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Abstract

This paper introduces a boundary condition scheme for weakly compressible (WC) renormalised first-order accurate meshless
Lagrangian methods (MLM) by considering both solid and free surface conditions.
A hybrid meshless Lagrangian method-finite difference (MLM-FD) scheme on prescribed boundary nodes is proposed to
enforce Neumann boundary conditions. This is used to enforce symmetry boundary conditions and the implied Neumann
pressure boundary conditions on solid boundaries in amanner consistent with theNavier-Stokes equation leading to the accurate
recovery of surface pressures. The free surface boundary conditions allow all differential operators to be approximated by the
same renormalised scheme while also efficiently determining free surface particles.
The boundary conditions schemes are implemented for two renormalised MLMs. A WC smoothed particle hydrodynamics
(SPH) solver is compared to a WC generalised finite difference (GFD) solver. Applications in both 2D and 3D are explored. A
substantial performance benefit was found when comparing the WCGFD solver to the WCSPH solver with the WCGFD solver
realising a maximum speedup in the range of three times over WCSPH in both 2D and 3D configurations. The solvers were
implemented in C++ and used the NVIDIA CUDA 10.1 toolkit for the parallelisation of the solvers.
Keywords: Smoothed Particle Hydrodynamics (SPH), General Finite Difference (GFD), Meshless Lagrangian Method
(MLM), Weakly compressible, Boundary conditions, Free surface

1. Introduction

The rapid development of general-purpose graphics processing unit (GPGPU) computing has led to various engineering prob-
lems to be recast into a parallelised form with benefits in terms of computational cost and efficiency being shown in both cases.
In a computational fluid dynamics (CFD) setting, one way in which this is being realised is through the development of the
so-called meshless Lagrangian methods (MLMs). In these systems, clouds of sampling points with no specifically enforced
structure between each other are used to evaluate an underlying field representing the solution of partial differential equations
(PDEs). Interpolation techniques are then used to build approximations of these fields and the differential operators required
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to evolve the system. Due to the meshless nature of these methods, it has been seen that multi-phase [1–4], multi-species [5–7]
and coupled multi-physics [8–13] applications can be handled naturally.
Over the years, due to its inherently independent nature, a wide range of applications and relative ease of implementing,
smoothed particle hydrodynamics (SPH) has benefited from a tremendous amount of interest leading to SPH almost becoming
synonymous with MLMs. Built upon the idea of constructing smooth functions from discrete points and applying differential
operators directly to this field, these differential operators are used to deconstruct the Navier-Stokes equation (NSE) into a set
of ordinary differential equations.
When applied to a general particle distribution, the original SPH differential operators generate zeroth-order accurate discreti-
sations. This was improved when Randles and Libersky [14] introduced a correction to the SPH gradient operator obtained
by truncating the leading error term of the discretisation resulting in a first-order accurate gradient discretisation. Fatehi and
Manzari [15] later extended this and obtained a first-order accurate Laplacian and thus allowed for first-order approximations
of all terms in the incompressible NSE. A linear system for both gradients and Laplacians must be constructed and inverted for
each particle to apply these techniques. Renormalisation can drastically improve the overall results of SPH despite relaxing the
conservation of momentum constraint imposed by the classical SPH differential operators [16], while also reducing the kernel
support size requiring fewer particles to construct the differential operators [17, 18]. The smaller support region and higher
quality discretisations, especially in regions with reduced support, has led to these techniques starting to see wide adoption
in modern SPH simulations with various studies either using only gradient correction [19–23] or fully first-order accurate
operators [11, 12, 24, 25]. With the renormalised Laplacian operator only being developed recently [15], many of the studies
implementing only gradient correction never had the option to include the Laplacian correction. However, several more recent
studies have also shied away from the Laplacian correction due to its complexity and high computational cost. This is attributed
to the construction of the renormalisation operator which requires the assembly of fourth-order tensors (although, due to sym-
metry in its entries, this system reduces to a (d2 + d)∕2 linear system in d spatial dimension) as well as increasing the number
of linear operations required in the construction of the Laplacian itself further increasing its computational cost.
Although first being described in the context of SPH, renormalisation techniques have been applied to other MLMs. The
moving particle semi-implicit (MPS) method [26], proposed initially as a semi-implicit method for incompressible fluid sim-
ulations and later extended to a weakly compressible (WC) context [27–30], constructs its differential operators by weighting
individual finite difference (FD) terms between particles. While conceptually different to the SPH approximations in the sense
that differential operators are never applied to continuous field approximations but rather discretise the differential operators
themselves, functionally, both schemes suffer from similar issues. Specifically, both schemes are zeroth-order accurate, leading
to poor approximations in regions with reduced support. This has led to renormalisation methods applied to MPS differential
operators [31–33] yielding similar benefits compared to the SPH case.
Alternatively, the generalised finite difference (GFD) method [34–36] builds gradient and Laplacian operators. These opera-
tors are equivalent to the above mentioned fully first-order renormalised operators by directly using Taylor series expansions
between a particle and those in its neighbourhood along with kernel weighting functions to construct a weighted least-squares
problem. Equivalently, this can be considered as approximating the function gradient by the slope of a plane constructed by
best-fitting it to discrete function values. Conceptually, this is unique from other renormalised meshless schemes where usually
a lower-order approximation is first constructed and then its leading error term is truncated. This approach has been used to
simulate incompressible viscous flow with a fully implicit scheme [37].
Boundary conditions have proven to be challenging for MLMs due to the particles’ Lagrangian nature implying that interpo-
lation points near boundaries are generally advected away from their initial positions. This, along with reduced kernel support
at the boundaries introducing error in the MLM approximations, leads to several challenges ranging from accurately enforc-
ing Neumann boundary conditions to more fundamental challenges such as ensuring fluid particles remain in the prescribed
domain. Despite these challenges, various methods for implementing solid boundaries exist with solutions such as fictitious
particles, repulsive boundary particles and semi-analytical boundary conditions having been proposed.
While prescribed fictitious particles have been shown capable of successfully enforcing boundary conditions for solid surfaces
[38–41], the work of Violeau and Rogers [42] highlighted that thesemethods tend to suffer from non-physical separation of fluid
particles from the boundary, fluid particles penetrating the boundary and artificial boundary layer formation. An alternative
proposed by Libersky and Petschek [43] is to dynamically mirror fluid particles across nearby boundaries and link particle
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information between the two sets. This method’s effectiveness and relative simplicity for implementing either full- or no-slip
boundary conditions have led to mirrored boundary particles becoming very common in SPH simulations. However, despite
handling simple geometries very well, mirroring techniques become challenging to implement when complex boundaries are
considered. Modern mirroring techniques overcome this limitation by either using prescribed internal-mirror particle pairs
where the virtual internal particles obtain information via interpolation of the fluid fields [21, 22, 44, 45] or with locally
mirrored particles where each particle creates a collection of mirrored particles that only it sees [46–48]. Marrone et al.
[21] further applied a mirroring technique on mirrored particles themselves allowing for regions inaccessible via the one-step
mirroring process to be meshed to handle sharp corners. However, despite the progress already made, geometries can still
be constructed where mirroring techniques struggle to generate ghost particles unambiguously or fully complete the kernel
support. Although solutions can be proposed for specific cases, implementing the schemes becomes challenging due to the
number of failure methods that must be addressed individually, especially in 3D simulations.
Repulsive boundary particles introduce artificial forcing conditions at boundaries to prevent SPH particles from escaping the
prescribed fluid domain. Proposed initially by Monaghan [49], the distance between SPH and boundary particles are used to
prescribe a force on the SPH particles based on the Lennard–Jones potential function. This was later refined such that particles
flowing parallel to the boundary would receive a steady forcing condition [50]. An improved boundary forcing condition was
introduced by Monaghan and Kajtar [51]. Here, the sum of the discrete forces is independent of the boundary particle spacing
ensuring a smooth variation of the boundary force. Although these methods prevent fluid particles from escaping the prescribed
fluid domain, the SPH approximations near boundaries remain poor due to the reduced kernel support not being addressed.
This reduces the overall accuracy of solutions employing repulsive boundary particles [52].
The semi-analytical boundary method first proposed by Kulasegaram et al. [53] truly accounts for the reduced kernel support
near boundaries by directly introducing surface effects into the SPH approximations. The modified approximation reduces to
the standard SPH approximation when evaluated far from a boundary. A key challenge of this method has been to discretise
the surface integral appropriately. In 2D, this can be handled elegantly since one only needs to consider intersections between
line segments and the support domain. However, the 3D case requires building the surface integral over various generalised
2D sections that must further be deconstructed into primitive geometries [54]. This drastically increases the complexity of a
general 3D simulation. Although the method is relatively new compared to other SPH boundary condition methods, it applies
to many applications [52, 55–59]. Furthermore, while repulsive and fictitious particles offer suitable methods for enforcing
full- or no-slip boundary conditions, Ferrand et al. [52] and Mayrhofer et al. [56] extended the method to allow generalised
boundary conditions to be enforced as well.
While it is most common for variations of the above methods to enforce boundary conditions, an alternative collection of
methods has been proposed where function values of boundary particles are assigned directly such that the required Neumann
boundary conditions are satisfied upon building the discretised gradient. The work of Hashemi et al. [17] and Joubert et al. [25]
made use of the NSE discretised by the renormalised SPH operators at boundary particles to generate a system of equations
describing the surface pressure in a way that incorporates the dynamics of both solid and fluid phases. With the surface pressure
naturally obtained from a momentum conservation argument, this information also served as an effective way of coupling the
solid and fluid phases. A similar idea was proposed by Basic et al. [37] where GFD operators were used to discretise the
system. Here, to further improve the quality of the obtained surface pressure, fluid particles near the solid boundaries were
first projected onto the solid surface. A hybrid MLM-FD gradient was then used to extrapolate the pressure field such that the
NSE is satisfied on the boundary.
WCSPH implicitly handles free surface boundary conditions. This can be understood by viewing the lacking information in
areas with reduced kernel support as equivalent to an approximation of the zero pressure Dirichlet condition. Since renor-
malisation extrapolates information into under-supported regions, the natural enforcement of free surface conditions is lost
with first-order meshless methods. While incompressible SPH (ISPH) handles this by enforcing surface pressure boundary
conditions in the pressure Poisson equation directly [22], less elegant solutions have been proposed for WCSPH. Specifically,
in the work of Oger et al. [16], the proposed method uses first-order gradients for fully supported particles while alternative
operators update free surface particles. Regardless of the mass-momentum coupling used, both schemes require identifying
the free surfaces which can be computationally expensive to determine.
A new free surface boundary scheme is presented to handle free surface systems for the first-order WC model. Additionally,
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the hybrid MLM-FD based solid boundary condition scheme of [37] is extended to make use of a static mesh allowing one to
bypass the projected boundary particle generation step.
Due to first-order SPH operators requiring the construction and inversion of two linear systems for gradient and Laplacian
approximations, the complexity and computational cost are drastically increased compared to the standard SPH methodology.
This raises the question of whether it is still sensible to consider the original SPH field approximation as the foundation for the
formulation of first-order accurate MLMs.
This paper investigates this by comparing the proposed WCGFD method to a similar first-order accurate WCSPH method. A
detailed comparison between the computational time and numerical results between both solvers is performedwith applications
to both submerged and free surface systems being explored.
Following this, the contributions of this paper include:

