
HAL Id: hal-03770905
https://hal.science/hal-03770905

Submitted on 3 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARFT: An Approximative Redundant Technique for
Fault Tolerance

Gennaro Severino Rodrigues, Adria Barros Barros de Oliveira, Alberto Bosio,
Fernanda Lima Kastensmidt, Edison Pignaton de Freitas

To cite this version:
Gennaro Severino Rodrigues, Adria Barros Barros de Oliveira, Alberto Bosio, Fernanda Lima Kas-
tensmidt, Edison Pignaton de Freitas. ARFT: An Approximative Redundant Technique for Fault
Tolerance. 33rd Conference on Design of Circuits and Integrated Systems, DCIS 2018, Nov 2018,
Lyon, France. �10.1109/DCIS.2018.8681499�. �hal-03770905�

https://hal.science/hal-03770905
https://hal.archives-ouvertes.fr


ARFT: An Approximative Redundant Technique for
Fault Tolerance

Gennaro Severino Rodrigues, Adria Barros de Oliveira, Alberto Bosio, Fernanda Lima Kastensmidt, Edison
Pignaton de Freitas

Abstract—This paper presents a novel redundancy technique
for software fault tolerance, named Approximative Redundant
Fault Tolerance (ARFT). It uses approximate computing in order
to provide the same error detection of a classic DWC method with
less overhead. In this work ARFT was implemented to protect the
ARM Cortex-A9 embedded into Zynq-7000 All Programmable
SoC. An extensive fault injection campaign was performed to
evaluate the proposed technique. Results show that distinct
applications with different approximation methods present a big
variation in terms of execution time, memory footprint and error
detection capability. Performance analysis shows that ARFT can
reduce the overhead in some benchmarks cases up to 40%.

Index Terms—Fault tolerance, Embedded processors reliabil-
ity, FreeRTOS, Soft error, Fault Injection

I. INTRODUCTION

Radiation-induced Single Event Effect (SEE) is one of the
primary concerns of Commercial Of The Shelf (COTS) mi-
croprocessors operating in aerospace environments. Transient
effects vary from data disruptions to timeout, and function
interrupts. With the late technological advances, the dimen-
sions and operating voltages of COTS processors have been
dramatically reduced, which leads to a higher susceptibility to
radiation-induced errors. Radiation-hardened microprocessors
are expensive. Therefore, the industry has turned to COTS
embedded processors combined with fault tolerant techniques
as a valid alternative for safety-critical applications [1].

Fault tolerant techniques for embedded processors can be
applied at hardware-level by duplicating or triplicating the
entire component and adding voters and checkers. Hardware-
based redundancy introduces a prohibitive area and power
overhead. Therefore, software-based fault tolerance is used
to protect microprocessors with no extra hardware costs. The
literature presents a myriad of software-based techniques for
fault tolerance [2]. Redundancy, for instance, can be applied
at the task level to protect software. Although software-
based techniques present no overhead in hardware area, they
introduce execution time and memory footprint overheads
in the application. One example of such a technique is the
Duplication With Comparison (DWC). DWC duplicates a task
and compares the data generated by two executions of the code
for discrepancies with a checker.

G. S. Rodrigues, A. B. de Oliveira, and F. L. Kastensmidt are
with the Programa de Pós Graduação em Microeletrônica (PGMICRO),
A. Bosio is with the Lyon Institute of Nanotechnology (INL), France
and E. P. Freitas is with the Graduate Program in Computer Science
(PPGC), Federal University of Rio Grande do Sul (UFRGS), Porto Ale-
gre, Brazil. e-mail: {gsrodrigues,aboliverira,fglima,epfreitas}@inf.ufrgs.br, al-
berto.bosio@lirmm.fr.

Approximate computing has been proposed as an approach
to developing energy-efficient systems [3]. The idea is having
applications able to tolerate some flexibility in the final result,
based on a threshold specified by the application requirements.
By relaxing the need for precise data, approximate computing
has been proven to improve energy efficiency. Concerning fault
tolerance, approximate computing can mask a higher number
of errors by relaxing data precision. Past works proved that
software with approximative nature presents higher intrinsic
fault tolerance than conventional algorithms [4]. Besides,
approximative computation can sometimes spend less time in
the calculation compared to a standard algorithm counterpart.

Observing the potential design space exploration for ap-
proximate computing as a fault tolerance technique, this work
aims at investigating its usage in software-based fault detection
based on DWC running in embedded microprocessors. The
idea is to deploy redundant code using a simpler and faster
approximate version of the original code function. A checker
compares both the data from the original and the approximated
function in a value threshold range that can be adjusted and
is defined by the application constraints. The contribution of
this work is the proposal of a novel fault tolerance technique
that combines approximate computing with redundancy, pro-
viding protection with low overhead. The technique is named
Approximative Redundant Fault Tolerance (ARFT).

