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Abstract: With a resolution improvement, the size of modern remote sensing images increases. This
makes it desirable to compress them, mostly by using lossy compression techniques. Often the images
to be compressed (or some component images of multichannel remote sensing data) are noisy. The
lossy compression of such images has several peculiarities dealing with specific noise filtering effects
and evaluation of the compression technique’s performance. In particular, an optimal operation
point (OOP) may exist where quality of a compressed image is closer to the corresponding noise-free
(true) image than the uncompressed (original, noisy) image quality, according to certain criterion
(metrics). In such a case, it is reasonable to automatically compress an image under interest in the
OOP neighborhood, but without having the true image at disposal in practice, it is impossible to
accurately determine if the OOP does exist. Here we show that, by a simple and fast preliminary
analysis and pre-training, it is possible to predict the OOPs existence and the metric values in it with
appropriate accuracy. The study is carried out for a better portable graphics (BPG) coder for additive
white Gaussian noise, focusing mainly on one-component (grayscale) images. The results allow for
concluding that prediction is possible for an improvement (reduction) in the quality metrics of PSNR
and PSNR-HVS-M. In turn, this allows for decision-making about the existence or absence of an
OOP. If an OOP is absent, a more “careful” compression is recommended. Having such rules, it then
becomes possible to carry out the compression automatically. Additionally, possible modifications
for the cases of signal-dependent noise and the joint compression of three-component images are
considered and the possible existence of an OOP for these cases is demonstrated.

Keywords: image lossy compression; optimal operation point; quality prediction; noise; discrete
cosine transform; automation

1. Introduction

Remote sensing (RS) systems and other imaging tools currently provide valuable
data for agriculture, forestry, hydrology, ecological monitoring, non-destructive testing
in industry, etc. [1–4]. Using imaging data produced by modern systems, it is possible to
estimate the parameters of sensed territories of large areas, to control their change in time,
to detect objects of interest and to solve many other important tasks. Meanwhile, a better
spatial resolution and more frequent observation result in a fast increase in the data volume
where the images have to be transferred, processed, stored and interpreted [5,6].

At the stages of data transferring and storage, image compression is often applied [7–9].
A lossless compression [7,8,10] preserves all the information contained in RS and imaging
data, but the compression ratio (CR) attained for the used methods can be inappropriate
in practice. To obtain a larger CR, near-lossless and lossy compression is mostly ap-
plied [7,9–12]; however, distortions are then inevitably introduced and the important task
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of providing an appropriate trade-off between the introduced distortions and the reached
CR arises [13,14]. The priority of requirements depends upon the application at hand
and it can be necessary or desired to provide a given CR (or a CR not less than a given
threshold). Meanwhile, it can also be necessary (or desired) to provide a desired quality (or
a quality not worse than desired), but there can also be other requirements or restrictions
that might concern the necessity for relying on standards or to reach a trade-off quickly, to
save resources and to carry out a compression fully automatically, etc. In this paper, we
focus on providing high quality with the desire to have quite a high CR and to perform
the compression quite quickly and automatically. If the quality degradation due to a lossy
compression is limited, it is possible to expect that the RS data classification or object (e.g.,
crack) detection are performed well enough, and that the RS data being visualized are of a
proper quality for analysis and so on [15–17].

In many cases, it is supposed that the images to be compressed are noise-free or, at
least, that the noise is invisible. This is often valid in practice but, meanwhile, there are quite
a number of practical situations when noise is visible and its presence cannot be neglected;
for example, noise (speckle) is always seen in radar images [18,19], some component images
of hyperspectral and multispectral RS data are noisy [20], the signal-to-noise ratio can be
low in night-light images [21] or in images acquired in bad illumination conditions and so
on. The influence of noise first attracted the attention of researchers more than 20 years
ago [22,23]. It has been demonstrated that the lossy compression of noisy images has two
main peculiarities. First, a specific noise filtering effect is observed. Second, due to this, a
so-called optimal operation point (OOP) can be observed, i.e., such a parameter of a coder
that the “distance” between the compressed and true (noise-free) images is minimal. By
distance, we mean some similarity measure, and this can be a mean square error (MSE, then
the OOP would correspond to its minimum) or the peak signal-to-noise ratio (PSNR, then
the OOP would correspond to its maximum) [22–24]. The OOP can also be observed for
visual quality metrics [24,25] such as PSNR-HVS-M [26] and MS-SSIM [27]. Note that the
use of visual quality metrics has become popular in many modern applications including
in stereoscopic, panoramic and 360 degree imaging [28–30].

Compression in the OOP (or its neighborhood if the OOP is determined with some
error), if it exists, has two advantages. First, the provided CR is usually quite high. Second,
the quality of the compressed image appears to be better than the quality of the uncom-
pressed (original, noisy, or compressed in a lossless manner) image. This can be, e.g.,
favorable for image classification [31]. Additionally, note that the OOP might exist not
only for additive noise but also for other types of noise including signal-dependent and
multiplicative for methods that employ a variance stabilizing transform (VST) or that per-
form compression without VST. An OOP might also exist for different coders, based both
on a discrete cosine transform (DCT) or wavelets (for example, JPEG2000) [32]. Recently,
the possible existence of an OOP [33,34] has been demonstrated for the coder, BPG (better
portable graphics} [35–37]. This compression technique has several advantages. It outper-
forms JPEG considerably in the sense of a better quality for a given size of compressed
images and the compression is fast enough with clear rules of providing a desired PSNR.
Due to this, the encoder has become popular in different portable devices as well as for
online encoding applications and these advantages were the reasons why BPG has attracted
our attention [36,37]. The current paper incorporates the results of [36] and concentrates
on the prediction of the OOP’s existence and estimating the performance parameters for
it. This is explained by the following. Since the true image is absent, the OOP cannot be
determined exactly and its existence or absence can only be predicted (at least, this has
been shown for coders other than BPG coders) [24,29]. Assuming that it is also possible for
BPG, it can then be supposed that it will be possible to give recommendations for how to
set the compression parameters (namely, the quality parameter Q for BPG) to provide an
appropriate quality. This is the main goal of this paper.

