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3D-FlowNet: Event-based optical flow estimation with 3D representation

Haixin SUN, Minh-Quan DAO, Vincent FREMONT

Abstract— Event-based cameras can overpass frame-based
cameras limitations for important tasks such as high-speed
motion detection during self-driving cars navigation in low
illumination conditions. The event cameras’ high temporal
resolution and high dynamic range, allow them to work in fast
motion and extreme light scenarios. However, conventional com-
puter vision methods, such as Deep Neural Networks, are not
well adapted to work with event data as they are asynchronous
and discrete. Moreover, the traditional 2D-encoding represen-
tation methods for event data, sacrifice the time resolution.
In this paper, we first improve the 2D-encoding representation
by expanding it into three dimensions to better preserve the
temporal distribution of the events. We then propose 3D-
FlowNet, a novel network architecture that can process the
3D input representation and output optical flow estimations
according to the new encoding methods. A self-supervised
training strategy is adopted to compensate the lack of labeled
datasets for the event-based camera. Finally, the proposed
network is trained and evaluated with the Multi-Vehicle Stereo
Event Camera (MVSEC) dataset. The results show that our
3D-FlowNet outperforms state-of-the-art approaches with less
training epoch (30 compared to 100 of Spike-FlowNet). The
code is released in https://github.com/adosum/3D-FlowNet.

I. INTRODUCTION

An Autonomous Vehicle (AV) requires an accurate per-
ception of its surrounding environment to reliably and safely
operate. The perception system of an AV can transform
raw sensory data into semantic information [1], and frame-
based monocular cameras are one of the most commonly
used sensors for this purpose. They synchronously transmit
raw images, frame by frame, at a fixed rate. This feature as
the major drawbacks of low temporal resolution, redundant
information and low dynamic range. Few years ago, event-
based cameras, a bio-inspired technology of silicon retinas,
have been proposed to overcome those limitations and to
solve both classical and new computer vision tasks [2], [3].
An event-based camera can have a dynamic range of 130
dB and a minimum of 3 µs latency. Those advantages allow
the event-based camera to work in extreme scenarios with
low light conditions and fast motions. Typically, event-based
cameras are used as sensing modalities on Unmanned aerial
vehicle (UAV) [4], mobile robots [5] or wearable electronics
[6], where operations are under unrealistic lighting condi-
tions and sensitive to the temporal resolution. The main
applications for event-based cameras are object stracking [5],
surveillance and monitoring [7], and optical flow estimation
[8], [9]. Nowadays, more and more researchers focus on
using the event-based cameras for autonomous driving. [10]
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Fig. 1. Visualization of the event data between two gray scale image.

proposed a method that can predict the vehicle’s steering
angle according to the event data, and [11] proposed a dataset
that contains event data along with the vehicle state.

Event-based cameras are asynchronous devices that detect
changes in log brightness intensity. When the variation of
the brightness of a pixel reaches the threshold, the camera
generates an event. The event is usually in the format of a
tuple, e = (x, y, t, p), where (x, y) is the pixel’s position,
t is the precise timestamp of the event which is accurate
up to microseconds, and the polarity p of the change that
indicates whether the pixel became brighter or darker. Fig. 1
shows the visualization of the event data between two frame-
based gray-scale images. The positive events are shown
in red, and the negative events are in blue. Between two
consecutive images, there is a quasi-continuous stream of
events that represents all the brightness change between the
two images. The event-based camera’s asynchronous nature
and tracking in the log image space offer several advantages
over traditional frame-based cameras, including extremely
low latency for detecting high-speed objects, a very high
dynamic range for the poor light conditions, and significantly
lower power consumption.

The cameras’ unique output, on the other hand, presents
new challenges in algorithm developments. Indeed, the
events are transmitted asynchronously and lacks the pixel’s
absolute value and spatial neighborhood. The algorithms
for traditional frame images such as optical flow or object
detection are no longer valid. As a result, a significant
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research effort has been made to develop new algorithms
for event-based cameras to solve these traditional vision
problems.

Within Deep Learning area, there exist several works that
train a neural networks to estimate the optical flow in a
self-supervised manner. Zhu et al. [9] accumulate the events
into the image-like frames and calculate the optical flow
using an encoder-decoder network. Their encoding method
loses the temporal information because they summarize the
events stream into a four-channel image. Lee et al. [12] try
to solve this problem by proposing a deep hybrid neural
network architecture called Spike-FlowNet. The use of the
Spiking Neural Network allows the approach to process the
data asynchronously. So it can best preserve the properties
of the event data. However, the training of the Spiking
Neural Network is quite slow and unstable. So, although the
neural networks avoid the complex problem of modeling and
algorithm developments, the encoding representation for the
event data and the neural network’s design still need to be
improved.