• The proposal of a free surface boundary condition enforcement scheme in the context of first-order WC MLMs,
• Extending the MLM-FD hybrid scheme for Neumann boundary conditions in the context of CFD to a general boundary

mesh avoiding the projection step,
• Proposing the WCGFD scheme to improve the computational cost of first-order WCSPH models.

2. Numerical methods

With this paper’s focus around boundary condition enforcement in the context of incompressible CFD, traditionally the in-
compressible NSE would be discretised by the proposed methods. For weakly compressible MLMs, however, a more general
system of partial differential equations (PDEs) is proposed:

d�
dt

= −�∇ ⋅ u, (1)
du
dt

= −
∇p
�
+ �∇2u + g. (2)

Here, (1) is the generalised mass continuity equation while (2) is the incompressible momentum balance of the fluid with � the
fluid density, u the fluid velocity, p the pressure, � the kinematic viscosity and g the acceleration due to body forces.
It should be noted that while the intent is to simulate incompressible flow, (1) is kept as the generalised continuity equation. This
is because applying the WC formulation to couple the mass and momentum equations requires the density to evolve.
Of course, since MLMs are based upon PDEs in their Lagrangian formulation, both (1) and (2) contain total time derivatives
of their respective primitive variables.

2.1. Equations of state

As opposed to fully incompressible methods that obtain system pressures through projection methods [20, 60], the WC for-
mulation directly couples the mass and momentum equation with a stiff equation of state. First described by Cole and Weller
[61] in the context of underwater explosions, the equation of state used in this study relates density to the pressures by:

pi =
�0c2s


((

�i
�0

)
− 1

)

, (3)

where �0 is the reference density,  is the coefficient of expansion usually taken to be 7 [49] and cs is the speed of sound. It
should be emphasised that this speed of sound is not a physical parameter of the system, but rather describes the speed at which
information can propagate through the system in a numerical sense while also determining the stiffness of (3). Then cs is atuning parameter that controls the trade-off between the allowable time-step size of the numerical integration scheme and the
system’s incompressibility.
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To ensure that the model represents an incompressible system, it has been suggested that the lower limit on cs should be at
least 10 times the maximum expected fluid velocity [49].

2.2. SPH formulation

The SPH formulation, first presented in 1977 by Gingold and Monaghan [62] in the context of astronomical gas system simu-
lations, relies on the building of a smooth function f via an approximation of the following identity:

f (ri) = ∫ℝd
f (r)�(r − ri)dV , (4)

using a compact kernel basisW (r − ri, ℎ) with the key property thatW (r − ri, ℎ) → �(r − ri) as ℎ → 0. This paper uses a
quintic kernel:

W (r, ℎ) = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5 for 0 ≤ q ≤ 1
(3 − q)5 − 6(2 − q)5 for 1 < q ≤ 2
(3 − q)5 for 2 < q ≤ 3
0 otherwise

with q = ‖r‖2∕ℎ, (5)

where � is the kernel normalisation parameter [39]. If, however, gradient and Laplacian renormalisation are considered, �
plays no role other than scaling the renormalisation tensors and so is set to 1 in this work.
A quintic kernel is chosen over lower-order alternatives due to the discretisation error of the differential operators being related
to the smoothness of the kernel function. Specifically, the discretisation error for both SPH gradients and Laplacians used in
this work was shown to be proportional to (�0∕ℎ

)� [15] where �0 is the initial particle spacing and � is the largest integer suchthat all derivative up to order � are zero on the boundary. Although not offering a benefit in terms of convergence for a fixed
�0∕ℎ, the quintic kernel is expected to improve upon the discretisation error compared to lower-order kernels. With an increase
in �0∕ℎ indicating a decrease in the number of neighbouring particles, this effect does diminish with shrinking kernel support.
Although outside the scope of this work, this presents an opportunity to investigate the MLM discretisations’ behaviour as a
function of number of neighbours and kernel order.
Combining this with a collection of local points indexed by the set I = {j ∈ ℤ∕Nℤ|W (rj − ri, ℎ) > 0}, whereN is the total
number of points, allows a field to be approximated by a weighted interpolation strategy:

f (ri) ≈ ⟨f (ri)⟩ = ⟨f ⟩i =
∑

j∈I
V (rj)f (rj)W (ri − rj , ℎ) =

∑

j∈I
VjfjWij , (6)

where fj represent the function value at the point rj , Vj represents the volume associated to the "fluid particle" at rj which hasa relation to the fluid density in the original formulation and ⟨f ⟩i being used to denote the kernel approximation of a function
f at ri.
A key observation to be made is that the approximation ⟨f ⟩i is now also a smooth function of ri and as such can be used to
determine gradient information directly. With some manipulation of ⟨cf ⟩i, where c is a constant, it can be shown that the
gradient of f can be approximated as:

⟨∇f ⟩i =
∑

j∈I
Vj(fj − fi)∇Wij . (7)

