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1 Introduction and problem definition

The Multi-Commodity two-echelon Distribution Problem (MC2DP) considers a two-echelon

distribution system composed of a set of suppliers S, a set of distribution centres D and

a set of customers C, where collection and delivery operations are performed. Specifi-

cally, |K| commodities are collected from the suppliers, sent to the distribution centres

for consolidation purposes and delivered to the customers to fulfill their requests. For

each commodity k ∈ K, each supplier i ∈ S provides an amount Pik ≥ 0 of k, and each

customer j ∈ C has a request Rjk ≥ 0 for k. The collection operations are performed by an

unlimited fleet of homogeneous vehicles of capacity Q1 with direct trips from the suppliers

to the distribution centres. Conversely, each distribution centre owns an unlimited fleet

of homogeneous vehicles of capacity Q2 performing routes to deliver the commodities to

the customers. All vehicles can transport any set of commodities as long as their capac-

ity is not exceeded. In addition, as in the Commodity constrained Split Delivery Vehicle

Routing Problem (C-SDVRP) (see [1]), customers can be visited multiple times. However

the request for a given commodity has to be delivered in a single visit. The aim of the

MC2DP is to fulfill the customer requests not exceeding the vehicle capacities, and the

available commodity amounts at the suppliers and such that the overall transportation

cost is minimized.

The MC2DP can be framed in the class of the two-echelon routing problems ([2]), and



shares similarities with the 2-Echelon Capacitated Vehicle Routing Problem (2E-CVRP).

The 2E-CVRP considers a one-to-many setting, where a single commodity has to be

delivered from a depot to a set of customers through distribution centres by means of two

level of routing decisions. Conversely, the MC2DP involves multiple commodities which

have to be collected from multiple suppliers and delivered to the customers (many-to-

many setting). In addition, in the 2E-CVRP, the link between the collection and delivery

echelons is commonly done by the load synchronization strategy ([3]): the amount of

commodity sent to each distribution centre must be sufficient to serve the customers

assigned to that distribution centre. In the MC2DP, the same synchronization strategy is

applied, but it is associated with each commodity.

The MC2DP was presented in [4], where the authors proposed a heuristic sequen-

tial approach (collection first, delivery second). Differently from [4], we devise an exact

algorithm based on a branch-price-and-cut (BPC).

2 Problem formulation

We define the MC2DP on a directed weighted graph G = (V,A), where V = S ∪D∪C and

A = (S × D) ∪ (D × S) ∪ (D × C) ∪ (C × D). Each arc (i, j) ∈ A is associated with cost

Cij ≥ 0. For each distribution centre o ∈ D, set Ro contains the feasible routes that a

vehicle owned by o can perform, i.e., the non-empty cycles in the delivery echelon starting

and ending at o such that the total amount of delivered commodities does not exceed

vehicle capacity Q2. Finally, Cr is the cost associated with route r and arjk is a binary

parameter taking value 1 if r delivers commodity k to customer j and 0 otherwise.

We introduce the following variables. For all distribution centres o ∈ D and suppliers

i ∈ S, integer variable xoi represents the number of vehicles traversing arc (o, i). For

all o ∈ D, i ∈ S and k ∈ K, non-negative continuous variable qkoi stores the amount of

commodity k loaded at supplier i and sent to distribution centre o. Finally, for all o ∈ D
and r ∈ Ro, binary variable λr takes value 1 if route r is selected in the solution and 0

otherwise. Our extended formulation, referred to as Master Problem (MP), reads

min
∑

(o,i)∈A1

(Coi + Cio)xoi +
∑
o∈D

∑
r∈Ro

Crλr (1)

∑
o∈D

qkoi ≤ Pik ∀i ∈ S,∀k ∈ K (2)∑
k∈K

qkoi ≤ Q1xoi ∀o ∈ D,∀i ∈ S (3)∑
o∈D

∑
r∈Ro

arjkλr ≥ 1 ∀j ∈ C,∀k ∈ K s.t. Rjk > 0 (4)

