

Origin of radiogenic 129Xe variations in carbonaceous chondrites

Guillaume Avice, M.M.M. Meier, Yves Marrocchi

▶ To cite this version:

Guillaume Avice, M.M.M. Meier, Yves Marrocchi. Origin of radiogenic 129Xe variations in carbonaceous chondrites. Geochemical Perspectives Letters, 2022, 23, pp.1-4. 10.7185/geochemlet.2228 . hal-03771134

HAL Id: hal-03771134 https://hal.science/hal-03771134

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

 $$\sc{C}$$ 2022 The Authors Published by the European Association of Geochemistry

Origin of radiogenic ¹²⁹Xe variations in carbonaceous chondrites

G. Avice^{1*}, M.M.M. Meier², Y. Marrocchi³

Abstract

Carbonaceous chondrites are pristine witnesses of the formation of the solar system. Among them, the carbon-rich Tarda and Tagish Lake meteorites are thought to have sampled very distant regions of the outer circumsolar disk (Hiroi *et al.*, 2001). Here, we show that their noble gas isotopic compositions (especially ¹²⁹Xe excesses) are similar, implying their formation in comparable environments. Combined with literature data, we show that the radiogenic excesses of ¹²⁹Xe relative to solar wind in carbonaceous chondrites define anti-correlations with their respective iodine and carbon contents. These trends do not result from the heterogeneous distribution of ¹²⁹I in the disk but rather evidence a xenon dilution effect; the radiogenic ¹²⁹Xe excesses being dominated by trapped xenon in the most carbon-rich carbonaceous

chondrites. Our data also suggest that both Tarda and Tagish Lake accreted beyond 10 astronomical units, in regions of the disk that were cold enough for CO_2 to condense.

Received 6 April 2022 | Accepted 19 July 2022 | Published 23 August 2022

Introduction

Noble gases trapped in primitive meteorites (chondrites) allow quantification of the physical processes that operated during the evolution of the protoplanetary disk (e.g., Kuga et al., 2015). Although these elements are present in different carriers contained in meteorites (including presolar SiC, diamonds, graphite; Ott, 2014), they are mainly hosted in a phase - referred to as phase Q-whose nature is still poorly characterised (Busemann et al., 2000). Notwithstanding this uncertainty, it has been shown that phase Q dominates the heavy noble gas budget of chondrites and is closely associated with carbonaceous material that survives HF/HCl attack of bulk meteorites (Lewis et al., 1975). Thanks to its extreme sensitivity to oxidation, the xenon isotopic composition of phase Q has been precisely determined, revealing a mass dependent isotopic fractionation relative to solar wind (SW-Xe) in favour of the heavy isotopes relative to the light ones (Wieler et al., 1991; Busemann et al., 2000; Gilmour, 2010). However, the commonly used Xe-Q isotopic composition hinges on the average of measurements of several carbonaceous chondrites (CCs) showing distinct Xe isotopic compositions between and within each group, especially for ¹²⁹Xe (Busemann et al., 2000). Such ¹²⁹Xe excesses result from the decay of extinct ^{129}I (t_{1/2} = 16 Myr), which was producing radiogenic ¹²⁹Xe^{*} during the first ~100 million years of the solar system (Jeffery and Reynolds, 1961). The measurement of xenon isotopes in the coma of comet 67P/Churyumov-Gerasimenko revealed extreme ¹²⁹Xe enrichment relative to ¹³²Xe and the solar composition (Marty et al., 2017). As this large monoisotopic excess would require unlikely 129I enrichment, it has been interpreted as originating from a specific nucleosynthetic process

producing ¹²⁹Xe that was sampled by icy bodies formed in the outer solar system (Marty *et al.*, 2017). Interestingly, the carbon-rich primitive chondrites Tagish Lake and Tarda are thought to originate from D-type asteroids (Hiroi *et al.*, 2001; Marrocchi *et al.*, 2021) considered to have formed at large heliocentric distances beyond the current orbit of Saturn, and potentially as far as the Kuiper Belt (*i.e.* 30–50 astronomical units = au; Levison *et al.*, 2009). Here we report the results of a comprehensive study of the isotopic compositions of noble gases contained in Tagish Lake and Tarda to evaluate if material accreted in the outer solar system presents specific signatures. We compare our data to other CCs and discuss the origin of the variable radiogenic ¹²⁹Xe excesses between and within each CC groups.