The paper contributions consist in the following. First, based on the results of many
test images corrupted by AWGN having different values of noise variance, a Q for a possible
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OOP is established depending on the noise standard deviation; this dependence is shown
to be logarithmic opposite to the linear dependences established in [24] for other coders.
Second, a modification of the procedure [24] is proposed and its thorough analysis is carried
out. In particular, it is proposed to use rational functions in curve fitting into scatter-plots.
This analysis shows that there are, at least, two statistical parameters that can be quickly
and easily calculated in the DCT domain that can be used for predicting an improvement or
reduction in two metrics. Third, the accuracy of prediction is analyzed and factors such as
noise realization and the number of blocks that influence the accuracy are considered. Based
on this analysis, practical recommendations are given that allows compression automation.
Fourth, initial data concerning the lossy compression of single-channel images corrupted by
Poisson noise and three-channel images corrupted by AWGN are presented, demonstrating
the possible existence of OOPs for these cases. Finally, we show that the BPG coder is more
efficient compared to other coders earlier considered in [24].

The paper is structured as follows. Section 2 describes the image/noise model, con-
sidered metrics and basic dependences. Section 3 analyzes the dependences more in
detail. The methodology of prediction and its accuracy analysis are given in Section 4.
Decision-making and practical recommendations are discussed in Section 5. The cases of
signal-dependent noise and three-channel image compression are also briefly studied in
this Section. Finally, the conclusions are given.

2. Image/Noise Model and Compression Efficiency Criteria

It is a well-known fact that compression characteristics depend on sufficient image
properties. Depending on the image complexity, the CR can vary by several (or even tens)
of times for the same PSNR or, equivalently, the quality of compressed images can be rather
different for the same CR. Because of this, to ensure universality of the conclusions and
recommendations, the corresponding analysis and method synthesis should be performed
for a set of images with a very wide variation of properties. A set of test images needs
to contain simple, medium, and complex structure images where the complexity can be
described or characterized by a percentage of pixels that belong to an image’s homogeneous
regions or entropy for a noise-free case and so on. For a better understanding, we give six
images as the examples of images of different complexity (Figure 1). More than a half of
the pixels in Figure 1a belong to quasi-homogeneous regions, a certain part of the pixels in
Figure 1c–f relate to homogeneous regions, whilst there are practically no homogeneous
regions in the image in Figure 1b.

There are different ways to characterize image complexity. We have noticed that the
performance of the lossy compression of noisy images correlates with the image entropy
for noise-free cases. Entropy E is the following: 5.82 for Frisco, 7.33 for Diego, 7.46 for
Fr01, 7.40 for Fr02, 7.38 for Fr03, and 7.29 for Fr04. It will be shown later that the plots for
the test images having similar E values for the noise-free versions usually have a similar
behaviour. Note that the marginal cases are of the most interest; however, “average” cases
(of middle complexity) are also worth considering. Because of this, there is a tendency in
the image processing community for the creation of image databases and for their use in
the design and verification of image processing methods [38,39]. As a starting point for
analyzing the lossy compression of noisy images using BPG, we concentrate on the case of
grayscale images.

As a noise model, we consider the AWGN, which is known to be the simplest model.
Just such a model is commonly used as a starting point in research, for example, in the
prediction of the potential efficiency of image denoising [40]; thus, one can present an
observed noisy grayscale image as:

In
ij = Itrue

ij + nij, (1)

where Itrue
ij , i = 1, ..., IIm, j = 1, ..., JIm is the true or noise-free image, nij denotes AWGN in

the ij-th pixel, and IIm and JIm define the considered image size. It is possible to assume the
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noise mean equals to zero and the AWGN variance is equal to σ2. Moreover, we assume
that σ2 is either a priori known or pre-estimated with a high accuracy [41].
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Figure 1. 512 × 512 pixel images having simple (a), complex (b), and middle complexity (c–f) struc-
tures (namely, Frisco (a), Diego (b), Fr01 (c), Fr02 (d), Fr03 (e), and FR04 (f)). 
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Quality of the original noisy image can be characterized in different ways. One
standard way is to calculate the peak signal-to-noise ratio as:

PSNRn = 10log10

(
2552

σ2

)
, (2)

under the assumption that an image is represented as an 8-bit two-dimensional (2D) data
array. Another way is to employ some visual quality metrics, here, we use two of them.
The first one is PSNR-HVS-M [26] (a peak signal-to-noise ratio taking into account the
human vision system (HVS) and masking (M)), and the multi-scale structural similarity
metric (MS-SSIM) [27]. Both are among the best in characterizing the visual quality of
images with distortions typical for remote sensing [42], in particular those due to noise
and lossy compression. They can be calculated quickly, are applicable to a single-channel
(grayscale images), and are based on different principles. The latter is important since
no elementary full-reference metric is perfect and, thus, while carrying out an analysis
and making conclusions, it is desired to rely on the results obtained for several visual
quality metrics.

PSNR-HVS-M is defined as:

PSNR− HVS−Mn = 10log10

(
2552

MSE− HVS−Mn

)
, (3)

where PSNR− HVS−Mn is determined in 8 × 8 blocks in the DCT domain, taking into
account the masking effect and lower sensitivity of a human eye to distortions in high
spatial frequencies rather than distortions in low spatial frequencies. Note that PSNR and
PSNR-HVS-M [26] are both expressed in dB with larger values relating to better quality.
Usually, for AWGN and similar distortions, PSNR-HVS-M is slightly larger than PSNR due
to masking effect.
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For these two metrics, it is important that the distortion visibility thresholds have been
determined [38]. Distortions are usually invisible if PSNR exceeds 36 dB and PSNR-HVS-M
is larger than 41 dB. This happens if the noise variance is larger than 15...20. Because of this,
in this paper we concentrate on considering PSNRn smaller than 36 dB which is typical for
the aforementioned applications.

The metric MS-SSIM [27] extracts and employs structural information from the scene.
It is in the limits from zero to unity where larger values correspond to a better visual quality.
The distortion invisibility threshold is approximately equal to 0.99.

If a lossy compression method is applied, one obtains a compressed image
Ic
ij, i = 1, ..., IIm, j = 1, ..., JIm that differs from In

ij , i = 1, ..., IIm, j = 1, ..., JIm and depends
on the compression controlling parameter (CCP). For different coders, different parameters
play the role of the CCP. This can be the quality factor, scaling factor, quantization step, and
bits per pixel [12,24,31,32]. For the BPG coder, the quality parameter Q allows changing the
image quality and compression ratio. Performing a multiple compression of In using differ-
ent Q (which are integers in the limits from 1 to 51 for the BPG encoder), the rate-distortion
curve Metrnc(Q) can be obtained for any image where Metrnc is a metric under interest
calculated between noisy (original) and compressed images.