ARFT can be universally applied to any system. In this
paper, ARFT was evaluated in the ARM Cortex-A9 processor
embedded in the All Programmable System-on-Chip (APSOC)
Zynq from Xilinx [5]. ARFT was designed targeting single-
core architectures. Benchmarks present different types of
algorithms with different approximation strategies, running
on top of FreeRTOS operating system. ARFT can also be
easily implemented on bare-metal embedded applications as
well as in a more sophisticated OS environment like Linux.
The efficiency of ARFT detection was evaluated under fault
injection emulated on Zynq. Results show that the proposed
technique can reduce the time overhead of DWC at software
level by using approximate computing without compromising
error detection.

This work is organized as follows: Section II presents
the background and related works. Section III introduces the
proposed approximative-based software fault tolerant tech-
nique (ARFT). Section IV provides details of the experimental
methodology used to validate the proposed technique, while
Section V presents and discusses the obtained results. Section
VI concludes the paper providing directions for future work.



II. RELATED WORK AND BACKGROUND

Safety-critical applications, such as those developed to
aerospace systems, need protection against radiation-induced
errors. An enormous set of techniques implemented in
software to protect applications against hardware errors
is presented in the literature. Those are called Software-
Implemented Hardware Fault Tolerance (SIHFT) [6], and
achieve protection with function redundancy and variables
replication. Techniques called Application-Based Fault Toler-
ance (ABFT) are the ones that profit from their individual
application characteristics [7]. ABFT shall be specifically
designed for the application under protection. Therefore, it
is not scalable to a high range of applications and tends to
be costly in design. Both SIHFT and ABFT come at the
cost of an execution time overhead. Real-time systems do
not tolerate execution time overhead, as they have to meet
execution deadlines.

Redundancy methods applied to software at task level
such as Triple Modular Redundancy (TMR) and DWC are
employed in a multitude of systems, both to provide error
detection and masking. DWC techniques are combined with
re-execution methods to provide error masking. This way, an
error can be detected and mitigated before becoming a failure.
DWC techniques have an overhead of two times the execution
time of the original application for pure redundancy and three
times when applying re-execution for error masking. That
overhead can, however, be dealt with using parallelism. Past
works evaluated those methods resilience on parallel software
and showed that, although applying parallelism reduces that
overhead, it has a significant impact on the technique fault
mitigation and error detection performance [8].

In [9], an approach based on task level migration is proposed
for fault tolerance for aerospace FreeRTOS applications. The
technique consists of migrating tasks from a faulty processor
to a fault-free one. The detection of the error is done by
middleware blocks assumed to be fault tolerant. The problem
with that approach is that a high amount of assumptions must
be taken beforehand by the programmer. Decisions (like which
tasks will be migrated to which processor nodes) are made
in the programming phase. Unfortunately, a programmer can
never safely predict which processing nodes will fail. The
approach proposed in this paper, on the other hand, requires no
previous assumptions to be made by the programmer. Because
of that, it is possible to state that the method here proposed
can be considered to be of a more general use than the one
suggested by [9].

In most of the cited works, recovery approaches are pro-
posed to deal with the error. Nevertheless, a plethora of
safety-critical applications may not need recovery. As stated
in [10], real-time systems have to deal with data freshness
requirements, which defines the time interval on which data
is considered updated. For instance, an automatic navigation
system may have an error during its execution, but because
its data freshness has a minuscule time interval, the error will
soon disappear as the algorithm goes on. Because of that, an
error correction procedure is not always necessary. However,
the system shall be aware of the error to put itself in a fail-

safe mode. In those cases, the values of the redundant re-
computations are only used for comparison and error checking.
For that reason, it is not necessary for the redundant task to
always have an exact output value.

III. THE PROPOSED FAULT MITIGATION APPROACH

This paper proposes a fault tolerance method based on
approximative redundancy. In a regular software redundancy
at task level, the application to be protected is completely
replicated, which may lead to a high-performance cost. This
work implements redundancy without full replication of the
original task, reducing the execution time for many types of
applications.

The approximative redundant fault tolerance (ARFT)
method uses approximative redundancy to provide fault tol-
erance with less overhead than other redundancy techniques.
The redundancy is not implemented as a hard copy of the
to-be-protected code. Instead, it is replicated and modified to
achieve more performance in detriment of exactitude, with ap-
proximative computing. Because the approximative redundant
task is used only to error verification and its outputs are not
to be used as final application result, it can be programmed to
be faster and less accurate. Thus, the redundancy overhead is
reduced. ARFT consists of duplicating the task to be protected,
executing both tasks, and comparing the results. If the results
difference is higher than a given variation tolerance, a warning
flag is activated, providing the system with the knowledge of
the error. The designer may use this warning flag to implement
error-correction functions or other safety measures to assure
the system reliability.

