
HAL Id: hal-03771388
https://hal.science/hal-03771388v1

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DiscoPG: property graph schema discovery and
exploration

Angela Bonifati, Stefania Dumbrava, Emile Martinez, Fatemeh Ghasemi,
Malo Jaffré, Pacôme Luton, Thomas Pickles

To cite this version:
Angela Bonifati, Stefania Dumbrava, Emile Martinez, Fatemeh Ghasemi, Malo Jaffré, et al.. DiscoPG:
property graph schema discovery and exploration. 48th International Conference on Very Large Data
Bases(VLDB 2022), Sep 2022, Sydney, Australia. pp.3654-3657, �10.14778/3554821.3554867�. �hal-
03771388�

https://hal.science/hal-03771388v1
https://hal.archives-ouvertes.fr


DiscoPG: Property Graph Schema Discovery and Exploration
Angela Bonifati

Lyon 1 University & LIRIS CNRS
angela.bonifati@univ-lyon1.fr

Stefania Dumbrava
ENSIIE & Inst. Polytech. de Paris
stefania.dumbrava@ensiie.fr

Emile Martinez
ENS Lyon

emile.martinez@ens-lyon.fr

Fatemeh Ghasemi
ENS Lyon

fatemeh.ghasemi@ens-lyon.fr

Malo Jaffré
ENS Lyon

malo.jaffre@ens-lyon.fr

Pacôme Luton
ENS Lyon

pacome.luton@ens-lyon.fr

Thomas Pickles
ENS Lyon

thomas.pickles@ens-lyon.fr

ABSTRACT

Property graphs are becoming pervasive in a variety of graph pro-
cessing applications using interconnected data. They allow to en-
code multi-labeled nodes and edges, as well as their properties, rep-
resented as key/value pairs. Although property graphs are widely
used in several open-source and commercial graph databases, they
lack a schema definition, unlike their relational counterparts. The
property graph schema discovery problem consists of extracting the
underlying schema concepts and types from such graph datasets.
We showcase DiscoPG, a system for efficiently and accurately dis-
covering and exploring property graph schemas. To this end, it
leverages hierarchical clustering using a Gaussian Mixture Model,
which accounts for both node labels and properties. DiscoPG al-
lows users to perform schema discovery for both static and dynamic
graph datasets. Suitable visualization layouts and dedicated dash-
boards enable the user perception of the static and dynamic inferred
schema on the node clusters, as well as the differences in runtimes
and clustering quality. To the best of our knowledge, DiscoPG is
the first system to tackle the property graph schema discovery prob-
lem. As such, it supports the insightful exploration of the graph
schema components and their evolving behavior, while revealing
the underpinnings of the clustering-based discovery process.

PVLDB Reference Format:

Angela Bonifati, Stefania Dumbrava, Emile Martinez, Fatemeh Ghasemi,
Malo Jaffré, Pacôme Luton, and Thomas Pickles. DiscoPG: Property Graph
Schema Discovery and Exploration. PVLDB, 15(12): 3654–3657, 2022.
doi:10.14778/3554821.3554867

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/PI-Clustering/code.

1 INTRODUCTION

Graphs are natural abstractions for representing interconnected
data. They have been adopted in a large array of applications, rang-
ing from social networks to scientific datasets, fraud detection,
recommendation systems, and the Semantic Web. Their most ex-
pressive underlying data model is the property graph one, along
with its numerous variants [1, 3, 10], in which lists of properties
are attached to both the nodes and the edges of a directed, labeled,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554867

multi-graph. Property graphs underlie several open-source and com-
mercial systems, out of which graph databases are the most promi-
nent. While these do not impose a priori rigid schema constraints,
the rich property graph model enables them to compactly capture
complex patterns, while remaining digestible and self-explainable
for end users [9]. However, the lack of a schema hinders several
applications, such as data exploration, query formulation and opti-
mization, meta-data management, and the extraction of type-based
graph features for various machine learning pipelines. Moreover,
property graph schemas are considered as relevant abstractions
needed in future graph processing systems [10].