Such metrics behave in a reasonable manner, i.e., their values become worse (smaller
for all three considered metrics) if the Q increases. This is clearly seen in all four plots
presented in Figure 2. In Figure 2a,b, the dependences of PSNRnc(Q) for six test images
for two values of the noise variance are presented. For very small Q < 7, the original and
compressed images practically do not differ and the compression is near-lossless. Then,
one has a practically linear part of all curves; thus, it is possible to say that the part starts at
Q = 7 and ends at such Q that PSNRnc(Q) ≈ PSNRn. For larger Q, the dependences for
different images diverge where larger PSNRnc values are observed for simpler structure
images. For the middle part, it is possible to approximate the curves as:

PSNRnc(Q) ≈ 63−Q, dB. (4)

The dependences PSNR− HVS−Mnc(Q) and MS− SSIMnc(Q) are monotonous.
They are “going jointly” for all test images for Q < 25. A joint analysis of all four depen-
dences shows that for Q < 29 the introduced distortions are invisible. This means that it
is possible to carry out a visually lossless compression and then, after image transferring
(storage) and decompression, to perform noise post-filtering if necessary.

In the case of simulations, i.e., if one has a true image, adds noise to it, and then
compresses this image, it is also possible to calculate the metric Metrtc between the com-
pressed and true images, and to get the dependence Metrtc(Q). The properties of such
dependences are the most interesting. Two examples are given in Figure 3. For Q < 29, the
image quality is “stable” and it is practically the same as for the uncompressed image. Then,
with further Q increasing, three options are possible: (1) the image quality starts to improve
and, after attaining the OOP (associated with the dependence maximum), the quality starts
to quickly decrease; (2) the quality continues to be almost the same and even local maxima
are possible, and then a fast reduction takes the place; (3) the quality starts to decrease. The
first situation takes place for the metric MS− SSIMtc for all five images except the test
image, Diego (Figure 3b), and for the metric PSNR− HVS−Mtc for the test image, Frisco
(Figure 3a). The second situation is observed with the metric PSNR− HVS−Mtc for some
middle complexity test images (Figure 3a). The third situation takes place for the complex
structure image, Diego, according to both visual quality metrics (Figure 3a,b). Obviously,
the compression in the OOP can be recommended for the first situation, lossy compression
in the neighborhood of the local maxima is reasonable in the second situation, and it is
unclear what to do in the third situation.
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images) on Q: PSNRnc(Q) for noise variance equal to 64 (a), PSNRnc(Q) for noise variance equal to
100 (b), PSNR− HVS−Mnc(Q) (c) and MS− SSIMnc(Q) (d) for noise variance equal to 64.

Thus, we come to several questions. The first and the most complicated deals with the
fact that in practice one does not have the true image and, thus, the dependence Metrtc(Q)
cannot be attained; therefore, the Q in the OOP cannot be determined and it is impossible
to understand if the OOP exists or not. Another, less important, problem is what to do if an
OOP does not exist.

The arisen question will become clearer after an additional analysis performed below.
The plots in Figure 4 visualizes what CR can be provided by a BPG encoder applied to
noisy images. Note that the plots in Figure 4 are given for six single-channel RS images
of different complexity. The conclusions are the following. First, the CR (for the same Q)
depends on the image complexity. For example, for Q = 28 and a noise variance equal
to 64, the attained CR for the simplest and most complex test images, Frisco and Diego,
differ sufficiently (they are about 4.3 and 3.7, respectively, i.e., one deals with a near-lossless
compression). For Q = 35, the situation is the following: the CR for Frisco is about 35.3
whilst the CR for Diego is about 6.8, i.e., the CR differs from a near-lossless case and it is
considerably larger for the simple structure image. Second, from comparing the data in
Figure 4a,b it is possible to state that the CR for noisier images is smaller. For example, for
σ2 = 196 and Q = 35, the CR values for the images Frisco and Diego are equal to 5.5 and 6.4,
respectively. A sharp increase in the CR starts when Q occurs larger than QOOP, especially
for simple structure images.
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Third, there is no sufficient difference in the general tendencies for images of different
origin. To partly prove this, we have obtained the dependences of the considered visual
quality metrics on Q for two well-known test images, Lenna and Baboon, as well as an
artificial image, RSA (the images are presented in Figure 5). These dependences are given
in Figure 3c,d. As one can see, the results for the highly textural images, Diego and Baboon,
are very close. Similarly, the results for the simple structure images, RSA, Frisco and Lena
are similar as well.
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3. Properties of Optimal Operation Point

We have already mentioned that we focused on applying the BPG encoder [35]. It has
several obvious advantages stimulating to consider its application for RS and other types
of images. First, BPG provides a higher compression ratio compared to JPEG and many
other encoders for the same quality. Second, BPG is supported by most web browsers.
Third, it supports the same formats as JPEG (grayscale, YCbCr 4:2:0, 4:2:2, and 4:4:4), and
the most popular RGB, YCgCo and CMYK color spaces are supported. The available
versions are able to work with data from 8 to 14 bits per channel. In this paper, we
present the results obtained using the grayscale and color (4:2:2) BPG version 0.9.8 given at
https://bellard.org/bpg/, accessed on 25 July 2022.

Our main intention in this section is to understand what the QOOP is and how it can
be determined for a given image, metric, and noise variance. The preliminary observations
that follow from the plots in Figure 3 are the following. For all images for which OOPs are
observed, they take place for approximately the same Q. The OOPs for the metrics, PSNR-
HVS-M and MS-SSIM, are observed for practically the same Q. This is a good property that
allows to assume that an OOP does not depend on the image at hand and metric used, but,
probably, depends on the noise variance.