The main contribution of this paper is to propose a new
encoding method and the corresponding neural network ar-
chitecture to process an event data stream. We proposed a 3D
encoding representation that can better preserve the temporal
nature of the event data. We also present the 3D-FlowNet,
a novel neural network architecture that can process the
3D input and generate optical flow estimations. Finally, We
train and evaluate the proposed 3D-FlowNet using the Multi-
Vehicle Stereo Event Camera (MVSEC) dataset [13]. The
results show that our approach outperforms current state-
of-the-art methods, we achieve 13% improvement compared
to the Spike-FlowNet[12], and 32% compared to the EV-
FlowNet[9].

The paper is structured as follows: In Section II, we
discuss the related work. In section III, we present the
methodology, covering the encoding method for the event
data and the corresponding neural network architecture. This
section also discusses the self-supervised training strategy.
In section IV, we present the experimental results, including
training details and the evaluation metrics. We also discuss
the comparison results with state-of-the-art approaches.

II. RELATED WORKS

Due to the properties of the event-based camera, there
has been a lot of interest in developing algorithms that take
advantage of them, and optical flow estimation is one of
the addressed topics. Benosman et al. [14] fit a plane to
the events in spatial-temporal spaces and then estimate the
optical flow. Bardow et al. [15] formulate the flow estimation
as a convex optimization problem that solves for the image
intensity and flow jointly. Almatrafi et al. [8] calculate the
spatial and temporal gradients on the frame image and events
data, respectively, and then estimate the optical flow by
solving the classical optical flow equation.

Besides the traditional optical flow algorithms for the event
camera, there are also several model-free methods that use a
deep neural networks to predict the optical flow. Zhu et al. [9]

accumulate the event into the image like frames and use an
encoder-decoder network architecture to estimate the optical
flow. The event data are then encoded into a four-channel
image representing: Positive events counting, negative events
counting, latest timestamp of positive events, and latest
timestamp of negative events. This encoding method loses
the temporal information because the older timestamp are
filtered out. Lee et al. [12] try to solve this problem by
proposing a deep hybrid neural network architecture called
Spike-FlowNet, a hybrid structure between regular Neural
Networks (NN) and Spiking Neural Networks (SNN). Due to
the use of the SNN, the events are processed asynchronously
to preserve the temporal information of the event data.
However, the training of the Spike-FlowNet is relatively slow
and unstable. Because the activation function of SNN is
not continuous, the backpropagation algorithm can not be
directly used to train the SNN.

For the networks’ training, several works focuses on self-
supervised training for the optical flow prediction because of
the lack of labeled event-based datasets. Yu et al. [16] pro-
posed a network that can learn optical flow from brightness
constancy and motion smoothness. Based on that, Meister
et al. [17] improve the quality of the flow by applying a
bidirectional census loss to achieve better performance with
less training time. [9], [12] adopt this self-supervised strategy
for event-based camera and achieve similar performances.

III. PROPOSED APPROACH

In this section, we explain our approach in details. In III-
A, we describe our event encoding method, which encodes
a group of event measurements into an 3D temporal-spatial
event image. In III-B, we describe the architecture of our
network, which uses the 3D convolutions to process the
spatial-temporal measurements and output the pixel-wise op-
tical flow. Finally, in III-C, we describe the training strategy
and the self-supervised loss is also discussed.

A. Event Data Encoding Method

The event-based camera records the log intensity change
of each pixel of the artificial retina, and generates an event
whenever the log intensity changes over the threshold θ:

log(It+1)− log(It) ≥ θ (1)

The event measurement is in the format of tuple which
consists of location of the pixel, timestamp of the event and
polarity of the change:

e = (x, y, t, p) (2)

Because the events are transmitted asynchronously, they
cannot be immediately fed into standard convolutional neural
network layers. It is therefore important to keep the necessary
information while generate the encoding representation from
the event stream.