The Laplacian approximation is not handled in the same fashion as it has been shown that second derivatives of (6) can lead to
inconsistent results for the case of unordered particle distributions [63]. Instead, the Laplacian is approximated with a hybrid
SPH-FD scheme proposed by Morris et al. [39]. The original expression is modified to capture the full Hessian tensor which
is given by:

⟨∇⊗ ∇f ⟩i = 2
∑

j∈I,i≠j
Vj

(

fi − fj
r2ij

)

rij ⊗ ∇Wij , (8)
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where rij = ri − rj , rij = ‖rij‖2 and⊗ indicates the outer product.
To improve the gradient operator’s discrete approximation, Randles and Libersky [14] proposed a new gradient scheme mod-
ifying (7) to ensure first-order accuracy. It was shown that it becomes possible to truncate the leading error term of (7) by
applying a linear mapping to the gradient approximation:

⟨∇f ⟩i = Bi ⋅
∑

j∈I
Vj(fj − fi)∇Wij , (9)

where the truncation tensor is given as:
Bi = −

(

∑

j∈I
Vjrij ⊗ ∇Wij

)−1

, (10)

Fatehi and Manzari [15] derived the same form as (9) using a Taylor series expansion of (7). Furthermore, they applied similar
techniques to (8) to obtain a first-order accurate Laplacian approximation. The corrected Laplacian approximation is given
as:

⟨

∇2f
⟩

i = 2
∑

j∈I,i≠j
Vj

(fi − fj
rij

− eij ⋅ ⟨∇f ⟩i
)

B̂i ∶
(

eij ⊗ ∇Wij
)

, (11)

where eij = rij∕rij and B̂i is a truncation tensor obtained by solving the linear system B̂i ∶ Ĉi = −I with Ĉi being the
fourth-order tensor:

Ĉi =
∑

j∈I
Vjrij ⊗ eij ⊗ eij ⊗ ∇Wij +

(

∑

j∈I
Vjrij ⊗ rij ⊗ ∇Wij

)

⋅ Bi ⋅
(

∑

j∈I
Vjeij ⊗ eij ⊗ ∇Wij

)

Due to the symmetry of Bi as well as the fact that for each index j, the vectors used to construct Ĉi are elements of span(eij),
one can deduce that the linear equation B̂i ∶ Ĉi = −I can be recast into a linear system of the from A ⋅ x = b with A being a
symmetric matrix and x being the upper triangular entries of B̂i. This implies that the dimensionality of the solution space of
the linear system is reduced from d2 to a (d2 + d)∕2 where d is the number of spatial dimensions of the PDE. Of course, with
the Hessian tensor itself being symmetric, this result should be expected.
While it is possible to solve these linear systems via an analytical inverse in 2D, 3D simulations require solving a 6 × 6 linear
system. For this reason, it was chosen to solve all linear systems directly following an LDLT decomposition. The implication
on computational cost is discussed in detail in the results section.

2.3. GFD formulation

Rather than basing the first-order gradient on the classical SPH gradient, Lanson and Vila’s work [34, 35] introduced a mesh-
free finite-difference based gradient discretisation. This was further expanded upon by Basic et al. [36], where a mesh-free
finite-difference based Laplacian discretisation was introduced.
By using a Taylor series expansion of a generic analytic function f and applying a scaling strategy based on the distance to a
nearby interpolation point:

Wijrij ⊗ rij ⋅ ∇fi = Wijrij
(

(fi − fj) + (r2ij)
)

, (12)
it becomes possible to recover the renormalised mesh-free gradient via a summation of (12) for each particle with a label in
I . The obtained gradient approximation can be introduced into a second-order Taylor series expansion. Following this, a first-
order accurate Laplacian discretisation is obtained. This discretisation has the benefit of only requiring the same truncation
tensor as the gradient discretisation, and so only requires one linear system to be solved per evaluation point.
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The GFD gradient and Laplacian approximations are given as:
⟨∇f ⟩i = Bi ⋅

∑

j∈I
(fi − fj)Wijrij , (13)

⟨

∇2f
⟩

i = 2d
∑

j∈I (fj − fi)Wij
(

1 − rij ⋅ Bi ⋅ oi
)

∑

j∈I r
2
ijWij

(

1 − rij ⋅ Bi ⋅ oi
) , (14)

where the truncation tensor Bi and offset vector oi is given as:

Bi =
(

∑

j∈I
Wijrij ⊗ rij

)−1

, (15)

oi =
∑

j∈I
Wijrij . (16)

To keep this scheme consistent with the SPH scheme, matrix inversion is again performed directly by making use of LDLT
decomposition.
To allow the comparisons between schemes to highlight the differences in response due to the differential operator discretisa-
tions only, the kernel functionWij along with the scaling distance ℎ are identical to those used in the SPH scheme for all cases
considered.
Regarding the implementation details for both the gradient and Laplacian operators, it is important to note the following
optimisations introduced. When considering (13), the linear contraction Bi ⋅ rij can be performed after summation. This
essentially mimics the procedure followed by SPH gradient truncation. In a similar spirit, instead of saving oi, the contraction
Bi ⋅ oi can be precomputed and stored before being used in (14).

2.4. Mass correction

The WC formulation has been used extensively in SPH for mass-momentum coupling as it is a computationally inexpensive
scheme with a simple implementation, especially when compared to projection methods used in truly incompressible formu-
lations. It has, however, been shown that vanilla implementations of WCSPH can lead to spurious oscillations in the fluid
pressure field [64].
To correct this behaviour, a modification to the discretised continuity equation as presented in [65] is used to dampen the
oscillations. The modified mass equation is given as:

d�i
dt

= −�i
(

⟨∇ ⋅ u⟩i − ΓiΔt
)

, (17)

with:
i =

⟨

∇ ⋅
(

∇p
�

)⟩

i
−
⟨

∇ ⋅
⟨

∇p
�

⟩⟩

i
(18)

where Γ is a damping constant larger than 1. Due to the additional term being a difference between two Laplacian discretisa-
tions, and so leading to this term being of the order of the discretisation error, as well as being scaled by the time-step size Δt,
it has been shown that (17) rapidly tends towards the unmodified continuity equation.
The SPH approximation of divergence of the pressure gradient is given by:

⟨

∇ ⋅
(

∇p
�

)⟩

i
= 2

∑

j∈I,i≠j
Vj

( 2(pi − pj)
(�i + �j)rij

− eij ⋅ ⟨∇p⟩i
)

B̂i ∶
(

eij ⊗ ∇Wij
)

, (19)
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while the SPH approximation of divergence of the SPH approximation of the pressure gradient is given by:
⟨

∇ ⋅
⟨

∇p
�

⟩⟩

i
=
∑

j∈I
Vj

(

⟨

∇p
�

⟩

j
−
⟨

∇p
�

⟩

i

)

⋅ Bi ⋅ ∇Wij (20)

For the case of the GFD formulation, the divergence of the pressure gradient is given by:
⟨

∇ ⋅
(

∇p
�

)⟩

i
= 2d

∑

j∈I (pj∕�j − pi∕�i)Wij
(

1 − rij ⋅ Bi ⋅ oi
)

∑

j∈I r
2
ijWij

(

1 − rij ⋅ Bi ⋅ oi
) (21)

Similarly to the SPH case, the GFD approximation of divergence of the GFD approximation of the pressure gradient is given
by:

⟨

∇ ⋅
⟨

∇p
�

⟩⟩

i
=
∑

j∈I
Wij

(

⟨

∇p
�

⟩

i
−
⟨

∇p
�

⟩

j

)

⋅ Bi ⋅ rij (22)

2.5. Particle shifting

It has been found that numerical instabilities may arise if Lagrangian particles evolve in an unconstrained manner based on the
appropriate discretisation of the NSE alone. These numerical instabilities are caused by particles’ tendency to form clusters
while advecting along converging streamlines [17, 20, 65].
A solution to this problem was proposed in [20], whereby the degree of clustering around a particle is used as a measure to
determine to what extent the particles should be redistributed.
Each particle is shifted according to the following scheme:

�ri = �‖u‖maxΔt
∑

j∈I

r̄2i
r2ij

eij , (23)

where � is a decrowding factor set between 0.001 and 0.1, ‖u‖max is the maximum fluid velocity, Δt is the time step size, r̄i isthe average distance to all particles with labels in I and �ri being the displacement of the shift for the particle.
To keep the fields at least first-order accurate, the particle values are updated with the following scheme:

