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MINIMIZATION OF DIFFERENTIAL EQUATIONS
AND ALGEBRAIC VALUES OF E-FUNCTIONS

ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

ABSTRACT. A power series being given as the solution of a linear differential equation
with appropriate initial conditions, minimization consists in finding a non-trivial linear
differential equation of minimal order having this power series as a solution. This problem
exists in both homogeneous and inhomogeneous variants; it is distinct from, but related
to, the classical problem of factorization of differential operators. Recently, minimization
has found applications in Transcendental Number Theory, more specifically in the compu-
tation of non-zero algebraic points where Siegel’s E-functions take algebraic values. We
present algorithms and implementations for these questions, and discuss examples and
experiments.

1. INTRODUCTION

1.1. Minimization. A linear differential equation (LDE)

L(y(z)) := ar(z)y
(r)(z) + · · ·+ a0(z)y(z) = 0 (1)

with polynomial coefficients ai(z) in Q[z] is given, together with initial conditions spec-
ifying uniquely a formal power series solution S ∈ Q[[z]], i.e. L(S(z)) = 0. In its
homogeneous variant, the problem of minimization is to find a homogeneous linear
differential equation

M(y(z)) := bm(z)y
(m)(z) + · · ·+ b0(z)y(z) = 0 (2)

of minimal possible order m, with polynomial coefficients bj(z) in Q[z] and also having S
as a solution. In the inhomogeneous version, the input is the same, but in the output,
a non-zero polynomial right-hand side in Q[z] is also possible, which may allow for the
existence of an equation of even smaller order.

Both these problems exist for other fields of coefficients and a large part of our discussion
extends to such situations; we focus here on the case of the field Q to keep the discussion
simple and reflect more closely the capabilities of our implementation.

When the origin is an ordinary point of the input equation L(y(z)) = 0, i.e. ar(0) ̸= 0,
initial conditions are given as the vector of values (S(0), . . . , S(r−1)(0)) in Qr. Otherwise,
the origin is called a singularity of the equation (1). Equation (1) may still have power
series solutions even in the singular case. The definition of initial conditions in this case is
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2 ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

more delicate; it is discussed in Section 2.1. Interestingly, when the origin is singular, it
is even possible that (1) possesses a basis of solutions in Q[[z]]; in this case the origin is
called an apparent singularity.

1.2. Algebraic values of E-functions. Minimization has a nice application to transcen-
dence theory, more precisely to the determination of algebraic values taken by E-functions
at algebraic points. E-functions are entire functions with special arithmetic properties; in
particular, they satisfy linear differential equations over Q(z) and their Taylor series at 0
belong to Q[[z]]. They have been introduced by Siegel in 1929 as a generalization of the
exponential function, and have been studied in depth by Siegel, Shidlovskii, Nesterenko,
André, Beukers and others. We refer to Section 3 for their precise definition, statements
of results and bibliographic references.

Adamczewski and Rivoal have given an algorithm [AR18] that determines the finite list
of algebraic numbers α such that f(α) is also algebraic, given as input an E-function f(z)
(represented by a linear differential equation and sufficiently many initial terms). The
first two steps of this algorithm rely on the computation of a minimal homogeneous linear
differential equation and of a minimal linear differential inhomogeneous equation for f .

Another question in number theory concerns the algebraicity of special values of analytic
functions whose Taylor series at 0 belongs to Q[[z]] and satisfies a Mahler equation over
Q(z), i.e., an equation

∑d
j=0 pj(z)f(z

rj) = 0 where pj(z) ∈ Q[z]. There exists an approach
based on a similar but different type of minimization [AF17, AF18], that is not considered
here.

1.3. Relation of minimization to factorization of linear differential operators. The
problems of factorization and minimization are closely related since they are both con-
cerned with finding (right) factors of linear differential operators. But they are different
problems. For instance, an equation can be minimal even when the operator factors. A
simple example is given by the equation (1− z)y′′ − y′ = 0 and its power series solution
S = ln(1− z). The corresponding operator clearly has ∂z := d

dz
as a right factor of order 1,

but no homogeneous equation of order 1 can have a solution with a logarithmic singularity.
Also, in general, a linear differential operator may have infinitely many factorizations and
the problem of minimization is to find a minimal (not necessarily irreducible) right factor
that vanishes at the solution S. Thus one cannot simply use an existing implementation
of a factorization algorithm in order to solve the minimization problem. Even in the case
of finitely many factorizations, minimization can be much simpler than factorization; this
is illustrated by an example in Section 5.1.

Still, factorization and minimization share many algorithmic tools. Indeed, the algo-
rithm we present in Section 2 is obtained by combining sub-algorithms of van Hoeij’s
description of his factorization algorithms [vH97a, vH97b], exploiting the fact that the
situation of minimization is made easier by the extra information provided by the input
power series S. Furthermore, in applications, it is sometimes possible to take advantage
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of further structure that the minimal operator is known to possess, such as being Fuch-
sian (i.e., having only regular singularities, see §2.3.1), or having at most one irregular
singularity, e.g. at infinity as happens for E-functions (see Section 3).

1.4. Notes on the history of factorization algorithms. The tools used in factorization
and minimization algorithms have a convoluted history. Fabry’s doctoral thesis [Fab85]
is well-known for having completed the classification of the general form that can be
taken by formal solutions of linear differential equations at their singularities. Quite
surprisingly, it seems mostly forgotten that the last part of his thesis (from Section 32
page 86, to the end, page 105), Fabry uses the classification result to design a factorization
algorithm for LDEs with rational function coefficients. The principle is to perform a local
analysis at each singularity and try all possible choices of local behaviors for the factor
under construction. For instance, at any regular singular point, the roots of the indicial
equations of the factor have to be roots of the indicial equations of the equations (see
Lemma 2.1). At irregular singular points, the exponentials must also be chosen from
those of the formal solutions. Then, what remains is to find the apparent singularities. In
the case of a Fuchsian factor (Sections 32–34), Fabry uses Fuchs’ relation (see §2.3.3) to
determine possible roots of the indicial equations at the apparent singularities and then
a local expansion of the logarithmic derivative of the Wronskian of local solutions at a
well-chosen singular point reconstructs the required information. This is not completely
general as a well-chosen point has to exist; otherwise Fabry introduces undetermined
coefficients that will have to be determined later as solutions of a polynomial system.
In the non-Fuchsian case (Sections 35–36), he does not have a complete solution in his
thesis, but a reduction result showing that finding a right factor amounts to bounding the
number of apparent singularities of that factor. A few years later [Fab88a, Fab88b], he
addresses the non-Fuchsian case by observing that the relevant information can be found
in the expansion of the logarithmic derivative of the Wronskian at infinity. This anticipates
by one century the generalized Fuchs relation of Bertrand and Beukers [BB85, Th. 3],
and its more precise form by Bertrand and Laumon [Ber88, A.2] described in Section 2.3.
Again, to make the algorithm complete, it may be the case that undetermined coefficients
are needed. To summarize, Fabry’s works contain the first proof that factoring LDEs is
algorithmically decidable.

Another approach leading to a general and complete algorithm was started by Markov
[Mar91a]1 and developed by Bendixson [Ben92] and Beke [Bek94]2. The idea is to
construct a kth exterior power of the linear differential operator to be factored. This
operator must cancel the logarithmic derivative of the Wronskian of the solutions of
a factor of order k (other linear differential equations are constructed for the next
coefficients). One then looks for “hyperexponential solutions” (that is, for solutions y

1Markov [Mar91a] is aware of Fabry’s note [Fab88b]; he writes “It seems to me that this question can be
solved by simpler considerations than those of Mr. Fabry.”

2Most modern references call this approach “Beke’s algorithm”. Beke [Bek94] credits Bendixson [Ben92]
in the footnote at the end of his article. Both Bendixson and Beke seem to be unaware of Fabry’s and
Markov’s works.
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such that y′/y is rational; these correspond to right factors of order 1). This leads to
looking for a rational solution of the associated Riccati equation. As in Fabry’s method3,
this is solved by finding finitely many possibilities at each singularity, gluing them in all
possible ways and finding the missing part as a rational solution of a linear differential
equation [vdPS03, Prop. 4.9].

General bounds on the degree of the coefficients of the factors can be deduced from
both methods; this has been done by Grigoriev for the Markov–Bendixson–Beke algo-
rithm [Gri90, Theorem 1.2] (note however that the bound is only asymptotic) and by
Singer for the Fabry-type approach [Sin93, Lemma 3.7] via the generalized Fuchs relation
in [BB85, Ber88] (a more precise version can be found in [BRS21, Theorem 1]). The only
algorithmic complexity result we are aware of in the area of factorization algorithms is
due to Grigoriev [Gri90, Theorem 1.1]; it is deduced by studying in depth (improvements
of) the Markov–Bendixson–Beke approach.

On the algorithmic front, van Hoeij [vH97a] showed that in many cases, using bounds
instead of trying all possible combinations leads to an improvement to Fabry’s approach
(which he rediscovered). This does not give a complete algorithm and the missing cases
are handled by Beke’s algorithm. A precise exposition of the computation of these bounds
is the topic of our Section 2.3. As for the Markov–Bendixson–Beke approach, various
practical improvements have been proposed in the literature [Sch89, Bro92, Bro94, Tsa94,
vH97a, CvH04, JKM13]. Even with these improvements, the Markov–Bendixson–Beke
algorithm is not competitive for operators of order larger than 5. In practice, it is
outperformed by Fabry-type algorithms such as van Hoeij’s [vH97a]. (Another practical,
but incomplete, algorithm is the eigenring method, a Berlekamp-style algorithm introduced
by Singer [Sin96] and improved by van Hoeij [vH96].)

For additional historical information on early contributions on factoring (by Painlevé,
Fabry, Markov, Bendixson, Beke, etc.) the reader is invited to consult the following
additional references: [Sch97, Chap. III and Chap. IV, §176, §177] for details of (a variant
of) the Markov–Bendixson–Beke algorithm; [Hil15, Chap. II, §10] for historical aspects;
[Ogi67, Letters IX–XII] for letters sent by Hermite to Markov and comments about them;
[Sch09, p. 61–123] for a remarkable bibliography covering the “golden age”(1865–1907)
of the theory of linear differential equations.

1.5. Previous work on minimization. In contrast to factorization, it is much more
difficult to locate a similar algorithm for minimization in the literature.

In [vH97a, §6], van Hoeij describes an algorithm (called “Construct R”) that solves
the following problem: given a linear differential operator S with coefficients in Q((z)),
find a non-trivial right factor of an operator L with coefficients in Q(z) known to be a left
multiple of S. Our minimization algorithm is very close in spirit to that algorithm. From
this perspective, we could say that the first minimization algorithm we are aware of lies
“between the lines” of [vH97a, §6].

3This approach to finding hyperexponential solutions was proposed by Markov [Mar91c, Mar91b] and
detailed by Bendixson [Ben92] and Beke [Bek94]; a different and more general method is claimed by
Painlevé [Pai91].
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A different, symbolic-numeric, approach to factoring LDEs was proposed by van der
Hoeven [vdH07]. Although minimization is never explicitly considered in this article,
one could consider that it is implicitly solvable by concatenating several statements
from its §3.3 and §3.4. In the same spirit, the more recent work by Chyzak, Goyer and
Mezzarobba [CGM22, §4] makes this much more explicit, for Fuchsian input operators L.
For instance, a numerical criterion of minimality is provided in the Fuchsian case by a
numerical computation of the monodromy matrices, see lines 1 and 2 of Algorithm 1
in [CGM22].

The proof of [BBMKM16, Proposition 8.4] contains a minimization proof on an explicit
and challenging example; this proof was the original inspiration of our paper.

Adamczewski and Rivoal proposed in [AR18, §3] a method for minimization based on
two ingredients: (i) a priori degree bounds for right factors of L and (ii) bounds on the
order at z = 0 of linear combinations with coefficients in Q[z] of S and its derivatives.
For (ii), they use multiplicity estimates due to Bertrand and Beukers [BB85], and further
refined and made completely explicit by Bertrand, Chirskii and Yebbou [BCY04]. For (i),
they use Grigoriev’s estimates from [Gri90, Theorem 1.2]. However, Grigoriev’s result is
only asymptotic. We gave an explicit and effective bound in [BRS21]. It is fair to say that
the combination of [AR18, §3] and [BRS21, Theorem 1] provides the first complete proof
that minimization is algorithmically decidable. However, the corresponding algorithm is
highly inefficient in theory, to the point of being completely impractical (see the example
in §2.2.3). Our paper can thus be seen as the first one providing an efficient general
algorithm for minimization.

1.6. Relation to “order-degree curves”. To each left multiple4 with polynomial coef-
ficients of a linear differential operator L, one associates the point (r′, d′) where r′ is
the order and d′ the degree. The (discrete) order-degree curve CL is obtained by keeping
those points that lie on the lower part of the convex hull of this set of points. In several
cases, this curve has been shown to be well approximated by a hyperbola for r sufficiently
large [BCL+07, BCCL10, CK12b, CK12a, CJKS13, Kau14]. This curve has also been stud-
ied in relation to the desingularisation D of L, which is the lowest-order left multiple of L
with no apparent singularities [CS98, Tsa00, LVO00, ABvH06, CKS16].

Both problems have in common the remarkable role played by apparent singularities,
however computing D and computing M are unrelated problems. The first one is
about computing a left multiple of L with a special property, the second one is about
computing a right factor M of L with a minimality property. Although the curve CM
lies below the curve CL, bounds on the degree of M are not accessible via the tools
developed up to now for CL. Moreover, the degree of M can be exponentially large with
respect to the size of L. This is illustrated by all classical families (Pn(z)) of orthogonal
polynomials, as they satisfy a small linear differential equation L(y) = 0 of order 2 with
coefficients that are polynomial in n (and thus of bit-size logarithmic in n), but their

4Left multiples are obtained by multiplication on the left with linear differential operators whose
coefficients belong to Q(z).
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minimal LDE Pn(z)y
′(z)− P ′

n(z)y(z) = 0 has degree n, which is exponential in the bit-size
of L.

1.7. Contributions. We give a new minimization algorithm that is efficient in practice.
The necessary tools are presented in detail, with degree bounds obtained as solutions
of explicit linear programming problems, that we did not find in the literature. The
algorithm for the inhomogeneous case is also new; it reduces the problem to that of
finding rational solutions of the ajoint operator to the minimal homogeneous one.

Both these minimization algorithms make the necessary computations for E-functions
proposed by Adamczewski and Rivoal [AR18] accessible in practice when the coefficients
are rational. The final step in their method is based on a process of desingularization
of differential systems, due to Beukers, that is of independent interest. We make it
more explicit, with a detailed proof. A new canonical decomposition of E-functions is
presented, together with corresponding algorithms. Explicit families of interesting “trivial”
evaluations of hypergeometric 1F1 functions at algebraic points are deduced.

All these algorithms are practical and an efficient implementation in the computer
algebra system Maple vindicates them5.

1.8. Structure of the article. Section 2 describes our minimization algorithm, both in its
homogeneous form (Section 2.2) and in its inhomogeneous variant (Section 2.4). Both
crucially rely on computations of degree bounds, described in Section 2.3. Section 3
discusses the application of the minimization algorithms to E-functions over Q. The
new algorithm is a practical variant of the Adamczewski-Rivoal algorithm recalled in
Section 3.1, itself based on Beukers’ desingularization procedure described and enhanced
in Section 3.2. The algorithm from Section 3.1 is then applied in Section 3.3 to an effective
decomposition of E-functions over Q. Extensions to E-functions with coefficients in a
number field and to E-functions in Siegel’s original sense are discussed in Sections 3.4
and 3.5. In Section 4 we present two infinite families of 1F1 hypergeometric functions
that take algebraic values at non-trivial algebraic points (and a similar family of 2F1

evaluations, even though they are not E-functions). Finally, Section 5 describes our
implementation of the algorithms and illustrates it with a few timings.

