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Abstract

We quantitatively investigate how spatially varying deblurring algo-
rithms can improve the imaging performance of hybrid optical/digital
systems affected by field aberrations. To this end, we validate a theoreti-
cal model of the maximal gain that linear and spatially varying deblurring
can bring to any given lens, and derive a practical algorithm to implement
this type of deblurring with low computational complexity. The results
demonstrate the usefulness to properly coordinate and balance the roles of
the imaging optical system and raw image post-processing: optimal final
imaging quality can be obtained by a lens that has been optically de-
signed to reduce field aberrations at the price of lower average raw optical
quality, associated with a fast and “slightly” spatially varying piecewise
Wiener deconvolution algorithm.
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1 Introduction

Lenses with large field of view (FoV) are affected by field aberrations which
make image quality spatially inhomogeneous. This type of field aberrations
could be reduced by adding a certain number of optical elements, but this may
increase the cost significantly. However, nowadays, it is unusual to operate an
optical system without digital post-processing [6, 1, 26, 29, 30, 21, 12]. Digital
processing can thus be leveraged to take on a portion of the burden of making
image quality homogeneous over the FoV, i.e. to relax the quality level required
on lens optical performance which may reduce at the same time the lens com-
plexity and cost [13, 17, 10, 4, 25, 31, 8]. The question is to properly coordinate
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and balance the roles of the optical part and the processing part towards this
goal.

In this article, we address this issue by considering the example of two rela-
tively simple Cooke triplet lenses with large field of view (FoV) that have been
optimized with the commercial lens design software CodeV in two different ways.
The first triplet is optimized with a classical lens design criterion, and presents
significant field aberrations, but a good quality on-axis. The second one is co-
designed by minimizing the mean square error (MSE) of the final image after
post-processing with a single deconvolution filter. The quality of the raw image
is more uniform, but lower on average over the FoV, and in particular on-axis.
Our goal is to improve the imaging performance of these two lenses by compen-
sating for raw image field aberrations with deblurring algorithms adapted to
spatially varying point spread function (PSF). In particular, we propose a the-
oretical model of the maximal gain that linear and spatially varying deblurring
can bring to any given lens, and derive a practical algorithm to implement this
type of deblurring with low computational complexity.

The article is organized as follows. In Sec. 2, we describe the two triplet
lenses studied in this paper and theoretically evaluate the imaging performance
provided by an ideal reconstruction algorithm taking fully into account the
continuous spatial variation of the PSF. We compare this performance with
that of a spatially uniform average Wiener filter for the two considered triplets.
In Sec. 3, we introduce and theoretically evaluate the idea of piecewise Wiener
deconvolution that makes it possible to get a good approximation to the ideal
spatially varying deblurring algorithm while keeping a short execution time.
Finally, in Sec. 4, we validate our theoretical models by comparing them with
practical implementations of piecewise Wiener deconvolution and fully spatially
varying deblurring applied to realistically simulated images.

2 Theoretical comparison of uniform and spa-
tially varying deblurring

A hybrid imaging system consists of a lens with its sensor and a digital process-
ing algorithm. In this paper, we consider two Cooke triplets optimized in two
different ways. They are described in Sec. 2.1. Then, in Sec.2.2, we evaluate
and compare the imaging performance obtained with hybrid systems composed
of these two lenses combined with various deblurring algorithms. The imaging
performance is evaluated using a theoretical model of the MSE between an ideal
image of the scene and the final reconstructed image.

2.1 Presentation of co-designed triplets

The first considered optical system is a Cooke triplet optimized in a conventional
way by minimizing the quadratic sum of the spot diagram diameters at selected
positions in the FoV. Its maximum half-FoV is 20 deg, with a focal length of 50
mm and a F/4 aperture. It will be referred to as “conventional triplet” in the
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following. Its modulation transfer functions (MTFs) at different positions in
the FoV are represented in Fig. 1(a), up to the Nyquist frequency of the sensor
(taken here at 100 lp.mm−1, i.e. a 5 µm sensor pitch). They are calculated
from the diffractive Point Spread Function (PSF) extracted from CodeV, which
performs a physical calculation involving both diffraction and real aberrations,
based on real ray-tracing and thorough Fourier Optics [9, 11]. As most optical
systems optimized in a standard way, it presents a good performance on axis
but the performance degrades at peripheral positions in the FoV (Fig. 1(a)).
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Figure 1: (a) MTFs of the conventional triplet (b) MTFs of the MMSE triplet.
The legend of (a) is the same as the legend of (b).

The second Cooke triplet we will consider has been optimized following the
procedure described in [7]. In short, it has been co-optimized by minimizing
the global averaged MSE between the deconvolved image and the ideal image
of the scene denoted MSEG), assuming that the deconvolution algorithm was
a single linear filter common to all positions in the FoV. It will thus be referred
to as “MMSE triplet” in the following. The MSE at the position ψ in the FoV
can be expressed, in the Fourier domain, in the following way [22]:

MSE(ψ) =

∫
ν

[
|h̃ψ(ν)w̃(ν)− 1|2Soo(ν)dν + |w̃(ν)|2Snn(ν)

]
dν , (1)

where ν is the spatial frequency, h̃ψ(ν) is the Optical Transfer Function (OTF)
which we suppose we can define locally at the field position ψ, w̃(ν) is the de-
convolution filter, Soo(ν) is the Power Spectral Density (PSD) of the scene and
Snn(ν) is the PSD of the noise. Note that in this article, in order to lighten
the equation expressions, we use simplified notations. The symbol ν stands for
ν⃗ = (νx, νy), the 2D spatial frequency relative to sensor plane spatial coordi-
nates, and