�fi = ⟨∇f⟩i ⋅ �ri, (24)
where f is either the pressure or velocity fields. The density is modified with a similar approach. However, (3) is now used to
determine the update based on the pressure variation:

��i = �pi
d�i
dpi

=
(

�0
�i

)−1 �pi
c2s

(25)

2.6. Integration scheme

A two-step predictor-corrector integrator scheme is used to perform the time integration of the system. The scheme is given
as:

f ∗i = f
n
i + Δt

df ni
dt

(26)

f ∗∗i = f ni + Δt
df ∗i
dt

(27)
f n+1i = 1

2
(f ∗∗i + f ∗i ) (28)
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where f is either density or velocity, f ∗ is the predictor variable, f ∗∗ is the corrector variable and the time derivatives are
obtained from the appropriate discretisation of (1) and (2) based on the specific MLM given as:

d�ni
dt

= −�ni
(

⟨∇ ⋅ un⟩i − Γn
iΔt

) (29)
duni
dt

= −
⟨

∇pn

�n

⟩

i
+ �

⟨

∇2un
⟩

i + gi (30)

Of course, df∗idt is a re-evaluation of (29) and (30) obtained by using the predictor values u∗, �∗ and p∗ being the pressure
obtained from �∗.
Positions are only updated at the end of the iteration using the new fluid velocities:

rn+1i = rni + Δtu
n+1
i (31)

This implies that it is only required to solve the linear systems for either of the considered MLMs at the beginning of each time
step.
As mentioned in Section 2.1, the speed of sound enforces a limit on the time-step size. This is combined with the rate of
momentum diffusion to generate the following Courant-Friedrichs-Lewy (CFL) condition:

Δt = smin

(

�min
cs + ‖u‖max

,
�2min
�

)

, (32)

where �min is the smallest particle spacing, ‖u‖max is the maximum fluid velocity, � is the kinematic viscosity and s is a user-
specified stability factor. For the simulation considered in this study, s was kept below 0.25 since this was found to be stable
over all simulations considered and being comparable to similar stability conditions used in other studies [66–69].

2.7. Boundary conditions

In this section, the treatment of both solid and free surface boundaries are discussed. Due to the triviality of fixed velocity
conditions at solid boundaries, more focus is dedicated to pressure boundary conditions and free surface boundary condi-
tions.
Solid boundary Neumann conditions are enforced with a hybrid MLM-FD scheme where, by setting the boundary function
values, the appropriate surface gradients are obtained.
For the free surface boundaries, a scheme is proposed that allows for the appropriate generation of free surface particles. These
free surface particles are assigned pressure and velocity values to enforce the required boundary conditions.

2.7.1. Solid boundaries

To enforce solid surface pressure boundary conditions, care is taken to consistently assign pressure values so that the NSE is
still satisfied on boundary nodes. Due to the reduced accuracy of MLM differential operator approximations at boundaries, an
extension to the hybrid MLM-FD approximation described in [37] is used to determine surface gradient information.
Figure 1 presents a schematic reference for the boundary condition implementation. Here, � is an angle that defines a cone
that extends from the boundary particle used to identify valid fluid particles. Any fluid particles found outside of this cone
are considered invalid. The cone angle is a heuristic parameter of the scheme. The trade-off between having valid particles
spatially close to the surface normal and the robustness of the particle detection must be considered when choosing �. In this
work, it was found that � = 30◦ provided the desired behaviour. Once valid particles are identified, the nearest fluid particle
is determined. The distance to the nearest fluid particle is denoted by Δrmin. This information is then used to extrapolate the
field information to the boundary. For an arbitrary analytic function f , by using a Taylor series expansion around the nearest
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(a) (b)
Figure 1: Schematic description of boundary condition implementation showing (a) decomposition of Δrmin into its normal Δn and normal complement Δb
components and (b) the point labels.

fluid neighbour point, the value of f directly normal to the boundary node fn is obtained from:
fn = fi − Δb ⋅ ⟨∇f ⟩i (33)

Here, the subscript i indicates the value at the fluid neighbour while Δb = Δrmin − Δn is the complement of the projection
of Δrmin onto the surface normal n̂ as seen in Figure 1a. Clearly then, this defines Δn = (Δrmin ⋅ n̂)n̂ = (Δn)n̂. This also
describes the normal point rn for any boundary point rw as rn = rw + Δn.
It should be noted that this translation is kept only first-order accurate implying ⟨∇f⟩i = ⟨∇f ⟩n.
When considering a central finite difference scheme, clearly this gives an approximation to the gradient at themid-point between
ri and rw as shown in Figure 1b. Since only gradients in the normal direction are required for this method, it now becomes
possible to couple a central finite difference gradient with the MLM gradient via extrapolation:

)f
)n

|

|

|

|w
= 2

fn − fw
Δn

− n̂ ⋅ ⟨∇f⟩n , (34)

where the subscript w indicates a variable at the wall. With this machinery in place, it now becomes possible to enforce
Neumann boundary conditions by setting the value of fw as:

fw = fn −
Δn
2

(

n̂ ⋅ ⟨∇f ⟩n +
)f
)n

|

|

|

|w

)

(35)

This can now be applied to pressure boundary conditions on solid surfaces. By projecting (2) onto the surface normal, the
following pressure boundary condition is obtained:

1
�w

)p
)n

|

|

|

|w
= �

⟨

∇2u
⟩

w ⋅ n̂ + g ⋅ n̂ −
duw
dt

⋅ n̂ (36)

For generality, the boundary acceleration term is included. This is obtained from the solid surface’s acceleration directly. How-
ever, with all boundaries considered in this study remaining stationary, duw∕dt = 0. Although not influencing this study’s
results, the surface acceleration becomes important when dealing with dynamic fluid-solid interactions. When considering the
viscous contributions, since n̂ is treated as a constant vector for each specific boundary particle, this implies that ⟨∇2u⟩w ⋅ n̂can also be written as ⟨∇2�⟩w where � is the flow in the normal direction. It should be emphasised that this formulation is
agnostic of the global surface structure. Smooth and non-smooth surfaces may be treated with this method provided that the
changes in the surface normal between boundary particles are captured adequately with a fine enough discretisation. Although
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only planar faces have been used in this work, this has been shown to be the case by treating the face, edge and corner features
with the same scheme.
As mentioned in [17], the term �

⟨

∇2�
⟩

w has a negligible influence in the case of non-impinging flows. However, this term
becomes important to prevent boundary penetration for the case of violent fluid-boundary interactions. An implication of the
previous statement makes it possible to identify that this term’s dominating component is focussed in the normal direction. As
such, to only deal with the critical terms, the Laplacian is recast into its local surface coordinate components as a method to
extract )nn� specifically. Following a Taylor series expansion of � in the normal direction, combined with (34), this term can
be written as:

)2�
)n2

|

|

|

|

|w
= 2
Δn2

(

�n − �w − Δn
)�
)n

|

|

|

|w

)

(37)

By combining (35) and (37) for the case of pressure boundary conditions specifically, (36) can now be written as:

pw = pn −
�wΔn
2

(

n̂ ⋅
⟨

∇p
�

⟩

n
+ �

)2�
)n2

|

|

|

|

|w
+ g ⋅ n̂ −

duw
dt

⋅ n̂
)

(38)

It should be noted that ideally pw and �w are coupled. However, due to the small variation in �w, for this study it was chosen
to use the previous iteration’s value of �w to compute the new pressure.
With abrupt changes in highly non-linear fields, the sudden jump between nearest neighbours may cause issues to the numerical
stability of the scheme. Smoothing of this response can be achieved by carrying out the above procedure for several valid
particles in the support radius and building a weighted approximation:

pw =
∑

i∈I pw,iWiw
∑

i∈I Wiw
, (39)

where pw,i is the pressure obtained by (38) for the itℎ particle. It should be noted that this was not required for the simulations
considered in this study and so we use the limiting case of only considering the single nearest particle.
This process is carried out for all boundary particles on the surface of the solid interface. When resolving this interface, the
boundary particles are generated to ensure the spacing is consistent with the fluid configuration with initial spacing �0. With
the geometries of the cases investigated in this work being constructed from simple line segments and rectangular faces in 2D
and 3D cases, respectively, Cartesian meshes with spacing �0 are used to generate boundary particle positions.
It should also be noted that this method not only imposes a Neumann pressure boundary condition consistent with the NSE,
but also does so by determining an appropriate surface pressure value. This allows the scheme to be extended for applications
in resolved fluid-solid coupling schemes where the forcing conditions on the solid particles are partially determined by surface
pressure. For a detailed example on these coupling strategies in the context of SPH simulations, we direct the reader to the
work of Hashemi et al. [17] for a 2D implementation or Joubert et al. [25] for a 3D implementation.