To address this, in DiscoPG, we tackle the discovery of property
graph schemas, leveraging a hierarchical clustering algorithm, based
on Gaussian Mixture Models. The hierarchical clustering method
based on GMM has been shown [2] to be tailored to the complex
property graph data model. Compared to previous schema dis-
covery methods [7], DiscoPG allows to account for both labeling
and property information and to build node clusters, reflecting the
underlying typing hierarchy of the base dataset. Ours is a purely
statistical approach (presented in detail in [2]), whichwe have exper-
imentally shown to provide better accuracy and performance than
previous analytical methods [7]. While schema discovery meth-
ods have been proposed for RDF datasets [4], notably based on
distributed clustering using Spark, our method is centralized and
supports the more expressive property graph model.

DiscoPG allows users to engage in the following scenarios:
• visualization and exploration of the discovered schema,

with novel cluster-centered layouts that showcase the size
of the discovered node types, their corresponding labels
and properties, as well as those of their connecting edges.

• interactive inspection of a schema dashboard, displaying
the performance of the underlying hierarchical clustering
algorithms and the quality of the obtained schema, across
each iteration of the discovery process; this allows ana-
lyzing the runtime behavior of the various methods and
underpinnings of the graph clustering process.

• analysis of the property graph schema evolution, with cus-
tom rendering of the parts affected by modifications to the
base graph instance. Both incremental and recomputation-
based schema evolution scenarios are considered.

We showcase DiscoPG on both real-world and benchmarking
datasets, e.g., CovidGraph [6] and LDBC [5]. These have different
characteristics and range from simple to complex schemas. The
implementation of DiscoPG is available on Github.

https://doi.org/10.14778/3554821.3554867
https://github.com/PI-Clustering/code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554867


2 SYSTEM OVERVIEW

Given a graph dataset G, DiscoPG implements novel static and
dynamic algorithms for discovering the underlying schema of G.

2.1 Schema Discovery Algorithms

2.1.1 Hierarchical Clustering Schema Discovery. In the static case,
DiscoPG determines the underlying schema structure of G, by ap-
plying the custom GMM-S algorithm, which is an optimized version
of the GMMSchema method in [2]. GMM-S partitions G using a hi-
erarchical clustering approach, based on fitting a Gaussian Mixture
Model (GMM), combining label and property information. Each
discovered cluster corresponds to a node type, characterised by a
unique combination of labels and properties.

GMM-S first collects the set of node labels LG , recording the
number of label occurrences. Next, it processes, in descending order
of label frequency, each corresponding set of nodes. For each label
𝐿 in LG , GMM-S considers the set 𝐶 of all nodes with label 𝐿, and
computes the sub-types further determined by their properties.

To this end, it applies an iterative procedure, which outputs a dic-
tionary CH , recording the typing hierarchy induced by the GMM
clustering algorithm. The method starts by constructing a reference
base type 𝑏𝑟𝑒 𝑓 for 𝐶 , which contains all its node labels, as well as
its most frequent properties. Intuitively, this represents the most
general type extended by all nodes in 𝐶 , i.e., the parent cluster for
all sub-clusters in 𝐶 . GMM-S then computes a feature vector 𝑑 , con-
taining the similarity scores between the base types of each node
in 𝐶 and 𝑏𝑟𝑒 𝑓 . This is used to fit a GMM model, estimate its param-
eters with the EM algorithm, and obtain the mixture components
{𝜃1, . . . , 𝜃𝑛}, where 𝑛 is a user-defined parameter, set by default
to 2. In the prediction step, nodes are classified into sub-clusters
𝐶1
𝐿
, . . . ,𝐶𝑛

𝐿
, based on their underlying similarity to 𝑏𝑟𝑒 𝑓 .