Material and Methods

Noble gases were extracted from bulk fragments of Tarda, Tagish Lake and Orgueil meteorites by a laser step-heating method and measured with a noble gas mass spectrometer. Uncertainties on isotope ratios include internal uncertainties, external uncertainties assessed by measurements of standard aliquots, and uncertainties on the blank contribution. Details on the analytical procedure are in the Supplementary Information.

Results of Noble Gas Measurements and Cosmic-ray Exposure Ages

Abundances and isotopic compositions of Ne, Ar, Kr and Xe extracted from bulk Tarda, Tagish Lake and Orgueil samples are reported in Table S-1. Elemental abundances of Ne, Ar,

^{1.} Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, F-75005, France

^{2.} Naturmuseum St. Gallen, Rorschacher Strasse 263, St. Gallen, CH-9016, Switzerland

^{3.} Université de Lorraine, CNRS, CRPG, UMR 7358, Vandœuvre-lès-Nancy, F-54500, France

^{*} Corresponding author (email: avice@ipgp.fr)

Kr and Xe in Tarda, Tagish Lake and Orgueil are similar to those reported for other volatile-rich carbonaceous chondrites (Table S-1; Mazor et al., 1970). Most heating steps show a similar 20 Ne/¹³²Xe ratio (average value of 22 ± 4), slightly lower than the range reported for the HL component (50 \pm 20; Huss and Lewis, 1994). For all samples, ³⁶Ar/¹³²Xe and ⁸⁴Kr/¹³²Xe ratios plot close to the Q component although the first, low temperature, heating steps are systematically plotting toward higher⁸⁴Kr/¹³²Xe ratios, which are compatible with a contribution from weakly bound atmospheric gases (Fig. S-1). For all heating steps, the isotopic composition of neon indicates the presence of abundant trapped neon in the different meteorite samples (Fig. 1). Data points of heating steps of Tarda and Tagish Lake samples plot slightly below a mixing line defined by Ne-HL (Huss and Lewis, 1994) and cosmogenic neon (Supplementary Information). The two first heating steps of Orgueil samples plot on the Ne-Q/cosmogenic mixing line while the high temperature extraction steps show lower ²¹Ne/²²Ne ratios and plot close to the Ne-Q/Ne-HL mixing line. For argon, ³⁸Ar/³⁶Ar ratios are compatible with either the atmospheric ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ ratio (≈ 0.188 ; Ozima and Podosek, 2002) or the ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ ratio of argon in phase Q (≈0.187; Ott, 2002). However, the ⁴⁰Ar/³⁶Ar ratios range from 3 to 43, well below the atmospheric value (\approx 300, Ozima and Podosek, 2002), but typical for trapped argon contained in carbonaceous chondrites (Krietsch et al., 2021). The isotopic ratios of Kr and Xe are distinct from those of air, as well, and are similar again, to those measured for bulk carbonaceous chondrites (e.g., Krietsch et al., 2021). The first heating steps of Tarda and Tagish Lake samples reveal the presence of weakly bound atmospheric gases (Fig. S-2). For the ¹²⁹Xe/¹³⁰Xe ratio, high temperature heating steps of Tarda and Tagish Lake samples gave reproducible results with an average value of 6.37 ± 0.01 (1 σ s.d.). This value is 8.3 ± 3.4 ‰ lower than the ¹²⁹Xe/¹³⁰Xe measured for Q-Xe (Busemann et al., 2000). High temperature heating steps of Orgueil samples reveal the presence of excess radiogenic ¹²⁹Xe compared to Q-Xe.

The presence of abundant trapped Ne in both Tarda and Tagish Lake prevents us from determining precisely the cosmogenic ²²Ne/²¹Ne ratio and thus cosmogenic ²¹Ne production

Figure 1 Neon three isotope plot for bulk samples of Tarda, Tagish Lake and Orgueil. The compositions of Ne-Q, Air, Ne-HL, Ne-E and cosmogenic (purple range) are also shown for comparison (see Ott, 2014 and Krietsch *et al.*, 2021 and refs. therein). The two dashed lines represent mixing arrays between Ne-Q and cosmogenic neon and Ne-HL and cosmogenic neon. Error bars (1 σ) are smaller than the symbols.

rates (Supplementary Information). Tarda has a cosmic ray exposure (CRE) age within 5–12 Ma, very similar to Tagish Lake (5–8 Ma), while for Orgueil, the possible CRE age ranges from 6 to 11 Ma. The nominal (K-Ar) radiogenic gas retention ages are 2.4–2.7 Ga for Tarda, 2.0–2.8 Ga for Tagish Lake, and 2.2–2.7 Ga for Orgueil.