This hypothesis is based on the results obtained earlier for other coders [24,43–45].
In [43], it has been demonstrated that for an OOP (according to PSNRtc) the following
condition is satisfied:

PSNRnc(Q) ≈ PSNRn. (5)

This means that for σ2 = 64 PSNRnc(Q) ≈ 30 dB, for σ2 = 100 PSNRnc(Q) ≈ 28 dB
and for σ2 = 196 PSNRnc(Q) ≈ 25 dB. Taking into account the expression (4), this
should occur for Q = 33, 35, and 38, respectively. The plots presented in Figure 6 for noise
variances equal to 64 and 100 show that this really is the case. Additional studies carried
out for other variance values (25, 144, 196, and 289) and other test images have shown that
expression (5) is really valid for Q = QOOP. Substituting (4) into (5) and carrying out simple
transformations, it is also possible to obtain (for 8-bit images):

QOOP ≈ 14.9 + 20log10(σ). (6)

Then, knowing the noise variance a priori or estimating it with appropriate accuracy,
it is possible to predict for what value of Q the OOP is possible. Meanwhile, the values of
PSNRtc for Q calculated according to (6) can differ significantly. For example, for data in
Figure 6a, PSNRtc is from 28.5 dB to 36.5 dB where the first case (image Diego) corresponds
to an OOP absence whilst the second case (image Frisco) relates to an “obvious” OOP.

The following has been demonstrated in [45] for DCT-based coders. First, OOPs
according to visual quality metrics are observed less often than OOPs according to PSNR.
Second, an OOP according to visual quality metrics is observed for slightly (by about
5...10%) smaller quantization steps than for an optimal PSNR.

https://bellard.org/bpg/
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The same is observed for the BPG encoder. Figure 7 shows dependences PSNR−
HVS − Mtc(Q) and MS − SSIMtc(Q) for a noise variance equal to 100. They can be
compared to the plots in Figure 6b. As one can see, the OOP (if it is observed) takes
place for the same Q. Less OOPs are observed according to the visual quality metric
PSNR− HVS−Mtc (Figure 7a), than according to the standard metric PSNRtc (Figure 6b).
Similar effects have been observed for other test images and noise variances.
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equal to 100.

Thus, we can suppose that OOPs according to all considered metrics take place for
the same Q determined according to (6); however, it might be so that, for a given image
and noise variance, an OOP exists according to PSNRtc but does not exist according to
PSNR− HVS−Mtc. Even if the image is compressed in an OOP and the noise is partly
removed, residual distortions can be clearly visible (PSNR− HVS−Mtc is smaller than
41 dB and MS− SSIMtc is smaller than 0.99).

The carried-out analysis also shows that it is worth analyzing many test images and many
values of noise variance to obtain statistical data that allow for making certain conclusions.

4. Prediction of OOP Existence and the Parameters in It
4.1. The Main Idea and Preliminary Results

Our idea of OOP prediction is based on several assumptions. First, we assume that
we can predict (estimate) the difference ∆Metr = Metrtc(QOOP)−Metrn. If this difference
is positive, the OOP exists; if negative but quite close to zero, then we deal with situation 2
described in Section 2 (see the examples for four test images in Figure 6a); if negative and
its absolute value is large enough, then, being compressed with QOOP (6), such an image
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can be sufficiently degraded. Second, we suppose that such a prediction can be accurate
enough to undertake reliable decisions (to avoid making wrong decisions). Third, it is
assumed that such a prediction can be performed easily and quickly, i.e., considerably
faster than the compression itself.

In fact, we already have experience in solving the aforementioned task—the procedure
for predicting the OOP’s existence and metric values in the OOP have been proposed
in [24]. More in detail, two statistical parameters, P2σ and P2.7σ, that can be easily computed
in a set of 8 × 8 pixel blocks in the DCT domain were considered. For both of them, the
expressions that allow for calculating ∆PSNR and ∆PSNR− HVS−M using P2σ or P2.7σ

as the argument were obtained. In this paper, we employ the ideas of [24] for the BPG
coder, keeping in mind that it is based on DCT and, in this sense, statistics in the DCT
domain can be highly correlated with the BPG performance characteristics.

The parameter P2σ is calculated as:

P2σ = ∑M
m=1

P2σ(m)

M
, P2σ(m) = (∑7

k=0∑7
l=0δ(k, l, m)},

δ(k, l, m) = 1, i f |D(k, l, m)| < 2σ

0 otherwise,

(7)

where M is the number of the considered blocks, D(k, l, m) is the kl-th DCT coefficient in the
m-th block, m = 1, . . . , M. In other words, P2σ is an estimate of the probability that absolute
values of DCT coefficients in blocks are smaller than 2σ supposedly a priori known.

Similarly:

P2.7σ = ∑M
m=1

P2.7σ(m)

M
, P2.7σ(m) = (∑7

k=0∑7
l=0δ(k, l, m))− 1,

δ(k, l, m) = 1, i f |D(k, l, m)| > 2.7σ

0 otherwise,

(8)

Both statistical parameters have come from the theory of DCT-based denoising [42].
It has been shown there that such parameters are able to jointly characterize the image
complexity and noise intensity. For example, P2σ is small for complex structure images
and/or low intensity noise.

The next task is to obtain dependences that connect ∆PSNR and ∆PSNR− HVS−M
with the input parameters, P2σ or P2.7σ. This stage is carried out off-line and can be treated
as specific training. The main task is, such as in machine learning, to take into account all
possible situations, i.e., a wide variety of image properties and noise intensities.

At this stage, scatter-plots of ∆Metr on the input parameters have been formed. Each
scatter-plot has been obtained as follows: noise with a given noise variance has been added
to a considered test image that has then been compressed using QOOP (6). Then, the input
and output parameters have been determined. In general, eleven test images of different
complexity have been exploited and the noise variance was varied in the limits from 0.25
to 400. The obtained scatter-plots are presented in Figures 8–11.

