the synthesis of many compounds with applications in
the fields of biofuels, biopolymers and a whole range of fine chemicals, making it one of
the most studied platform molecules. To obtain HMF from d-glucose, the latter must first
be isomerized to d-fructose. However, this reaction suffers from an unfavorable thermody-
namic equilibrium which results in the presence of both sugars in almost equal quantities.
An effective strategy consists of carrying out the isomerization with the aid of an enzyme
and a d-glucose isomerase, and coupling this to the chemical dehydration step, making it



Molecules 2022, 27, 3889 20 of 29

possible to achieve reaction equilibrium using a hybrid catalytic process. Several attempts
have already been made in this respect, and we present below two of our developments
using hybrid catalysis, one involving a classical enzymatic isomerization step coupled
with an innovative compartmentalization approach to shift the equilibrium toward the
products formation and an innovative hybrid isomerization step based on the combination
of another enzyme and a chemo-catalyst for the regeneration of its co-substrate.

2.6.2. Compartmentalization

The compartmentalization based on the cascade reaction was the first approach studied
in our laboratory [114–116]. This method is based on the subsequent dehydration of D-
fructose to HMF using a Brønsted acid catalyst (as for example organic resin). These acid
resins lead to a low pH value which is not appropriate for the isomerase enzyme. It is thus
necessary to use a liquid membrane linking both compartments, which allows us to perform
two sequential reactions of isomerization and dehydration without a cross-limitation
between them. However, two main obstacles must be overcome: (i) the thermodynamic
equilibrium of the enzymatic isomerization, and (ii) the incompatibility of the pH of the
reaction for two catalysts. A methyl isobutyl ketone (MIBC) membrane was chosen in
this study, allowing the fructose extraction from the aqueous “donor” phase (Figure 16).
D-glucose isomerization was performed at pH = 8 using glucose isomerase. To achieve
an efficient transfer through the membrane at room temperature, boronic acid derivatives
were used in order to complex the formed fructose at the interface with the “donor” phase.
Thanks to Aliquat336®, a quaternary amine, an ion pair was formed between the ester with
a negatively charged 3,4-dichlorophenylboronic acid (3,4-DCPBA) and fructose [115,116].
Complexed fructose was then transformed to the “receiver” phase containing sulfonic
resins, a dehydration catalyst. At pH 3, the fructose complex is hydrolyzed and d-fructose
is dehydrated to HMF. An “H” type reactor was implemented, which permitted a better
homogenization capacity of the phases. Fructose diffusion was also improved. After 32 h
of reaction at a regulated pH (at 8.5 and 3.0) at 70 ◦C, the extraction yield was 97%. The
isomerization yield reached 79% and the HMF yield reached 31% after 32 h of reaction (a
glucose conversion of 88%) [115,116].
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membrane [116].

2.6.3. Hybrid Isomerization

Another studied variant was based on an innovative enzymatic cascade process. d-
glucose is firstly hydrogenated to d-sorbitol, which is then selectively dehydrogenated to
d-fructose. It must be noted, however, that the sorbitol dehydrogenase enzyme is NAD+
dependent. The co-substrate must be regenerated throughout the reaction from the NADH
formed. This step was carried out using an organometallic Ir-based catalyst (Figure 17).



Molecules 2022, 27, 3889 21 of 29Molecules 2022, 27, x FOR PEER REVIEW 22 of 31 
 

 

 

Figure 17. General concept of hybrid catalytic conversion of d-glucose into d-fructose using an irid-

ium complex for NAD+ regeneration. 

We demonstrated the compatibility between the enzyme and a chemical catalyst 

(iridium complex) capable of in situ cofactor regeneration. This proof of concept was pa-

tented [114] and the results were published [115]. In addition, the catalyst based on Ir does 

not seem to constitute a “poison” for the enzyme. We have demonstrated, unambigu-

ously, the continuous catalytic process of the complete system (substrate + cofactor + en-

zyme + organometallic complex). Up to now, three consecutive catalytic cycles of regen-

eration of the cofactor with the production of the target molecule were performed. The 

main challenges of the process concern the optimal operating pH values for both systems 

that are not compatible yet. 