2. MINIMIZATION ALGORITHM

2.1. Power series solutions. We recall properties of linear differential equations that
can be found in the classical treatises of Ince [Inc56, Chap. XVI, XVII] or Poole [Poo60,
Chap. V]. Moreover, the presentation is specialized to the case of coefficients ai of Eq. (1)
that are polynomials rather than formal power series.

Given an operator L as in (1), the image by L of a monomial zs with s ∈ N is a
polynomial

f(s, z) = zs+gL(p0(s) + p1(s)z + · · ·+ pt(s)z
t), −r ≤ gL, 0 ≤ t, (3)

5Minimization is available as part of the gfun package at https://perso.ens-lyon.fr/bruno.salvy/
software/the-gfun-package/; the code for exceptional algebraic values of E-functions can also be
downloaded from that page, together with a worksheet of examples.

https://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
https://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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with polynomials pi(s) of degree at most r whose coefficients depend on those of the ai
and p0 ̸= 0. The polynomial p0 is called the indicial polynomial of L at 0; we also denote it
by indL and write the identity above as

L(zs) ∼ indL(s)z
s+gL , z → 0. (4)

By linear combination, the image by L of a formal power series S(z) =
∑

i≥0 ciz
i is the

formal power series

L(S) =
∑
i≥0

cif(i, z).

The coefficients of zk for k = g, g + 1, . . . in L(S) = 0 give the equations

c0p0(0) = 0, c0p1(0) + c1p0(1) = 0, . . . , c0pt−1(0) + · · ·+ ct−1p0(t− 1) = 0, (5)

and the linear recurrence of order t

cipt(i) + · · ·+ ct+ip0(t+ i) = 0, i ≥ 0. (6)

These equations imply that the valuation of S (the index of its first non-zero coefficient)
is a zero of the indicial polynomial p0. Let

ZL = {k ∈ N | p0(k) = 0}

be the set of nonnegative integer roots of the indicial polynomial of L at 0. For all
i ̸∈ ZL, the coefficient ci is determined from the previous ones by the (i+ 1)th equation
of the infinite system (5)–(6). For this reason, the initial conditions of the differential
equation (1) are the values of y(i)(0) for i ∈ ZL, as all the other ones are determined
by the system (5)–(6). In the non-singular case when ar(0) ̸= 0, the indicial polynomial
is p0(s) = s(s − 1) · · · (s − r + 1) and then ZL = {0, 1, . . . , r − 1}, recovering the usual
definition. This discussion leads to the following result that will be used to find right
factors of L. (See Prop. 4.3 and Section 4.3 in [BLS17] for similar considerations.)

Lemma 2.1. With the notation above, let S be a power series solution of L and M be a
right factor of L. If there exists a polynomial T such that T (i)(0) = S(i)(0) for all i ∈ ZL
and M(T ) = O(zmaxZL+gL+1), then M(S) = 0.

Proof. We first show that ZM ⊂ ZL. Indeed, if L = AM, then

L(zs) = A(M(zs)) ∼ A(indM(s)zs+gM) ∼ indM(s) indA(s+ gM)zs+gM+gA , z → 0,

which, in combination with (4), implies that

indL(s) = indM(s) indA(s+ gM) and gL = gM + gA.

In particular, the indicial polynomial of M divides that of L, and hence ZM ⊂ ZL.
Applying the discussion above to M shows that the coefficients of T satisfy the first

maxZL+1 equations of the system (5)–(6). It follows that T can be extended to a unique
power series solution of M. As M is a right factor of L, this power series is also a solution
of L. Since it has the same initial conditions as S, they coincide. □
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2.2. Homogeneous minimization. Since initial conditions are given for the power
series S solution of the linear differential equation, it is possible to compute arbitrarily
many coefficients of S. The algorithm relies on the computation of upper bounds on the
degree of the coefficients of right factors of the linear differential operator of a given order.
Given such bounds and sufficiently many coefficients of S, it is easy to set up a (structured)
linear system whose solutions are the possible coefficients of a right factor, or only 0 if
no such factor exists. When a non-zero solution is found, one takes its greatest common
right divisor with the original linear differential operator and checks it using Lemma 2.1.
This approach is described in Algorithm 1.

Algorithm 1 Minimal right factor

Input: L = ar(z)∂
r
z + · · ·+ a0(z) in Q[z]⟨∂z⟩;

ini: S0 a truncated power series at precision ≥ maxZL
specifying a unique solution S ∈ Q[[z]] of L(S) = 0.

Output: a right factor of L in Q[z]⟨∂z⟩ of minimal order that vanishes at S
1: M := L; T := S0; m := r; p := maxZL + r;
2: while m > 1 do
3: m := m− 1
4: if N :=BOUNDDEGREECOEFFS(L, m) ̸=FAIL then
5: while true do
6: T :=SERIESSOLUTION(L, T, p+m); k := ⌊p/(m+ 1)⌋;
7: H := APPROXIMANTBASIS(T, T ′, . . . , T (m); k, . . . , k; p);
8: if H = ∅ and p ≥ (m+ 1)(N + 1) then break //No right factor of order m
9: if H ̸= ∅ then //H contains at least a candidate factor h

10: G := GREATESTCOMMONRIGHTDIVISOR(L, h);
11: if G(T ) = O(zmaxZL+gL+1) then M := G; m := ordM ; break
12: p := 2p

13: return M

It relies on several other algorithms that we now review.

2.2.1. Sub-algorithms.
SERIESSOLUTION. Takes as input a linear differential operator, a truncated power series
solution of it, and a target precision p. It returns the power series solution of the operator
up to O(zp), obtained either by truncating the power series given as input, or by extending
it using the linear recurrence deduced from the differential equation.
APPROXIMANTBASIS. Takes as input k power series (S1, . . . , Sk) that are the truncations at
precision p of the successive derivatives of S; k nonnegative integers (s1, . . . , sk) and the
precision p. It first computes a basis B(z) ∈ Q[z]k×k of the Q[z]-module

Ap := {(p1, . . . , pk) | p1S1 + · · ·+ pkSk = O(zp)} (7)

in shifted Popov form [Pop72, VBB92, BLV99, JNV20] with shift vector (−s1, . . . ,−sk).
This implies that any element P of Ap with degrees bounded by (s1, . . . , sk) is a linear
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combination of the rows of B whose index i satisfies degBii ≤ si. Those are the rows
returned by APPROXIMANTBASIS. As the Si are successive derivatives, these rows can be
interpreted as linear differential operators p1 + p2∂ + · · ·+ pk∂

k−1. Efficient algorithms to
compute such bases are known [JNV20].
GREATESTCOMMONRIGHTDIVISOR. Computes the monic greatest common right divisor
(gcrd) of two linear differential operators with coefficients in Q(z). This is classically
achieved by a non-commutative version of Euclid’s algorithm [Ore33] and more efficient
methods are known [Gri90, vdH16].
BOUNDDEGREECOEFFS. This is the heart of the algorithmic work, described in Section 2.3.
It takes as input an operator of order r and a positive integer m < r. It returns either FAIL
when it has proved that no right factor of order m with polynomial coefficients exist; or
an upper bound on the degree of each of the coefficients such a factor would have.

Theorem 2.2. Given a linear differential operator L ∈ Q[z]⟨∂z⟩ and a truncated power series
specifying a unique solution S ∈ Q[[z]] of L(S) = 0, Algorithm 1 computes a non-zero right
factor M of L of minimal order such that M(S) = 0.

Proof. 1. (Correctness assuming termination.) Since T is expanded at precision p+m
in Line 6 and p > maxZL from Lines 1 and 12, it satisfies T (i)(0) = S(i)(0) for i ∈ ZL.
In Line 7, all series T, T ′, . . . , T (m) are known at precision p. It follows that if the basis
returned by APPROXIMANTBASIS is empty with the given bounds on the degrees of the
coefficients in Line 8, there is no right-factor of L of order m. Otherwise, taking G a gcrd
of L and an element h of H gives a right factor of L to which Lemma 2.1 applies, showing
that M(S) = 0 if the condition on Line 11 holds. The loop on m makes the algorithm
terminate on a right factor of minimal order.

2. (Termination.) The only possible source on non-termination in the algorithm is
the loop where p is doubled every time G fails to cancel T to sufficient precision. Let Vp

be the Q-vector space generated by the approximants of the modules Ap′ from Eq. (7)
for all p′ ≥ p. Since the approximants have degrees bounded by (N, . . . , N), these are
finite-dimensional vector spaces and Vp+1 ⊂ Vp. Thus there exists p0 such that Vp0 is
the intersection of all Vp for p ≥ p0. Any approximant h = (h0, . . . , hm) in H in Line 7
for p ≥ p0 has the property that h0S + · · · + hmS

(m) = O(zk) for all k ≥ p and thus
annihilates S, and therefore so does its gcrd with L, making the algorithm terminate. □

2.2.2. Comparison with van Hoeij’s algorithm. Van Hoeij’s Algorithm “Construct R” [vH97a,
p. 552] follows a similar pattern. Our termination proof is essentially his. The difference
is that instead of looking for an arbitrary right factor of L, we need to make sure that the
factor returned by the algorithm cancels the power series S. This is ensured by the test in
Line 11.

2.2.3. Example. Consider the sequence

un =
n∑

k=0

n!(n+ k)!

k!4(n− k)!3
.
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Zeilberger’s creative telescoping algorithm [Zei91] shows that un satisfies a linear recur-
rence of order 4 with coefficients that are polynomials in n of degree at most 10:(

29412n4 + 224352n3 + 632931n2 + 781692n+ 356309
)
(n+ 3)

2
(n+ 4)

4
un+4

+ · · ·+ 4
(
29412n4 + 342000n3 + 1482459n2 + 2838258n+ 2024696

)
(n+ 1)

2
un = 0.

This recurrence translates into a linear differential operator of order 10 annihilating the
generating function S(z) =

∑
n≥0 unz

n, with coefficients of degree at most 8:

L = 29412z8∂10
z − 684z7 (688z − 1489) ∂9

z − 21z6
(
156864z2 + 742368z − 588707

)
∂8
z + · · ·

+
(
99370416z3 − 1926228512z2 − 19342508z + 8500

)
∂z + 4

(
2024696z2 − 3141504z − 32725

)
. (8)

The only integer roots of the indicial polynomial of L at 0 are in ZL = {0, 1} so that the
initial conditions specifying S uniquely are S(0) = u0 = 1, S ′(0) = u1 = 3. The differential
operator L is not minimal for S. There are two stages in the execution of the algorithm:
first, a right factor is sought; next, its minimality is proved.

In the first stage, tight bounds on the degrees of coefficients of right factors are not
needed. One can compute more and more coefficients of the series expansion of the
solution and try to reconstruct a factor by computing an approximant basis. When a
non-trivial factor exists, it will be discovered.

In the second stage, or if no non-trivial factor exists, i.e., if L is minimal, then one has
to certify this minimality. This is where tight bounds are useful. In this example, the
bound on the degree of the coefficients that follows from the work of Bertrand, Chirskii
and Yebbou [BCY04, Lemma 3.1] is larger than

1010
1033

.

This makes it a purely theoretical result that cannot be used in a computation. Indeed,
with current implementations and hardware, already bounds on degrees of order 107

become too large for practical computations.

Computation of a right factor. Not knowing in advance that L is not minimal, our algorithm
first computes bounds on the degrees of the coefficients of right factors. During this
computation of bounds, it discovers that L does not have any right factor of order 9, 8,
or 7. For order 6, a bound 30 for the degrees of the coefficients is found. With this bound,
a candidate linear differential operator of order 6 and degree 8 is found:

M = z4
(
1882368z4 − 2206584z3 + 1703460z2 + 67815z + 272

)
∂6
z + · · ·+

+ 2
(
3764736z6 − 41001696z5 + 157022376z4 − 184937064z3 − 6917519z2 − 3408891z − 41888

)
.

The computation of the greatest common right factor stops at its first step, discovering
that this differential operator is a right factor of L.

Proof of minimality. This is the stage where good degree bounds are useful. At order 5,
the bound given by our previous work [BRS21, Thm. 1], using the generalized exponents
and the slopes of the Newton polygons of L, is only 87, to be compared with the purely
theoretical bound above. This means that proving minimality reduces to the computation
of 88 × 6 + 1 = 529 coefficients of the power series followed by a computation of an
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approximant basis. This is a quantity that is manageable, but motivates the quest for tight
degree bounds.

At this same order 5, our algorithm computes the better bound N = 15 (instead
of 87). Thus, with p + 1 coefficients of S, where p = 96 = 6 × 16, the computation of
APPROXIMANTBASIS shows that there is no non-zero operator h of order 5 with coefficients
of degree at most N such that h(S(z)) = O(zp) and therefore no right factor of L of
order 5 annihilating S.

Next, the bound on the degrees of the coefficients of a right factor of order 4 is smaller
than 15, so that if a right factor of that order existed, it would have been obtained for
order 5. Finally, the computations of bounds for orders 3, 2, 1 show that no factor of these
orders exist. This concludes the proof of minimality of the operator M for S.

2.3. Degree bounds. The computation of degree bounds for a factor of a given order is a
key step in van Hoeij’s factorization algorithm [vH97a, §9]. We recall the ingredients here.
Compared to our earlier work [BRS21] where we have obtained universal bounds, the
bounds computed here are tailored to the equation under study, rather than depending
only on its order, degree and height. This allows for smaller bounds and more efficient
computations. As shown in the example above, having good bounds is important when
certifying the minimality of a right factor. In this work, this is achieved by setting up
explicit integer linear programming problems that do not appear in the earlier literature.

2.3.1. Singularities of the factors. Dividing L by its leading coefficient ar gives a monic
operator with rational function coefficients. In this form, the singularities of L are the
poles of its coefficients. A singularity α of L is called regular if the indicial polynomial
of L at α has degree equal to the order r of L, and it is called irregular otherwise. The
right factors will be searched in the same monic form. Recall that the valuation valα(r) of
a rational function r at α is the exponent of the leading term of the Laurent expansion of r
at α (and valα(0) = ∞). At a regular singularity the valuation of each coefficient ai of L in
monic form is at least i−r. Bounds on the degrees of the coefficients of factors are obtained
by bounding the valuations of their coefficients in monic form at each singularity and at
infinity, and by bounding the number of apparent singularities. Apparent singularities are
poles of the coefficients where the operator has a basis of r formal power series solutions;
they are regular. All these notions are classical and can be found for instance in Ince’s
book [Inc56].