Preliminary analysis shows the following:

1. The points of the scatter-plots ∆PSNR vs. P2σ (Figure 8) and ∆PSNR vs. P2.7σ

(Figure 10) are placed in a very compact manner, clearly showing that there are
monotonous increasing and decreasing dependences in the output parameter on the
input parameter, respectively; both the input parameters are in the limits from zero
to unity, for small P2σ and large P2.7σ, ∆PSNR are negative and close to −2 dB (as an
example, see the data for the test image Diego in Figure 5a), and in this case the OOP
is absent and it is not worth compressing the images using QOOP (6);

2. The points of the scatter-plots ∆PSNR− HVS−M vs. P2σ (Figure 9) and ∆PSNR−
HVS − M vs. P2.7σ (Figure 11) are placed in a less compact manner; meanwhile,
there are obvious tendencies of ∆PSNR− HVS−M increasing with P2σ increasing
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and P2.7σ decreasing; a visual analysis allows supposing that these dependencies are
monotonous; the scatter-plot points are placed more compactly for large P2σ and small
P2.7σ that correspond to simpler structure images and/or more intensive noise;

3. It is possible to expect that a good curve fitting is possible in both cases that al-
lows establishing approximate analytic dependences between the output and input
parameters (examples of the fitted curves are given in all Figures 8–11);

4. There are points where these curves cross the zero level: P2σ ≈ 0.73 and P2.7σ ≈ 0.16
for ∆PSNR; P2σ ≈ 0.84 and P2.7σ ≈ 0.05 for ∆PSNR− HVS−M.
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4.2. Curve Fitting Details

Having, in general, shown the possibility of a good curve fitting, we come to the next
questions—what the best (appropriate) fitting is and how to characterize its accuracy. There
are well developed theories of LMSE and robust fitting [46,47]. A visual analysis of the
scatter-plots in Figures 7–10 shows that there are no obvious outliers in the data; thus,
there is no obvious necessity to apply a robust fitting. LMSE regression is implemented
in many software tools including MATLAB and others; therefore, we can use one of them
(the MATLAB Curve Fitting Tool in our case). To characterize the fitting accuracy, it is
common [46] to use the root mean square (RMSE) that should be as small as possible, as
well as a goodness-of-the-fit R2 and/or adjusted goodness-of-the-fit AdjR2 that have to be
as large (close to the unity) as possible.

Standard curve fitting tools usually provide several options of fitting functions includ-
ing polynomials, exponential or weighted sum of exponents, rational functions, Fourier
series, etc. Finding the best fitting function is more an engineering and heuristic rather
than scientific task. Moreover, some solutions can be very close to each other according to
quantitative criteria that does not allow for giving a unique practical recommendation.

The curves fitted for the scatter-plots in Figures 8–11 have been obtained using rational
functions. For the data in Figure 8, one has an RMSE about 0.37 and R2 and AdjR2 about
0.98. For the scatter-plot in Figure 9, the RMSE is about 1.72 and the R2 and AdjR2 are about
0.85. For the data in Figure 10, one has an RMSE about 0.43 and R2 and AdjR2 about 0.975.
For the scatter-plot in Figure 11, the RMSE is about 1.66 and the R2 and AdjR2 are about
0.86. Supposing that the fitting is good enough, it is possible to conclude that the fitting for
∆PSNR is considerably more accurate than for ∆PSNR− HVS−M (this is not because
of bad fitting but because of larger sparsity of data for ∆PSNR− HVS−M). It is better
to use P2σ in predicting the ∆PSNR and P2.7σ in predicting the ∆PSNR− HVS−M. The
parameters of the fitted curves are presented in Table 1.

One might be interested whether or not other approximations are able to provide
better results. The Fourier models, e.g., the Fourier model 3, are able to provide quite a
good fitting in the sense of quantitative criteria (see Figure 12), but the obtained curves
can be not monotonous, and that is not in agreement with our assumptions. The same
relates to polynomial approximations. For polynomials of the order 2 and 3, the fitting
accuracy parameters are worse than reported above, whilst for polynomials for the order 4
and 5, the curves become not monotonous. Finally, good approximations can be obtained
for the weighted sums of two exponentials (see Figure 13 and compare it to Figure 9);
thus, the use of rational functions or the sums of two exponentials can be considered an
appropriate choice.
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Table 1. Parameters of the fitted curves.

Dependence Expression Parameters

∆PSNR on P2σ f (x) = (p1x+ p2)/(x3 + q1x2 + q2x + q3)

p1 = 1.533 × 104,
p2 = −1.112 × 104,
q1 = 75.71,
q2 = −6291,
q3 = 6139

∆PSNR on P2.7σ f (x) = (p1x + p2)/(x2 + q1*x + q2)

p1 = −6.162 × 105,
p2 = 1.077 × 105,
q1 = 2.843 × 105,
q2 = 4501

∆PSNR− HVS−M on P2σ f (x) = (p1x + p2)/(x2 + q1x + q2)

p1 = 2.895 × 105,
p2 = −2.549 × 105,
q1 = −1.72 × 104,
q2 = 2.263 × 104

∆PSNR− HVS−M on P2.7σ f (x) = (p1x + p2)/(x3 + q1x2 + q2x + q3)

p1 = −10.97,
p2 = 0.558,
q1 = −1.99,
q2 = 1.82,
q3 = 0.048
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Having the fitted curves at hand, it is possible to predict ∆PSNR and ∆PSNR −
HVS − M for any image to be compressed. For this purpose, one has to calculate the
input parameter and to substitute it into the approximating curve defined in Table 1. For
example, the estimated P2σ is equal to 0.6. Then, according to the data in Figure 7 (or
Figure 12), the predicted ∆PSNR is about −0.8 dB, and the predicted ∆PSNR− HVS−M
is about −6.5 dB according to the data in Figure 8 and about −6.1 dB according to the
approximation in Figure 13. In any case, one can conclude that the OOP for this image is
absent and that it is not worth compressing it with QOOP. An example of such a situation is
given in Figure 14, where both the predicted and the true ∆PSNR and ∆PSNR−HVS−M
are negative (the predicted values are equal to −0.71 dB and −6.34 dB whilst the true
values are equal to −0.73 dB and −5.09 dB, respectively). As one can see, the compressed
image is slightly smeared.



Appl. Sci. 2022, 12, 7555 14 of 23

Appl. Sci. 2022, 12, 7555 14 of 25 
 

 

Figure 12. The scatter-plot ∆𝑃𝑆𝑁𝑅 vs. 𝑃2𝜎 and the fitted curve of the model Fourier 3 (RMSE is 
about 0.42 and the R2 and AdjR2 are about 0.976). 

 
Figure 13. The scatter-plot ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 vs. 𝑃2𝜎 and the fitted curve (the weighted sum of 
two exponentials, RMSE is about 1.64 and the R2 and AdjR2 are about 0.87). 