∫
ν
.dν stands for

∫
νx

∫
νy
.dνxdνy, or, more precisely, for

∑
νx

∑
νy
,

the summation of the discretized spatial frequency components computed by
Discrete Fourier Transform of the sampled PSF. The sampling being defined
by the pitch of the matrix sensor, this summation is therefore taken up to the
Nyquist frequency. We also consider a scene PSD proportional to ν−2.5 (i.e.
||ν⃗||−2.5) as this generic model well describes the natural scenes [24, 28]. During
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the optimization procedure, we consider that the signal-to-noise ratio (SNR) of

the acquired image is 34 dB, with SNR = 10 log10

( ∫
Soo(ν)dν∫
Snn(ν)dν

)
, which corre-

spond to a realistic SNR value obtained with a CMOS sensor with 20000 e−

full-well capacity under good illumination conditions [2]. The MMSE triplet has
been optimized by minimizing the global averaged MSE criterion computed for
K = 13 positions distributed over the whole 2D FoV (see [7] for details):

MSEG(Ψ) =
1

K

K∑
k=1

MSE(ψk) , (2)

where Ψ = {ψ1, ψ2, ..., ψK} denotes a set of K positions over the whole FoV.
The linear deconvolution filter that minimizes this average MSE for a given lens
(that is, for a given distribution of local OTFs h̃ψ(ν)) is the average Wiener
filter [5] :

w̃Ψ(ν) =
1
K

∑K
k=1 h̃ψk

(ν)⋆

1
K

∑K
k=1 |h̃ψk

(ν)|2 + Snn(ν)
Soo(ν)

, (3)

where ⋆ stands for complex conjugate. The MTFs |h̃ψ(ν)| of the MMSE triplet
are displayed in Fig. 1(b). They are much closer to each other than the MTFs
of the conventional triplet, and do not have any nulling. However, they are
globally lower, and thus require deconvolution with the average Wiener filter
(Eq. 3) to give appropriate final results.

2.2 Influence of the deblurring algorithm on image quality

Let us now evaluate the imaging performance obtained by hybrid systems com-
posed of these two triplets and 3 different post-processings, namely, no deblur-
ring, deconvolution with the averaged Wiener filter (for which the MMSE triplet
has been optimized) and deblurring with an ideal locally adaptive algorithm that
takes into account the spatial variations of the MTF over the FoV.

When there is no processing, w̃(ν) can be considered as a unitary filter (filled
with “1” until the Nyquist frequency, and “0” beyond) in Eq. 1. The expression
of the local MSE then becomes:

MSE(ψ) =

∫
ν

[
|h̃ψ(ν)− 1|2Soo(ν) + Snn(ν)

]
dν . (4)

The value of this local MSE is represented as a function of the field angle in
Fig. 2 (red curves) for both triplets. The MSE values are calculated for ψ
varying along the half-diagonal of the sensor. It is observed that the MSE
values are on average much lower (and thus better) for the conventional triplet
(Fig. 2(a)) than for the MMSE triplet (Fig. 2(b)). This is due to the fact that
the MTFs of the MMSE triplet are much lower, on average , than those of the
conventional one (see Fig. 1). We also notice that the MSE values obtained
with the conventional triplet significantly vary over the FoV: it is more than
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three times larger at 16◦ than in the center of the FoV. In sharp contrast, the
values vary much less in the case of the MMSE triplet. This is coherent with
the shapes of the MTFs which are quite different in the conventionnal case and
similar to each other in the MMSE one (see Fig. 1).

Figure 2: MSE(ψ) (Eq. 1) as a function of the field position parameterized
by its angle when there is no deconvolution, there is a deconvolution of the
whole FoV with a single average Wiener filter, and when there is an adapted
deconvolution. (a) For the conventional triplet (b) For the MMSE triplet.

Let us now assume that the images are processed with the average Wiener fil-
ter (Eq. 3), which is the filter for which the MMSE triplet has been co-optimized.
In this case, the value of the local MSE is obtained by substituting the expres-
sion of the average Wiener filter (see Eq. 3) for w̃(ν) in Eq. 1. We then obtain,
for the two triplets, the purple curves on Fig. 2. We observe that in the case
of the conventional triplet (Fig. 2(a)), deconvolution brings almost no improve-
ment at the center of the FoV, and only a slight one at peripheral positions.
Conversely, the improvement brought to the MMSE triplet is much larger since
the MSE is divided by about three at all positions in the FoV (Fig. 2(b)). This
strong improvement is due to the fact that, contrary to the conventional triplet,
the MMSE triplet was co-optimized with the average Wiener filter. This filter
is not suitable to work with an optical system whose OTFs varies greatly within
the FoV - which is the case of the conventional triplet.

In order to improve the results of the conventional triplet after deconvolu-
tion, one must use a spatially varying deblurring algorithm that adapts to the
local characteristics of the OTFs. For that purpose, let us assume an “ideal”
algorithm that would implement, at each FoV position, the Wiener filter corre-
sponding to the exact OTF at this position. The MSE that would be obtained
with this purely theoretical method, that we will refer to as “adapted deconvo-
lution”, can be deduced (from Eq. 1) by substituting for w̃(ν) the expression of
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the standard Wiener filter adapted to the local MTF h̃ψ(ν):

MSE(ψ) =

∫
ν

Soo(ν)Snn(ν)

Soo(ν)|h̃ψ(ν)|2 + Snn(ν)
dν . (5)

Note that for the moment, we do not discuss the way of implementing such
a spatially adaptive deblurring method (this will be done in Sec. 4). We just
consider the MSE in Eq. 5 as an ideal “limiting case” of what could bring a
deconvolution algorithm perfectly adapted to the local optical properties of the
lens.