If there is an overlap of property keys between all sub-clusters,
this intersection set is assigned to 𝑏𝑟𝑒 𝑓 , as it represents the "core"
properties of 𝐶 . CH is then updated to record that the base types
of the sub-clusters extend 𝑏𝑟𝑒 𝑓 . For each sub-cluster, the procedure
is re-iterated, as new reference nodes are computed and used to
discover new sub-types. The key feature of the schema discovery
algorithms of DiscoPG, allowing to capture both node labels and
properties at the same time, is that they enable users to obtain more
accurate schemas than previous approaches [7].

2.1.2 Schema Discovery for Evolving Graphs. DiscoPG also sup-
ports schema discovery in the dynamic case, wherein the dataset
G evolves, upon batch inserting a set of nodes Δ. We outline the
novel I-GMM-D and GMM-D methods, tailored to this end.

The I-GMM-D approach takes as input the hierarchy dictionary
CH , computed by GMM-S in the static case, as well as the updates
Δ. Note that all the sub-clusters in CH correspond to the node
types of G’s discovered schema structure. I-GMM-D then constructs
a similarity vector containing the similarity scores between the
base type of each node in Δ and the base reference types of each
sub-cluster in CH . Each node in Δ is then assigned to the sub-cluster
in CH with respect to which it has the highest similarity score. If
any of the sub-clusters incurs updates accounting for more than a
given percentage of their initial size (set as a threshold), full schema
recomputation is triggered, as the updates are deemed to potentially
affect the structure of the sub-cluster’s base type.

Figure 1: DiscoPG System Architecture

The GMM-Dmethod takes as input the graph obtained by updating
G with Δ, the desired number 𝑛 of types to be discovered at each
iteration step, and outputs the schema reflecting the evolution in
the content of G. The algorithm is an optimized version of GMM-S,
which uses memoization to avoid unnecessary recursive calls in
the sub-clusters that remain unchanged. Specifically, consider the
GMM-S prediction step, which classifies the nodes of a parent cluster
into one of the base types of the 𝑛 sub-clusters from the previous
iteration. While GMM-S proceeds to recursively call itself in each
of these sub-clusters after this step, GMM-D only does so in the sub-
clusters to which nodes were currently assigned. To the best of our
knowledge, incremental schema discovery for property graphs as
enabled by DiscoPG has not been showcased before.

2.2 System Architecture

As depicted in Figure 1, the architecture of the DiscoPG system
integrates three modules. These support discovering and exploring
dynamic property graph schemas, as well as inspecting and logging
the performance of the underlying algorithms and the quality of
the produced results, through a dashboard. We present each below.

• Schema Discovery. The first functionality of the module
is that it allows to preprocess a given graph dataset and stan-
dardise its labels and property keys, by removing potential
syntactical inconsistencies and typos. It then applies the
GMM-S algorithm to discover the underlying schema struc-
ture of the graph obtained as output during the initial step.
Finally, upon receiving updates from the user and a prefer-
ence regarding whether to apply an incremental (I-GMM-D)
or a memoization-based recomputation (GMM-D) approach, it
computes a novel schema, reflecting the changes.

• Schema Exploration. Themodule allows users to navigate
the previously produced schema graph. In particular, they
can examine the labels and properties associated to both its
nodes and edges. Moreover, they can immediately visually
grasp the proportion of node instances corresponding to
each node type, as these are reflected by the depicted cluster
sizes. In the dynamic case, the individual impact of the
changes to the relevant clusters can also be apprehended
through their custom color coding.



• Schema Dashboard. Finally, users can inspect the per-
formance of DiscoPG’s algorithms, as well as the quality
of its produced schemas. As an additional functionality,
providing a wider view of the computed metrics, the mod-
ule enables users to log the results obtained with various
parameter configurations, across several datasets.