Having the fitted curves at hand, it is possible to predict ∆𝑃𝑆𝑁𝑅  and ∆𝑃𝑆𝑁𝑅 −𝐻𝑉𝑆 − 𝑀 for any image to be compressed. For this purpose, one has to calculate the input 
parameter and to substitute it into the approximating curve defined in Table 1. For exam-
ple, the estimated 𝑃ଶఙ is equal to 0.6. Then, according to the data in Figure 7 (or Figure 
12), the predicted ∆𝑃𝑆𝑁𝑅 is about −0.8 dB, and the predicted ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 is about 
−6.5 dB according to the data in Figure 8 and about −6.1 dB according to the approximation 
in Figure 13. In any case, one can conclude that the OOP for this image is absent and that 
it is not worth compressing it with QOOP. An example of such a situation is given in Figure 
14, where both the predicted and the true ∆𝑃𝑆𝑁𝑅 and ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 are negative 
(the predicted values are equal to −0.71 dB and −6.34 dB whilst the true values are equal 
to −0.73 dB and −5.09 dB, respectively). As one can see, the compressed image is slightly 
smeared. 

Figure 13. The scatter-plot ∆PSNR− HVS−M vs. P2σ and the fitted curve (the weighted sum of
two exponentials, RMSE is about 1.64 and the R2 and AdjR2 are about 0.87).

Appl. Sci. 2022, 12, 7555 15 of 25 
 

   

(a) (b) (c) 

Figure 14. The noise-free test image Fr03 (a), this image corrupted by AWGN with noise variance 
equal to 25 (b) and the image compressed using QOOP = 29 (c), CR = 5.84. 

One can argue that the prediction is not accurate for ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 when 𝑃ଶఙ 
is about 0.2. Consequently, in this case, ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 can be from −16 dB to −7 dB 
depending on the image at hand whilst the predicted values are about −10.5 dB (see Figure 
13). Such an accuracy of prediction seems low since the errors can be up to 5.5 dB; how-
ever, in practice, this is not a problem for several reasons. First, such a small 𝑃ଶఙ usually 
corresponds to images corrupted by low intensity noise which is invisible. Then, no posi-
tive effect of noise filtering can be seen anyway. Second, such ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 values 
usually correspond to 𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀௡ about 55…60 dB. Then, after compression, one 
has a 𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀௧௖ about 45…50 dB, i.e., the introduced distortions are invisible. 

Analyzing the scatter-plots for ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀, one can expect that the prediction 
accuracy for 𝑃ଶఙ ൐ 0.5, which is of more interest, is considerably better than for 𝑃ଶఙ ≤ 0.5 
(see, e.g., the scatter-plot in Figure 9). To check this hypothesis, we have calculated the 
RMSE of the fitted curves in the considered intervals. The RMSE for 𝑃ଶఙ ≤ 0.5 equals to 
2.34 whilst it is equal to 1.21 for 𝑃ଶఙ ൐ 0.5, i.e., our assumption is valid. Then, one can 
carry out quite an accurate prediction in the interval 𝑃ଶఙ ൐ 0.5 where it is especially im-
portant to undertake decisions on the OOP’s existence and Q setting. 

4.3. Factors Affecting the Accuracy of Prediction 
There are also other factors affecting the accuracy of prediction. A first factor is noise 

realization. It is clear that, for a given test image and AWGN variance, the ∆𝑃𝑆𝑁𝑅 , ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀, and even QOOP can vary from one noise realization to another. To 
study this aspect, we have analyzed three images of different complexity corrupted by 
AWGN with three different values. The values of ∆𝑃𝑆𝑁𝑅 and ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 have 
been measured for QOOP and the variances of these parameters have been calculated. It has 
been established that variances of these parameters are about 0.001; even in the worst case 
the maximal variance was equal to 0.0033 for ∆𝑃𝑆𝑁𝑅 and 0.0046 for ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀. 
This means that the influence of realization can be neglected (recall that the RMSE of fit-
ting is about 0.4 for ∆𝑃𝑆𝑁𝑅 and about 1.2 for ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 in the area under inter-
est). If the QOOP was different for different realizations, the differences were equal to 1 (e.g., 
an OOP was observed for Q equal to either 33 or 34) and the difference in values of ∆𝑃𝑆𝑁𝑅 
or ∆𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 in the neighbor points was negligible (e.g., analyze the depend-
ences in Figure 3 near their peaks). Thus, in practice, the influence of noise realization on 
the parameters of the OOP can be ignored. 

One more parameter that can influence the prediction is a possible variation of the 
input parameter. Having an approximation ∆𝑀𝑒𝑡𝑟(𝑄) and variance of the input param-
eter 𝜎௉ଶ , a variance of ∆𝑀𝑒𝑡𝑟(𝑄)  can be estimated as 𝑉𝑎𝑟∆ெ௘௧௥ଶ ≈ 𝜎௉ଶ(ௗ∆ெ௘௧௥(ொ)ௗொ )ଶ . 

Figure 14. The noise-free test image Fr03 (a), this image corrupted by AWGN with noise variance
equal to 25 (b) and the image compressed using QOOP = 29 (c), CR = 5.84.

One can argue that the prediction is not accurate for ∆PSNR− HVS−M when P2σ is
about 0.2. Consequently, in this case, ∆PSNR− HVS−M can be from −16 dB to −7 dB
depending on the image at hand whilst the predicted values are about −10.5 dB (see
Figure 13). Such an accuracy of prediction seems low since the errors can be up to 5.5 dB;
however, in practice, this is not a problem for several reasons. First, such a small P2σ

usually corresponds to images corrupted by low intensity noise which is invisible. Then,
no positive effect of noise filtering can be seen anyway. Second, such ∆PSNR− HVS−M
values usually correspond to PSNR−HVS−Mn about 55...60 dB. Then, after compression,
one has a PSNR− HVS−Mtc about 45...50 dB, i.e., the introduced distortions are invisible.

Analyzing the scatter-plots for ∆PSNR−HVS−M, one can expect that the prediction
accuracy for P2σ > 0.5, which is of more interest, is considerably better than for P2σ ≤ 0.5
(see, e.g., the scatter-plot in Figure 9). To check this hypothesis, we have calculated the
RMSE of the fitted curves in the considered intervals. The RMSE for P2σ ≤ 0.5 equals to
2.34 whilst it is equal to 1.21 for P2σ > 0.5, i.e., our assumption is valid. Then, one can carry
out quite an accurate prediction in the interval P2σ > 0.5 where it is especially important to
undertake decisions on the OOP’s existence and Q setting.