Discussion

Based on multiple isotopic systems (*i.e.* H, C, N and O), it has recently been proposed that Tarda and Tagish Lake could be genetically related (Marrocchi et al., 2021). This hypothesis can be tested in the light of noble gas measurements reported here. In the three isotope diagram, the neon isotopic compositions of bulk chondrites plot within a space defined by cosmogenic Ne, Ne-Q and a pole with (²⁰Ne/²²Ne) slightly below that of Ne-HL carried by presolar nanodiamonds (Fig. 1; Huss and Lewis, 1994; Krietsch et al., 2021). The latter is likely due to the presence of Ne-E from presolar SiC or graphite (Riebe et al., 2020). The data points from Tarda and Tagish Lake plot on the lower part of this isotopic space with similar Ne isotopic compositions, which are clearly resolved from that of the CI chondrite Orgueil (Fig. 1). Our results show that both Tarda and Tagish Lake have similar bulk Xe spectra and $^{129}Xe^*$ excesses (Fig. 2), with $\delta^{129}Xe_{SW}$ = $10 \pm 3 \%$ (Fig. 3a). In addition, both chondrites show similar cosmic-ray exposure and radiogenic retention ages: 5-10 Ma and 2.4-2.7 Ga for Tarda, and 5-8 Ma and 2.0-2.8 Ga for Tagish Lake. Altogether, our results thus reinforce the genetic link between Tarda and Tagish Lake, which share similar isotopic signatures for elements having drastically different geochemical behaviour (Marrocchi et al., 2021).

Xenon in the Jupiter-family comet 67P/Churyumov-Gerasimenko (67P/C-G) presents a ¹²⁹Xe excess and important, tens of percent ^{134–136}Xe deficits relative to SW-Xe (Marty *et al.*, 2017). The former has been attributed as resulting from the contribution of parentless ¹²⁹Xe and the latter of a mixture of two nucleosynthetic processes (*i.e.* s- and r-process; Marty *et al.*, 2017) different from the one measured for most inner solar system material (Avice *et al.*, 2020). This is however not observed in Orgueil, Tarda and Tagish Lake (Fig. 2) whereas they are generally thought to have formed in the outer solar system, at large heliocentric distances >10 au (Desch *et al.*, 2018; Fujiya *et al.*, 2019; Marrocchi *et al.*, 2021). These meteorites are even showing among the weakest ¹²⁹Xe^{*} excesses measured in CCs (Fig. 3a;

Figure 2 Isotopic composition of total xenon extracted from bulk Tarda, Tagish Lake and Orgueil samples. Isotopic ratios are normalised to Q-Xe (Busemann *et al.*, 2000) and expressed with the delta notation ($\delta^{i}Xe_{Q} = ((^{i}Xe/^{130}Xe)_{sample}/(^{i}Xe/^{130}Xe)_{Q} - 1) \times 1000)$). Errors are at 1 σ .

Figure 3 Average ¹²⁹Xe^{*} excesses relative to SW-Xe (expressed in δ notation with $\delta^{129}Xe_{SW} = (^{129}Xe/^{132}Xe)_{bulk}/(^{129}Xe/^{132}Xe)_{SW} - 1 \times 1000$) for the different types of chondrites and the comet 67P/C-G (data from Mazor *et al.*, 1970; Marty *et al.*, 2017 and this study). The average $\delta^{129}Xe_{SW}$ is plotted as a function of (a) the ¹²⁷I content (data from Clay *et al.*, 2017), (b) the carbon content (data from Vacher *et al.*, 2020 and Marrocchi *et al.*, 2021), and (c) the matrix abundance (data from Alexander *et al.*, 2018). TTL = Tarda and Tagish Lake.