The one-pot approach, which can be described as “true hybrid catalysis”, effectively 

combines several catalysts within the same reactor, working together in the same condi-

tions. In this way, the various substrates and intermediates are continuously converted as 

soon as they appear, which can make it possible to shift equilibria, limit inhibitions and 

thus considerably increase the activities of the catalysts. Recently, we have published an 

example of the use of hybrid catalysis for the transformation of biomass compounds [117]. 

This first study of its kind produced a new range of furfurylamines, with a special focus 

onto 5-aminofuran-2-carboxylic acid (AMFC), directly from HMF (Figure 18). To achieve 

such a process, for the first time ever reported, a transaminase was coupled with a heter-

ogeneous chemo-catalyst, a platinum nanoparticle immobilized onto silica in this case. 

 

Figure 18. One-pot/two-step hybrid heterogeneous catalytic process for the conversion of HMF into 

AMFC, combining a Pt/SiO2 chemocatalyst and the Cv-TA. Adapted with permission from Ref. 

[117]. 

By using a one-pot/two-step process, in which the enzyme was added directly to the 

reaction medium after the catalyst has completed its reaction and the temperature has 

dropped to around 30 °C, a 77% yield of FMCA can be achieved. It is noteworthy that the 

reaction medium was found to be compatible with both catalysts after its optimization 

and that the only byproduct formed was 2,5-furandicarboxylic acid (FDCA; 23% yield ob-

tained), a highly valuable monomer involved in polyethylene furanoate (PEF) synthesis. 

Figure 17. General concept of hybrid catalytic conversion of d-glucose into d-fructose using an
iridium complex for NAD+ regeneration.

We demonstrated the compatibility between the enzyme and a chemical catalyst
(iridium complex) capable of in situ cofactor regeneration. This proof of concept was
patented [114] and the results were published [115]. In addition, the catalyst based on Ir
does not seem to constitute a “poison” for the enzyme. We have demonstrated, unam-
biguously, the continuous catalytic process of the complete system (substrate + cofactor
+ enzyme + organometallic complex). Up to now, three consecutive catalytic cycles of
regeneration of the cofactor with the production of the target molecule were performed.
The main challenges of the process concern the optimal operating pH values for both
systems that are not compatible yet.

The one-pot approach, which can be described as “true hybrid catalysis”, effectively
combines several catalysts within the same reactor, working together in the same conditions.
In this way, the various substrates and intermediates are continuously converted as soon
as they appear, which can make it possible to shift equilibria, limit inhibitions and thus
considerably increase the activities of the catalysts. Recently, we have published an example
of the use of hybrid catalysis for the transformation of biomass compounds [117]. This
first study of its kind produced a new range of furfurylamines, with a special focus onto
5-aminofuran-2-carboxylic acid (AMFC), directly from HMF (Figure 18). To achieve such a
process, for the first time ever reported, a transaminase was coupled with a heterogeneous
chemo-catalyst, a platinum nanoparticle immobilized onto silica in this case.
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Figure 18. One-pot/two-step hybrid heterogeneous catalytic process for the conversion of HMF into
AMFC, combining a Pt/SiO2 chemocatalyst and the Cv-TA. Adapted with permission from Ref. [117].

By using a one-pot/two-step process, in which the enzyme was added directly to
the reaction medium after the catalyst has completed its reaction and the temperature has
dropped to around 30 ◦C, a 77% yield of FMCA can be achieved. It is noteworthy that
the reaction medium was found to be compatible with both catalysts after its optimization
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and that the only byproduct formed was 2,5-furandicarboxylic acid (FDCA; 23% yield
obtained), a highly valuable monomer involved in polyethylene furanoate (PEF) synthesis.

2.7. Solving the Contextual Problem of Implementing Solutions

The contributions to this journal concern technical solutions to systemic problems:
climate change, pollution, meeting the energy requirements of society, satisfying the mar-
ket, the conversion of waste into a product to make the economy more circular, or the
biodegradation of waste, the development of more refined and tailored materials to meet
changing needs in society. The solutions are chemical or biochemical processes. They are
innovative, scientifically interesting, if not ground-breaking, and relevant to addressing the
systemic problems we face [3].