4.3. Factors Affecting the Accuracy of Prediction

There are also other factors affecting the accuracy of prediction. A first factor is
noise realization. It is clear that, for a given test image and AWGN variance, the ∆PSNR,
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∆PSNR− HVS−M, and even QOOP can vary from one noise realization to another. To
study this aspect, we have analyzed three images of different complexity corrupted by
AWGN with three different values. The values of ∆PSNR and ∆PSNR− HVS−M have
been measured for QOOP and the variances of these parameters have been calculated. It has
been established that variances of these parameters are about 0.001; even in the worst case
the maximal variance was equal to 0.0033 for ∆PSNR and 0.0046 for ∆PSNR− HVS−M.
This means that the influence of realization can be neglected (recall that the RMSE of fitting
is about 0.4 for ∆PSNR and about 1.2 for ∆PSNR− HVS−M in the area under interest).
If the QOOP was different for different realizations, the differences were equal to 1 (e.g., an
OOP was observed for Q equal to either 33 or 34) and the difference in values of ∆PSNR or
∆PSNR− HVS−M in the neighbor points was negligible (e.g., analyze the dependences
in Figure 3 near their peaks). Thus, in practice, the influence of noise realization on the
parameters of the OOP can be ignored.

One more parameter that can influence the prediction is a possible variation of the in-
put parameter. Having an approximation ∆Metr(Q) and variance of the input parameter σ2

P,

a variance of ∆Metr(Q) can be estimated as Var2
∆Metr ≈ σ2

P

(
d∆Metr(Q)

dQ

)2
. Then, ∆Metr(Q)

can be large in places where the absolute values of d∆Metr(Q)
dQ are large and if σ2

P is quite

large. The absolute values of d∆Metr(Q)
dQ are large for a large P2σ or, equivalently, a small

P2.7σ; however, we are more interested in places where the approximation curves cross
the zero level. The absolute values of the derivatives there are about 50; thus, we need to
understand what the values are of σ2

P.
It is possible to expect that σ2

P might depend on several factors, namely, the number of
blocks M, the properties of images and noise variance, and how the blocks are positioned
in a considered image. To avoid possible problems with the images with some regular
structures, we propose to apply a random positioning of blocks where indices of their left
upper corner are (rounded-off) random variables in the limits from i = 1 till i = IIm − 7 and
from j = 1 till j = JIm − 7, with a uniform distribution. Within this approach, we have first
analyzed three test images of different complexity with three different noise variance values.
A set of realizations of the random block positions have been generated for M = 500. A
variance σ2

P for the input parameter P2σ was in the limits from 5 × 10−6 till 8 × 10−5. There
is no obvious dependence on the image complexity but there is a tendency of σ2

P decreasing
if the AWGN variance increases (σ2

P is about 0.00001 for an AWGN variance about 200 that

usually corresponds to P2σ ≥ 0.5). The latter is a positive factor since
(

d∆Metr(Q)
dQ

)2
is larger

just for a large P2σ. Then, σ2
P

(
d∆Metr(Q)

dQ

)2
is about 2.5 × 10−2 (the standard deviation is

about 0.16 and it is sufficiently smaller than the RMSE of prediction due to fitting).
We have also carried out a similar study for the input parameter P2.7σ. The limits of its

variance variation are similar—from 3 × 10−6 till 8 × 10−5. The σ2
P values are smaller for a

larger AWGN variance.
In addition, we have also fixed the positions of the blocks and calculated the variances

σ2
P for a set of noise realizations. This time the variances were even smaller (from 2 × 10−6

till 6 × 10−6) and, hence, we can neglect this factor.

4.4. Other Practical Aspects

Note that it is quite easy and fast to carry out a prediction. A calculation of the DCT
in 8 × 8 blocks is a standard operation in image processing [48] that can be performed
efficiently using both hardware and software. Then, easy comparisons and elementary
arithmetic operations are needed to calculate the input and output parameters.

One can also be interested in whether or not the lossy compression by BPG in the
OOP produces some benefits compared to other lossy compression techniques applied to
noisy images. Table 2 contains data that allow for comparing BPG to the coder AGU [49]
for some test images and some noise variances. First, a comparison has been completed
for two images used in obtaining the approximating dependences (fitted curves), namely,



Appl. Sci. 2022, 12, 7555 16 of 23

the images, Frisco and Fr01. As one can see, the BPG encoder provides benefits in three
senses: (1) it produces about a 0.8 dB better PSNRnc in the OOP; (2) it provides a better
visual quality according to the visual quality metric MS− SSIMnc, and (3) a slightly (by a
few percent) larger CR is usually ensured.

Table 2. Obtained simulation data.

Test Image AWGN Variance
AGU BPG

PSNR (dB) CR MS-SSIM PSNR (dB) CR MS-SSIM

Frisco
64 36.05 31.50 0.972 36.83 32.84 0.977
100 34.84 38.36 0.965 35.68 41.17 0.972
196 33.09 54.93 0.949 33.83 56.63 0.960

Fr01
100 28.26 9.33 0.966 29.66 10.09 0.976
196 26.66 14.3 0.950 27.78 14.3 0.963

Aerial
100 28.29 8.87 0.985 29.63 9.54 0.976
196 26.57 13.03 0.946 27.67 13.04 0.962

Airfield
100 27.30 * 7.69 0.951 * 28.25 10.52 0.956
196 25.79 12.35 0.927 * 26.69 12.34 0.938

* OOP is absent.

Meanwhile, it can also be interesting to check if this happens for images not used in
obtaining the scatter-plots (for image processing approaches based on learning, a verifica-
tion stage is obligatory). For this purpose, we have obtained simulation data for two test
images—Aerial and Airfield—that have not been used in previous analysis. The results are
presented in Table 2. Their analysis shows the following. First, again the results for the BPG
coder are better for both metrics and, at least, not worse according to the CR. An interesting
situation has been observed for the test image, Aerial, corrupted by AWGN with a variance
equal to 64 and the image, Airfield, corrupted by AWGN with a noise variance equal to
100. For the encoder AGU, an OOP is absent whilst for the encoder BPG, an OOP exists for
both the considered metrics.

Thus, we can state that the BPG encoder outperforms AGU and this takes place for
both images that have been used in obtaining scatter-plots and images that have been
employed for verification.