The values of the MSE defined in Eq. 5 are plotted as blue curves on Fig. 2.
In the case of the conventional triplet, the performance is significantly improved
with respect to the average Wiener filter (Fig. 2(a)). On the other hand, in
the case of the MMSE triplet, the gain exists but is limited (Fig. 2(b)). This
was expected since the benefit of using such an adaptive deconvolution method
is greater when the optical properties have significant spatial variations. We
may also notice that for both triplets, the adapted deconvolution (blue curve)
does not lead to a constant MSE over the FoV: it presents globally the same
variations as the MSE curve obtained without deconvolution (red curve), but
attenuated. In fact, a signal too attenuated at some spatial frequencies (e.g.
Fig. 1(a) with poor raw MTFs which exhibit nullings), may not be recovered
at all by deconvolution, and especially by Wiener filtering that avoids, by con-
struction, to amplify the signal and also the noise at spatial frequencies where
the raw SNR(ν) (Soo(ν)/Snn(ν)) is low. This means that even if the adapted
deconvolution improves the overall image quality, the variability of the optical
performance of the lens with the position in the FoV observed before deconvo-
lution remains present after deconvolution. Thus, if a specific characteristic is
desired for the hybrid optical/digital imaging system (for example, homogeniza-
tion of performance in the field, or on the contrary, an excellent performance
in the center specifically), it is necessary that the optical system itself already
carries this characteristic, and thus be optimized in this sense.

3 Theoretical impact of piecewise Wiener de-
convolution on image quality

We have considered in the previous section two “extreme cases” for digital post-
processing: the average Wiener filter, which is the simplest and fastest one, and
a hypothetical “perfectly adaptive” one, which takes into account the spatial
variation of the MTF of the optical system but which implementation will in-
evitably be much more complex and computationally intensive. In this section,
we propose a digital post-processing with a philosophy intermediate between
these two extreme cases, which has the computational complexity of a linear
shift-invariant filter but takes into account the spatial variations of the MTF.
We investigate its theoretical behavior and compare its performance with the
two “extreme case” algorithms. Implementation and performance evaluation on
images will be discussed in Sec. 4.

6



3.1 Theoretical principle of “piecewise Wiener deconvo-
lution”

The idea of piecewise Wiener deconvolution is to partition the entire FoV into
square zones of equal areas, and to deconvolve each area with a specific average
Wiener filter. We consider NZ zones Z1, Z2, ..., ZNZ

, described respectively
by the sets of field positions ΨZ1

, ΨZ2
, ..., ΨZNZ

. Each set contains an equal
number K of field positions. We also define the set ΨFoV =

⋃
ΨZn

corresponding
to all FoV positions. An example of such a partition is given on Fig.3 for a
division into NZ = 3 × 3 = 9 square zones. Each area is deconvolved with an

Ψ𝑍4

Ψ𝑍3

𝜓1
𝑍3 𝜓2

𝑍3 …

Figure 3: Schematic drawing illustrating the FoV positions describing the whole
FoV and an example of division into NZ = 9 square zones.

average Wiener filter (Eq. 3) built from the K OTFs characterizing each area.
The obtained expression of theMSEG(Ψ) for a given region Ψ, defined in Eq. 2,
can be written in the following way [23]:

MSEG(Ψ) =MSED(Ψ) +MSEI(Ψ) , (6)

with

MSED(Ψ) =

∫
ν

Soo(ν)
2
[

1
K

∑K
k=1 |h̃ψk

(ν)|2 − | 1K
∑K
k=1 h̃ψk

(ν)|2
]

Soo(ν)
1
K

∑K
k=1 |h̃ψk

(ν)|2 + Snn(ν)
dν , (7)

and

MSEI(Ψ) =

∫
ν

Soo(ν)Snn(ν)

Soo(ν)
1
K

∑K
k=1 |h̃ψk

(ν)|2 + Snn(ν)
dν . (8)

The first term (Eq. 7), which involves the variance of the OTF over the zone
fields, characterizes the contribution of the disparity between MTFs to the global
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averaged MSE, MSEG. It would value zero if all the OTFs would be equal to
each others over the entire set Ψ. Conversely, the second term (Eq. 8) corre-
sponds to the MSE that would be obtained by a simple Wiener filter adapted to

an “average” MTF
√

1
K

∑K
k=1 |h̃ψk

(ν)|2 as can be seen by comparison to Eq. 5.

Thus, this second term characterizes the intrinsic difficulty of deconvolution, i.e.,
the trade-off made by the average Wiener filter between signal reconstruction
and noise amplification. It would be equal to MSEG(Ψ) if the MSED(Ψ) term
was zero, i.e., if the OTFs at all positions in the field used for the calculation
were equal. By using these valuable decomposition of the MSE in these two
terms, we will now study how increasing the number of zones in the piecewise
Wiener deconvolution algorithm changes the average MSE on the whole FoV
and MSEG in each zone for both triplets.