However, every technical solution, when implemented at the industrial scale, and
over enough time, will meet a threshold with regard to causing more harm than good,
in the way that we need salt in our bodies, but too much will kill you. In the age of the
Anthropocene, we can no longer permit ourselves to implement solutions, at any scale and
over any timeframe, that are only determined by demand and the profit of industry [3].

To determine the thresholds, we need to study the context for implementation. The
context includes economics, but also society (health, politics, education, workforce, infras-
tructure, cultural values and security) and the ecology of the location of production, of
distribution and of consumption, and then waste disposal. To study all of these elements
is complicated. Worse, we cannot afford any longer to let the market work as a massive
experiment where we learn through trial and error. As a society, we will have to make
compromises and trade-offs. The task of determining what the trade-offs are and how to
compare them is necessary, that is, to determine what solutions are worth pursuing and
which seem impossible. Additionally, it is with the existing tools that we have: cost–benefit
analysis, life-cycle analysis, material and energy flow models, multi-criteria decision aides,
environmental impact assessments, cradle to grave analyses. However, these very difficult
questions can be answered using an institutional compass [3].

To make a compass, we gather data about the technological solution process—mainly
the input, output and distribution—on economic, social and environmental (entropy, pollu-
tion, disease, biodiversity . . . ) levels. We gather data for the proposed region of production,
again at the economic, social and environmental levels. We analyze the data categorically
along two axes—economics, society or environment—leading towards harmony, and dis-
cipline of excitement. The last three are general qualities. Upon reflection, we notice
that any object or process will have one that predominates. Prima facie, none is better or
worse, although we might have preferences for cultural or other reasons. Our preferred
quality-place on the compass is called a wish-spot (Figure 19). We are not thinking in terms
of a scale, but in terms simply of the qualities. The wish spot tells of our preference [3].
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We then make a further, more refined analysis of each data point that is not involved
in the technological solution. We analyze each data point in terms of the angle range within
the quality “sector”. This is sensitive work, especially with the social data. There are
straightforward methods for the economic and environmental data. We also determine
a length of each data point scaled to the radius of the circle to indicate the importance,
weight or momentum of the data point. The latter is achieved simply by determining the
relative maximum and minimum values. We apply an algorithm that amalgamates all of
the data to represent the whole as an arrow on the compass. This represents the general
context for the production of the technological solution. We conduct a similar analysis
at different scales for the data concerning the biochemical processes, and superimpose
them, at different scales on the “general context of production” compass, to see how it
fits in to the general context, and more importantly whether it brings the context arrow
closer to the wish spot. We can thereby compare different contexts for their suitability at
different scales for the proposed solution. We can compare different solutions to each other,
for example, making biofuel from human-edible sugar plants or from farm-animal waste.
We achieve this holistically and comprehensively, with a sensitivity to cultural values and
expectations [3].

It is a shame to misuse the brilliant solutions brought to us by scientific research. It
only benefits the discoveries and adds prestige to science when they are implemented
responsively by our industrial partners. Thankfully, we can now ensure this better than we
could before.

3. Discussion

The bioeconomy is a key parameter not only of the French but also of the whole
European economy. A turnover value of EUR 2.3 trillion makes the European union
(EU) a world leader in the sustainable use of the biobased resources [118]. A sustainable
European bioeconomy supports the creation of new bio-based value chains and greener,
more cost-effective industrial processes. Research and innovation in the field of new and
sustainable bio-based products (biochemicals and biofuels) improve the European capacity
to substitute fossil resources. It must be underlined that the sustainable bioeconomy is only
a piece of the circular economy. In addition, there is not one single bioeconomy in Europe
but several bioeconomies, each with specific local contexts. The chemical industry will be a
key player in the European economy. It will allow residues and biowastes to be turned into
valuable products which already creates new jobs in the markets of bio-based chemicals,
pharmaceuticals and bio-based plastics production, while the employment in the classical
fuel sectors decreased. This clearly shows that the use of biomass to produce highly added
materials can directly increase employment by 10 times in Europe, and generate 4–9 times
more added-value, compared to the current fossil-based economy [118]. As more than 90%
of chemical processes are carried out using at least one catalyst (chemical, enzymatic, or
heterogeneous), catalysis is in the very heart of the whole chemical industry.