Mazor *et al.*, 1970). Some rare CMs show similar ¹²⁹Xe/¹³²Xe but suffered from significant heating (Alexander *et al.*, 2012; Krietsch *et al.*, 2021). In addition, when combining data from all CCs and the comet 67P (Mazor *et al.*, 1970; Clay *et al.*, 2017; Marty *et al.*, 2017), we observe an anti-correlation of their ¹²⁷I content and the ¹²⁹Xe excess (Fig. 3a), regardless of the available iodine dataset used (Fig. S-4). As previously noticed (Mazor *et al.*, 1970; Gilmour *et al.*, 2001), such an inverse correlation could not result from the heterogeneous ¹²⁹I distribution in the early solar system as the absolute concentrations of radiogenic ¹²⁹Xe^{*} enrichments differ by a factor of 400.

CCs contains variable amounts of carbon with Tarda, Tagish Lake, CI and CM chondrites showing the highest concentrations (Fig. 3b; Kerridge, 1985; Vacher *et al.*, 2020; Marrocchi *et al.*, 2021). With the exception of Tarda and Tagish Lake, the carbon content of CCs is directly related to the abundance of fine grained matrix (see Fig. 3 in Alexander *et al.*, 2018). Interestingly, the ¹²⁹Xe^{*} excess is also anti-correlated with the bulk C content of CCs (Fig. 3b), thus implying that the (i) ¹²⁹I carrier was located in the CC matrices, and (ii) variations of ¹²⁹Xe^{*} excesses observed in CCs result from a dilution effect by trapped Xe located in phase Q. Such an effect can be summarised as follows: the less carbon, the less phase Q, the less trapped ¹²⁹Xe, the more the effect of ¹²⁹I decay is visible (and *vice versa*). This also indicates that the initial Xe budget (and likely that of other noble gases) in CCs is directly controlled by the abundance of matrix (Fig. 3c). Of note, similar ¹²⁹Xe^{*}-C anti-correlations are also observed within several CC groups (see Fig. S-5).

Although both Tarda and Tagish Lake are depleted in fine grained matrix relative to CI chondrites (65-80 vs. 100 vol. %, Fig. 3c; Alexander et al., 2018), they appear enriched in C (i.e. ~4 vs. 3.3 wt. %, Fig. 3b; Vacher et al., 2020; Marrocchi et al., 2021). This excess has been attributed to the unusual abundance of carbonates in some highly altered lithologies of Tagish Lake (Alexander et al., 2018). However, the bulk C content of Tagish Lake is relatively homogenous (Marrocchi et al., 2021) regardless of the abundance of carbonates (*i.e.* 4.1 ± 0.1 wt. %). In addition, Tarda shows a carbon content similar to Tagish Lake whereas no specific carbonate-rich lithology has been described so far (Marrocchi et al., 2021 and references therein). This thus requires an additional source of carbon for accounting for the diluted 129Xe* excesses observed in both Tarda and Tagish Lake (Figs. 2, 3a). It has been recently proposed that peculiar carbon isotopic compositions of carbonates in Tagish Lake (*i.e.* $\delta^{13}C \approx 70$ ‰; Fujiya *et al.*, 2019) cannot be explained without invoking the accretion of large amounts of ¹³C-rich CO₂ cometary ices. This implies that the parent body of Tagish Lake (and Tarda) formed beyond 10 au, in regions of the protoplanetary disk that were cold enough for CO_2 to condense.

Conclusions

Results obtained in this study demonstrate that Tarda and Tagish Lake, in addition to C, H, N isotope systematics (Marrocchi *et al.*, 2021), present very similar compositions for noble gases. This implies that those meteorites are genetically related and may have sampled similar environments of the accretion disk. A key feature of xenon present in these two meteorites is a very low excess of radiogenic ¹²⁹Xe*. When compared to literature data of carbonaceous chondrites, these carbon-rich meteorite samples present inverse correlations between ¹²⁹Xe* and carbon or iodine content. We interpret these anti-correlations as evidence for a dilution effect of radiogenic ¹²⁹Xe* by primordial xenon trapped in organic matter.

Author Contributions

GA and YM designed the study. GA performed the measurements. MM reconstructed the cosmic histories. All authors worked on the data and on the manuscript.