2.7.2. Free surface boundaries

In the standard SPH formulation, free surfaces are handled naturally with the construction of the kernel approximations at a
reduced support essentially enforcing the free surface conditions.
This, however, ceases to be the case for first-order accurate approximations. Due to the truncation process extrapolating internal
information into areas with reduced support, free surface conditions are no longer naturally enforced. For a WC system, a
solution proposed by Oger et al. [16] uses a hybrid approach. The truncation tensor is used to determine free surface particles
after which an alternative SPH approximation is applied to these particles to automatically enforce the boundary conditions. In
ISPH, where a linear system is solved to determine fluid particle pressures, the free surface conditions are explicitly enforced by
linear equations of the discretised pressure Poisson equation [22]. With somemodifications, due to the use of kernel correction,
it may be possible to apply similar techniques to a WC system as well. This, however, requires one to identify the free surface
particles as well.
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Figure 2: Domains of interest for steps 1 and 2 of the free surface boundary enforcement.

A novel method to apply a free surface boundary condition is proposed with the intent of mimicking the information that
standard SPH considers by using an underlying fixed mesh coupled with a volume measure as a way to obtain a layer of free
surface particles that surround and support particles at free surfaces. This has the added benefit of always ensuring free surface
particles have neighbours, making the building of truncation tensors more robust.
To place a free surface particle, a two-step process is used. Both steps use a volume measure given as:

�kg =
∑

i∈Gk

Wig , (40)

where g indicates a specific free surface particle and Gk indexes a set of neighbouring particles, where k depends on which
step is considered.
As shown in Figure 2, for step 1, G1 indexes the set of all neighbouring particles in the grid while for step 2, G2 indexes theset of all neighbouring fluid particles. Of course, since the mesh is regular, step 1 can be reduced to only determining �1g near
boundaries since internal particles will have a constant �1g that can be determined during initialisation. For the case where
both the geometry remains fixed and there is no memory constraint, the boundary values of �1g can also be precomputed during
initialisation as well.
For particles sufficiently far from the fluid domain, �2g = 0. For this reason, a search over the bounding domain is performed
to identify zones that contain fluid particles and so potentially free surface particles as well. �2g is only determined in these
zones.
Finally, a particle is flagged as a free surface particle if 0 < �2g < s�1g where s is a scaling constant. For the cases presented, itwas found that s = 0.35 provides the desired response.
It should be noted that since these particles lie on a regular mesh, their positions do not need to be saved explicitly, reducing
the memory requirements of this method drastically.
An example of this method’s free surface system is presented in Figure 3, where the blue and red particles indicate the fluid
and active free surface particles, respectively.
Pressure boundary conditions are enforced by setting the pressure of the free surface particles to 0. To mimic the free surface
system moving with the fluid particles, the velocity of free surface particles should be the same as the free surface velocity.
The nearest fluid particle to each free surface particle is determined during the evaluation of �2g . The velocities of the free
surface particles are then linked to their fluid pairs.
All kernel approximations remain as presented in the above sections by treating the free surface particles as other fluid parti-
cles.
Finally, it should be noted that this method also has an application in the explicit enforcement of pressure boundary conditions
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(a) (b)
Figure 3: Free surface shown in red obtained from the corresponding MLM system shown in blue for (a) the full system, and (b) a zoomed-in section.

as seen in [22] due to the required identification of the nearest fluid particle to these free surface particles, which identifies a
set of boundary particles of the fluid particle set.

2.8. Implementation details

The flow diagram of both MLM schemes for the 3D solver is presented in Figure 4. The process in blue represents the host code
that runs on the CPU, while red processes represent device code that runs on the GPU. The CPU handles only the initialisation
of the solver. This includes input file reading, initial fluid and free surface particle generation and meshing of the bound-
ary. For device processes, parallelisation is handled at the particle level. This includes neighbour search, boundary conditions
enforcement, differential operator evaluation and integration.
The neighbour search makes use of the spatial hash map approach used very commonly in SPH and MLMs in general to
identify nearby particles. A cell size of the kernel support radius is used to generate a grid over the computational domain. A
particle is assigned a hash value unique to the cell it lies within. Neighbouring particles are found by performing a search over
all cells neighbouring the current particle cell.
With the Laplacian’s dependency on the truncation tensors and gradients, the scheme requires a second pass over the neigh-
bouring particles. For the 3D solver, the truncation tensor is grouped with the evaluation of the pre-truncated gradients. This
allows the distance and kernel function evaluations for the gradients to be reused in the truncation tensor construction. The
pre-truncated gradients for the SPH solver are the zeroth-order SPH gradients. For the GFD scheme, this is the summation of
the weighted finite difference terms before the linear operator is applied. To obtain first-order accurate gradients, the truncation
tensors are inverted and applied to the gradient terms.
With the predictor-corrector integration scheme, the differential operators are evaluated twice. Since the particle positions are
not updated during the predictor step, the truncation tensors are not re-computed. As described in Section 2.6, once the next
time-step’s density and velocity values are determined, the particle positions are updated based on the new velocity. Bound-
ary condition enforcement set the next time-step’s solid boundary particle information by reusing the differential operators
obtained during the integration step.
Except for the truncation tensors’ construction, the 2D and 3D solvers follow an identical implementation. In the 2D solver’s
case, the truncation tensor is built independently from the gradients thereby requiring a third pass over all neighbouring parti-
cles. This was done to allow the computational cost associated with the tensor construction to be measured in isolation. With
the increased number of distance and kernel function evaluations in 3D, this code optimisation has a drastically enhanced effect
on the computational cost of 3D simulations and so could not justifiably be ignored.
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Figure 4: Flow diagram of the numerical scheme.

3. Results

In the following sections, WCSPH andWCGFD schemes are compared over three different problem sets that have traditionally
served as test cases forMLMs and CFD in general. Specifically, the lid-driven cavity and the dam-break systems are considered.
The lid-driven cavity is only examined in a 2D setting while the dam-break is investigated in both a 2D and 3D configuration.
These cases have been chosen as they highlight the application of the proposed boundary conditions methods to no-slip, free
surface and symmetry boundary conditions. The computational performance of both MLMs is also investigated. The obtained
results are also assessed critically to highlight any key differences between each method’s solutions.
The solvers were implemented in C++ using the NVIDIA CUDA 10.1 toolkit for parallelisation. The NVIDIA GeForce
1080 GTX graphics card was used to obtain the results and performance metrics in the sections below. The 2D solver was
implemented in its own independent framework, while the 3D solver was implemented inside the GPU based DEM framework
Blaze-DEM [70–72].

3.1. 2D Lid-driven cavity

The first comparison between the behaviour of the two solvers is considered in the context of fully submerged confined flow.
For this, the classical lid-driven cavity is considered. Here, a square cavity filled with a viscous fluid subject to the boundary
conditions presented in Figure 5 is simulated.
Validation of the solvers is performed at both Re = 100 and Re = 1000. The lid velocity is set to Ulid = 1m∕s, while the
kinematic viscosity is chosen to be � = 0.1m2∕s. The cavity lengths are then constrained to H = 10m and H = 100m. For
the Re = 100 case, an initial spacing of �0 = 0.025m is used while the Re = 1000 case uses �0 = 0.25m. This leads to both
fluids being discretised by 160k particles.
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Figure 5: Schematic representation of the lid-driven cavity problem.