2.3.2. Newton polygons and valuations of the coefficients of the factors. The Newton poly-
gon of the operator L from Eq. (1) at 0 is the convex hull of the union of the quad-
rants (i, val0(ai)− i)+ (R≤0 ×R≥0). The knowledge of the Newton polygon of L at 0 gives
lower bounds on the valuations of its coefficients. The main property of relevance here
is that the Newton polygon of a product of operators is the (Minkowski) sum of their
Newton polygons ([Mal79, Lemme 1.4.1]). For instance, when 0 is an ordinary point
or a regular singularity of L, the only slope of the lower part of its Newton polygon is 0
and this is therefore a property of the Newton polygons of the monic factors of L, which
reflects the fact that they are regular at 0 in that case.
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More generally, let (x0, y0) = (0, y0), . . . , (xk, yk) = (r, yk) be the points on the lower part
of the Newton polygon of L and let ((n1, d1), . . . , (nk, dk)) with (ni, di) = (xi−xi−1, yi−yi−1)
be the tuple of segments of the Newton polygon of L sorted by increasing slope. Then
the lowest possible Newton polygon for a monic factor of order m is obtained from the
solution of the “0-1 knapsack problem”

min
k∑

i=1

cini subject to
k∑

i=1

cidi = m and ci ∈ {0, 1}, i = 1, . . . , k,

where ci is either 1 or 0 depending on whether or not the slope (ni, di) is used. This
solution allows one to obtain lower bounds on the valuations at 0 of the coefficients of
monic factors of L of order m. The 0-1 knapsack problem is NP-hard but lower bounds
can be found efficiently if needed [Vaz01, Ch. 8]. In practice, this has never been a costly
step in our computations and an optimal value may lead to a better degree bound which
saves computation time in other steps of the minimization algorithm.

The same process can be performed at every irregular singularity α of L by considering
the Newton polygon formed from valα instead of val0. Thus lower bounds on the valuations
of the coefficients of a factor are found at each singularity, from the Newton polygon of L
and the order of the factor. Applying the same process at ∞ (for instance by changing z
into 1/z and working at 0) gives bounds on the valuation at infinity of these coefficients.

2.3.3. Fuchs’ relation and apparent singularities of the factors. Let M denote a monic
right-factor of order m of the operator L to be minimized. The study of the Newton
polygons of L provides lower bounds on the valuations of the coefficients of M at the
singularities of L. We now show how to obtain an upper bound on the number of apparent
singularities of M; together with the lower bounds on valuations, this will provide upper
bounds on the degrees of (the polynomial version of) M.

We first recall the principle of the method in the case where M is Fuchsian, that is, if
all its singularities (including ∞) are regular. Fuchs’ relation [vdPS03, p. 138] states that∑

ρ∈Sing(M)

Sρ(M) = −m(m− 1), (9)

where Sing(M) is the set of singularities of M, including the apparent ones and infinity,
and where

Sρ(M) :=
m∑
j=1

ej(ρ)−
m(m− 1)

2
, (10)

the numbers ej(ρ) being the local exponents of M at the point ρ (they are the roots of the
indicial polynomial at ρ). At an apparent singularity ρ, the quantity Sρ(M) is a positive
integer, so that the number of apparent singularities is upper bounded by

#App(M) ≤ −m(m− 1)−
∑

ρ∈σ(M)

Sρ(M), (11)

with σ(M) the subset of Sing(M) formed by the singularities of M that are not apparent.
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Since M is a right factor of L, the set σ(M) is a subset of σ(L). The set σ(L) is known,
since it corresponds to the roots of the leading coefficient ar(z) that are not apparent
singularities of L, plus possibly ∞. Let µ1, . . . , µs be the irreducible factors of ar(z)
corresponding to non-apparent singularities of L and by convention let µ0 = z. At a finite
ρ ∈ σ(L), given by its minimal polynomial µi, the indicial polynomial indL

ρ (θ) ∈ Q(ρ)[θ]

is easily computed. Then the unknown indicial polynomial indM
ρ (θ) ∈ Q(ρ)[θ] has to be

a factor of indL
ρ (θ) of degree exactly m. Let Ii,j(θ), j = 1, . . . , ki ≤ r be the irreducible

factors of indL
ρ (θ) in Q(ρ)[θ], repeated with their multiplicity (and similarly I0,j(θ) denote

the factors of the indicial polynomial of L at infinity). The sum of the roots of Ii,j lies
in Q(ρ) and its sum over all roots of µi is a rational number ei,j. A bound on the number
of apparent singularities is therefore obtained by solving the following integer linear
programming problem [Sch86, Part VI]

maxA subject to A = −m(m− 1)−
s∑

i=0

deg µi

(
ki∑
j=1

ci,jei,j −
m(m− 1)

2

)
∈ N

and for all i ∈ {0, . . . , s},
ki∑
j=1

ci,j deg Ii,j = m, ci,j ∈ {0, 1}.

The constraints express the fact that there should be m exponents at each root of ar, be
them singular or ordinary for M.

This process can be used whenever the right factor M to be found is known to be
Fuchsian, thus in particular when L itself is Fuchsian.

Note that if there is no choice of cij for which A ∈ N, then there is no right factor of
order m. As for the previous optimization problem, this is potentially a computationally
expensive step. Simple upper bounds can be obtained by solving the relaxed linear
programming problem where the constraints 0 ≤ ci,j ≤ 1 replace the binary variables.

2.3.4. Generalized Fuchs relation. To an irregular singular point ρ of L is associated a set
of exponential parts. If ρ is finite, these are polynomials w(z) in some rational power 1/r
of z (r ∈ N>0) such that L admits a formal solution of the form

exp

(∫
w(1/(z − ρ))

z − ρ
dz

)
S(z), S ∈ Q

[[
(z − ρ)1/r

]]
[log(z − ρ)], valz=ρ S = 0.

The case when ρ = ∞ is obtained by changing z into 1/z in the equation. That a full basis
of formal solutions can be obtained in this way goes back to Fabry’s classification [Fab85].
Algorithms for the computation of the list of exponential parts at a point ρ have been
introduced early in computer algebra [Mal79, Thm. 4.2.1 and Cor. 4.3.1], [DDDT82,
vH97b]. When ρ is a regular singular point, the exponential parts are constants that
coincide with the roots of the indicial polynomial. In general, the generalized local
exponents are the constant coefficients of the exponential parts. If each of them is counted
with multiplicity r, their number is exactly the order of the operator.
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When M is a right factor of L, its exponential parts at ρ form a subset of those of L. If
the order of M is m, the Fuchs relation (9) generalizes as∑

ρ∈Sing(M)

(
Sρ(M)− 1

2
Iρ(M)

)
= −m(m− 1), (12)

where Sρ is as in Eq. (10), with the generalized local exponents taking the place of the
local exponents and

Iρ(M) := 2
∑

1≤i<j≤m

deg(wi − wj),

where the wi are the exponential parts at ρ, see [Ber99, Thm. 2 and §5], [Ber88, p. 84].
As the wi are polynomials in a fractional power of z, their degree here is a rational number.
(The quantity Iρ(M) is related to Malgrange’s irregularity of M at ρ; see [BRS21, §2.2]
for details which are not essential here.)

Thus, the analogue of Eq. (11) is

#App(M) ≤ −m(m− 1)−
∑

ρ∈σ(M)

(
Sρ(M)− 1

2
Iρ(M)

)
. (13)

The corresponding optimization problem is slightly more involved. As in the Fuchsian
situation, σ(M) ⊂ σ(L) and we denote by µ1, . . . , µs the irreducible factors of the leading
coefficient ar(z) that correspond to non-apparent singularities of L and µ0 = z. At a
finite ρ ∈ σ(L), given by its minimal polynomial µi, the exponential parts are given as

wi1((z − ρ)1/ri1), . . . , wiki((z − ρ)1/riki )

with minimal rij. Each contributes rij times its constant coefficient to the set of generalized
local exponents of L at ρ, so that

∑
rij = ord(L). The exponential parts of M at ρ form a

subset of those of L. This property, combined with the generalized Fuchs relation (12),
leads to the following integer linear programming problem

maxA subject to

A = −m(m− 1)−
s∑

i=0

∑
µi(ρ)=0

(
ki∑
j=1

ci,j(ri,jwi,j(0)−
rij(rij − 1)

2
degwij)−

m(m− 1)

2

)

+
s∑

i=0

deg µi

ki∑
j=1

∑
1≤k ̸=j≤ki

di,{j,k} deg(wij − wik) ∈ N

and for all i ∈ {0, . . . , s},
ki∑
j=1

ci,jri,j = m, ci,j ∈ {0, 1},

and for all (i, j),
∑
k ̸=j

di,{j,k} = ci,j(m− 1), di,{j,k} ∈ {0, 1}.
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The last set of constraints consists in adding one variable for each pair of (wij, wik) and
forcing the sum of these variables for fixed i to be the number of pairs, namely m− 1, an
idea taken from [DAS15].

2.3.5. Example. Consider the equation

zy′′ + (1− 6z)y′ + (z − 3)y = 0,

with initial condition y(0) = 1, which specifies a unique power series solution S(z) =
1 + 3z + 13z2/2 + · · · . It has two singular points, at 0 and ∞. The point 0 is regular, with
exponents 0, 0. The point ∞ is irregular, with exponential parts w± = α±z + 1/2, where
α± = −3 ± 2

√
2, corresponding to formal solutions exp(−α±z)/

√
z at infinity and both

generalized exponents are equal to 1/2. In the notation above, we have

s = 1, µ0 = µ1 = z, k0 = k1 = 2, r0,1 = r0,2 = r1,1 = r1,2 = 1,

w0,1 = w+, w0,2 = w−, w1,1 = w1,2 = 0.

Looking for a right factor of order m leads to maximizing A ∈ N such that

A = −m(m− 1)− (c0,1/2 + c0,2/2−m(m− 1)/2) + d0,{1,2},

with the constraints

c0,1 + c0,2 = m, d0,{1,2} = c0,1(m− 1) = c0,2(m− 1),

c0,1, c0,2, d0,{1,2} in {0, 1}.

For the order m = 1 of a right factor, the last constraints force d0,{1,2} = 0, c0,1 + c0,2 = 1,
which makes A < 0, showing that there is no solution and thus no factorization with a
right factor of order 1; the equation is minimal.

2.3.6. Example. We show in more detail the computation for the order 10 differential
equation (8) of Section 2.2.3.

There are two singularities: 0 and infinity. The point 0 is regular, with exponents

0, 0, 0, 0, 1, 1, α1, α2, α3, α4,

with αi the four roots of the irreducible polynomial

Pα = 29412x4 − 246240x3 + 764259x2 − 1042332x+ 527381.

The point ∞ is irregular. Its exponential parts are

1, 1, βi (i = 1, . . . , 4), γix+ 3/2 (i = 1, . . . , 4),

with βi and γi roots of the irreducible polynomials

Pβ = 29412x4−342000x3+1482459x2−2838258x+2024696, Pγ = x4+16x3−112x2+284x+4.

Thus, for this equation,

S0(L) = 2+
∑
i

αi−45 = −1489

43
, S∞(L) = 2+

∑
i

βi+4
3

2
−45 = −1901

43
, I∞(L) = 60
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and the generalized Fuchs equation reduces to

−1489

43
− 1901

43
− 30 = −90.

For lower orders m, the optimization problem to be solved is

maxA subject to

A = −m(m− 1)−
(
c0,1 + c0,2 + c0,{3,4,5,6}

500

43
+ c0,{7,8,9,10}4

3

2
− m(m− 1)

2

)
−
(
c1,5 + c1,6 + c1,{7,8,9,10}

360

43
− m(m− 1)

2

)
+4d0,{1,{7,8,9,10}} + 4d0,{2,{7,8,9,10}} + 16d0,{{3,4,5,6},{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ∈ N

with constraints

c0,1 + c0,2 + 4c0,{3,4,5,6} + 4c0,{7,8,9,10} = c1,1 + c1,2 + c1,3 + c1,4 + c1,5 + c1,6 + 4c1,{7,8,9,10} = m

d0,{1,2} + 4d0,{1,{3,4,5,6}} + 4d0,{1,{7,8,9,10}} = c0,1(m− 1),

d0,{1,2} + 4d0,{2,{3,4,5,6}} + 4d0,{2,{7,8,9,10}} = c0,2(m− 1),

d0,{1,{3,4,5,6}} + d0,{2,{3,4,5,6}} + 3d0,{3,4,5,6},{3,4,5,6} + 4d0,{{3,4,5,6},{7,8,9,10}} = (m− 1)c0,{3,4,5,6},

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 4d0,{{3,4,5,6},{7,8,9,10}} + 3d0,{7,8,9,10},{7,8,9,10} = (m− 1)c0,{7,8,9,10},

and for all (i, j, k), ci,j ∈ {0, 1}, di,{j,k} ∈ {0, 1}.

Integrality of A forces c0,{3,4,5,6} = c1,{7,8,9,10}. If they are both equal to 1, the first two
lines of the constraint on A give a quantity that is at most −20. Making A ≥ 0 then
requires d0,{3,4,5,6},{7,8,9,10} = 1. The last constraint then makes c0,{7,8,9,10} = 1, which turns
the constraint on A into

−20− 6 + 16 + 4d0,{1,{7,8,9,10}} + 4d0,{2,{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ≥ 0.

Therefore d0,{{7,8,9,10},{7,8,9,10}} = 1 and at least one of d0,{1,{7,8,9,10}} and d0,{2,{7,8,9,10}} is 1
too. The last constraint then shows that m = 9 or m = 10 depending on whether one or
two of them are 1. We know that m = 10 is possible: it is the original equation. If m = 9,
then the first constraint gives c0,1 + c0,2 = 1. Injecting into the constraint for A makes
A < 0, a contradiction.

We have thus proved that for a strict factor of A, c0,{3,4,5,6} = c1,{7,8,9,10} = 0. This makes
all variables 0 in the left-hand side of the penultimate constraint. The last constraint
becomes

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 3d0,{7,8,9,10},{7,8,9,10} = (m− 1)c0,{7,8,9,10}.

If c0,{7,8,9,10} was equal to 0, then the constraint on A would give c0,1 = c0,2 = 0 too, which
would give m = 0 in the second one, a contradiction. Therefore c0,{7,8,9,10} = 1. The
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remaining constraints are

A = − (c0,1 + c0,2 + 6 + c1,5 + c1,6)

+4d0,{1,{7,8,9,10}} + 4d0,{2,{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ≥ 0,

c0,1 + c0,2 + 4 = c1,1 + c1,2 + c1,3 + c1,4 + c1,5 + c1,6 = m,

d0,{1,2} + 4d0,{1,{7,8,9,10}} = c0,1(m− 1),

d0,{1,2} + 4d0,{2,{7,8,9,10}} = c0,2(m− 1),

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 3d0,{7,8,9,10},{7,8,9,10} = m− 1.

The second one then implies that the order of a strict right factor of L can only be one
of {4, 5, 6}.

With m = 6, there is only one solution (meaning that no optimization is needed),
with all the remaining variables equal to 1 and the bound A on the number of apparent
singularities equal to 4. There are therefore at most 5 regular singularities (these four
and 0, which is a regular singularity of L). Such a factor can be written

M = ∂6
z +

a5
A
∂5
z + · · ·+ a0

A6
,

with A of degree at most 5. The Newton polygon of L at infinity has for vertices
(0, 0), (6, 0), (10, 4). The largest possibility for M is therefore (0, 0), (2, 0), (6, 4), leading to
the following bounds on the degree of the numerators ai: (degA− 1, degA2 − 2, degA3 −
4, degA4 − 4, degA5 − 4, degA6 − 4). Reducing to the same denominator gives the bounds
(30, 29, 28, 26, 26, 26, 26) on the degrees of the coefficients of (∂6, . . . , 1). This is the bound
used in Example 2.2.3, leading to the discovery of the factor M.

With m = 5, there are several solutions, which are as in the case when m = 6, but
with one of c0,1 and c0,2 equal to 0 and consequently d0,{1,2} = 0 and one of d0,{1,{7,8,9,10}},
d0,{2,{7,8,9,10}} equals 0, leading to a bound A ≤ 6 + 4 − (6 + 1 + 1) = 2 on the number
of apparent singularities. By the same reasoning as above, this leads to the bounds
(15, 14, 13, 13, 13, 13) on the degrees of the coefficients of a factor of order 5. Using about
90 coefficients of the series shows that such a factor does not exist.