Acknowledgements

Matthieu Gounelle is warmly thanked for fruitful discussions on iodine nucleosynthesis. We acknowledge the financial support of the "Programme National de Planétologie" (PNP). We thank Wataru Fujiya and Henner Busemann for helpful reviews, and Maud Boyet for editorial handling. Editor: Maud Boyet

Additional Information

Supplementary Information accompanies this letter at https:// www.geochemicalperspectivesletters.org/article2228.

© 2022 The Authors. This work is distributed under the Creative Commons Attribution Non-Commercial No-Derivatives 4.0

License, which permits unrestricted distribution provided the original author and source are credited. The material may not be adapted (remixed, transformed or built upon) or used for commercial purposes without written permission from the author. Additional information is available at https://www.geochemicalperspectivesletters.org/copyright-and-permissions.

Cite this letter as: Avice, G., Meier, M.M.M, Marrocchi, Y. (2022) Origin of radiogenic ¹²⁹Xe variations in carbonaceous chondrites. *Geochem. Persp. Let.* 23, 1–4. https://doi.org/ 10.7185/geochemlet.2228

References

- ALEXANDER, C.M.O'D., BOWDEN, R., FOGEL, M.L., HOWARD, K.T., HERD, C.D.K., NITTLER, L.R. (2012) The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets. *Science* 337, 721–723. https://doi.org/10.1126/science.1223474
- ALEXANDER, C.M.O'D., MCKEEGAN, K.D., ALTWEGG, K. (2018) Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Science Reviews 214, 47. https://doi.org/10.1007/s11214-018-0474-9
- AVICE, G., MOREIRA, M., GILMOUR, J.D. (2020) Xenon Isotopes Identify Large-scale Nucleosynthetic Heterogeneities across the Solar System. *The Astrophysical Journal* 889, 68. https://doi.org/10.3847/1538-4357/ab5f0c
- BUSEMANN, H., BAUR, H., WIELER, R. (2000) Primordial noble gases in "phase Q" in carbonaceous and ordinary chondrites studied by closed-system stepped etching. *Meteoritics & Planetary Science* 35, 949–973. https://doi.org/10. 1111/j.1945-5100.2000.tb01485.x
- CLAY, P.L., BURGESS, R., BUSEMANN, H., RUZIÉ-HAMILTON, L., JOACHIM, B., DAY, J.M.D., BALLENTINE, C.J. (2017) Halogens in chondritic meteorites and terrestrial accretion. Nature 551, 614–618. https://doi.org/10.1038/nature24625
- DESCH, S.J., KALYAAN, A., ALEXANDER, C.M.O'D. (2018) The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. *The Astrophysical Journal Supplement Series* 238, 11. https:// doi.org/10.3847/1538-4365/aad95f
- FUJIYA, W., HOPPE, P., USHIKUBO, T., FUKUDA, K., LINDGREN, P., LEE, M.R., KOIKE, M., SHIRAI, K., SANO, Y. (2019) Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. *Nature Astronomy* 460, 364. https://doi.org/10.1038/s41550-019-0801-4
- GILMOUR, J.D. (2010) "Planetary" noble gas components and the nucleosynthetic history of solar system material. *Geochimica et Cosmochimica Acta* 74, 380–393. https://doi.org/10.1016/j.gca.2009.09.015
- GILMOUR, J.D., WHITEY, J.A., TURNER, G. (2001) Negative correlation of iodine-129/iodine-127 and xenon-129/xenon-132: Product of closed-system evolution or evidence of a mixed component. *Meteoritics & Planetary Science* 36, 1283–1286. https://doi.org/10.1111/j.1945-5100.2001.tb01961.x
- HIROI, T., ZOLENSKY, M.E., PIETERS, C.M. (2001) The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid. *Science* 293, 2234–2236. https://doi.org/10.1126/science.1063734
- HUSS, G.R., LEWIS, R.S. (1994) Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins. *Meteoritics* 29, 791–810. https://doi.org/10.1111/j.1945-5100.1994.tb01094.x
- JEFFERY, P.M., REYNOLDS, J.H. (1961) Origin of excess Xe¹²⁹ in stone meteorites. Journal of Geophysical Research 66, 3582–3583. https://doi.org/10.1029/ JZ066i010p03582
- KERRIDGE, J.F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. *Geochimica et Cosmochimica Acta* 49, 1707–1714. https://doi.org/10.1016/0016-7037(85) 90141-3