Several prior works have proposed different methods that
transform the event output into a synchronous image-like
representation. In EV-FlowNet [9], only the latest pixel-wise
timestamps and the event counts are used to encode the event
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(a) Example of an event image and a gray scale image

Former Events Latter Events Time

Positive Events

Negative Events

(b) four channels for event data

Fig. 2. Visualization of our event encoding representation. (a) is one slice of the event image Islice = (1, 1, H,W ), and the brighter represents the more
recent timestamp value. (b) is an example of the event representation where D = 8.

representation. However, fast motions and dense scenarios
can enormously overlap per-pixel timestamp information. In
[18], [19], the time domain is discretized to preserve the
temporal distributions. To improve the resolution and the
temporal domain beyond the number of bins, the authors
insert events into this volume using a linearly weighted
accumulation similar to bilinear interpolation. However, the
number of input channels increases significantly as the
time dimensions are finely discretized, further increasing the
computation time for encoding and forward propagation.

Considering all the methods discussed before, we pro-
pose in this work, a novel input representation that can
better exploit the information in the event data with less
computation complexity. Given a set of N input events
EN = (xi, yi, ti, pi), i ∈ [1, N ], and a time depth D to
discretize the time dimension of event data, we accumulate
each group of event into images as follows:

tnorm = (t− t0)/(tN − t1) ∗ (D − 1)

I(x, y, t, p) =
∑
i

δ(p− pi)kb(x− xi)kb(y − yi)kb(t− tnorm)

kb(a) = max(0, 1− |a|)
(3)

Here, (x, y) denotes the position of the event, p is the polarity
of the event, and δ is the Kronecker delta operator. kb(·)
denotes bi-linear sampling kernel. The generated event image
I is a (2, D,H,W ) matrix, where the number 2 represents
the positive and negative polarity, D is the discretized time
depth, and (H,W ) are respectively the height and width of
the image. Then we split the event image into former and
latter groups through the time dimension and obtained a new
event image with the shape of (4, D

2 , H,W ). Here the num-
ber 4 represents the four channels: Former positive events,
former negative events, latter positive events, latter negative
events. Fig. 2 shows the proposed input representation. Fig.
2. (a) is the visualization of the event image and the relative
grayscale image, left is one slice of the event image, and the
brighter represents the more recent timestamp value. Fig. 2.
(b) is an example of the event representation where D = 8.

B. Proposed Network Architecture

With the input representation I4,D/2,H,W discussed in
section III-A, we propose the 3D-FlowNet architecture to
predict the optical flow values. The 3D-FlowNet’s network
adopts an encoder-decoder architecture, containing four en-
coder layers, two residual blocks, and four decoder layers
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encoder-conv3d

encoder-conv2d

decoder-conv2d

concatenation

Fig. 3. Network structure of the 3D-FlowNet.

as shown in Fig. 3. First, the input event image is passed
through two 3D-decoders. The 3D-decoders down-sample
the time dimension d/2 to 1, and compress the 3D input
into 2D ((4, D/2, H,W ) → (4, 1, H,W ) → (4, H,W )).
Then the resulting activation are passed through two 2D-
decoders, two residual blocks, and four 2D-decoders. For
each decoder, the activation is up-sampled using the 2D
transposed convolution and then convolved, to obtain the
final optical flow estimation.

There is a skip connection from each encoder to the
corresponding decoder. For the skip connection between
2D-encoder and 2D-decoder, the activation of the encoder
is directly concatenated with the intermediate optical flow
value and the activation of decoder. For the skip connection
between 3D-encoder and 2D-decoder, the 3D activation (C×
D×W ×H) is flattened into 2D tensor ((C ∗D)×W ×H)
first, then it can be concatenated with the activation of the
decoder and the intermediate optical flow. The predicted
optical flows are then used together with the grayscale image
for the loss calculation.

C. Self-Supervised Loss

The event-based camera is a sensor that can produce
synchronous grayscale images and asynchronous event data
streams simultaneously. Compared to frame-based camera
datasets, the number of available event-based camera datasets
with annotated labels suitable for optical flow estimation is
relatively small. As a result, for training our Spike-FlowNet,
we used a self-supervised learning method that uses proxy
labels from the recorded grayscale images [16], [17].