3.2 Evolution of piecewise Wiener deconvolution perfor-
mance with the number of zones

Figure 4 represents the value of the square roots ofMSEI(ΨZn
), MSED(ΨZn

),
and MSEG(ΨZn

) for a division of the FoV into a variable number NZ of zones
in the case of the conventional triplet. This number NZ of zones ranges from
1 (which amounts to using a single deconvolution filter for the entire field) in
the first row, to 25 in the last row (the FoV is divided into 5 × 5 zones, and
thus 25 different average Wiener filters are used). When NZ = 1, the term
MSED, that corresponds to disparity between MTFs (Fig. 4(1b)), is signifi-
cantly larger that the term MSEI , that corresponds to intrinsic deconvolution
difficulty (Fig. 4(1a)). This was expected since we have seen in Fig.1 that the
MTFs of this triplet are quite disparate.

As the number of zones increases, the two components take on values that
are closer to each other and decrease on average. For this reason, the global
averaged MSE (Eq. 6) displayed in the third column of Fig. 4 decreases with
the number of zones, which demonstrates the benefit of using spatially adaptive
deconvolution. It should be noted, however, that this decrease is heterogeneous
in the FoV. For example, the variation of the term MSEI is similar to the
variation of the local MSE observed in Fig. 2(a)): it is larger at the edges of
the FoV because the MTFs are lower there (Fig. 1(a)). Similarly, the term of
disparity between MTFs, MSED, is also larger at the edges, especially even
when the partition is done with a large number of zones, since the MTFs are
also more disparate in the peripheral positions of the FoV (Fig. 4(5b)).

Figure 5 displays the same data as Figure 4, but for the MMSE triplet. By
comparing Fig. 4(1c) and Fig. 5(1c), it is seen that when deconvolving with a
single filter, the MMSE triplet shows a better performance (i.e., a lowerMSEG)
than the conventional triplet. This observation was already made in Fig. 2, but
Fig. 5 allows us to detail the evolution of the two terms of MSEG with the
number of zones. This evolution is not the same as for the conventional triplet:
the disparity term MSED is much lower because, by construction, the MTFs
are close to each other (Fig. 1(b)), but the intrinsic deconvolution difficulty
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Figure 4: For the conventional triplet used with piecewise Wiener deconvolution,
square root of the average MSE of each area. (First column) Intrinsic difficulty
of deconvolution

√
MSEI . (Second column) Disparity between MTFs

√
MSED.

(Third column) Global averaged MSE
√
MSEG. The number of areas used for

piecewise Wiener deconvolution depends on the row : (1) Deconvolution with
a single average Wiener filter on the whole FoV; (2) four areas; (3) nine areas;
(4) sixteen areas; (5) twenty-five areas. The colorbar is the same for all graphs.
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Figure 5: For the MMSE triplet used with piecewise Wiener deconvolution,
square root of the average MSE of each area. (First column) Intrinsic difficulty
of deconvolution

√
MSEI . (Second column) Disparity between MTFs

√
MSED.

(Third column) Global averaged MSE
√
MSE. The number of areas used for

piecewise Wiener deconvolution depends on the row : (1) Deconvolution with
a single average Wiener filter on the whole FoV; (2) four areas; (3) nine areas;
(4) sixteen areas; (5) twenty-five areas. The colorbar is the same for all graphs.
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MSEI is a bit higher because the MTFs are lower. Moreover, by increasing
the number of zones, MSEI (Fig. 5(a)) becomes slightly heterogeneous but less
than for the conventional triplet since the MTFs are much less disparate over the
FoV. On the other hand, MSED (Fig. 5(b)) decreases until almost zero when
the number of zones increases, since decreasing the size of the zones makes the
MTFs within each zone even more similar to each other. Its value is also quite
constant across the FoV. It follows that for a large number of zones (Fig. 5(5c)),
the global averaged MSE for each zone is lower than with the conventional
triplet and more homogeneous across the FoV.

3.3 Theoretical image quality with piecewise Wiener de-
convolution

Let us now evaluate the global performance of the hybrid systems composed of
the two triplets and piecewise Wiener deconvolution. The average MSE over
the whole FoV is therefore:

MSEFoV (NZ) =
1

NZ

NZ∑
n=1

MSEG(ΨZn
) , (9)

whereMSEG(ΨZn
) is calculated with Eq. 2, by substituting Eq. 3 for w̃(ν) and

ΨZn
set for the Ψ set into Eq. 1. Note that this MSEFoV (NZ) expression is a

theoretical limit as it is a somewhat optimistic simple theoretical approximation
of the whole image MSE (in particular, it does not take into account edge effects
that may occur, and a possible geometrical distortion is not considered). Instead
of using directly MSEFoV , we will quantify it, in an equivalent way, with the
image quality (IQ):

IQ = 10 log10

(
1

MSEFov(NZ)

)
. (10)

In this definition, we consider that the statistical variance of the image is nor-
malized to one (

∫
Soo(ν)dν = 1).