- KRIETSCH, D., BUSEMANN, H., RIEBE, M.E.I., KING, A.J., ALEXANDER, C.M.O'D., MADEN, C. (2021) Noble gases in CM carbonaceous chondrites: Effect of parent body aqueous and thermal alteration and cosmic ray exposure ages. *Geochimica et Cosmochimica Acta* 310, 240–280. https://doi.org/10.1016/j. gca.2021.05.050
- KUGA, M., MARTY, B., MARROCCHI, Y., TISSANDIER, L. (2015) Synthesis of refractory organic matter in the ionized gas phase of the solar nebula. *Proceedings* of the National Academy of Sciences 112, 7129–7134. https://doi.org/10. 1073/pnas.1502796112
- LEVISON, H.F., BOTTKE, W.F., GOUNELLE, M., MORBIDELLI, A., NESVORNÝ, D., TSIGANIS, K. (2009) Contamination of the asteroid belt by primordial trans-Neptunian objects. *Nature* 460, 364–366. https://doi.org/10.1038/ nature08094
- LEWIS, R.S., SRINIVASAN, B., ANDERS, E. (1975) Host Phase of a Strange Xenon Component in Allende. *Science* 190, 1251–1262.
- MARROCCHI, Y., AVICE, G., BARRAT, J.-A. (2021) The Tarda Meteorite: A Window into the Formation of D-type Asteroids. *The Astrophysical Journal Letters* 913, 8. https://doi.org/10.3847/2041-8213/abfaa3
- MARTY, B. ALTWEGG, K., BALSIGER, H., BAR-NUN, A., BEKAERT, D.V., BERTHELIER, J.J., BIELER, A., BRIOIS, C., CALMONTE, U., COMBI, M., DE KEYSER, J., FIETHE, B., FUSELIER, S.A., GASC, S., GOMBOSI, T.I., HANSEN, K.C., HÄSSIG, M., JACKEL, A., KOPP, E., KORTH, A., LE ROY, L., MALL, U., MOUSIS, O., OWEN, T., REME, H., RUBIN, M., SEMON, T., TZOU, C.Y., WAITE, J.H., WURZ, P. (2017) XENON isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. *Science* 356, 1069–1072. https://doi.org/10.1126/science.aal3496
- MAZOR, E., HEYMANN, D., ANDERS, E. (1970) Noble gases in carbonaceous chondrites. Geochimica et Cosmochimica Acta 34, 781–824. https://doi.org/10.1016/ 0016-7037(70)90031-1
- OTT, U. (2002) Noble gases in meteorites Trapped Components. *Reviews in Mineralogy and Geochemistry* 47, 71–100. https://doi.org/10.2138/rmg. 2002.47.3
- OTT, U. (2014) Planetary and pre-solar noble gases in meteorites. Chemie der Erde -Geochemistry 74, 519–544. https://doi.org/10.1016/j.chemer.2014.01.003
- OZIMA, M., PODOSEK, F.A. (2002) Noble Gas Geochemistry. Cambridge University Press, Cambridge.
- RIEBE, M.E.I., BUSEMANN, H., ALEXANDER, C.M.O'D., NITTLER, L.R., HERD, C.D.K., MADEN, C., WANG, J., WIELER, R. (2020) Effects of aqueous alteration on primordial noble gases and presolar SiC in the carbonaceous chondrite Tagish Lake. *Meteoritics & Planetary Science* 55, 1257–1280. https://doi. org/10.1111/maps.13383
- VACHER, L.G., PIANI, L., RIGAUDIER, T., THOMASSIN, D., FLORIN, G., PIRALLA, M., MARROCCHI, Y. (2020) Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components. *Geochimica et Cosmochimica Acta* 281, 53–66. https://doi.org/10.1016/j. gca.2020.05.007
- WIELER, R., ANDERS, E., BAUR, H., LEWIS, R.S., SIGNER, P. (1991) Noble gases in "phase Q": Closed-system etching of an Allende residue. *Geochimica et Cosmochimica Acta* 55, 1709–1722. https://doi.org/10.1016/0016-7037(91) 90141-Q