3 DEMONSTRATION OVERVIEW

The audience will be able to use DiscoPG to execute the following
steps. In the static setting, one can: load and visualize property
graphs, configure the parameters of our GMM-S schema discovery
method, as well as log and analyze its performance, in terms of run-
time and clustering quality, across various datasets. In the dynamic
setting, one can modify the initial graph instances, by inserting real
or synthetic nodes. Then, one can analyze the updated schemas
produced with our dynamic algorithms. These are I-GMM-D (which
incrementally adjusts the clusters computed in the static case) and
GMM-D (which dynamically recomputes the node clusters). Finally,
one can explore the discovered schemas and visualize their struc-
ture: relative cluster sizes, associated labels, properties, and inter-
connections, as well as the impact incurred due to updates.

3.1 Schema Discovery

Static Case. Users can access DiscoPG through a GUI. The main
panel allows them to configure the schema discovery parameters
of GMM-S. As depicted in Figure 2, a graph instance can first be
selected from a menu containing the LDBC [5], the Covid19 graph
[6], and the Connectome NeuPrint’s Fib25 [11]. Note than further
datasets can also be added to the system. DiscoPG then supports
schema discovery for either the entire dataset or for a custom
fraction that can be specified in the field "Percentage of nodes to
consider". In the latter case, the remaining percentage will be used
for the dynamic setting. Users can also specify the number of sub-
clusters to be discovered at each iteration (i.e., the number of fitted
Gaussians, as explained in Section 2.1.1). Users can choose whether
the discovered schema should include the original edge labels or
only the computed subtype relationships, as well as whether to
record the evaluation in a log, for further reference. Finally, if a
previous schema discovery algorithm has already been run on the
chosen dataset, they can consider the most recent result. This can
then be processed with the dynamic schema discovery algorithms.
Dynamic Case. As real-world datasets are continuously evolving,
DiscoPG allows users to modify the graph instance used for static
schema discovery. Configuring the parameters for the dynamic
scenario is possible through a dedicated panel (see Figure 3). Users
can first choose between the I-GMM-D and GMM-D algorithms for
dynamic schema discovery. Next, they can specify the number of
nodes to be inserted and whether these should correspond to real
data. In both cases, the update batch is built from the sample G𝑠

retained for updates, ((100−𝑝)% of G, where 𝑝 is the percentage of
data used for static schema discovery). If the user wants to use real
data, DiscoPG will randomly select the desired number of nodes
from G𝑠 and add these to the graph. If not, DiscoPG will construct
the required number of synthetic nodes, by first randomly selecting
labels from G𝑠 and, for each, further sampling its set of applicable
properties. Users have the option to also log the evaluation.

Figure 2: DiscoPG: Schema Discovery Setup (Static Case)

Figure 3: DiscoPG: - Schema Discovery Setup (Dynamic Case)

Figure 4: Performance Metrics

3.2 Schema Dashboard

Users can employ a dedicated Schema Dashboard to log and to
analyze the runtime and schema quality of DiscoPG’s algorithm.
Performance Metrics. For each logged algorithm, its execution
time per iteration is plotted (see Figure 4). Users can zoom in on
the portions of the plot they find the most relevant and analyze the
comparative behaviour of the algorithms. Figure 4 illustrates this
on the LDBC dataset. We see that the time required to discover new
clusters at most iterations is under a few microseconds. The rare
jumps in execution time correspond to the computation of larger
clusters and primarily concern the GMM-S algorithm, responsible for
producing the schema in the static case. In the dynamic setting, we
can observe that the incremental algorithm I-GMM-D has a steady
evolution across a higher number of iterations that its memoization-
based couterpart, GMM-D. The latter converges much faster, after
only 8 iterations, and has the lowest execution times, since it does
not perform unnecessary computations in the recursive calls.
Quality Metrics. To analyze the quality of the schemas discovered
at each iteration, users can observe the behaviour of the algorithms,
with respect to the following metrics, measuring the similarity
between a pair of clusterings. The Adjusted Mutual Index (AMI)
accounts for potentially unbalanced clusters in the ground truth.
The Adjusted Random Index (ARI) considers all sample pairs and