This quantity is represented in Fig. 6 as a function of NZ , for the two triplets.
First, it can be seen, as in Fig. 2, that the performance before deconvolution
(corresponding to NZ = 0 on Fig. 6) is much better (about +2.5 dB) for the
conventional triplet than for the MMSE triplet. After deconvolution with a
single average Wiener filter (i.e., NZ = 1), the gain for the conventional triplet
is quite low because the large variations of the MTFs over the FoV prevent
deconvolution with a single filter from working properly. Then, when the num-
ber of deconvolution zones NZ increases, the IQ of the conventional triplet
increases slowly. The MMSE triplet has a very different behavior: most of the
improvement is obtained with a single average Wiener filter (NZ = 1). Then,
its performance slowly increases with the number of zones, but quickly reaches
a horizontal asymptotic behavior. Thus, piecewise Wiener deconvolution allows
to increase the average performance of the two systems, but in a different way
according to the criterion used for their optimization.
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Figure 6: Theorical IQ as a function of the number of areas for piecewise Wiener
deconvolution, for the conventional triplet and the MMSE triplet. NZ = 0
means that there is no deconvolution. The performance in case of adapted
deconvolution is indicated by a dotted line.

For both triplets, piecewise Wiener deconvolution tends toward a maximal
value, which is the performance of the adapted deconvolution. This performance
can be evaluated by summing the local MSE defined in Eq. 5 over all the FoV
positions. The corresponding IQ values are represented by dotted lines on
Fig. 6. We can see that they have similar values, even if the performance of the
conventional triplet is slightly lower: 17 dB instead of 17.3 dB for the MMSE
triplet. This similarity of adapted deconvolution performance for the two triplets
could be interpreted as follows. These systems have globally the same “amount
of aberrations” but these aberrations are simply distributed in a different way
over the FoV: for the conventional triplet, they are low in the center of the FoV
but high at the edges, and for the MMSE triplet, they are more homogeneously
distributed. It follows from this difference in distribution that the “path” to
achieve the limit performance by increasing the number of zones (thus reducing
their size) is quite different for the two systems.

Therefore, to conclude, it is the MMSE triplet that benefits the most from
piecewise Wiener deconvolution, since this algorithm is already effective with a
small number of zones. This is mainly due to the much faster decrease of the
MSED disparity term with optical systems co-optimized for a single deconvo-
lution filter (as can be seen in Fig. 5 and [8]). Of course, the performance of
the conventional triplet is also gradually improved with such a method, but it
tends much more slowly to the performance of the adapted deconvolution as the
number of zones increases.
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4 Practical implementation of algorithms taking
into account the spatial variation of the PSF

We have so far evaluated the theoretical performance of two hybrid systems us-
ing piecewise Wiener deconvolution and adapted deconvolution. This study was
based on simple image models, which has made it possible to derive theoreti-
cal, closed-form expressions of the MSE obtained with these algorithms. These
expressions are interesting since they allow us to study the performance of any
hybrid system and outline its characteristics with simple and fast computation.
However, in practice, these deconvolution methods have to be implemented. The
goal of this section is to propose algorithms that allow to reach the previously
outlined theoretical performance and trends. These algorithms will be vali-
dated on realistically simulated images from the two considered triplets. First,
we briefly present the direct model used for simulating images with spatially
varying PSFs (Sec. 4.1). Then, we detail the implementation of the piecewise
Wiener deconvolution and adapted reconstruction algorithms (Sec. 4.2). Finally,
we evaluate their performance on simulated images (Sec. 4.3) and compare it
with the theoretical performance analyzed in Sections 2 and 3.

4.1 Direct model of spatially varying PSF

To simulate images with PSFs continuously varying across the FoV, we use
bilinearly interpolated PSFs with the fast formulation based on image weighting
and convolutions proposed by Denis et al. and precisely described in [4]. The
spatially varying blur operator is computed from an array representing a finite
number of PSFs describing the optical system. This operator consists in the
(well chosen) weighting of the ideal image around the positions corresponding
to each PSF, and then in the convolution by each PSF of the different weighted
image portions, and their appropriate juxtaposition. We adapt the code so
that it can use the PSFs of the two studied triplets generated by the CodeV
software (taking into account of the sensor pixel size). For this study, the image
of Barbara (Figure 7) - presenting many areas with periodic elements - will
be used. Note that we have tested other images (having different PSDs) and
obtained similar results, as can be seen in appendix A.

This image is first degraded with a spatially varying blur applied from 31×31
simulated PSFs (computed with CodeV). Once degraded by the simulated op-
tical system, it is corrupted with noise according to a realistic model of modern
CMOS sensors, combining Poisson noise and additive Gaussian noise, and lead-
ing to a SNR close to 36 dB (the SNR depending slightly on the used triplet
due to the presence of Poisson noise).
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Figure 7: Ideal image of Barbara, and selected subparts.

4.2 Practical implementation of the spatially varying de-
blurring algorithms

In this section, we describe the implementation of the two considered spatially
varying reconstruction algorithms, namely, piecewise Wiener deconvolution and
adapted deconvolution.

4.2.1 Piecewise Wiener deconvolution

Piecewise deconvolution is a method that comes quite naturally when one wishes
to reconstruct a spatially varying PSF with several filters (both in depth of
field [14, 15] or in field of view [3]). To implement piecewise Wiener deconvolu-
tion in practice, we use the following method. It is illustrated in Fig. 8, for the
case of a division of the FoV in 3× 3 zones.

• Step 1: the image is split into Nz zones inside which a specific deconvo-
lution filter is used. In the example (Fig. 8), there are Nz = 9 different
deconvolution filters w̃ΨZn

(ν), with the set ΨZn described on Fig. 3;

• Step 2: Nz “enlarged subparts” of the raw image (denoted I1, I2, ..., INZ
)

slightly larger than each zone (at least the size of the area to which is added
a few pixels corresponding to the global size of the PSF, except on the
edges of the whole image where the area is not enlarged) are selected and
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separated from each other. In the example, the enlarged subpart around
zone 5 is shown in dotted lines : it is I5. In our case, we implement
a border of size 10% the total size of the zone. Each enlarged subpart
is deconvolved with the deconvolution filter whose size is adapted to the

subpart :
˜̂
On(ν) = Ĩn(ν)× w̃ΨZn

(ν).