Re = 100 Re = 100 Re = 1000 Re = 1000
Ghia et al. Xu et al. Ghia et al. Xu et al.

x-error (SPH) [%] 0.249 0.653 0.207 1.985
x-error (GFD) [%] 0.244 0.761 0.262 2.124
y-error (SPH) [%] 0.744 1.888 0.532 3.215
y-error (GFD) [%] 0.759 2.061 0.681 3.459

Table 1: Mean percentage difference between mid-plane velocities of obtained results and the work of Ghia et al. [73] and Xu et al. [20]

The mid-plane velocities obtained from WCSPH and WCGFD can be seen in Figures 6a and 6b. The classical results of Ghia
et al. [73] and the ISPH results of Xu et al. [20] at a resolution of 161 × 161 particles are presented as comparisons. Table
1 shows the mean normalised difference between the current results and those from literature. Normalisation is performed
relative to the maximum range of the mid-plane velocity considered.
As discussed in [74], the naive no-slip SPH boundary conditions produce lower energy solutions corresponding to the observed
lower velocities at the higher Reynolds numbers of the ISPH results. This issue does not arise in either theWCSPH orWCGFD
simulations by applying the MLM-FD hybrid boundary conditions.
For a more in-depth comparison between the WCGFD and WCSPH solvers, both solvers’ response to a varying system reso-
lution is investigated. Again Ulid = 1m∕s, � = 0.1m2∕s andH = 10m leading to Re = 100. The initial spacing and the total
number of particles used in each simulation can be seen in Table 2.
The steady-state velocity magnitude for the 4 different cases for the WCGFD simulations and the differences between the
WCSPH and WCGFD solutions can be seen in Figures 7a to 7d. The mid-plane velocities can be seen in Figure 8.
For the field response, it can be seen that as the resolution increases, the overall error decreases. It can also be noticed that
larger errors become more isolated to specific regions in the domain. When comparing mid-plane velocities, it can be seen
that both solvers predict very similar responses even for coarser simulations where the solution is still mesh-dependent. Figure

�0 [m] 0.2 0.1 0.05 0.025
Particle number 2.5k 10k 40k 160k

Table 2: Particle count for Section 3.1.
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(a)

(b)
Figure 6: Mid-plane velocities for the lid-driven cavity at (a) Re = 100 and (b) Re = 1000 compared against the results of Ghia et al. [73] and Xu et al. [20]
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(a) (b)

(c) (d)
Figure 7: Contours of velocity magnitude of the WCGFD solver and absolute differences between the WCGFD andWCSPH solutions for the lid-driven cavity
with (a) �0 = 0.2m, (b) �0 = 0.1m, (c) �0 = 0.05m and (d) �0 = 0.025m.

9 shows the mean normalised difference in mid-plane velocities for the two solvers over the four cases. From this, it is clear
that both difference functions are monotonically decreasing. For the �0 = 0.2m case, a mean difference of 0.98% and 1.49%
for the x- and y-velocity was found, respectively, while for the �0 = 0.025m case, a mean difference of 0.13% and 0.26% for
the x- and y-velocity was found, respectively.
Figure 10a presents the computational time per iteration for both methods for the cases investigated, while Figure 10b shows
the relative speedup obtained by using of the GFD formulation. A maximum speedup of 2.6x was obtained when comparing
WCGFD to WCSPH.
The slope in log-log space characterises the exponential growth of the computational cost per particle count. Considering only
the last section between the �0 = 0.05 and �0 = 0.025 cases of Figure 10a, a slope of 1.50 and 1.42 was found for WCSPH and
WCGFD, respectively. While this does indicate that WCGFD’s computational cost grows slower than WCSPH, considering
how close these values are, it should be assumed that the cost of each scheme scales in a similar manner until a more detailed
study is done on the topic.
An overview of the resource distribution during the simulations can be seen in Figure 11. The computational cost per iteration
of the GPU kernels of interest for both the WCGFD and WCSPH solvers is normalised based on the time per iteration of the
WCGFD method at each Reynolds number considered.
Additionally, Table 3 shows the resource distribution while running the �0 = 0.025m simulations for both methods. As
expected, both results attribute much of the performance gains to the much more efficient construction of a truncation operator,
leading to most of the resources being used to resolve the differential operators. Furthermore, when considering the total time
spent constructing the differential operators, GFD ismore than 2x as efficient in these operations. Relative to the SPH truncation
inversions, one can see nearly a factor 10 speedup to the solving of the linear systems; however, due to the small size of these
linear systems, this is not a critical factor in the computational cost or performance gains.
When considering the coarser cases, it can also be noticed that the boundary enforcement contributes up to 13.2% of the
computational cost. As the resolution becomes finer, this becomes dwarfed by the sheer number of fluid particles relative to
boundary particles. This does nevertheless show that the boundary condition enforcement can incur a significant cost in cases
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Figure 8: Mid-plane velocities for the lid-driven cavity for �0 = 0.2m to �0 = 0.025m.

Figure 9: Mean normalised difference between WCGFD and WCSPH mid-plane velocity results.

(a) (b)
Figure 10: WCSPH and WCGFD performance comparison for the lid-driven cavity cases showing (a) the time per iteration of WCSPH and WCGFD and (b)
percentage speedup of WCGFD compared to WCSPH.
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Figure 11: Normalised resource distribution of the WCGFD and WCSPH solvers.

Time per Differential Truncation Solving
iteration operators construction linear system
[ms] [ms] [ms] [ms]

SPH 53.305 31.253 17.266 0.677
GFD 20.101 14.216 1.930 0.070

Table 3: Resource distribution for �0 = 0.025 lid-driven cavity case.
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with complex geometries where the surface area of the system is large compared to its volume.
A similar computational cost is expected for either scheme’s gradient discretisations. Specifically, both require the construction
of the gradient truncation tensor B−1 followed by a linear mapping of the weighted sum of difference terms. The key difference
between these schemes is the weighting term used. For SPH, this is given by Vj∇Wij while for GFD this is given byWijrij .The computational demands to obtain either are similar.
This implies that the speedup is mainly due to the Laplacian discretisation. The first major improvement comes from com-
pletely avoiding the construction of the fourth-order tensor Ĉi in the GFD scheme. The construction of the Laplacian itself
is also less demanding. Due to the memory constraints imposed by the GPU, the summation of the Laplacian is obtained by
resolving the full scalar value for each particle pair. This implies that the SPH scheme must resolve the dot product eij ⋅ ⟨∇f ⟩i
and the linear contractions B̂i ∶

(

eij ⊗ ∇Wij
). With Bi ⋅ oi being pre-computed, GFD only requires the leading dot product of

rij ⋅ Bi ⋅ oi to be resolved per particle pair.
At a low level, this implies that the SPH Laplacian requires more floating-point operations (FLOPs) per particle pair. To quan-
tify this, an approximation of the construction process for the differential operators as presented in [75] is considered. The
approximation treats the ktℎ update step of the full system state as a matrix-vector multiplication operation Fk+1 = Gk ⋅ Fk
where Gk is a sparse N ×N matrix and Fk is the state vector of the particle system. However, unlike the solver proposed in
[75], the performance benefits of GFD does not come from reducing the number of nearest neighbours but rather by reducing
the number of operations per particle pair and so the cost of constructingGk must be evaluated rather than the cost of operation
Gk ⋅ Fk. For this reason, this approximation is applied to each differential operator and truncation tensor independently. To in-
clude the more expensive operations, the cost of linear operators is resolved before applying this approximation. This implies
that linear contractions are treated as an additional addition and multiplication operation per dimension. Any tensor object is
treated as dT systems where dT is the number of independent entries of the tensor.
For a single field, to resolve the matrix multiplication requires 2nN operations whereN is the number of particles and n is the
bandwidth of the matrix given by the average number of neighbouring particles. The number of scalar fields NDOF give the
degrees of freedom for a particle. For both SPH and GFD, the gradients require (2nN)dNDOF operations while either gradient
truncation tensor requires (2nN)ds operations where d is the dimensionality of the system and ds = (d2 + d)∕2 is the number
of unique entries for the symmetric 2-tensor.
The SPH Laplacian requires 2ds(nN) operations to resolve the tensor contraction and 2dNDOF (nN) operations for the dot
products. A single dot product must be evaluated per particle pair for the GFD Laplacian. With the numerator and denominator
both being constructed simultaneously, this requiresNDOF + 1 matrix-vector multiplication systems.
The SPH Laplacian truncations construction is the most expensive of the operators considered. This is due to the three sub
tensors that must be pre-constructed before determining Ĉ. Due to symmetry the third and fourth order tensors require d3 = 4
and d4 = 5 unique entries in 2D, respectively. This increases to d3 = 10 and d4 = 15 in 3D. A total of (2nN) (2d3 + d4

) opera-
tions are required to construct Ĉ. The GFD equivalent is the construction of the offset vector requiring only (2nN)d operations.