Finally, with m = 4 the only of the remaining d variables that is not 0 is d0,{7,8,9,10},{7,8,9,10}
and the bound on A becomes 6 − (6) = 0. Again, a computation with degree bounds
(5, 4, 3, 3, 3) proves that no factor of degree 4 exists.

Note on the relaxed problem. For efficiency reasons, one may prefer solving the relaxed
optimization problem where the variables ci,j and di,{j,k} are not restricted to the set {0, 1},
but can be real numbers in the interval [0, 1]. Also, during the optimization, A is not
restricted to be an integer. Then what happens in this example is that the absence of a
factor of order 9 is not detected. Instead, the optimization finds a solution with A = 4.5,
which leads to a bound of 4 on the number of apparent singularities and thus of 45 on the
degree of the coefficients. With this bound, sufficiently many coefficients are computed so
that the computation of an approximant basis finds a candidate operator. This turns out
to be the factor M of order 6 above. The next stage is to prove its minimality. For order 5,
the optimization of the relaxed problem gives a bound equal to 5 for A (to be compared
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with 2 above), leading to a bound of 30 on the degree of the coefficients. Using about 190
coefficients of the series (instead of 90 above) shows that no such factor exists. For lower
orders, the relaxed problem does not have any solution, concluding the computation.

2.4. Inhomogeneous minimization. Again, we consider an equation like Eq. (1) and
initial conditions for a unique formal power series S solution of it. Using the method of the
previous section, we can assume that it has minimal order. The problem of inhomogeneous
minimization is to find an equation

M(y(z)) = B(z), with M = bs(z)∂
s
z + · · ·+ b0(z),

with s < r and rational function coefficients b0, . . . , bs, B (bs ̸= 0), having S as a solution.
When such an equation exists with B ̸= 0, applying B∂z−B′ on both sides of the equation
yields a homogeneous linear differential equation of order s + 1 satisfied by S, so that
minimality of L implies s = r − 1. Without loss of generality (up to replacing M by 1

B
M)

one can assume B(z) = 1 and then differentiation implies

∂M = R(z)L
for some non-zero rational function R, which is therefore an integrating factor of L. This
implies that R is a rational function solution of the adjoint equation [Poo60, Chap. III.§10]

L∗(R) = 0. (14)

Finding rational solutions of linear differential equations is a classical problem, whose
solution can be found by an algorithm due to Abramov [Abr89, AK91], with roots in
Liouville’s work [Lio33]. This algorithm returns a basis of rational solutions of Eq. (14).
This is a decision algorithm: if no non-zero rational solution is found, this proves that there
is no inhomogeneous linear differential equation of order smaller than r satisfied by the
power series S. Otherwise, minimality implies that the basis consists of one solution R(z).
The operator M (known as the bilinear concomitant [Poo60]) can be reconstructed
coefficient by coefficient (this is equivalent to [AR18, p. 703]). Then by design, M(S)
is a constant c, which can be computed from the first coefficients of the power series S,
completing the computation of the minimal inhomogeneous equation M(y) = c satisfied
by S. This computation is summarized in Algorithm 2.

3. EFFICIENT COMPUTATION OF THE SET OF ALGEBRAIC VALUES TAKEN BY E-FUNCTIONS AT
ALGEBRAIC POINTS

3.1. The Adamczewski-Rivoal algorithm. In this section, we consider mainly E-functions
with Taylor coefficients in Q. An E-function over Q is a power series

f(z) :=
∞∑
n=0

an
n!

zn in Q[[z]]

with an ∈ Q and such that there exists C > 0 with the following properties:
(i) f satisfies a homogeneous linear differential equation with coefficients in Q(z);
(ii) for any n ≥ 0, |an| ≤ Cn+1;
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Algorithm 2 Minimal inhomogeneous linear differential equation

Input: L = ar(z)∂
r
z + · · ·+ a0(z),

a linear operator of minimal order that vanishes at S;
ini: S0 a truncated power series at precision ≥ maxZL

Output: M = br−1(z)∂
r−1
z + · · ·+ b0(z) and B(z) ∈ Q(z), such that M(S) = B

or FAIL if no such pair exists.
1: L⋆ := adjoint(L);
2: S = BASISRATIONALSOLUTIONS(L⋆)
3: if S = ∅ then return FAIL
4: Let R be the unique element of S
5: br−1 := Rar
6: for j = r − 2, . . . , 0 do bj := Raj+1 − b′j+1

7: Compute S up to precision r −minj val0(bj)
8: Let B be the constant term of M(S)
9: return M, B

(iii) for any n ≥ 0, there exists dn ∈ N \ {0} such that dn ≤ Cn+1 and dnam ∈ Z for
all 0 ≤ m ≤ n.

We shall sometimes simply write “LDE” for “linear differential equation with coefficients
in Q(z) or in Q(z)”; unless otherwise stated, an LDE will be assumed to be homogeneous.
In the rest of this section, E-functions over Q are simply called E-functions. This is
justified by the fact that most of the discussion applies to more general settings, in
particular to E-functions with Taylor coefficients in Q and to E-functions in Siegel’s more
general sense, as discussed in Sections 3.4 and 3.5.

E-functions are entire functions (by (ii)). Polynomials in Q[z] are trivial examples of
E-functions; all non-polynomial E-functions are transcendental over Q(z). The class of
E-functions includes the exponential function exp(z), Bessel’s function of the first kind

J0(z) :=
∞∑

m=0

(−1)m

m!2

(z
2

)2m
= 0F1[ · ; 1;−z2/4],

and more generally the hypergeometric E-functions, i.e. series of the form

pFq[a1, . . . , ap; b1, . . . , bq;λz
q−p+1] :=

∞∑
n=0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bq)n

λnz(q−p+1)n

with rational parameters ai, bj, q ≥ p ≥ 0, λ ∈ Q∗
and where (α)0 := 1, (α)n := α(α +

1) · · · (α + n − 1) for n ≥ 1. E-functions form a sub-ring of the ring of formal power
series in Q[[z]], stable by d/dz and

∫ z

0
; these properties can be used to construct many

examples of E-functions starting from hypergeometric series. Shidlovskii has proved in
[Shi89, p. 184] that any E-function solution of an LDE of order 1 is of the form p(z)eλz

for some p(z) ∈ Q[z] and λ ∈ Q. Gorelov has proved in [Gor04] that any E-function
solution of an LDE of order 2 is a Q(z)-linear combination of hypergeometric E-functions



20 ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

with p = q = 1 (he had obtained earlier in [Gor00] a similar but more precise result for
E-functions solution of an inhomogeneous LDE of order 1). However, Fresán and Jossen
have recently showed in [FJ21] that not all E-functions are Q(z)-linear combinations
of hypergeometric E-functions, nor even more generally polynomials in hypergeometric
E-functions with algebraic coefficients.

As of today, no algorithm is known neither for deciding whether a linear differential
equation L(y(z)) = 0 admits solutions that are E-functions, nor for deciding whether
a solution of y(z) of L, uniquely determined by sufficiently many initial conditions, is
an E-function. It is actually not clear whether these questions are decidable or not.
Consequently, the algorithm described below relies on the following assumption:

(A) An oracle guarantees that the input f is an E-function.
In practice, an E-function is given by an explicit expression for its Taylor coefficients as a
multiple hypergeometric sum and L can then be computed for instance by Zeilberger’s
creative telescoping algorithm [Zei91].

Siegel initiated a program to determine when an E-function takes a transcendental
value at an algebraic point [Sie14]. This culminated with the celebrated Siegel-Shidlovskii
theorem: given a vector Y of E-functions f1, . . . , fn solution of a differential system
Y ′ = AY with a matrix A with elements in Q(z), the transcendence degree over Q(z) of
the field generated by f1(z), . . . , fn(z) over Q(z) is equal to the transcendence degree over
Q of the field generated by f1(α), . . . , fn(α) over Q for every non-zero algebraic number
α which is not a singularity of A (i.e., a pole of some element of A). In 2006, Beuk-
ers [Beu06, Thm. 1.3] refined this theorem by proving that any homogeneous polynomial
relation between the values f1(α), . . . , fn(α) with coefficients in Q is a specialization of a
homogeneous polynomial relation between the functions f1(z), . . . , fn(z) with coefficients
in Q(z), again when α is not a singularity of A. A less precise version of this theorem
(but for E-functions in Siegel’s more general sense; see Section 3.5 for details) had been
obtained in 1996 by Nesterenko and Shidlovskii [NS96], where α is simply assumed not
to lie in a certain finite set S, depending on the fj ’s but not specified in their article.
A fundamental consequence of their result is that a transcendental E-function f takes
only finitely many algebraic values when evaluated at algebraic points. To see this, one
considers a non-trivial minimal inhomogeneous differential equation with polynomial coef-
ficients p+

∑µ
j=0 pjf

(j) = 0 satisfied by f over Q(z) and applies the Nesterenko-Shidlovskii
theorem to the functions f1 := 1, f2 := f, . . . , fµ := f (µ−1). They are linearly independent
over Q(z), hence the numbers 1, f(α), . . . , f (µ−1)(α) are Q-linearly independent over Q
for all α ∈ Q \ S; in particular f(α) /∈ Q for all such α’s. For E-functions in the strict
sense, we now know thanks to Beukers [Beu06] that if α ∈ Q∗

is not a root of the leading
coefficient pµ above, then f(α) /∈ Q.

Thus, in order to completely determine when an E-function takes a transcendental
value at a given non-zero algebraic point, one issue needs to be dealt with: what happens
for the (finite number of) algebraic numbers that are roots of pµ (in the same setting as
above). This was done by Adamczewski and Rivoal [AR18] by pushing further Beukers’
ideas from [Beu06]. The end result is an algorithm that takes as input an E-function f



MINIMIZATION OF DIFFERENTIAL EQUATIONS AND ALGEBRAIC VALUES OF E-FUNCTIONS 21

Algorithm 3 Algebraic values of E-functions over Q
Input: L = ar(z)∂

r
z + · · ·+ a0(z);

ini: f0 a truncated power series at precision p0 ≥ r
specifying a unique solution f ∈ Q[[z]] of L(f) = 0.

It is assumed that f is an E-function.
Output: Either “f is a polynomial”,

or the finite set of all identities f(α) = β with algebraic α and β.
Lmin :=MINIMALRIGHTFACTOR(L,ini) //Algorithm 1
Linhom, g :=MINIMALINHOMOGENEOUSRIGHTFACTOR(Lmin) //Algorithm 2
if ordLinhom = 0 then return f is a polynomial
Define the polynomials v0, . . . , vs+1 by Linhom(f)−g = v0f

(s)−v1f
(s−1)−· · ·−vsf −vs+1

Form the companion matrix M s.t. (0, f ′, f ′′, . . . , f (s))T = M · (1, f, f ′, . . . , f (s−1))T

R := {f(0) = f0(0)}
for µ ∈ Q[z] irreducible factor of v0 with µ(0) ̸= 0 do

Write α for a root of µ
B :=BEUKERSALGO(M,α)
(b1, . . . , bm) :=basis of the left kernel of B(α) //Basis of algebraic relations at α
if there exists (β,−1, 0, . . . , 0) in Span(b1, . . . , bm) then

R := R∪ {f(α) = β}
return R

and either detects that f is algebraic (in which case it is even a polynomial), or computes
the (finite) list of identities f(α) = β for algebraic values α and β.

Algorithm 3 gives a version of the algorithm by Adamczewski and Rivoal that benefits
from the minimization algorithms of Section 2. It is stated here for the E-functions
over Q considered in this section (see the comments in Sections 3.4 and 3.5 below
for its extension to more general settings). The algorithm relies on two results due to
Beukers [Beu06]:

(1) If F = (f1, . . . , fn)
T with E-functions fi is a solution of Y ′ = AY , the entries of

A belonging to Q(z) and if f1(z), . . . , fn(z) are linearly independent over Q(z),
then for any non-zero α that is not a pole of A, the numbers f1(α), . . . , fn(α) are
linearly independent over Q [Beu06, Corollary 1.4];

(2) Under the same assumptions, there exists a matrix M with entries in Q[z] such
that F = ME, and E is a vector of E-functions solution to a system Y ′ = BY
where B does not have any non-zero pole [Beu06, Theorem 1.5].

Starting from a linear differential operator L and initial conditions specifying an E-
function f , the algorithm first computes a minimal inhomogeneous equation of order s
for f . (This step also allows to detect and discard a polynomial f .) By minimality of this
equation, F = (1, f, f ′, . . . , f (s−1)) is a vector of Q(z)-linearly independent E-functions
solution to a matrix deduced from the equation. Given a matrix M as in the result (2)
above, it follows that the points α where (1, f(α), . . . , f (s−1)(α)) are linearly dependent
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over Q are non-zero poles of A where the left-kernel of M is not reduced to 0. The
specific case of f(α) being algebraic corresponds to the existence of a non-zero vector in
that kernel whose first two coordinates only are not zero. The remaining question is the
computation of these matrices M , which is described in Section 3.2.

Note that the first two steps of Algorithm 3, i.e. the calls to MINIMALRIGHTFACTOR(L,ini)
and MINIMALINHOMOGENEOUSRIGHTFACTOR(Lmin), are not specific to E-functions, and
both return an output even when f is not an E-function. In that case, BEUKERSALGO(M,α)
terminates (by design) and it may even output α’s such that f(α) ∈ Q; but it can no
longer be claimed that all such α’s have been found.

3.2. Beukers’ algorithm and desingularization. Algorithm 3 concludes with a call to
Algorithm BEUKERSALGO(M,α) described below. It is a clever desingularization process,
which is different from the one developed by Barkatou and Maddah [BM15], in that
it does not rely on Moser’s reduction [Mos60, Bar95]. The end result is the following
(Theorem 1.5 in [Beu06]).

Theorem 3.1. Let Y = (f1, . . . , fn)
T be a vector of Q(z)-linearly independent E-functions

satisfying Y ′ = AY , where A is an n × n matrix with entries in Q(z). Then, there exists
a vector of E-functions Z = (e1, . . . , en)

T solution of Z ′ = BZ with B having entries in
Q[z, 1/z], and there exists a polynomial matrix M with entries in Q[z] and det(M) ̸= 0, such
that (f1, . . . , fn)T = M · (e1, . . . , en)T.

The key properties used in the proof of Theorem 3.1 are the statements (P1), (P1’)
and (P2) listed below. Note that for an E-function f ∈ Q[[z]], we write Lmin

f for the monic
linear differential operator in Q(z)⟨∂z⟩ of minimal order that cancels f .

(P1) For any E-function f ∈ Q[[z]], the finite non-zero singularities of Lmin
f are apparent;

(P1’) If A is an n× n matrix with entries in Q(z), and if F is a vector of Q(z)-linearly
independent E-functions satisfying F ′ = AF , then the finite non-zero singularities of the
system Y ′ = AY are apparent;

(P2) If an E-function f and α ∈ Q are such that f(α) ∈ Q, then (f(z)− f(α))/(z − α)
is an E-function.

Property (P1) is André’s theorem [And00a, Cor. 4.4] and (P2) is an important property
of E-functions proved by Beukers [Beu06, Prop. 4.1]. Property (P1’) is a system version
of André’s theorem, which is not, to our knowledge, explicitly stated in the literature,
although it is implicitly contained in Beukers’ proof of his Theorem 1.5 in [Beu06, p. 378].
For completeness, we detail the proof of (P1’), which goes along the following lines.