The total loss consists of a smoothness loss (Lsmooth) and
a photometric reconstruction loss (Lphoto) [16]. The network
needs a pair of grayscale images (It, It+∆t) to calculate the
photometric loss, as well as the event data in the time window
(t, t + ∆t). The second grayscale image is warped to the
first grayscale image using the network’s predicted optical
flow. The photometric loss (Lphoto) is used to minimize the
difference between the first grayscale image and the inversely
warped second grayscale image. This loss is based on the
photometric consistency assumption, which states that a pixel
value from the first image will be similar to the second frame
warped by the predicted optical flow. The photometric loss

can be written as:

Lloss(u, v, It, It+∆t) =∑
x,y

ρ(It(x, y)− It+dt(x+ u(x, y), y + v(x, y))) (4)

Then, the smoothness loss is adopted to improve the spatial
consistency of neighboring optical flow. It is calculated as:

Lsmooth =
∑
i

∑
j

(||ui,j − ui+1,j ||+ ||(ui,j − ui,j+1||+

||(vi,j − vi+1,j ||+ ||(vi,j − vi,j+1||)
(5)

The total loss for the training is computed as the weighted
sum of the photometric and smoothness loss:

Ltotal = Lphoto + λLsmooth (6)

where λ is the weight factor.

IV. EXPERIMENTS

A. Dataset and Implementation Details

The MVSEC dataset [13] is used in this paper for training
and evaluating the optical flow predictions. The MVSEC
dataset contains stereo event-based camera data, including
flying, driving, and handheld scenes. Moreover, the dataset
provides ground truth poses and depths maps for each event-
based camera, and the ground truth optical flow can be
generated accordingly. To offer fair comparisons with prior
works [12], [9], only the outdoor day2 sequence is used for
training.

During the training, the input is centrally cropped to
256×256 size. The ADAM optimizer is used, and the initial
learning rate of 1e-4. The model is trained for 30 epochs
with a batch size of 16, while [12] takes 100 epochs. This
is because the training of the ANN is faster and more stable
than the SNN one.

B. Results

Here, the Average End-point Error (AEE) is used to
evaluate the optical flow result, and it is defined as:

AEE =
1

n

∑
n

∥(u, v)pred − (u, v)gt∥2 (7)
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Fig. 4. Visualization of the optical flow estimation.

Where n is the number of the active pixel in the event image,
(u, v)pred is the predicted optical flow and (u, v)gt is the
groundtruth. We also count the outliers that corresponds to
the percentage of points with AEE exceeding three pixels.
For each sequence, the AEE is calculated in pixels, and the
%Outlier is defined as the percentage of points with AEE <

3 pix. During the testing, the optical flow is also estimated on
the centrally cropped 256×256 event images. The sequences
of indoor flying 1,2,3 and outdoor day 1 are used. We use
all events from the indoor flying sequences and take events
within 800 gray scale frames for the outdoor day1 sequence
similar to [12].
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TABLE I
QUANTITATIVE ASSESSMENT OF OUR APPROACH COMPARED TO EV-FLOWNET AND SPIKE-FLOWNET

outdoor day1 indoor flying1 indoor flying2 indoor flying3
AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓ AEE ↓ Outlier ↓

EV-FlowNet [9] 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9
Spike-FlowNet [12] 0.49 - 0.84 - 1.28 - 1.11 -

Ours 0.51 0.1 0.7 0.1 1.10 0.2 0.91 0.1

Table I show the results of the AEE evaluation in com-
parison to previous event-based camera-based optical flow
estimation approaches. Our approach achieves better perfor-
mances than the others in all the indoor flying sequences.
Our AEE performance is similar to the others in the out-
door day1 sequence, but we obtain fewer outliers. Fig. 4
shows the qualitative results of our approach. The grayscale,
event image, ground truth flow, and corresponding predicted
flow images are displayed in this figure. We mask out
the optical flow at points where the event data are absent.
The masked optical flow is used here because event-based
cameras detect the brightness change at pixels. Low texture
regions, such as flat surfaces, produce very few events due
to fewer brightness changes, resulting in few optical flow
predictions in the corresponding areas. Overall, the results
show that 3D-FlowNet can predict optical flow accurately in
both indoor and outdoor day1 sequences. This proves that
the proposed 3D-FlowNet generalizes well to a variety of
environments.

V. CONCLUSIONS

In this work, we propose 3D-FlowNet, a deep neural net-
work for optical flow estimations using event-based camera
data. We improved the encoding methods for the event data
and self-training strategy for the network. The results show
that our approach can generate more accurate (13%-32%)
optical flow estimations (u, v). For future work, we hope
to combine frame-based cameras with event-based cameras
to achieve better and more robust performance in various
scenarios.
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