In this context, the research projects developed in the VAALBIO group at UCCS en-
compass several key directions: biomass fractionation, cellulose [119,120] and hemicellulose
valorization [121], green hydrogen production and CO2 valorization [122–127], and more
recently, multicatalytic materials [128] and lignin valorization. As shown above, our research
projects concern mainly the synthesis of important chemical synthons using heterogeneous
and chemo-enzymatic processes. Some of these synthons are highly valued platform molecules
that are building blocks for polymers or pharmaceutical complex molecules. It is worth adding
that more than half of the projects are developed in collaboration with industrial partners
which clearly makes the VAALBIO group an applied catalysis laboratory. The development
of a circular economy also affects our research project’s development. Recently, the VAALBIO
group was awarded with a RECABIO “Catalyses and bioeconomy” flagship project from I-
SITE ULNE [129]. The RECABIO project is a part of the development of innovative approaches
in the field of bioeconomy, and more precisely in the circular economy. It aims at the use of
advanced catalytic processes as an alternative to the transformation of renewable resources
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and wastes to high-added-value molecules, materials and energy carriers. It implements
original scientific approaches (in particular, hybrid catalysis, photo- and electro-catalysis as
well as their combinations) thanks to (i) the advanced integration of a set of cutting-edge skills
from the Lille site, (ii) the use of unique equipment with which our site is equipped (such as
the REALCAT platform [130]), and (iii) the hosting of four recognized professors in the field
of heterogenous and enzymatic catalysis, human sciences and LCA. The socio-economic and
environmental rationalization of the processes thus developed must also be evaluated thanks
to the close collaboration between the so-called “hard” sciences and the social sciences (LCA,
economics, etc.). In this context, the reception of professors from different fields of science
will support these topics, especially with regard to interconnected aspects. This convergence
will allow new breakthrough discoveries and will induce an evolution of the concept of
bioeconomy from a simple juxtaposition of disciplines (a necessary step that is currently well
advanced) to a true integration of scientific and technical disciplines. To achieve this, the
present project relies on interdisciplinary research efforts in the hard sciences aiming at lifting
the scientific and societal barriers of the bioeconomy, and at questioning the consequences
of the ecological mutation and its ethical, socio-political and socio-economic aspects. The
ultimate ambition is to create new disciplines as a result of these interfaces, with a view to
a global R&D approach, where production systems will be set in their social, political and
environmental contexts.

4. Conclusions

Catalytic processes are at the heart of chemical transformations. As the VAALBIO team,
we study various catalytic processes. We are particularly well known for our work in the field
of catalytic valorization of bio-based compounds, but we also have historical expertise in the
valorization of light hydrocarbons (and more specifically alkanes) such as methane. These
scientific themes, in full expansion, meet the needs of the chemical and energy sectors and
will therefore remain at the heart of our team’s concerns for the coming years. The VAALBIO
team has skills in chemistry but also in chemical engineering, which allows us to consider the
development, not only of innovative catalysts, but also more broadly of catalytic processes as a
whole, which constitute a real engine of innovation for the industry of tomorrow. In line with
this dynamic, our projects keep a good balance between applied research (mainly supported
by industrial partners) and fundamental research (generally supported by institutions). We
are also developing an integrated approach to conduct catalytic processes, including the
development of innovative contact modes and corresponding catalytic materials as well
as processes combining several catalytic functions (hybrid catalysis). Furthermore, very
recently, we included the “social” dimension to our project collaborating with experts in
human sciences.
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6. Skrzyńska, E.; Ftouni, J.; Girardon, J.S.; Capron, M.; Jalowiecki-Duhamel, L.; Paul, J.F.; Dumeignil, F. Quasi-Homogeneous

Oxidation of Glycerol by Unsupported Gold Nanoparticles in the Liquid Phase. ChemSusChem 2012, 5, 2065–2068. [CrossRef]
[PubMed]
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10. Díaz, J.A.; Skrzyńska, E.; Girardon, J.S.; Ftouni, J.; Capron, M.; Dumeignil, F.; Fongarland, P. Kinetic modeling of the quasi-
homogeneous oxidation of glycerol over unsupported gold particles in the liquid phase. Eur. J. Lipid Sci. Technol. 2016, 118, 72–79.
[CrossRef]
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