5. Decision-Making and Other Practical Cases

Supposing that prediction has been carried out for a given image, one obtains ∆PSNR
or ∆PSNR− HVS−M or both. A question is what to do further? There can be different
options—to rely only on one parameter (rather than one of two) or on both. The choice is
very heuristic without an obvious preference (e.g., special studies with customers assessing
the compressed image quality can be carried out to obtain a reliable answer). We propose
the following practical algorithm:

1. If ∆PSNR + ∆PSNR− HVS−M > 1 dB, consider that an OOP exists and compress
an image using QOOP;

2. If −1 dB ≤ ∆PSNR + ∆PSNR− HVS−M ≤ 1 dB, consider that an OOP might exist
and use QOOP-1 (but not less than 28) to avoid oversmoothing;

3. If ∆PSNR + ∆PSNR − HVS − M ≤ −1 dB, use Q = 28 to provide invisibility of
introduced distortions and the possibility of noise removal in it by applying post-
filtering to the decompressed images.

An example in Figure 13 corresponds to case 3. An example for situation 1 is presented
in Figure 15. The positive effect of a lossy compression is seen, especially in an image’s ho-
mogeneous regions where the noise removal is obvious. Finally, an example for situation 2
is demonstrated in Figure 16. In this case, the positive effect of noise suppression can be
noticed as well; however, edge/detail smearing takes place too.
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Figure 15. Noisy image Frisco (a) and the same image compressed in OOP (b), noise variance equal
to 196, and the noise-free image (c).

If situation 1 is falsely recognized as situation 2 or vice versa, practically nothing
happens since the recommended Q values differ only by unity. If situation 2 is falsely
recognized as situation 3, it is not a problem since a “careful” compression is carried out
(by the expense of a smaller CR). If situation 3 is falsely recognized as situation 2, a slightly
more smearing of the compressed image can be observed (however, the CR is larger).
Finally, situations 1 and 3 are practically never misclassified.
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Figure 16. Noisy image Fr02 (a) with noise variance equal to 196 and the same image compressed
using QOOP = 37 (b), the noise-free image (c).

Thus, the fully automatic procedure for a given noisy image is as follows:

1. Estimate the noise variance by some blind method of a noise variance assessment (if
the noise variance is not known in advance);

2. Calculate QOOP according to (6); calculate P2σ according to (7);
3. Calculate ∆PSNR and ∆PSNR− HVS−M using the expressions and parameters in

Table 1;
4. Make a decision on the recommended QOOP according to the algorithm described above;
5. Carry out a compression using the recommended QOOP.

As it has been stated in Section 2, AWGN can be a simplified noise model for which
the noise variance or standard deviation can be estimated in a blind manner (automat-
ically) [50,51]. A more general case is the signal-dependent noise model [52]. Let us
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demonstrate that the OOP is also possible for images corrupted by Poisson noise com-
pressed by BPG. Note that two approaches to such a compression are possible. The first one
is to apply BPG directly. The second one is to apply a proper VST (Anscombe transform in
the considered case [53]) and some pre-normalization before the compression with inverse
operations at the decompression stage. In this case, the signal-dependent noise converts to
an almost pure additive and we arrive at the image/noise model studied above; thus, let
us concentrate on the first approach.

The analysis has been carried out for six RS test images. The obtained rate-distortion
curves PSNR− HVS−Mtc(Q) and MS− SSIMtc(Q) are given in Figure 17. As one can
see, the OOP exists for the metric MS-SSIM for the images, Frisco and Fr04, and for the
metric PSNR-HVS-M for the image, Frisco (similar situations have been earlier observed
for the AWGN case, see the plots for the test image Fr02 in Figure 7). In all three cases, the
OOP is observed for Q = 37. According to PSNRtc, the OOP exists as well and this happens
for Q = 37, while ∆PSNR can reach 3 dB; thus, we can expect that automatic procedures
for lossy compression can be designed for BPG for images corrupted by signal-dependent
noise, including the speckle typical for synthetic aperture radar images.
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corrupted by Poisson noise.

It might also be true that two, three or more image components are corrupted by the
noise and these images have to be compressed in a lossy manner. Certainly, a component-
wise compression for which all the results obtained above are valid is possible; however,
the joint compression of several component noisy images is possible as well. For example,
available BPG software allows for compressing color, i.e., three-channel images; thus, it
is easily possible to test this practical situation. As an initial case, let us assume that all
the component images are corrupted by AWGN with the same noise variance. Since the
results can be of interest for both three-channel and color images, four test images have
been considered: the RS three-channel images, Frisco and Diego, and the widely used color
test images, Lena and Baboon. The original images of size 512 × 512 pixels were presented
in RGB, an AWGN with variance equal to 100 was independently added to each component
image, a 4:2:2 version of BPG was applied, and the metrics were calculated independently
for each component image. The obtained dependences are presented in Figure 18.

It follows from the preliminary analysis that the OOP can also exist and it takes place
practically for the same Q for all component images. Meanwhile, there are also some
specific results, such as more obvious OOPs for the G component; thus, additional studies
are needed.
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dependences for R (d), G (e), and B (f) component images.

6. Conclusions

The task of the lossy compression of images corrupted by AWGN by the BPG coder
is considered. The main attention is paid to the single-channel image case. It is shown
that an OOP might exist according to the standard criteria as PSNR (and MSE). Moreover,
an OOP might exist for the visual quality metrics such as MS-SSIM and PSNR-HVS-M,
although, this occurs more rarely. It is demonstrated that OOP existence depends on the
noise variance and image complexity where an OOP exists with a higher probability for
simpler structure images and/or a higher intensity noise. With a noise intensity increase,
the QOOP increases as well, and the corresponding expression is obtained. The approach
to predicting the OOP’s existence and the metric values in it is proposed. This is based
on obtaining the approximating dependences in advance using scatter-plots and curve
fitting. Then, for a given image, a simple statistical parameter has to be estimated, its value
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has to be used as an approximator input and the prediction with decision-making needs
to be completed. Its accuracy is analyzed and shown to be appropriate for practice. The
recommendations on an automatic Q setting for different practical situations are given
and illustrated.

The possibility of OOP existence for signal-dependent noise and three-channel images
corrupted by AWGN is shown. This can be the direction of the future research. Another
direction deals with improving the prediction accuracy for visual quality metrics by the joint
processing of several input parameters that can be performed by a trained neural network.
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