Proof of (P1’). Let G be the differential Galois group of (the Picard-Vessiot field of)
Y ′ = AY . Let V be the Q-vector space generated by the orbit {σ(F ) | σ ∈ G}, where
F = (f1, . . . , fn)

T is a vector of E-functions satisfying F ′ = AF , linearly independent
over Q(z). The conclusion of (P1’) clearly follows by combining the following two steps.

Step 1. The dimension of V over Q is equal to n, hence one can extract from V a
fundamental matrix of solutions F , whose first column is F .
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Step 2. All the entries of F are holomorphic at all non-zero points α ∈ C \ {0}.

Proof of Step 2: Let Li := Lmin
fi

. Since elements of G commute with differentiation,
all σ(fi) are solutions of Li for all σ ∈ G. By André’s theorem (P1), σ(fi) has no true
singularity in C \ {0}. Hence F is holomorphic at any α ∈ C \ {0}.

Proof of Step 1: If A is a companion matrix, then the shape of the system Y ′ = AY
implies that F is of the form F = (f, f ′, . . . , f (n−1))T, where f is the E-function f = f1.
The linear independence assumption implies that Lmin

f has order n. By [vdPS03, Corollary
1.38] (see also [BB85, p. 190, Proposition 3]), the dimension of the Q-vector space Ṽ
generated by the orbit {σ(f) | σ ∈ G} is equal to n. On the one hand, this dimension is
upper bounded by the dimension of V , since any linear relation among the entries of
V yields a linear relation among the elements of the set {σ(f) | σ ∈ G}. On the other
hand, V is included in the solution space of Y ′ = AY , hence it has dimension at most n.
Therefore, dimQ(V ) = n, and the assertion is proved in the companion case.

Now, if A is a general matrix, by the cyclic vector lemma (see e.g. [CK02, Thm 3.11],
or [vdPS03, Proposition 2.9]) the system Y ′ = AY is “gauge equivalent” to Z ′ = CZ,
where C is a companion matrix with entries in Q(z). This means that there exists an
invertible matrix P with entries in Q(z) such that Z := P · Y satisfies Z ′ = P [A] · Z,
where P [A] := (PA + P ′)P−1 is equal to a companion matrix C. Moreover, by [Cop36,
§6] (see also [vdPS03, Lemma 2.10]), the entries of the matrix P can be chosen to
be polynomials in Q[z], of degree at most n − 1. By construction, G := P · F satisfies
G′ = C ·G. Hence, the vector G is necessarily of the form G := (g, g′, . . . , g(n−1))T, where
g is a Q[z]-linear combination of the E-functions fi. In particular, g is itself an E-function.
Moreover, Lmin

g has order n: indeed, any Q[z]-linear combination 0 = v · G between
g, g′, . . . , g(n−1) yields a Q[z]-linear combination 0 = (vP ) · F between the entries of F ;
since these are assumed linearly independent over Q(z), and since P is invertible, v is
necessarily zero. We are now in position to apply the companion case. Since gauge
equivalent systems have the same differential Galois group [Sin09, p. 13], the new
companion system Z ′ = CZ has differential Galois group G. By applying the companion
case, we deduce that dimQ(VC) = n, where VC is the Q-vector space generated by the
orbit {σ(G) |σ ∈ G}. It remains to show that dimQ(V ) = dimQ(VC). Choose σ1, . . . , σn in
G such that σ1(G), . . . , σn(G) are linearly independent over Q. Then, σ1(F ), . . . , σn(F ) are
also linearly independent over Q, because of the relation G = P · F and the fact that all
elements in G leave P invariant. It follows that V has dimension at least n; since V is
included in the solution space of Y ′ = AY , it also has dimension at most n, therefore
dimQ(V ) = n, which concludes the proof. □

We now prove Theorem 3.1. Our proof is inspired by that of Beukers in [Beu06].
The main difference is that our proof does not depend on a specific desingularization
procedure for linear differential systems.

Proof of Theorem 3.1. We make use of a desingularization lemma [BM15, Theorem 2]:
there exists a polynomial matrix M with entries in Q[z] and with det(M) ̸= 0 such that
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the finite poles of B = M [A] := M−1(AM −M ′) are exactly the true (i.e, non-apparent)
singularities of Y ′ = AY and such that det(M) is a non-zero polynomial whose roots are
among the apparent singularities of Y ′ = AY . (See also Proposition 3.2 below.)

In our case, by Property (P1’) above, the entries of B are in Q[z, 1/z].
Define Z = (e1, . . . , en)

T := M−1 · (f1, . . . , fn)T, so that (f1, . . . , fn)T = M · (e1, . . . , en)T.
A simple computation shows that Z ′ = BZ. It remains to prove that all the ei’s are
E-functions. The proof relies on Property (P2) above.

By definition, each ei is equal to 1
det(M)

·
∑n

j=1 pi,jfj for polynomials pi,j in Q[z]. Since
B has no non-zero pole, each ei is holomorphic at every apparent singularity ρ ̸= 0 of
Y ′ = AY . Therefore,

∑n
j=1 pi,jfj is an E-function which vanishes at any root of det(M) at

an order at least equal to the multiplicity of that root in det(M). By repeated application
of Property (P2), it follows that ei is an E-function. □

Beukers’ proof [Beu06, p. 378] of Theorem 3.1 actually contains a general effective
desingularization process, which deserves to be stated independently of the context of
E-functions. It is given in Algorithm 4, whose properties are summarized in the following.

Proposition 3.2. Let A be an n× n matrix with entries in Q(z) and let α ∈ Q be such that
a fundamental solution Y of Y ′ = AY is holomorphic at α. Then Algorithm 4 computes a
matrix of polynomials B ∈ (Q(α)[z])n×n such that Y = BZ with Z a fundamental solution
of Z ′ = CZ also holomorphic at α and C ∈ (Q(α)(z))n×n only has poles where A does,
except at α, where it is holomorphic.

Proof. We reproduce Beukers’ proof, with more details.
By hypothesis, the determinant W = detY is holomorphic in a neighborhood of z = α.

If W (α) ̸= 0, then Y−1 is holomorphic in the neighborhood of z = α and therefore so is
A = Y ′Y−1. In that case, C = A and B = Idn gives the result.

Otherwise, as W ̸= 0, there exists r ∈ N>0 such that W (z) ∼ c(z − α)r for z → α with
c ̸= 0. Since W satisfies W ′ = Trace(A)W , it follows that r is the residue of Trace(A) at
z = α. Starting with B = Idn, C = A and Z = Y, the algorithm repeats at most r times
an operation that updates C and B so that Y = BZ and

— B is a matrix of polynomials;
— Z is holomorphic at α;
— C := B−1(AB −B′) has no pole outside those of A;
— Z is a fundamental solution of Z ′ = CZ;
— valz=α detZ = valz=α detY − 1.

By composing these steps, it is sufficient to prove that one iteration of the loop has these
properties.

Each step is centered around the definition of a matrix M as follows. Let k > 0 be the
order of the pole of the matrix C at α, let i be the index of the first row of C with a pole
of order k, let v be the constant vector of coefficients of (z − α)−k in that row, D be the
diagonal matrix diag(1, . . . , 1, z − α, 1, . . . , 1) with z − α in the ith position and M be an
invertible constant matrix with v in its ith row. Then B̃ := BM−1D possesses the desired
properties:
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— B̃ is the product of matrices of polynomials;
— Z̃ := D−1MZ is holomorphic at α: since both Z and Z ′ are holomorphic at α, the

product vZ is 0 at α, making the ith row of MZ a multiple of (z − α);
— C̃ := D−1M(CM−1D −M−1D′) has no pole outside those of C;
— Z̃ is a fundamental solution of Z ′ = C̃Z;
— det Z̃ = detM detZ/(z − α). □

Algorithm 4 Removal of Singularities (BEUKERSALGO(M,α))

Input: A: matrix in Q(z)n×n;
α: root of the denominator of an entry in A

Output: B: matrix in (Q(α)[z])n×n satisfying Proposition 3.2.
r := Resz=αTrace(A) //Residue of the trace
if r ̸∈ N≥0 then error singularity cannot be removed
C := A; B := Idn

for m = 1, . . . , r do
k :=order of the pole of C at α
if k = 0 then break
i :=index of the first row of C with a pole of order k at α
v :=vector of coefficients of (z − α)−k in row i of C
M :=an invertible constant matrix with v its ith row; //Complete v into a basis
D := diag(1, . . . , 1, z − α, 1, . . . , 1) with z − α in the ith position
B := BM−1D
C := D−1MCM−1D −D−1D′

return B

When this algorithm is applied in Algorithm 3 and the value of r computed in the first
step of Algorithm 4 is 1, which occurs frequently in practice, then the kernel computed in
Algorithm 3 has dimension 1 and its entries are nothing but the values of the coefficients
of the differential equation at z = α. In other words, in this situation, there is only one
algebraic relation, which is obtained by evaluating the differential equation at z = α. It is
always possible to obtain an algebraic relation that way; the strength of Algorithm 3 is
that it returns a basis of all these relations, even when r > 1.

3.3. Effective decomposition of E-functions. For an E-function f ∈ Q[[z]] (or more
generally in Q[[z]]), we call exceptional values those (finitely many) non-zero algebraic
numbers α such that f(α) ∈ Q. The set of exceptional values of f is denoted by Exc(f).
We call the E-function f purely transcendental if it has no exceptional values, i.e. if
Exc(f) = ∅.

This subsection deals with the fact that every E-function is equal to the sum of a
polynomial and of a polynomial multiple of a purely transcendental E-function. The
existence of such a decomposition was proved in [Riv16] for general E-functions. We
give an alternative proof in the special case of E-functions with coefficients in Q in
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Theorem 3.4. Before that, in Proposition 3.3, we define a canonical decomposition in the
general case. Decompositions are not unique in general. Indeed, if we have f = p+ qg
where p, q are in Q[z] and g is a purely transcendental E-function, then for any u ∈ Q[z],
the identity f = p− qu+ q(g + u) is another admissible decomposition because g + u is
still a purely transcendental E-function. In particular, the Taylor coefficients of f and g
may lie in two different number fields. However, we have the following:

Proposition 3.3. Every transcendental E-function (with coefficients in Q) can be written in
a unique way as f = p+ qg with p, q ∈ Q[z], q monic and q(0) ̸= 0, deg(p) < deg(q) and g
a purely transcendental E-function.

We shall call this decomposition the canonical decomposition of f .

Proof. As said above, it is proved in [Riv16] that any transcendental E-function f can be
written P +QF where P,Q ∈ Q[z] and F is a purely transcendental E-function. Note that
since f is transcendental, Q is not identically zero: we can then write Q(z) = zm

∑d
k=0 qkz

k

with q0qd ̸= 0 and d,m ∈ N. The function G(z) := qdz
mF (z) is still a purely transcendental

E-function and QF = qG where q(z) :=
∑d

k=0(qk/qd)z
k ∈ Q[z] is monic and such that

q(0) ̸= 0. We now perform the Euclidean division of P by q: we have P = rq + p for
some p, r ∈ Q[z] with deg(p) < deg(q). Defining g := G + r, which is again a purely
transcendental E-function, we observe that the decomposition f = p+ qg is of the form
in the proposition.

We now prove uniqueness of such a decomposition. Consider two decompositions
p+qg = p̃+ q̃g̃ of an E-function f with polynomials p, q, p̃, q̃ and g, g̃ purely transcendental
functions as in the statement of the Proposition.

We first prove that q = q̃. Obviously, these polynomials share the same set of roots,
namely Exc(f). Moreover g and g̃ being purely transcendental, we claim that any root of
q and q̃ has the same multiplicity in q and in q̃, so that q and q̃ are equal up to a non-zero
constant factor, hence equal because they are both monic. To prove the claim, let ρ be
a root of q of multiplicity m and of multiplicity m̃ for q̃: if m < m̃ then differentiating
m times both sides of p + qg = p̃ + q̃g̃ and evaluating at z = ρ, we obtain that g(ρ) ∈ Q
which is not possible because ρ ̸= 0, hence by symmetry of the situation we have m = m̃.

Finally, since in the decompositions p + qg = p̃ + qg̃, we have deg(p) < deg(q) and
deg(p̃) < deg(q), this forces p = p̃ and g = g̃. Indeed, g − g̃ = (p̃− p)/q := u is a rational
E-function, i.e., a polynomial in Q[z]. Hence, consideration of the degree on both sides of
p̃− p = uq forces u = 0. □

Our main contribution in this section is to prove that when f has coefficients in Q, then
we can find polynomials and a purely transcendental E-function involved in the canonical
decomposition that also have coefficients in Q, and moreover that one can compute this
decomposition algorithmically. More precisely, we prove:

Theorem 3.4. Any transcendental E-function f ∈ Q[[z]] admits a canonical decomposition
f = p+ qg, where p and q are polynomials in Q[z] and g ∈ Q[[z]] is a purely transcendental
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E-function. Moreover, if f is given by a linear differential equation together with sufficiently
many initial terms, then one can effectively determine p and q.

Of course, once p and q are determined, g is determined by a linear differential equation
together with sufficiently many initial terms, simply because g = (f − p)/q. Before
proceeding to the proof of Theorem 3.4, we state a very useful fact.

Proposition 3.5. Let f ∈ Q[[z]] be an E-function and let α ∈ Exc(f). Then,
(i) f(α) ∈ Q(α);
(ii) all Galoisian conjugates of α belong to Exc(f);
(iii) for any Galoisian conjugate α′ of α, the value f(α′) is a Galoisian conjugate of f(α).

Proof. The three statements are consequences of Algorithm 3. For any given root α of any
irreducible factor µ ∈ Q[z] of v0, the algorithm determines if there exists a vector in Qs+1

of the form (β,−1, 0, . . . , 0) which is in the left kernel of the matrix M(α), whose entries
are in Q(α). The existence of this vector is equivalent to f(α) = β ∈ Q. When it exists,
this proves that f(α) = β ∈ Q(α), a fact proved in [FR14, FR16] in the general case (with
Q(α) replaced by K(α) when f has coefficients in a number field K). Now, such a vector
exists if and only there exists a vector of the same form in the left kernel of the matrix
M(α′), where α′ is any Galoisian conjugate of α (i.e. any other root of µ in this case). It
follows that for any conjugate α′ of α, f(α′) is a conjugate of f(α). □

The existence of a decomposition as in Theorem 3.4 can be deduced from Proposi-
tion 3.3, by letting Gal(Q/Q) act on the decomposition delivered by Proposition 3.3 and
by using its uniqueness. In order to obtain the polynomials p and q effectively, we propose
a “rational version” of the proof in [Riv16], which avoids working in algebraic extensions.

Proof of Theorem 3.4. The set Exc(f) can be computed using Algorithm 3. If Exc(f) = ∅,
then the canonical decomposition of f is f = p+ qg with p = 0, q = 1 and g = f . From
now on, we assume that Exc(f) = {α1, . . . , αk} ̸= ∅; by Proposition 3.5, Exc(f) can be
partitioned into blocks of Galois conjugated values.

Let us first assume that there is only one such block, i.e. that {α1, . . . , αk} is the set of
roots of a monic irreducible polynomial E ∈ Q[z]. For any m ≥ 0, we consider the E-adic
expansion of f to order m:

f = p0 + p1E + · · ·+ pmE
m + Em+1gm, (15)

with p0(z), . . . , pm(z) ∈ C[z] each of degree less than k = deg(E), and gm ∈ C[[z]].