∑
i∈S

qkio ≥
∑
r∈Ro

∑
j∈C

Rjka
r
jkλr ∀o ∈ D,∀k ∈ K, (5)

xoi ∈ Z≥0,∀o ∈ D,∀i ∈ S qkoi ∈ R≥0,∀o ∈ D,∀i ∈ S,∀k ∈ K λr ∈ {0, 1},∀r ∈ Ro,∀o ∈ D. (6)



Objective function (1) minimizes the overall transportation cost. Constraints (2) guar-

antee that the amount of each commodity available at each supplier is respected. Con-

straints (3) ensure that a sufficient number of vehicles performs the collection operations.

Constraints (4) are the covering constraints ensuring that customer requests are fulfilled.

Constraints (5) impose the load synchronization strategy linking the collection and deliv-

ery echelons at the distribution centres. Constraints (6) define the variables.

3 A branch-price-and-cut algorithm

To solve the MP introduced in Section (2), we design a BPC algorithm, where, at each col-

umn generation iteration, we price λr variables. Specifically, we solve the pricing problem

min{C̄r | r ∈ Ro, o ∈ D}, where C̄r is the reduced cost of λr, by decomposing it per dis-

tribution centre. Solving min{C̄r | r ∈ Ro} reduces to solve an Elementary Shortest Path

Problems with Resource Constraints (ESPPRC) (see [5]). We tackle the ESPPRC through

a label setting dynamic programming algorithm which incorporates the ng-path relaxation

and an implicit version of the bidirectional labeling search. Our BPC implements several

classical and advanced techniques ([6]) to accelerate the column generation procedure: the

automatic dual pricing smoothing stabilization, a multi-phase strong branching procedure

and three heuristic approaches to solve the ESPPRC. Two of these are similar to the graph

reduction heuristics proposed in [5]. The third one is a novel two-phase heuristic. The

first phase computes a lower bound on the value of min{C̄r | r ∈ Ro}, o ∈ D and a set of

promising customer sequences: it does so by solving the ESPPRC on a modified graph,

where customers are delivered with their least requested commodity. The second phase

retrieves the route to be inserted in the MP by solving the ESPPRC again on several

acyclic graphs, one for each customer sequence computed in the previous phase. Finally,

before starting the branching phase, we look for violated valid inequalities. We consider

the capacity constraints and two new families of valid inequalities based respectively on

the set covering polytope and on the number partitioning problem polytope.

4 Preliminary computational results

Table 1 shows preliminary results obtained by running our BPC algorithm on six small

instances considered in [4]. We compare our results with those obtained by solving the

compact formulation of the MC2DP presented in [4] with the commercial solver CPLEX

12.8. For both approaches, we report the upper and lower bounds returned after a time

limit of one hour and either the computational time, if the instance is solved to optimality

(“-”in column LB), or the optimality gap is computed as UB−LB
LB ·100. The BPC algorithm

outperforms CPLEX in terms of time and solution quality: it optimally solves all instances

in short computation times.



Instance CPLEX BPC

|S| |D| |C| |K| UB LB t(s)/gap(%) UB LB t(s)/gap(%)

4 2 10 2 579.52 549.03 5.55% 579.52 - 0.75s

4 2 10 2 562.34 - 1441s 562.34 - 0.47s

4 2 10 2 663.52 - 2261s 663.52 - 0.32s

4 2 15 2 771.34 654.28 17.89% 742.71 - 1.39s

4 2 15 2 790.28 682.49 15.79% 784.05 - 296.14s

4 2 15 2 896.12 742.96 20.62% 892.96 - 1.11s

Table 1: Preliminary computational results.

As future research direction, we plan to generalize the MC2DP by considering route

decisions also in the collection echelon and, hence, to adapt our BPC algorithm accordingly.
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