Table 4 summarises these results along with the ratio between the number of SPH and GFD operations in both 2D and 3D.
Since the same number of particles on average are considered for both solvers, the results are normalised by 2nN . Although this
analysis provides insight into the distribution of the schemes’ computational demands, the overall speedup for the truncation
and differential operator evaluations by this estimate is only 2.0 in 2D. This is well below the obtained ratio of 3.0. A source
of error comes from approximating all intermediate scalar FLOPs at a particle pair level by a single multiplication operator
essentially requiring the scaling of the 2nN factors associated with matrix-vector multiplication for each object. However, the
estimate provided already captures the significant differences between the schemes. So while the overall FLOP complexity
of both schemes will increase, they will do so in a similar manner. A more reasonable explanation for the disparity between
the practical and the theoretical speedup arises when emphasising that relating the FLOP complexity to computational time
assumes that the scheme makes uses of serial operations that are not memory bound. The GPU implementation leads to an
additional layer of complexity with memory reading, writing and allocation playing a significant role in the performance and
likely being the reason for the disparity between the practical and the theoretical speedup.

20



Operation SPH GFD SPH/GFD (2D) SPH/GFD (2D)
Gradient dNDOF dNDOF 1.0 1.0
Laplacian ds + (1 + d)NDOF d + 1 +NDOF 2.0 2.75
Gradient truncation ds ds 1.0 1.0
Laplacian truncation 2d3 + d4 d 6.5 11.67

Table 4: Cost per particle pair for differential operator construction.

3.2. 2D Dam-break

This section considers the response of a classic dam-break case frequently used to test SPH solvers. A schematic representation
of this problem can be seen in Figure 12 with H = ℎ = 0.6m. In this study, the same dam-break case is investigated with
varying particle resolutions. Table 5 shows the initial spacing and total particle count for each of the cases considered.

Figure 12: Schematic representation of the dam-break problem.

First, the solvers are validated by comparing the results obtained to the experimental work of Lobovský et al. [76] at the
maximum resolution considered. A gravitational acceleration of g = −9.81m∕s2 is used along with a kinematic viscosity of
� = 5 × 10−4m2∕s. Comparisons between the wavefront position, fluid column height at x = ℎ and wall pressure at P1 to
P4 are used to validate the response. The pressure sensors are located on the end wall at heights of 0.01H , 0.05H , 0.1H and
0.267H . Figure 14 shows the boundary particle positions and two lower particle sensor locations. The pressure sensor values
are determined from the two neighbouring boundary particles via linear interpolation of their pressure values.
Figure 13 shows snapshots of the velocity magnitude of the fluid for theWCGFD solver. Figure 15 shows the dam-break’s kine-
matic response over time while Figure 16 shows the surface wall pressure over time at the pressure sensors considered.
When considering the kinematic results, good agreement can be seen between the experimental and numerical results. Both
theWCSPH andWCGFDwavefront lies within a 0.12 range of the experimental results with an average error of the order 0.05.
The non-dimensional steady wavefront velocity of 1.62 for the experimental results compares well to the numerical predictions
of 1.61 as well. The predicted column height also compares well with experimental results with the results lying within a 0.035
range with an average error of the order 0.02.
With the highly dynamic nature of the flow after impact, a one-to-one match as with the kinematic results is not to be expected
for the pressure field. However, it can be seen that the overall trends in the pressure response also closely match experiments.

A similar problem is considered for the comparison between the solvers. The system geometry is kept identical to that used
during the validation case. A key difference here is that a kinematic viscosity of � = 5 × 10−3m2∕s is now used. With a
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 13: Contours of velocity magnitude of the WCGFD solver at (a) t√g∕H = 1.617, (b) t√g∕H = 2.426, (c) t√g∕H = 4.044, (c) t√g∕H = 5.661,
(e) t√g∕H = 6.470, (f) t√g∕H = 6.874 (g) t√g∕H = 7.278 and (h) t√g∕H = 7.683.
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Figure 14: Boundary particle positions and pressure sensor locations.

(a) (b)
Figure 15: WCSPH and WCGFD results for (a) wavefront and (b) column height compared against the results of Lobovský et al. [76].
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(a) (b)

(c) (d)
Figure 16: Wall pressure for WCSPH and WCGFD at (a) P1, (b) P2, (c) P3 and (d) P4 compared against the results of Lobovský et al. [76].
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(a) (b)
Figure 17: Particles positions and corresponding free surface for (a) WCSPH and (b) WCGFD at t√g∕H = 5.85.

�0 [mm] 6 4.5 3
Particle number 21.5k 37.4k 82.2k

Table 5: Particle count for Section 3.2.

more pronounced effect of momentum diffusion, this generates results with a high sensitivity to both the pressure gradient
discretisation and the velocity Laplacian discretisation. It also prevents the system from evolving into a highly chaotic state
after impacting the end wall allowing for a more direct description of the differences between the responses to be obtained.

For the finest case, the free surface boundary is determined at t√g∕H = 5.85 and t√g∕H = 7.60. For the t√g∕H = 5.85
case, the particles and corresponding free surfaces can be seen in Figure 17. Similarly, Figure 18 presents the same results
for the t√g∕H = 7.60 case. The comparisons between these profiles can be seen in Figures 19 and 20 for t√g∕H = 5.85
and t√g∕H = 7.60 cases, respectively. Two measures are used to compare the results, specifically a velocity magnitude and
velocity direction difference, given as:

eu = |

|

‖uGFD‖2 − ‖uSPH‖2|| , (41)
e� = arccos

( uGFD ⋅ uSPH
‖uGFD‖2‖uSPH‖2

)

, (42)

where uSPH and uGFD are the WCSPH and WCGFD velocity fields, respectively.
While slight variations can be seen at t√g∕H = 5.85, the comparison show very good agreement between the two method-
ologies. When looking at the t√g∕H = 7.60 case, while most of the boundary shows a good agreement between the WCGFD
and WCSPH results, a much more distinct difference in the boundaries can be seen on the leftmost wave. This hints at the idea
that WCSPH and WCGFD deal with sufficiently supported particles in a very similar way. However, under reduced support,
WCGFD is shown to be more energetic thanWCSPH. In fully supported regions, it can be seen that the velocity magnitudes in-
ternally are very similar. In contrast, the velocity directions are more varied showing that internal flow differences are generated
more from deviations in the fluid trajectories rather than differences between the kinetic energies of the fluids.
The distance travelled by the wavefront for the three cases can be seen in Figure 21a, while the height of the fluid at the position
x = ℎ can be seen in Figure 21b.
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(a)

(b)
Figure 18: Particles positions and corresponding free surface for (a) WCSPH and (b) WCGFD at t√g∕H = 7.60.

(a) (b)
Figure 19: Comparison between WCSPH and WCGFD free surfaces at t√g∕H = 5.85 in terms of (a) velocity magnitude and (b) velocity direction.
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(a)

(b)
Figure 20: Comparison between WCSPH and WCGFD free surfaces at t√g∕H = 7.60 in terms of (a) velocity magnitude and (b) velocity direction.

(a) (b)
Figure 21: WCSPH and WCGFD results for (a) wavefront evolution and (b) fluid height.
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Figure 22: Maximum difference between WCSPH and WCGFD results for wavefront position x∕H and fluid height y∕H .

(a) (b)
Figure 23: WCSPH and WCGFD performance comparison for the dam-break cases showing (a) the time per iteration of WCSPH and WCGFD and (b)
percentage speedup of WCGFD compared to WCSPH.