• Step 3: A weighting Pn(r) (with r the spatial coordinates) is associated
to each enlarged subpart. In order to build Pn(r) we convolve a matrix
PIn with a Gaussian kernel g (of standard deviation 3% of the size of the

zone), so that
∑NZ

n=1 Pn(r) = 1 for any r (for the boundaries, input array
values outside the bounds of the array are assumed to be equal to the
nearest array border value). Here, we use a matrix PIn which is equal to
1 all inside the zone, and 0 everywhere else (edges of the enlarged zone).
The example in Fig. 8 shows the weighting associated with the zone 5
obtained in this way.

• Step 4: the total image is reconstructed by weighting each deconvolved
enlarged subpart by the weights created in the previous step : Ô(r) =∑NZ

n=1 Ôn(r) × Pn(r). This weighting varies gradually from the inside to
the outside of each “guard zone” surrounding each zone (as described by
hatching for zone n°5 represented in step 4 in Fig. 8). A blending of the
edges of the different independently deconvoluted areas is thus performed
to avoid having too abrupt transitions in the overall image. This amounts
to interpolating the edges of each area so that the “inter-area” edges are
not visible. In the example, the reconstruction of the hatched part of zone
5 depends on the reconstruction of all the adjacent zones.

4.2.2 Spatially varying deblurring

In order to implement the “adapted deconvolution” as described in Sec. 2.2
(asymptotic behavior of the curves in Fig. 6), we use a spatially varying deblur-
ring algorithm that takes into account continuous variations of the PSF across
the FoV and is described in [4]. This article describes several interesting state-
of-the-art algorithms and references [20, 16]. The algorithm we employ makes
use of the direct imaging model (via a data fidelity term) and of a regularization
term. We considered quadratic regularization (not total variation regularization
as in [4]) in order to mimic the use of an average Wiener filter. The estimate of
the image is then:

x̂ = argmin
x

(||Hx− y||2 + µ||Dx||2) , (11)

where ||.|| denotes the 2-norm, y the observed image I in vector form, x the
image of interest O in vector form, H the observation operator (implemented by
the direct model), D the derivative operator and µ the regularization parameter.
We choose by hand the regularization parameter µ that maximizes the final IQ.
This convex optimization problem is solved using an iterative quasi-Newton
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method [19], and requires at least one hundred estimations of the direct model.
Its computation time is thus much higher than piecewise Wiener deconvolution.
The direct model is computed as described in the previous section, with a dense
a priori of 31 × 31 known PSFs in order to be as close as possible to the best
achievable performance with this algorithm.
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Figure 8: Scheme of the practical implementation of the piecewise Wiener de-
convolution.

4.3 Performance comparison of piecewise Wiener decon-
volution and spatially varying deblurring

Let us now evaluate the performance of piecewise Wiener deconvolution and
spatially varying deblurring on simulated images, and compare them with the
theoretical results obtained in Sec. 2 and 3. The ideal scene is displayed in
Fig. 7. Figure 9 shows the center subpart of images of this scene provided
by hybrid systems based on conventional (first column) and MMSE (second
column) triplets, when there is no deconvolution (first row), with piecewise
Wiener deconvolution by 1×1, 2×2 and 5×5 zones (second to fourth rows), and
with spatially varying deblurring (fifth row). The third column is the subpart
of the ideal image, for comparison. Figure 10 shows the same data for a subpart
located at one edge of the image.

Let us first consider piecewise Wiener deconvolution. We can notice that
for the conventional triplet (Fig. 9, first column), the visual quality slowly im-
proves as the number of zones increases. This is especially evident in the scarf
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Figure 9: Center subpart of the image of Barbara. (First column) Conventional
triplet. (Second column) MMSE triplet. (a;f) Without deconvolution (b;g)
Deconvolution with a single average Wiener filter (c;h) 2× 2 piecewise Wiener
deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially varying
deblurring.(k) Ideal image.
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Figure 10: Edge subpart of the image of Barbara. (First column) Conventional
triplet. (Second column) MMSE triplet. (a;f) Without deconvolution (b;g)
Deconvolution with a single average Wiener filter (c;h) 2× 2 piecewise Wiener
deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially varying
deblurring. (k) Ideal image.
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pattern just below the woman’s chin. This observation confirms the theoretical
predictions of Fig. 4. The improvement is less visible at the edges of the image
(Fig. 10(a-d)). Indeed, at the periphery of the FoV, the spatial variation of
the PSF shape is faster, resulting in a larger term of disparity between MTFs
(fig. 4(1b-3b)). To sufficiently reduce this disparity, it is thus necessary to re-
duce the size of the zones. As a consequence, we can observe that a minimum
of 25 deconvolution zones is required for the reconstruction to appear visually
acceptable (Fig. 10(d)).