We will prove the following claims:
Claim 1. p0, . . . , pm ∈ Q[z] and gm ∈ Q[[z]].
Claim 2. gm is an E-function.
Claim 3. There exists an m ≥ 0 such that gm is purely transcendental.
From these claims, the proof of the first part of the theorem follows by taking p :=

p0 + p1E + · · ·+ pmE
m, q := Em+1 and g := gm.
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Proof of Claim 1. It is enough to prove it for m = 0, and then iterate. We have
f = p0 + Eg0 with p0 ∈ C[z] of degree less than k and g0 ∈ C[[z]] and we need to
prove that the coefficients of p0 and g0 are actually in Q. First, we observe that p0(z) =
c0 + c1z + · · · + ck−1z

k−1 is the unique polynomial in C[z] such that p0(αi) = f(αi) for
1 ≤ i ≤ k. In matrix terms, this rewrites as1 α1 . . . αk−1

1
...

...
1 αk . . . αk−1

k

 ·

 c0
...

ck−1

 =

 f(α1)
...

f(αk−1)


and by multiplying this equality on the left by the transpose of the Vandermonde matrix,
we get the equivalent identity

k
∑

i αi . . .
∑

i α
k−1
i∑

i αi

∑
i α

2
i . . .

∑
i α

k
i

...
...∑

i α
k−1
i

∑
i α

k
i . . .

∑
i α

2k−2
i

 ·


c0
c1
...

ck−1

 =


∑

i f(αi)∑
i αif(αi)

...∑
i α

k−1
i f(αi)

 . (16)

Now, the matrix on left-hand side of Eq. (16) is invertible and with coefficients in Q, since
it contains the power sums of the roots of the polynomial E ∈ Q[z]. On the other hand, for
any E-function g ∈ Q[[z]], we have that

∑
i g(αi) ∈ Q, by Proposition 3.5. Applying this to

the E-functions f(z), zf(z), . . . , zk−1f(z), we deduce that the right-hand side of Eq. (16)
is a vector in Qk. This implies that the ci’s are all in Q, hence p0 ∈ Q[z]. From there it
directly follows that g0 ∈ Q[[z]].

Proof of Claim 2. It is again enough to prove the claim for m = 0, and then iterate.
Indeed, from Eq. (15) it follows that the E-adic expansion of gm−1 to order 1 is gm−1 =
pm+Egm, and since f = p0+Eg0 is an E-function one deduces iteratively that g0, g1, . . . , gm
are E-functions.

It remains to prove that if we have f = p + Eg with E ∈ Q[z] and p ∈ Q[z] of degree
less than k = deg(E) and g ∈ Q[[z]], then g is an E-function. This is done by induction
on k ≥ 1. For k = 1, this is precisely Property (P2). Assume the property is proved for any
E of degree k − 1 ≥ 1 and any p of degree less than k − 1. Assume we have f = p+ Eg
with E ∈ Q[z] of degree k, p ∈ Q[z] of degree less than k and g ∈ Q[[z]]. Let β be one of
the roots of E and write p(z) =

∑k−1
j=0 pj(z − β)j. Then f(β) = p0 and by Property (P2),

f(z)− f(β)

z − β
=

k−2∑
j=0

pj+1(z − β)j +
E(z)

z − β
g(z)

is an E-function. Since E(z)/(z−β) is a polynomial of degree k−1 and
∑k−2

j=0 pj+1(z−β)j

is of degree less that k− 1, we deduce that g is an E-function by the induction hypothesis.

Proof of Claim 3. From Eq. (15) it follows that the only exceptional values of the gm’s
are necessarily contained in the set Exc(f) = {α1, . . . , αk}.
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We will show that there exists an m such that gm does not have any of the αj ’s as an
exceptional value, and therefore gm is purely transcendental. By Proposition 3.5, this is
equivalent to proving that the gm’s cannot all share α := α1 as an exceptional value.

Setting g−1 = f , it follows from Eq. (15) (with m replaced by m − 1, and then by
differentiating m times) that 1, f (m)(α) and gm−1(α) are linearly dependent over Q for
all m ≥ 0 by a relation of the form f (m)(α) = um+vmgm−1(α) with um, vm ∈ Q and vm ̸= 0.
Hence,

trdegQ
(
f(α), . . . , f (m)(α)

)
= trdegQ

(
g−1(α), . . . , gm−1(α)

)
for all m ≥ 0.

By contradiction, let us now assume that gm(α) ∈ Q for all m ≥ −1. Then we have

trdegQ(f(α), . . . , f
(m)(α)) = 0

for all m ≥ 0. Now by Property (P1) it follows that f satisfies an LDE, of some order µ ≥ 1,
having only z = 0 as finite singularity. By considering the corresponding companion
system Y ′ = AY where f is the first element of the column vector Y , the matrix A has
Laurent polynomial entries in z, hence the Siegel-Shidlovskii theorem ensures that

0 = trdegQ
(
f(α), . . . , f (µ−1)(α)

)
= trdegQ(z)

(
f(z), . . . , f (µ−1)(z)

)
≥ 1,

a contradiction.
On the effective side, note that one can compute the E-adic expansion (15) of f to any

order m, for instance using linear algebra. Then, to compute the needed decomposition,
one may, for increasing values m = 0, 1, . . ., compute a linear differential equation for
gm as in (15) together with sufficiently many initial terms, and test using Algorithm 3
whether Exc(gm) is empty or not. This procedure will eventually terminate.

We now treat the general case, where Exc(f) contains several blocks B1, . . . , Bp, each
block containing conjugated exceptional values. Denote by Ej(z) the minimal polynomial∏

α∈Bj
(z−α) of the elements in Bj. By the reasoning used in the case of a single block, one

first finds a decomposition f = p1 + q1g1 with p1, q1 in Q[z] and g1 ∈ Q[[z]] an E-function
such that Exc(g1) = Exc(f) \ B1. Then, one applies the same to the E-function g1, and
writes it as g1 = p2 + q2g2, and thus f = (p1 + q1p2) + (q1q2)g2, with p2, q2 in Q[z] and
g2 ∈ Q[[z]] an E-function such that Exc(g2) = Exc(f) \ (B1 ∪ B2). Continuing the same
way p times, we end up with a decomposition f = p+ qg, with p, q in Q[z] and g ∈ Q[[z]]
an E-function such that Exc(g) = Exc(f) \ (B1 ∪ · · · ∪Bp) = ∅. Moreover, by construction
we have that q monic, q(0) ̸= 0 and deg(p) < deg(q). This concludes the proof. □

3.4. E-functions with coefficients in a number field. In general, an E-function is a
power series

f(z) :=
∞∑
n=0

an
n!

zn in Q[[z]]

such that
(i) f(z) satisfies a homogeneous linear differential equation with coefficients in Q(z);

there exists C > 0 such that
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(ii) for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1;
(iii) for any n ≥ 0, there exists dn ∈ N \ {0} such that dn ≤ Cn+1 and dnam ∈ OQ for

all 0 ≤ m ≤ n.

In particular (ii) with σ = id implies that f(z) is an entire function. Moreover, (i) implies
that the coefficients an all live in a certain number field, so that there are only finitely
many Galoisian conjugates to consider in (ii); if an ∈ Q, this definition reduces to that of
Section 3.1.

The Adamczewski-Rivoal algorithm applies to these more general situations. The
version stated in Section 3.1 also applies. Indeed, all the tools it uses work more gen-
erally. This is obviously the case for Beukers’ desingularization, it is also the case for
the algorithms used by minimization: greatest common right divisors, Hermite-Padé
approximants, series solutions and the computation of bounds on the degrees of factors
(see [BRS21]).

3.5. Siegel’s original definition. E-functions with algebraic coefficients have been first
defined by Siegel [Sie14] in 1929 in a more general way: in (ii) and (iii) above, the upper
bounds (· · · ) ≤ Cn+1 for all n ≥ 0 are replaced by: for all ε > 0, there exists N(ε) such that
(· · · ) ≤ n!ε for all n ≥ N(ε). E-functions considered above are sometimes denoted E∗-
functions or called “E-functions in the strict sense”: since André’s work [And00a, And00b],
it has become standard (though improper) to call them simply “E-functions” as well.

The Siegel-Shidlovskii and Nesterenko-Shidlovskii theorems both hold in that setting.
The latter was refined by Beukers for E-functions in the strict sense only. Then, André
generalized Beukers’ lifting theorem to E-functions in Siegel’s sense by a completely
different method [And14]; another proof was later given by Lepetit [Lep21] by a (non-
trivial) adaptation of Beukers’ original method.

We note here that Lepetit [Lep21] also generalized the Adamczewski-Rivoal algorithm
to the case of E-functions in Siegel’s original sense: he showed that all the steps in this
algorithm work exactly the same mutatis mutandis, so that in fact our more efficient
algorithm described here applies as well if the input is an E-function in Siegel’s sense
with rational coefficients. Moreover, the decomposition f = p+ qg studied in Section 3.3,
holds in Siegel’s sense, in particular Theorem 3.4. However, it is conjectured that the
classes of E-functions in Siegel’s sense and of E-functions in the strict sense are the same
(see [And00a, p. 715]). This implies that the distinction is in practice illusory because all
known examples of E-functions satisfy all the conditions to be E-functions in the strict
sense.

4. EXAMPLES

4.1. The Lorch-Muldoon example. In a special case of a result due to Lorch and Mul-
doon [LM95], the starting point is the following equation satisfied by the fourth derivative
of Bessel’s J0 function:

z(z2 − 3)2y′′(z) + (z2 − 15)(z2 − 3)y′(z) + z(z4 − 10z2 + 45)y(z) = 0,
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with initial conditions y(0) = 3/8, y′(0) = 0. With this input, Algorithm 3 returns

y(±
√
3) = 0,

showing that the only non-zero algebraic points where the E-function J
(4)
0 is algebraic

are ±
√
3, where it vanishes. Moreover, the algorithm described in Section 3.3 provides

the canonical decomposition J
(4)
0 = p+ qg, where

p(z) = 0, q(z) = z2 − 3 and g(z) = −J2(z)/z
2. (17)

Here, the purely transcendental6 E-function g is given by the differential equation

y′′(z) + 5y′(z) + zy(z) = 0,

with initial conditions y(0) = −1/8, y′(0) = 0. The decomposition (17) explains the a
priori unexpected fact that Exc(J (4)

0 ) = {±
√
3}.

It is easy to construct E-functions that take algebraic values at certain chosen algebraic
points: consider p+ qg where p, q ∈ Q[z] and g is any E-function in Q[[z]]. Conversely, as
we have seen in Theorem 3.4, any E-function f ∈ Q[[z]] can be written f = p+ qg where
p, q ∈ Q[z] and g is a purely transcendental E-function.

It turns out to be difficult to find an E-function which takes an algebraic value at a
non-zero algebraic point and which is not obviously of the form p + qg as above. The
goal of the next two sections is to provide two infinite families of E-functions for which
we believe it is difficult to guess a priori Propositions 4.1 and 4.3 below. Their proof is
inspired in part by that of the evaluation J

(4)
0 (±

√
3) = 0 above. Besides their theoretical

interest, we used these propositions to check the correctness of various routines of our
algorithms.

4.2. A first family of E-functions. We start with a result on the exceptional values of an
infinite family of 1F1 functions.

Proposition 4.1. Let a ∈ Q \ Z≤0 and d ∈ N. Then:
(i) R(z) :=

∑d
k=0

(
d
k

)
(a)kz

d−k has d simple roots;
(ii) Exc(1F1[d+ 1; a+ d+ 1;−z]) coincides with the set of roots of R;
(iii) for any root ρ of R, the following identity holds:

1F1[d+ 1; a+ d+ 1;−ρ] = − (a)d+1

ρR′(ρ)
· (18)

Proof. Let us first treat the case d = 0. Then (i) and (iii) trivially hold since R = 1. On the
other hand, by [Shi89, p. 185, Theorem 1], we have that Exc(1F1[1; a+ 1;−z]) = ∅ for all
a ∈ Q \ Z≤0, and this proves (ii).

We assume in the rest of the proof that d ∈ N \ {0}. From the differential equation
zy′′(z) + (a + z + d + 1)y′(z) + (d + 1)y(z) = 0 satisfied by 1F1[d + 1; a + d + 1;−z],
Algorithm 2 computes its adjoint zy′′(z)− (z + a+ d− 1)y′(z) + dy(z) = 0 and discovers
that it admits R as a non-zero polynomial solution. From there, it computes b1 = zR(z)

6Siegel first proved that Bessel’s function J2 is purely transcendental in [Sie14, pp. 31-32, §4].
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and b0 = (a+ z + d+ 1)R(z)− b′1(z), with the property that 1F1[d+ 1; a+ d+ 1;−z] is a
solution of the inhomogeneous differential equation

b1(z)y
′(z) + b0(z)y(z) = a(a+ 1) · · · (a+ d). (19)

It follows from (19) that R has only simple roots, since if R(ρ) = R′(ρ) = 0, then
b1(ρ) = b0(ρ) = 0, hence a ∈ {0,−1, . . . ,−d}, which is impossible. This proves (i).

Next, Algorithm 3 evaluates (19) at the roots ρ of R. Since b1(ρ) = 0, it follows that
1F1[d+ 1; a+ d+ 1;−ρ] = a(a+ 1) · · · (a+ d)/b0(ρ), and hence (iii) holds.

To prove (ii), note that f(z) := 1F1[d+1; a+d+1;−z] is a transcendental E-function such
that 1, f, f ′ are linearly dependent over Q(z) (as Eq. (19) shows), and (f, f ′)T is solution
of a differential system with only 0 as singularity. In particular, by the Siegel-Shidlovskii
theorem, for any α ∈ Q∗

such that f(α) ∈ Q we have f ′(α) /∈ Q, and consequently the
differential equation (19) shows that Exc(1F1[d+ 1; a+ d+ 1;−z]) coincides with the set
of roots of R, proving (ii). □

Remark 4.2. Let us now make several remarks on Proposition 4.1.

(a) We do not know if the evaluation (18) is available in the (very rich) literature on
special functions. It is remarkable that it was discovered (and proved) using our
algorithms. Note that Eq. (18) holds more generally for all a ∈ C \ Z≤0.

(b) The polynomial R(z) in Proposition 4.1 is equal to (a)d · 1F1[−d; 1− a− d; z], thus it
can be expressed in terms of generalized Laguerre polynomials as

R(z) = (−1)dd! · L(−a−d)
d (z).

As proved by Schur [Sch31], the discriminant of R is equal to
∏d

j=2 j
j(j − a− d)j−1,

which is non-zero since a /∈ Z≤0; this yields a different proof that R has only single
roots.

(c) If a ∈ Z≤0, then the situation is simpler and well understood. Indeed, formula
07.20.03.0007.01 on Wolfram’s mathematical functions site implies

1F1[d+ 1; a+ d+ 1;−z] =
(−1)−a (−a)!

(−d)−a

· e−z · L(d+a)
−a (z)

and in particular

1F1[d+ 1; d;−z] = e−z · d− z

d
for any d ̸= 0

and

1F1[d+ 1; d− 1;−z] = e−z · (d− z)2 − d

d (d− 1)
for any d /∈ {0, 1}.

In turn, these functional identities induce infinite families of numerical identities,
such as

1F1[d+ 1; d;−d] = 0 for any d ∈ N \ {0} (20)

https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/01/02/0007/
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and

1F1[d
2 + 1; d2 − 1; d− d2] = 1F1[d

2 + 1; d2 − 1;−d− d2] = 0 for any d ∈ N \ {0, 1}. (21)

More generally, Exc(1F1[d + 1; a + d + 1;−z]) coincides with the set of roots of
L
(d+a)
−a (z).