Again, it can be seen that there is good agreement between the WCSPH and WCGFD solvers. The difference in these results
at the different fluid resolutions can be seen in Figure 22. From this, it was found that the maximum difference of 3.36 × 10−2
and 5.53 × 10−3 was found for the wavefront position and fluid height at the coarsest fluid resolution, respectively, while a
maximum difference of 5.92× 10−3 and 2.44× 10−3 was obtained for the wavefront position and fluid height at the finest fluid
resolution, respectively.
A comparison between the solver speeds is made for the three different resolutions. The results can be seen in Figure 23a,
while the percentage speedup can be seen in Figure 23b. As one might expect, a similar trend as seen in section 3.1 is observed
here as well. A maximum speedup is obtained in the largest simulation with a speedup factor of 2.3x. This is comparable
to the speedup obtained for the lid-driven cavity for a similar particle count. In this case, one can see a constant scaling in
computational cost over the tested range. As with the previous section, the slopes of the graphs in Figure 23a are calculated
with the WCSPH results having a slope of 1.03 while the WCGFD results have a slightly shallower slope of 0.90.
As with the lid-driven cavity, the normalised resource distribution is shown in Figure 24, while the physical resource distri-
bution for the finest resolution case is presented in Table 6. The noticeable difference between the lid-driven cavity and the
dam-break case comes down to the slightly lower percentage cost associated with the differential operators, truncation and

28



Figure 24: Normalised resource distribution of the WCGFD and WCSPH solvers for the 2D dam-break case.

Time per Differential Truncation Solving
iteration operators construction linear system
[ms] [ms] [ms] [ms]

SPH 25.976 14.884 6.753 0.259
GFD 11.464 6.581 1.009 0.023
Table 6: Resource distribution for the �0 = 3mm resolution 2D dam-break case.
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�0 [mm] 6 4.5 3
Particle number 180.0k 319.6k 720.0k

Table 7: Particle count for Section 3.3.

(a) (b)
Figure 25: Velocity magnitude of the 3D dam-break at t√g∕H = 5.85 for the (a) WCSPH and (b) WCGFD methodology.

linear solver operations due to the additional cost of the free surface enforcement now also being introduced. In the current
implementation, simply any free surface particle with a neighbouring fluid particle is evaluated. This is of course the reason
for the near-constant percentage cost associated with the free surface kernel.

3.3. 3D Dam-break

With the nonlinear dependency of computational complexity on system dimension, it is difficult to extrapolate the previous
sections’ findings to a higher dimensional setting. For this reason, a dam-break case similar to that of Section 3.2 is explored
again in the context of a full 3D setting. Both the WCSPH and WCGFD responses are obtained from the fluid-only solvers of
the computational framework Blaze-DEM.
The same system depicted in Figure 12 is constructed with the same parameters as those used in Section 3.2. The fluid
properties are kept identical as well. The depth of the system is chosen in such a way as to keep the scaling of the number of
particles the same as in the previous section. This implies that the depth of the geometry depends on the particle size. For this
case, the depth is chosen to be 10�0. The total number of particles for each simulation can be seen in Table 7.
Apart from the two new faces, a no-slip boundary condition is enforced on all other walls. To represent the same system as
before, symmetry boundary conditions are applied to the two faces parallel to the XY-plane.
Figure 25 shows a qualitative comparison between the fine case WCSPH and WCGFD simulations at t√g∕H = 5.85. As
expected, the responses are, from a visual point of view, nearly indistinguishable.
To quantify the differences, Figures 26a and 26b show the wavefront evolution and fluid column height, respectively. The
difference between the obtained results can be seen in Figure 27. Here it can be seen that, unlike the 2D case, the 3D case still
has a significant particle size dependency.
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(a) (b)
Figure 26: WCSPH and WCGFD results for (a) wavefront evolution and (b) fluid height for the 3D dam-break.

Figure 27: Maximum difference between WCSPH and WCGFD results for wave front evolution and fluid height for the 3D dam-break.

It can be noticed that the differences between the WCSPH and WCGFD simulations seems to have stagnated between a range
of 8.2×10−3 and 1.1×10−2 for the wavefront and 2.4×10−3 and 2.6×10−3 for the fluid height. It is likely that errors introduced
by the mesh dependency has led to this behaviour since fundamentally the key difference between these two methods are in
how they approximate missing information in under-resolved areas.
To consider each method’s performance, the time per iteration and speedup factor can be seen in Figures 28a and 28b, respec-
tively. The WCGFD solver was between 2.87x to 2.94x faster than the WCSPH solver, although, unlike the 2D systems, the
speedup remains fairly constant for all system resolutions considered. In this case, the plot’s slope in Figure 28a for WCGFD
is 1.05, which is very comparable to the WCSPH slope of 1.02.
Figure 29 shows the normalisedGPU resource distribution during the simulations, while Table 8 shows the resource distribution
over the course of the �0 = 3mm simulation. Due to algorithm optimisation in Blaze-DEM, the differential operators now
capture the construction of the truncation tensors as well, and so the raw cost of its construction cannot be measured directly.

When looking at the resource distributions, it can be noticed that the computational efficiency of the GFD truncation and
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(a) (b)
Figure 28: WCSPH and WCGFD results for (a) wavefront evolution and (b) fluid height for the 3D dam-break.

Figure 29: Normalised resource distribution of the WCGFD and WCSPH solvers for the 3D dam-break case.

Time per Differential Solving
iteration operators linear system
[ms] [ms] [ms]

SPH 3676.41 3205.84 51.47
GFD 1282.93 842.88 5.13

Table 8: Resource distribution for �0 = 3mm resolution 3D dam-break case.
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differential operators are, as expected, a considerable factor in the speedup obtained. Due to the much smaller linear systems
that are built, it can still be assumed that the construction of truncation tensors in the 3D GFD case is still drastically faster
than the SPH equivalent.
A noticeable difference between the trends found in 2D and 3D is that now the normalised cost of enforcing the boundary
conditions are relatively fixed. Considering that the depth of the geometry scales with the particle size and since only boundary
particles on a wetted boundary do any computational work, this leads to the active boundary particle to scale consistently with
the total fluid particle number.

4. Conclusion

This work demonstrated the proposed boundary condition implementations for WC renormalised MLMs in both 2D and 3D
settings. Specifically for the case of solid boundary conditions, the hybrid MLM-FD technique has been shown to accurately
enforce Neumann boundary conditions by considering both pressure and symmetry boundary conditions. The 2D dam-break
case shows that this method accurately determines the surface pressure on the solid phase described by boundary particles.
The free surface scheme has allowed WC renormalised MLMs to handle free surface flow without the need for alternative
treatment of fluid particles lying on the surface. The generation of nearby surface particles has led to a more robust calculation
of the renormalisation tensors, allowing smooth and fragmented free surface flow to be simulated.
In contrast to zeroth-order MLM schemes, or more specifically classical SPH, the use of first-order differential operators
requires additional effort to enforce boundary conditions. It was found that, under certain conditions, a significant portion of
the computational resources were dedicated to the enforcement of boundary conditions for both solvers. As shown in both the
2D and 3D dam-break cases, this cost is further increased when free surfaces are considered. It was found that this additional
cost, although not as critical as the cost associated with the differential operators, still has a noticeable effect on the solver’s
overall performance.
When comparing the solvers’ cost, it was found that the WCGFD solver was consistently more computationally efficient than
the WCSPH solver. This is due to the more efficient construction of truncation operators and differential operators. This
led to a maximum speedup of 2.6x and 2.9x in 2D and 3D, respectively. Furthermore, it was found that both WCGFD and
WCSPH produce very similar responses for all cases considered with the results tending to converge to each other following an
increase in fluid resolution. This leads to auspicious results indicating that it is possible to obtain a flat performance benefit for
first-order accurate WCSPH by taking advantage of the GFD operators while not incurring a significant change in the system
response.
Finally, while this paper focused on WC MLMs, there is no reason to limit the findings to WC systems in general. In terms of
the differential operators, ISPH may realise similar benefits in computational efficiency when making use of GFD operators.
When considering the boundary conditions, the solid boundary condition scheme is directly applicable to any renormalised
MLM while the free surface method, when used as an intermediate step to identifying free surface particles, can assist in
enforcing the Dirichlet pressure boundary condition of the pressure Poisson equation as well.
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