The MMSE triplet has a quite different behavior. First, the image without
deconvolution is very blurry in the center (Fig. 9(f)), compared to the conven-
tional triplet’s case (Fig. 9(a)). The whole image being blurred homogeneously,
the edge subpart is also very blurry (Fig. 10), but one can observe that the
details are not completely lost. As predicted theoretically (Fig. 5), the recon-
struction with a single average Wiener filter is already very efficient, for the
whole FoV (Fig. 9(g) and Fig. 10(g)). Then, the deconvolution by a higher
number of zones improves the visual quality rather moderately, even if some
details appear sharper and sharper (for example, the stripes on the bottom left
of the image on the axis, Fig. 10(g-i)).

Let us now analyze the results of spatially varying deblurring. They are
displayed in the fifth rows of Fig. 9 and Fig. 10. Visually, in the case of the
MMSE triplet, the image quality is very close to that obtained with piecewise
Wiener deconvolution with 5 × 5 zones, both on the axis (Fig. 9(i-j)) and on
the edges (Fig. 10(i-j)). In sharp contrast, there is a wide performance gap
between both algorithms with the conventional triplet, especially at the edge of
the image (Fig. 10(d-e)). Nevertheless, at this position in the FoV, the image
obtained with the conventional triplet and processed by spatially varying de-
blurring (Fig. 10(e)) has a worse quality than the one obtained with the MMSE
triplet and piecewise Wiener deconvolution (Fig. 10(i)): a better processing can-
not completely compensate for a significantly lower MTF at this position in the
FoV. This effect was also clearly observed from the theoretical study of Sec. 2,
by comparing the blue curves in Fig. 2(a) and Fig. 2(b). We can also observe
another important point: whatever the post-processing algorithm used, the dif-
ferences that initially exist between the conventional triplet and the MMSE
triplet persist after processing. For example, the conventional triplet remains
excellent in the center but less efficient on the edges. This can be seen both
theoretically (compare red curve and blue curves in Fig. 2(a)) and in the image
simulations (Fig. 9 and Fig. 10).

Let us now consider the global IQ values obtained with the different de-
blurring methods applied to simulated images from both triplets. They are
represented in Fig.11 as a function of the number of zones. It is observed that
the graph is quite similar to Fig.6, which was obtained from the theoretical
model. For the conventional triplet, the IQ obtained with piecewise Wiener
deconvolution (red solid line) increases progressively with the number of zones,
which is consistent with our analyses of Fig. 9 and Fig. 10. For the MMSE
triplet, the IQ curve (blue solid line) follows the expected theoretical behavior
as well, with a sharp increase followed by an asymptotic behavior. Of course,
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the absolute IQ values are not the same as in Fig. 6 since the realistic image
and the noise model used in these simulations are different from the theoretical
generic PSD models used in Sec. 2.

The IQ values obtained with spatially varying deblurring are plotted with
dotted lines. They are close to each other, and the value obtained with the
conventional triplet is slightly lower than that obtained with the MMSE triplet
(−0.5 dB). This fits well the theoretical prediction (Fig. 6), except for the fact
that the difference between the IQ obtained with spatially varying deblurring
(dotted lines) and piecewise Wiener deconvolution (solid lines) is larger than
theoretically expected. This can be explained by the fact that the average
Wiener filters used in each region by piecewise Wiener deconvolution do not
fully correspond to the PSD of the object and noise in simulated image, and
that this algorithm presents some remaining edge effects at the borders of the
zones. To reduce them, one could look at other edge conditions for processing:
for example, using symmetric edge conditions rather than periodic edge condi-
tions [18]. These defects prevent piecewise Wiener deconvolution from getting
closer to the performance of spatially varying deblurring.

Figure 11: IQ on the simulated image (Barbara) as a function of the number of
areas for piecewise Wiener deconvolution, for the conventional triplet and the
MMSE triplet. NZ = 0 means that there is no deconvolution. The performance
in case of spatially varying deblurring is indicated by a dotted line.

In order to verify the generality of our conclusions, we have conducted the
same simulations and analyses on 3 totally different images (see appendix). It is
observed that the IQ curves are very similar, and that the analyses of the center
and edge subpart of the simulated images lead to the same conclusions. This
confirms that the theoretical MSE expressions developed in Sections 2 and 3
can be safely used to characterize the properties of a given lens under various
post-processing algorithms.

In summary, we have described two algorithms that implement respectively
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piecewise Wiener deconvolution and spatially varying deblurring, and evaluated
their performance for post-processing images acquired by the conventional and
the MMSE triplets. We have shown that in the case of the MMSE triplet,
piecewise Wiener deconvolution yields a performance slightly inferior but com-
parable to spatially varying deblurring, but for a much lower computational
cost. Moreover, the simulation results confirm an important conclusion drawn
from the theoretical studies in Sections 2 and 3: to reach a given imaging goal
with a co-designed hybrid system, it is preferable that the lens already have
optical properties adapted to this goal. Digital processing cannot compensate
for all the optical defects. In our case, the goal was to reach a good imaging
performance over the whole FoV, and we have shown that for that purpose, the
MMSE triplet, which was optimized with a true (MSE) co-design criterion and
has nearly uniform MTFs without nulling, yields better average performance
than the conventional triplet after deconvolution.

5 Conclusion

We have studied the contribution of spatially varying deblurring algorithms to
improve the imaging performance of lenses affected by field aberrations. We first
developed a simple model based on closed-form expressions in the Fourier do-
main of the MSE that enables us to evaluate, in a fast and efficient manner, the
performance gain brought by such algorithms to any given lens defined by a set
of OTFs over the FoV. This model has been validated on realistically simulated
images post-processed by three different deblurring algorithms. In particular,
we have proposed a piecewise Wiener deconvolution algorithm that takes effi-
ciently into account the spatial variations of the PSF and has a computational
complexity similar to a single deconvolution filter. Moreover, this algorithm
does not require precise calibration of the spatially varying PSF thanks to the
“averaging” nature of the filters over each zone.