(d) When d = 1, the rational canonical decomposition of f(z) := 1F1[2; a+ 2;−z] given
by Theorem 3.4 is f = p + qg with p = a + 1, q = z + a and g = −1F1[1; a + 2;−z]
(note that g is purely transcendental by remark (2) above).

Decompositions of f(z) := 1F1[d + 1; a + d + 1;−z] can easily be written down
when d ≥ 2 but they are neither as explicit nor necessarily canonical. Since b0
and b1 (in the proof of Proposition 4.1) are coprime, there exist u, v ∈ Q[z] such
that b1u + b0v = 1. Then we have the decomposition f = (a)d+1v + Rg, where
g(z) := z(u(z)f(z)− v(z)f ′(z)) is purely transcendental. Indeed, the decomposition
is immediate to check and let α ∈ Q∗

be such that g(α) ∈ Q. Then f(α) ∈ Q as
well, hence b1(α) = 0 by (ii) in Proposition 4.1, so that v(α) ̸= 0 by the relation
b1u+ b0v = 1. Therefore g(α) /∈ Q because f ′(α) /∈ Q. This contradiction proves that
there is no such α.

When d = 1, this procedure provides an alternative way to obtain the above
canonical decomposition of f(z) := 1F1[2; a + 2;−z], with g represented as g(z) =
z/(a(a+ 1)) · ((z + a− 1)f(z) + (z − 1)f ′(z))− 1.

When d = 2, it provides a decomposition of f(z) := 1F1[3; a+ 3;−z] as f = p+ qg,
where p(z) = z2/2+ (a− 2)z/2+1, q(z) = z2+2az+ a(a+1) and g(z) = −z/(2a(a+
1)(a+2))·((z2+2(a−1)z+a2+2)f+(z2+(a−2)z+2)f ′). The canonical decomposition
of f is then readily obtained as f = p̃+ qg̃, where p̃ := p− q/2 and g̃ := g + 1/2.

(e) When d = 2, Proposition 4.1 implies the following evaluation:

ea∓i
√
a
1F1[a; a+ 3;−a± i

√
a] = 1F1[3; a+ 3; a∓ i

√
a] = (a+ 2)(1∓ i

√
a)/2. (22)

The left-hand side is a special case of Kummer’s identity e−z
1F1[a; b; z] = 1F1[b −

a; b;−z]. The right-hand side follows from the fact that the roots of R(z) = z2 +
2az + a(a+ 1) are {−a± i

√
a}, since then Proposition 4.1 implies 1F1[3; a+ 3; ρ] =

−a(a+ 1)(a+ 2)/(ρR′(ρ)) = (a+ 1)(a+ 2)/(2(ρ+ a+ 1)).

(f) Generalized Laguerre polynomials are most of the time irreducible in Q[z], but not
always. Filaseta and Lam [FL02, Thm. 1] proved that if α /∈ Z<0, then L

(α)
d (z)

is irreducible in Q[z] for sufficiently large d. However, for some values d, α, the
polynomial L(α)

d (z) can be reducible. This is so e.g. for d = 5, α = 7/5, for which
L
(α)
d (z) admits the linear factor z − 12/5. This observation leads to simple particular
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cases of (18) such as:

1F1[4; 703/725;−312/725] = −20999/525625, (23)

1F1[5;−113/3;−140/3] = −30073/27, (24)

1F1[6;−2/5;−12/5] = 1309/625, (25)

1F1[6; 314/63; 20/63] = 365707/250047, (26)

1F1[8; 48/7; 6/7] = 45305/16807. (27)

Classifying all pairs (d, a) ∈ N×Q such that the E-function 1F1[d+ 1; a+ d+ 1;−z]
takes algebraic values at rational points z is a non-trivial task, since by Proposition 4.1
this is equivalent to finding (d, a) ∈ N×Q such that L(−a−d)

d (z) admits a rational root.
For 2 ≤ d ≤ 10, we systematically searched for such “rational evaluations” arising

from reducible Laguerre polynomials L
(−a−d)
d . In particular, for all 2 ≤ d ≤ 10, we

looked for z0 ∈ Q with numerator and denominator between −1000 and 1000, and
such that L

(−a−d)
d (z0) ∈ Q[a] has a root a0 ∈ Q. Each pair (a0, z0) then yields a

rational 1F1-evaluation as above.
With d ∈ {2, 3, 4}, we could find many such identities, for instance (23) and (24).

By contrast, for d ≥ 5, these rational evaluations become quite rare. Of course, there
are still infinite families of trivial identities such as 1F1[d + 1; a; 0] = 1 or of simple
identities such as (20) and (21). But other rational evaluations are rare with d ≥ 5.
For instance, with d = 5 we only found seven non-trivial identities, of which (25) is
the simplest and (26) the most complex. For 6 ≤ d ≤ 10, the only non-trivial rational
evaluation we found is (27).

For d = 2, all rational identities that we have found belong to the following infinite
family:

1F1

[
3;

11

4
− q2 − q;−(2q + 3)(2q + 1)

4

]
=

(2q − 1)(4q2 + 4q − 7)

16
, q ∈ Q. (28)

Note that this identity is a particular case of (22).
For d = 3, all rational identities that we have found belong to the following

parametric identity, which specializes to (23) for q = 13/5:

1F1

[
4;

q3 − 12q + 8

2− 3q
;
q(1− q)(2− q)

2− 3q

]
= −(q + 2)(q2 + 2q − 2)(q3 − 9q + 6)

6(2− 3q)2
. (29)

A unified way to prove Eqs. (28)–(29) is by using that for d ∈ {2, 3}, the curve
(in a and z) defined by the generalized Laguerre polynomial L(a)

d (z) has genus 0,
and by using the connection of the L

(a)
d ’s to our 1F1’s. E.g., for d = 3 we have the

parametrization{
a = (q3 − 9q + 6)/(3q − 2), z = q(q − 1)(q − 2)/(3q − 2)

}
for L

(a)
d (z) = 0

from which the above evaluation (29) follows.
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(g) When d = 4, there is a nice connection between rational evaluations and elliptic
curves. The polynomial R(z) in Proposition 4.1 is equal to R(z) = 4! · L(−a−4)

4 (z).
Thus, R(−z − a) = z4 + 6az2 − 8az + 3a(a + 2) defines an elliptic curve (E) whose
Weierstrass form is (W) z2 = a3 − 76/3a+ 3440/27. The Mordell–Weil group of (W)
is isomorphic to Z/2Z× Z, with generators

⟨P0 = (−20/3, 0), P1 = (34/3, 36)⟩ = ⟨P0, P2 = (−2/3, 12)⟩ ,

where P0 is a torsion point of order 2, and P1 + P2 = P0. Each rational point on the
elliptic curve (W) gives rise to a non-trivial evaluation such as (24). The points P0 and
P1 themselves yield the trivial evaluations 1F1[5; 3;−2] = 0 and 1F1[5; 2; 0] = 1, while
the point P2 yields the undefined evaluation 1F1[5;−4;−6]. However, their multiples
yield interesting evaluations. For instance, the rational point −4.P1 = (−53/12, 99/8)
on (W) yields the rational point (a, z) = (−128/3,−4) on (E), which in turn provides
identity (24).

Similarly, the points 2.P1 = (7/3, 9),−P1 = (34/3,−36),−3.P1 = (−14/3,−12)
and 2.P2 = (7/3,−9) on (W) yield the points (−8/3, 2), (−1/3, 1), (−27/25, 3/5) and
(−24/25, 6/5) on (E), which in turn yield the rational evaluations

1F1[5; 7/3;−2/3] = 5/27, (30)

1F1[5; 14/3; 2/3] = 55/27,

1F1[5; 98/25;−12/25] = 1679/3125,

1F1[5; 101/25; 6/25] = 4199/3125.

Mordell’s theorem [Mor22] (see also [HS00, Part C]) implies that there are infinitely
many (non-trivial) rational evaluations of the form 1F1[5;α; β] = γ with α, β, γ ∈ Q,
such as the five evaluations in (24) and (30).

On the other hand, for any d ≥ 0, the genus of the curve (in a and z) defined by
the generalized Laguerre polynomial L(−a−d)

d (z) is equal to ⌊(d/2− 1)2⌋ [Won05] and
hence at least 2 for d ≥ 5 (see also [HW06, Prop. 4]). It follows from Proposition 4.1,
from Remark 4.2(b) and from Faltings’ theorem [Fal83] (see also [HS00, §E.1]) that,
for any d ≥ 5, there are finitely many evaluations of the form 1F1[d + 1;α; β] = γ
with α, β, γ ∈ Q, such that β ̸= 0 and α ∈ Q \Z≤d+1. Similarly, from Remark 4.2(c) it
follows that there are finitely many evaluations of the form 1F1[d+ 1; d− α; β] = γ
with β, γ ∈ Q, such that β ̸= 0 and α ∈ Z≥4.

(h) With other choices such as d = 4, α = 12/5, the polynomial L(α)
d has non-linear

factors. In particular, we obtain the quadratic irrational evaluation

1F1[5;−7/5; (6
√
15− 42)/5] = 11/5 + 66

√
15/125, (31)

which is not a particular case of (22).
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A similarly looking identity, and perhaps even more striking, is the quartic evalua-
tion

1F1

[
6;

23−
√

725− 20
√
985

10
;−6

5

]
=

111
√
985− 3

√
3353450− 106670

√
985− 3533

2500
,

(32)
although in (32) the 1F1 function on the left is not an E-function anymore.

Another quartic evaluation, this time involving an E-function again, is

1F1

[
6;

22

5
;−2

5
α

]
=

17

6255
β, (33)

where α ≈ 5.15 satisfies α4 − 21α3 + 81α2 − 21α + 126 = 0 and β ≈ 1.59 satisfies
β4 − 62β3 + 1584β2 − 2338β − 49 = 0.

We were unable to locate in previous works any of the identities (22)–(33), includ-
ing in online encyclopedias such as Wolfram’s mathematical functions site and the
Digital Library of Mathematical Functions. Given how vast the literature on special
functions is, we would not be surprised that some of these identities were already
tabulated.

(i) Equation (18) can also be proved directly starting from the relation between these
1F1 and the incomplete gamma function [OOL+22, 13.6.5], [AS64, 13.6.10]:

f(z) :=
1

a
1F1[1; a+ 1;−z] = (−z)−ae−zγ(a,−z).

Successive differentiation of the hypergeometric series shows that

f (d)(z) =
(−1)dd!

(a)d
1F1[d+ 1; a+ d+ 1;−z].

On the other hand, we have (γ(a,−z))′ = (−z)aez/z by [OOL+22, 8.1], [AS64,
6.5.2]. Thus, by induction, there are two families of polynomials (Rd) and (Qd) such
that
(−1)dd!

(a)d
1F1[d+ 1; a+ d+ 1;−z] = Rd(z)e

−z(−z)−a−dγ(a,−z) + (−z)−dQd(z) (34)

with

Rd(z) = ez(−z)a+d
(
(−z)−ae−z

)(d)
, Qd+1 = dQd − zQ′

d +Rd, Q0 = 0.

The polynomial Rd is exactly the Laguerre polynomial R from before.
Thus, Eq. (18) boils down to an evaluation of this more general formula at a root ρ

of Rd, giving

1F1[d+ 1; a+ d+ 1;−ρ] =
(a)dQd(ρ)

d!ρd
.

This is not exactly the same formula as above. The proof is completed by proving by
induction that both Qd and Rd satisfy the same recurrence ud+1 = (z+d+a)ud−zdud−1,

https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/
https://dlmf.nist.gov/13


MINIMIZATION OF DIFFERENTIAL EQUATIONS AND ALGEBRAIC VALUES OF E-FUNCTIONS 37

giving an explicit evaluation of the determinant∣∣∣∣Qd+1 Rd+1

Qd Rd

∣∣∣∣ = ∣∣∣∣z + d+ a −zd
1 0

∣∣∣∣ · ∣∣∣∣ Qd Rd

Qd−1 Rd−1

∣∣∣∣ = · · · = d!zd.

Evaluating at z = ρ gives Qd(ρ)/(d!ρ
d) = −1/Rd+1(ρ). This gives another simple

expression for the right-hand side of Eq. (18), which follows from Rd+1(z) = (z + d+
a)Rd(z)− zR′

d(z).

4.3. A second family of E-functions. The next result considers exceptional values of
second derivatives of products of 1F1 with the exponential function. We recall that
J0(−iz/2) = e−z/2

1F1[1/2; 1; z] is such a product.

Proposition 4.3. Let c ∈ Q∗
and a, b ∈ Q \ Z≤0 with a− b /∈ N. Let F (z) := e−cz

1F1[a; b; z].
Then Exc(F ′′) = ∅, except in the following (disjoint) cases:

1. if b = a(2c− 1)/c2, then Exc(F ′′) = {−a/c2} and F ′′(−a/c2) = 0;
2. if c = 1 and b = a+1, then Exc(F ′′) = {−a±i

√
a} and F ′′(−a±i

√
a) = 1/(1±i

√
a).

Proof. With the assumptions on a, b, c, we prove below that:
Fact 1. F and F ′ are linearly independent over Q(z), i.e. F does not satisfy any

homogeneous LDE of order less than 2.
Fact 2. F satisfies the second-order LDE

zF ′′(z) = (z − 2cz − b)F ′(z) + (cz + a− c2z − cb)F (z), (35)

and it does not satisfy any inhomogeneous LDE of order 1, unless c = 1 and b = a+ 1.

Postponing for a moment the proof of these facts, we distinguish two cases.

Case 1. We first assume that either c ̸= 1 or b ̸= a+1. By Fact 1, the function F is a non-
polynomial E-function (hence a transcendental one). By Fact 2 and by Beukers’ Corollary
1.4 of [Beu06], it follows that the numbers 1, F (ξ) and F ′(ξ) are linearly independent
over Q for any ξ ∈ Q∗

.
Assume now that b ̸= (2ac− a)/c2. Then, for any ξ ∈ C, the numbers ξ − 2cξ − b and

cξ + a − ξc2 − cb cannot be simultaneously equal to 0. Since the numbers 1, F (ξ) and
F ′(ξ) are linearly independent over Q for any ξ ∈ Q∗

, it follows that

F ′′(ξ) =
1

ξ

(
(ξ − 2cξ − b)F ′(ξ) + (cξ + a− ξc2 − cb)F (ξ)

)
/∈ Q.

Hence Exc(F ′′) = ∅ when b ̸= (2ac− a)/c2.
It remains to treat the sub-case b := (2ac− a)/c2. With z := −a/c2, we see that

z − 2cz − b = cz + a− c2z − cb = 0,

so that F ′′(−a/c2) = 0. Since z − 2cz − b and cz + a− c2z − cb vanish simultaneously for
no other value of z and since the numbers 1, F (ξ) and F ′(ξ) are linearly independent
over Q for any ξ ∈ Q \ {0,−a/c2}, we deduce that F ′′(ξ) /∈ Q for such ξ. Hence
Exc(F ′′) = {−a/c2} when b = (2ac− a)/c2. The proposition is thus proved in Case 1.
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Case 2. We assume that c = 1 and b = a+ 1. Then, F ′′(z) = 2
(a+1)(a+2)

e−z
1F1[a; a+ 3; z],

so Exc(F ′′) = Exc(e−z
1F1[a; a+3; z]) = {−a± i

√
a}. The last equality is a consequence of

Proposition 4.1 with d = 2. The equality F ′′(−a± i
√
a) = 1/(1± i

√
a) follows from (22).