Figure 5: Quality Metrics

counts those assigned in the same/different clusters. Both metrics
are computed with respect to the HDBSCAN hierarchical cluster-
ing algorithm [8]. The corresponding plots allow users to visually
grasp which algorithm is best suited for schema discovery on the
chosen dataset. As they can readily visualize the minimum number
of iterations already providing a schema of satisfactory quality, the
information can be used for further optimizations. On the LDBC
dataset (see Figure 5), we notice that the quality of the schema
discovered by GMM-S improves with the number of iterations. This
trend is also recorded when considering the GMM-D algorithm, all the
while the convergence rate is much faster, as already observed when
analyzing its runtime performance. For the incremental I-GMM-D
algorithm, we note that it conserves cluster quality, due to its incre-
mental nature, thus providing a more robust alternative to GMM-D.

3.3 Schema Exploration

The Schema Exploration module enables users to navigate the
structure and evolution of the discovered schemas. In the static
case (see Figure 6), users can explore the graph structure of the
dataset they have chosen in the Schema Discovery module (see
Section 3.2). For example, when considering the LDBC dataset, as
illustrated, users can visualize the clusters corresponding to each of
the discovered node types and their labeled inter-connections. Note
that the latter are produced based on the information regarding the
edges attached to the cluster nodes. For each of the clusters, users
can inspect their properties and visualize their respective sizes, in
order to understand the relative number of nodes they contain.

In the dynamic case, users can visualize the results of the I-GMM-D
or GMM-D algorithms (Figure 7 and Figure 8). To grasp the impact
that base graph updates have on the discovered schema, DiscoPG
provides a custom color coding. The unchanged clusters appear in
blue, the newly formed ones - in green, and those that augmented
due to node insertions - in orange and blue concentric circles.

REFERENCES

[1] Renzo Angles. 2018. The Property Graph Database Model. In AMW (CEUR
Workshop Proceedings), Vol. 2100. CEUR-WS.org.

[2] Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. 2022. Hierarchical Clus-
tering for Property Graph Schema Discovery. In EDBT. 449–453.

[3] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.
2018. Querying Graphs. Morgan & Claypool Publishers.

[4] Redouane Bouhamoum, Zoubida Kedad, and Stéphane Lopes. 2021. Incremental
Schema Discovery at Scale for RDF Data. In ESWC. 195–211.

[5] Orri Erling, Alex Averbuch, and et al. 2015. The LDBC Social Network Benchmark:
Interactive Workload. In SIGMOD. 619–630.

[6] HealthECCO. 2021. CovidGraph. https://covidgraph.org/ (visited: 14-06-2022).

Figure 6: GMM-S Discovered Schema for LDBC

Figure 7: I-GMM-D Discovered Schema for LDBC

Figure 8: GMM-D Discovered Schema for LDBC

[7] Hanâ Lbath, Angela Bonifati, and Russ Harmer. 2021. Schema Inference for
Property Graphs. In EDBT. 499–504.

[8] Md Farhadur Rahman, Weimo Liu, Saad Bin Suhaim, Saravanan Thirumuru-
ganathan, Nan Zhang, and Gautam Das. 2017. Density Based Clustering over
Location Based Services. In ICDE. 461–469.

[9] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph
processing: extended survey. VLDB J. 29, 2-3 (2020), 595–618.

[10] Sherif Sakr, Angela Bonifati, Hannes Voigt, et al. 2021. The Future is Big Graphs:
a Community View on Graph Processing Systems. CACM 64, 9 (2021), 62–71.

[11] Shinya Takemura and et al. 2015. Synaptic circuits and their variations within
different columns in the visual system of Drosophila. PNAS 112 (2015).

https://covidgraph.org/

	Abstract
	1 Introduction
	2 System Overview
	2.1 Schema Discovery Algorithms
	2.2 System Architecture

	3 Demonstration Overview
	3.1 Schema Discovery
	3.2 Schema Dashboard
	3.3 Schema Exploration

	References