The performance of an imaging system relies on the quality of both the lens
and the digital post-processing [27]. One of the main conclusions of this article is
that the contribution of these two components must be balanced. The processing
alone cannot completely compensate for the variations of the optical quality
over the FoV. In our case, the best solution is provided by a lens which has
been optically designed to reduce field aberrations at the price of lower average
optical quality, and a fast and “slightly” spatially varying piecewise Wiener
deconvolution algorithm that efficiently enhances the global image quality and
compensates for the residual non-homogeneity over the FoV.

The two lenses considered in this article were optimized with the CodeV
lens design software by assuming no processing (conventional triplet) or decon-
volution with an average Wiener filter (MMSE triplet). The spatially varying
deblurring algorithms were used only to improve the performance of these al-
ready optimized lenses. The most interesting perspective to this work would be
to perform lens optimization by taking explicitly into account, right from the
optimization process in the lens design software, the fact that the deblurring al-
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gorithm is spatially varying. The closed-form MSE models developed in Sec. 2
and 3 provide a practical way to do so. Analyzing the influence of the SNR
value on lens optimization and deblurring performance (in particular, higher
noise levels corresponding to more challenging imaging conditions) is another
important perspective for future work.
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A Supplemental 1

This supplemental document presents the simulation results of the approach
illustrated by Figs. 7, 9, 10 and 11 of the article applied to three other images.

A.1 Monkey

We study a monkey image (Fig. 12), and present its center subpart (Fig. 13)
and edge subpart (Fig. 14) processed with the same algorithms as in Fig. 9 and
10 of the article. IQ results are given on Fig. 15.

Figure 12: Ideal image of a monkey, and selected subparts.
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Figure 13: Center subpart of the image of the monkey. (First column) Con-
ventional triplet. (Second column) MMSE triplet. (a;f) Without deconvolution
(b;g) Deconvolution with a single average Wiener filter (c;h) 2 × 2 piecewise
Wiener deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially
varying deblurring.(k) Ideal image.
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Figure 14: Edge subpart of the image of the monkey. (First column) Conven-
tional triplet. (Second column) MMSE triplet. (a;f) Without deconvolution
(b;g) Deconvolution with a single average Wiener filter (c;h) 2 × 2 piecewise
Wiener deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially
varying deblurring. (k) Ideal image.
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Figure 15: IQ on the simulated image (monkey) as a function of the number of
areas for piecewise Wiener deconvolution, for the conventional triplet and the
MMSE triplet. NZ = 0 means that there is no deconvolution. The performance
in case of spatially varying deblurring is indicated by a dotted line.
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A.2 Zebra

We study a zebra image (Fig. 16), and present its center subpart (Fig. 17) and
edge subpart (Fig. 18) processed with the same algorithms as in Fig. 9 and 10
of the article. IQ results are given on Fig. 19.

Figure 16: Ideal image of a zebra, and selected subparts.
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Figure 17: Center subpart of the image of the zebra. (First column) Conven-
tional triplet. (Second column) MMSE triplet. (a;f) Without deconvolution
(b;g) Deconvolution with a single average Wiener filter (c;h) 2 × 2 piecewise
Wiener deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially
varying deblurring.(k) Ideal image.
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Figure 18: Edge subpart of the image of the zebra. (First column) Conventional
triplet. (Second column) MMSE triplet. (a;f) Without deconvolution (b;g)
Deconvolution with a single average Wiener filter (c;h) 2× 2 piecewise Wiener
deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially varying
deblurring. (k) Ideal image.
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Figure 19: IQ on the simulated image (zebra) as a function of the number of
areas for piecewise Wiener deconvolution, for the conventional triplet and the
MMSE triplet. NZ = 0 means that there is no deconvolution. The performance
in case of spatially varying deblurring is indicated by a dotted line.
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A.3 PSD model

We study an image (Fig. 20) made to have a PSD proportional to ν2.5, and
present its center subpart (Fig. 21) and edge subpart (Fig. 22) processed with
the same algorithms as in Fig. 9 and 10 of the article. IQ results are given on
Fig. 23.

Figure 20: Ideal image of PSD ∝ ν−2.5, and selected subparts.
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Figure 21: Center subpart of the image of PSD ∝ ν−2.5. (First column) Con-
ventional triplet. (Second column) MMSE triplet. (a;f) Without deconvolution
(b;g) Deconvolution with a single average Wiener filter (c;h) 2 × 2 piecewise
Wiener deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially
varying deblurring.(k) Ideal image.
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Figure 22: Edge subpart of the image of PSD ∝ ν−2.5. (First column) Con-
ventional triplet. (Second column) MMSE triplet. (a;f) Without deconvolution
(b;g) Deconvolution with a single average Wiener filter (c;h) 2 × 2 piecewise
Wiener deconvolution (d;i) 5× 5 piecewise Wiener deconvolution (e;j) spatially
varying deblurring. (k) Ideal image.
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Figure 23: IQ on the simulated image of PSD ∝ ν−2.5 as a function of the
number of areas for piecewise Wiener deconvolution, for the conventional triplet
and the MMSE triplet. NZ = 0 means that there is no deconvolution. The
performance in case of spatially varying deblurring is indicated by a dotted line.
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