Proof of Fact 1. When a, b ∈ Q \ Z≤0 and a − b /∈ N, the asymptotic behavior of
1F1[a; b; z] as z → ∞ (with −π/2 < arg(z) < 3π/2) is given in [AS64, p. 508, Eq. 13.5.1],
[OOL+22, 13.7.2]. In the particular cases z → ±∞, it reads

1F1[a; b; z] ∼z→+∞
Γ(b)

Γ(a)
ezza−b and 1F1[a; b; z] ∼z→−∞

Γ(b)

Γ(b− a)
eiπaza.

This rules out the possibility that e−cz
1F1[a; b; z] satisfies a differential equation of order 1

over Q(z).

Note that a different (purely algebraic) proof is possible, based on a reasoning similar
to the one in the statement and proof of [BBH88, Lemma 4.2].

Proof of Fact 2. Since 1F1[a; b; z] satisfies zy′′(z) + (b − z)y′(z) − ay(z) = 0 and e−cz

satisfies y′(z)+ cy(z) = 0, it follows by a simple computation that F satisfies (35). By Fact
1, (35) is the minimal-order homogeneous LDE satisfied by F .

Assume now that F satisfies an inhomogeneous LDE of order 1. We will follow the
reasoning in Algorithm 2, and show that the adjoint of (35) does not possess any non-zero
rational solutions in Q(z), unless c = 1 and b = a+ 1.

The adjoint equation of (35) writes

zy′′(z) + ((1− 2c)z − b+ 2)y′(z) + (c(c− 1)z + bc− a− 2c+ 1)y(z) = 0. (36)

If it admits a rational solution R(z) ∈ Q(z), then the only potential pole of R can be
located at z = 0. The indicial equation of (36) at z = 0 is s(s− b+ 1). Hence, the possible
valuations at z = 0 of R are 0 and b− 1. Since b ∈ Q \ Z≤0, this implies that R is actually
a polynomial solution in Q[z] of (36). If c ̸= 1, then the indicial polynomial at infinity
of (36) is a non-zero constant, equal to c2 − c; therefore in that case, R cannot be a
polynomial solution. It follows that c = 1. Now, the indicial polynomial at infinity of (36)
is s − a + b − 1, hence the only possible degree of R is a − b + 1. Since a − b /∈ N, this
implies that b = a+ 1 and that R is a constant in Q. In this case, (36) admits the rational
solution y(z) = 1, and F satisfies zF ′(z) + (z + a)F (z) = a. □

Note that, in the spirit of Proposition 4.3, the following examples that can be treated
along the same lines: the third derivatives of

e−z/9
2F2[1/144, 1/144;−7/16,−7/16; z] and e−z/3

2F2[1/4, 3/4; 5/4,−9/4; z]

vanish at z = 3/16 and z = −9/4, respectively. Our minimization algorithm finds their
minimal differential equations, which are too big to be written here: their (order, degree)
are (3, 8) and (2, 7), respectively. Algorithm 3 then shows that they are transcendental
functions and that {3/16} and {−9/4} are the exceptional values sets in each case. A
complete classification as in Proposition 4.3 seems to be currently out of reach though.
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Identities such as

e−z
2F2[1/2, 1/3;−1/2,−2/3; z] = 1− z/2 + 3z2

(implying that the third derivative of the left-hand side is identically zero) show that an
assumption corresponding to the assumption a − b /∈ N in Proposition 4.3 is obviously
necessary on the rational parameters of the 2F2[a, b; c, d; z]: to avoid trivial situations,
besides the fact that the parameters a, b, c, d must all be in Q \ Z≤0, we must not have
a−c ∈ N and b−d ∈ N, or a−d ∈ N and b−c ∈ N (note that in the second example above,
we have 3/4− (−9/4) ∈ N but 1/4− 5/4 /∈ N, while 1/4− (−9/4) /∈ N and 3/4− 5/4 /∈ N).

4.4. An example with Gauss’ hypergeometric function. The approach leading to spe-
cial evaluations is very general and not restricted to E-functions. For instance, Gauss’
hypergeometric function 2F1[a, b; c; z] satisfies a differential equation whose adjoint is
solved by R(z) := 2F1[1− a, 1− b; 2− c; z]. The approach from Section 2.4 then deduces
that the hypergeometric function satisfies a first order inhomogeneous equation, with
coefficients that are not polynomials in general, namely

z(z − 1)R(z)y′(z) + (z(1− z)R′(z) + ((a+ b− 1)z + 1− c)R(z))y(z) + c− 1 = 0.

It follows that if ρ is a simple zero of R(z) different from 0,1, one gets the special
evaluation

2F1[a, b; c; ρ] =
1− c

ρ(1− ρ)R′(ρ)
.

The special case c = a+ k+1 (k ∈ N) gives a nice analogue of Proposition 4.1. To state it,
recall that the kth Jacobi polynomial P (α,β)

k with parameters α, β ∈ C is defined by

P
(α,β)
k (z) := 2−k ·

k∑
j=0

(
k + α

k − j

)(
k + β

j

)
(z − 1)j(z + 1)k−j.

It is classical [Sze75, §6.72] that P (α,β)
k has only simple roots (which are even real and

in the interval (−1, 1) if α and β are both real and greater than −1), with the notable
exception of ±1 which is a multiple root of P

(α,β)
k if one of the parameters α, β is in

{−1, . . . ,−k}.

Proposition 4.4. Let a ∈ Q \ Z≤0, b ∈ Q and k ∈ N. If ρ ∈ Q \ {0, 1} is a root of the
polynomial P (−k−a,b−k−1)

k (1− 2z), then

2F1[a, b; a+ k + 1; ρ] =
(−1)ka

(
a+k
k

)
(1− ρ)k−b

(k + a− b)P
(−k−a,b−k)
k (1− 2ρ)

. (37)

Proof. With c = a+ k + 1, the hypergeometric function R(z) becomes

R(z) = 2F1[1− a, 1− b; 1− a− k; z] =
(−1)kk!

(a)k
(1− z)b−k−1P

(−k−a,b−k−1)
k (1− 2z).



40 ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

Its roots different from 0,1 are the roots of P (−k−a,b−k−1)
k (z) different from −1, 1, which

are all simple. The formula for the denominator comes from the derivative

R′(z) = − (−1)k

z
(
a+k−1

k

) ((k + a− b)(1− z)b−k−1P
(−k−a,b−k)
k (1− 2z)

+((a− 1)z + b− a− k)(1− z)b−k−2P
(−k−a,b−k−1)
k (1− 2z)

)
. □

Remark 4.5. Let us conclude with a few remarks on Proposition 4.4.

(1) If none of a, b, a− b is an integer, then f(z) = 2F1[a, b; a+ k + 1; z] is a transcendental
function [Vid07]. Therefore, the evaluation in Eq. (37) provides very simple particular
cases of algebraic values taken by transcendental G-functions at algebraic points.
Note that (37) holds more generally for a ∈ C \ Z≤0 and b ∈ C.

(2) As in the case of Proposition 4.1, another proof of Proposition 4.4 relies on a relation
analogous to Eq. (34) between 2F1[a, b; a+ k + 1; z], 2F1[a, b; a; z] = (1− z)−b and

2F1[a, b; a+ 1; z] = az−aBz(a, 1− b) = az−a

∫ z

0

za−1(1− z)b dz,

an incomplete beta function. The relation is obtained from those two by repeated use
of a contiguity relation.

(3) As in Remark 4.2, nice special cases of (37) can be obtained by studying triples (a, b, k)
for which the Jacobi polynomial P (−k−a,b−k−1)

k factors non-trivially. For instance, the
triples (2/5, 3/5, 5) and (2/3, 7/3, 3) yield the evaluations

2F1

[
2

5
,
3

5
;
32

5
;
1

2

]
=

1683

2500
5
√
8

and

2F1

[
2

3
,
7

3
;
14

3
;
3
√
5− 5

2

]
=

44

27
3
√

28− 12
√
5
.

(Here, by item (1) above, both hypergeometric functions are transcendental.)

5. IMPLEMENTATION

5.1. Minimization is simpler than factorization. The following simple example illus-
trates the difference between minimization and factorization. Take

A = z2∂z + 3, B = (z − 10)∂z + z5

and their product

C = AB = z2(z − 10)∂2
z + (z7 + z2 + 3z − 30)∂z + z5(5z + 3).

The computation of a bound on the degree of the coefficients of a factor of order 1 of C
gives 105 + 2. (More generally, changing 10 into a large N leads to a bound N5 + 2.) This
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leads to a large computation when trying to factor C without further information. With the
extra knowledge that we are looking for a solution of C with initial condition y(0) = 1, we
easily compute the first 20 coefficients of the unique series solution S of C with S(0) = 1
and then compute an approximant basis (a Hermite-Padé approximant) of (S, S ′) at
order 20. This recovers the operator B. It is easily checked that B is a right divisor of C by
Euclidean division. It follows that all solutions of B(y) = 0 such that y(0) = 1 are solutions
of C(y) = 0 and by uniqueness this proves that B(y) = 0 is the minimal homogeneous
differential equation for S. This takes less than a second with our implementation. On
this example, Maple’s factorization routine DEtools[DFactor] has to be killed after running
for 1 hour, a further indication that factorization is more complex than minimization.

5.2. Implementation aspects. The main difficulty is to avoid the computation of high-
order expansions of power series with rational coefficients. A first gain is achieved by
performing most of the computation modulo a sufficiently large prime number (we take
a 31-bit long prime number). When a factor is found with modular coefficients, then
the actual degree bounds from that factor are used to determine how many rational
coefficients of the power series have to be computed and then obtain the differential
operator with rational coefficients.

Another place where time can be saved is in the optimization problems. The com-
putation of an approximant basis returns a linear differential operator of small order if
one exists with the given degree bounds. Thus the computation of a tight bound on the
number of apparent singularities is only useful if it leads to a bound on the degrees that is
smaller than a previously known one. One can therefore add an extra inequality to the
optimization problem so that the solver does not waste time in computing an optimum
which is larger than what is already known.

In the computation of algebraic values of E-functions by Algorithm 3, the matrix
returned by Beukers’ Algorithm 4 is not needed in full, as only its value at z = α is of
interest. Thus, one should instead execute Algorithm 4 over Laurent expansions in powers
of (z − α), increasing the precision of intermediate computations until the result is found.

5.3. Timings. Experimental results7 on the family of power series

fm,p(z) =
∞∑
n=0

(
n∑

k=0

(
n

k

)m(
n+ k

k

)p
)

zn

n!

are reported in Table 1. These power series are exponential generating functions of
Apéry-like sequences, hence they are E-functions by design. The case (m, p) = (2, 1) was
considered by Adamczewski and Rivoal in [AR18, p. 706], who proved that f2,1 is a purely
transcendental E-function. We used our algorithms to reprove this result and to extend it
to other values of m and p, see Table 1.

For each (m, p), we indicate the order and the degree of the (minimal) recurrence
computed by Zeilberger’s algorithm, the order and the degree of the differential equation
deduced from this recurrence, and those of the minimal-order (homogeneous) differential

7The timings were obtained with Maple2021 on a 2018 Mac mini.
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(m, p) (ord,deg) (ord,deg) (ord,deg) number number total time
rec original minimal modular rational time cert.

diff.eq. diff.eq. terms terms (s.)
(1,5) (6,32) (32,29) (12,29) 2461 408 13. 26%
(2,4) (5,26) (26,24) (11,24) 1501 317 7.2 26%
(2,5) (6,44) (44,41) (15,41) 5992 693 52. 21%
(3,3) (6,28) (28,25) (12,29) 2461 408 13. 25%
(3,4) (7,51) (51,47) (16,47) 8288 838 92. 22%
(3,5) (8,76) (76,72) (20,72) 20702 1559 358. 30%
(4,2) (5,27) (27,24) (12,24) 1927 343 10. 27%
(4,3) (6,41) (41,38) (15,38) 5362 645 35. 29%
(4,4) (6,46) (46,43) (18,47) 9634 936 109. 24%
(4,5) (8,92) (92,88) (24,88) 37228 2255 983. 21%
(5,1) (6,32) (32,29) (12,29) 2461 408 14. 22%
(5,2) (7,51) (51,47) (16,47) 2288 838 92. 24%
(5,3) (8,76) (76,72) (20,72) 20702 1559 477. 27%
(5,4) (9,109) (109,104) (25,104) 50064 2761 1534. 23%
(5,5) (10,134) (134,129) (30,145) 103024 4562 5216. 23%
TABLE 1. Experimental results (experiments with smaller values of (m, p)
that complete under 3 sec. are not listed)

equation obtained by our implementation when run on this differential equation. We
also give the number of coefficients of the sequence that were computed modulo a prime
number and the number of rational coefficients of the sequence that were computed. The
next column contains the time in seconds spent in the whole computation (homogeneous
and inhomogeneous minimization and proof that there are no exceptional values). Finally,
the last column gives the proportion of that time spent in certifying the minimality of the
differential equation that has been computed.

In more detail, during the computations, the most time-consuming operation is that of
the approximant basis over rational coefficients, i.e., the reconstruction of the minimal
differential equation itself. This takes between 1/3 and 1/2 of the time, depending on the
examples. Next comes the computation of approximant bases modulo a prime number:
even though the order of the power series is much larger in the certification phase,
modular computation makes it faster. This takes between 1/5 and 1/3 of the time. Finally,
the third most expensive part is the computation of the rational coefficients needed to
reconstruct the operator. In the last case (m, p) = (5, 5), this is even more expensive than
the other two steps. The other operations needed in these tests, such as computing gcrds,
finding a minimal inhomogeneous equation, computing Beukers’ matrix and its kernel,
are all negligible compared to these three.
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The time spent in the certification of the minimality that is displayed in the last column
is consistently between 20% and 30% of the total time. This overlaps with the proportions
given above since this time contains the computation of a large number of modular
coefficients and the computation of an approximant basis.

On the basis of these experimental results, we ask the following questions on the
family fm,p(z) and leave them for further research. The data in Table 1, plus a few
more experiments (not included in Table 1), are in favor of positive answers to all these
questions.

Question 5.1. Is the E-function fm,p purely transcendental for any m ≥ 1 and p ≥ 1?

Question 5.2. Is it true that for any odd m, the minimal-order linear differential equation
Lmin
m,p(y) = 0 satisfied by fm,p has order ⌊(N+1)2/4⌋ and degree ⌊N(2N2−3N+4)/12⌋, where

N = m+ p? In particular, when both m and p are odd, is it true that ord(Lmin
m,p) = ord(Lmin

p,m)

and deg(Lmin
m,p) = deg(Lmin

p,m)?
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1024–1025.
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[Sze75] Gábor Szegő, Orthogonal polynomials, fourth ed., American Mathematical Society Colloquium
Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975.

[Tsa94] Sergey P. Tsarev, Problems that appear during factorization of ordinary linear differential
operators, Program. Comput. Softw. 20 (1994), no. 1, 67–75.

[Tsa00] Harrison Tsai, Weyl closure of a linear differential operator, vol. 29, 2000, Symbolic computation
in algebra, analysis, and geometry (Berkeley, CA, 1998), pp. 747–775.

[Vaz01] Vijay V. Vazirani, Approximation algorithms, Springer-Verlag, Berlin, 2001.
[VBB92] M. Van Barel and A. Bultheel, A general module-theoretic framework for vector M-Padé and
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