Another reason to focus the approximate task on perfor-
mance instead of accuracy is reliability. Execution time has a
negative effect on fault tolerance. When exposed to radiation,
applications with higher execution times are more prone to
errors [11]. Having a faster redundancy task improves both
the fault mitigation capacity and the technique’s performance.
Using approximate computing for fault tolerance is also in-
teresting for means of reliability because, as shown in past
works, this kind of computation can be naturally fault-tolerant
[4].

Approximative computing can be deployed in several ways,
from specialized hardware to software modification [12]. Most
of the traditional techniques for approximative computing
today make use of neural networks implemented on FPGAs.
Programmable logic tends to be more susceptible to radiation
errors than hardcore processors [13]. Therefore, for safety-
critical systems, software-based approximation running on
hardcore processors is preferable over programmable logic im-
plementations or softcore processors. Software approximation
approaches typically improve performance by loop perforation
[14] or reducing the usage of costly instructions. A myriad of
software methods for approximative computing is available in
the literature [15], [16]. ARFT’s proposal is to use any of those
software approximations to implement an ideal redundancy,
with only the necessary accuracy and the best performance
possible. The approximation strategy to be used depends on
the application to be protected. Some algorithms are better
approximated in one way than another.



Init TASK 

t1

SAN CKR
ARFT

t2 t4 Timet3

Init TASK CKR
DWC 

TASK 

t5

Application Deadline 

Fig. 1. ARFT Compared With DWC Functional Flow.

The ARFT methodology is a pure software approach to fault
tolerance and can, therefore, be deployed in any hardware con-
figuration, with none to little modification. In this work, ARFT
is tested on an ARM-A9 embedded in the Zynq-7000 APSoC
(detailed in Section IV-A). ARFT is intended for single-core
processors and makes use of no parallelization strategy. When
using sequential applications on single-core processors, the
overhead caused by software redundancy becomes evident. In
those cases, a method capable of providing fault tolerance
with minimum cost is desired. It is particularly the case
for real-time systems, which need to respect strict deadlines.
Those systems shall make great use of ARFT. Such con-
figuration highlights the performance improvement of using
approximative redundancy instead of full redundancy. Figure
1 presents the execution flow of ARFT running a FreeRTOS
task to be protected (TASK) compared with a traditional DWC.
ARFT begins by executing the approximative redundancy task
(called sanity, SAN) at t2, just after TASK finishes. At t3, a
checker (CKR) compares both outputs taking into account the
predefined acceptable difference between the values, which
is different for each application (defined at Section IV-B for
each benchmark). If the difference is higher than this given
threshold, an error flag is raised, warning the system that the
result is not to be trusted. It is clear by Figure 1 that, compared
with a traditional DWC approach, ARFT is capable of safety
meeting a deadline (which is a very commonly required by
safety-critical systems).

IV. EXPERIMENTAL METHODOLOGY

The ARFT method shall be evaluated on performance, fault
catch rate and error correction capacity. To acquire that data,
this work studies soft-errors that affect only the processor’s
registers and memory. For that purpose, fault injection ex-
periments are performed by emulation in the studied board
affecting only the defined sensible region.

A. The Zynq All-Programable SoC

In this work, ARFT is implemented on the COTS Zynq-
7000 APSoC, designed by Xilinx with 28 nm technology.
Nevertheless, the proposed fault injection test and error clas-
sification are generic and extendable to other APSoCs. The
Zynq board has embedded a high-performance dual-core ARM
Cortex-A9 processor with two cache levels, alongside with an
FPGA based on the Xilinx 7-Series with approximately 27.7
Mb configuration logic bits and 4.5 Mb Block RAM (BRAM).

ARFT is implemented in the processor subsystem (PS) part,
that is, the ARM processor, while the fault injection system
uses the programmable logic (PL) part, as will be detailed
further. The dual-core 32-bit ARM Cortex-A9 processor runs
a maximum of 667 MHz. It counts with two L1 caches (data
and instruction) per core with 32KB each, and one L2 cache
with 512KB shared between both cores. A 256 KB on-chip
SRAM memory (OCM) is shared between the PS and the PL,
and so is the DDR (external memory interface).

B. Benchmarks

Studying only easy-to-approximate algorithms would not
be realistic concerning real case scenarios (neither would
be studying only hard-to-approximate ones). Therefore, two
groups of benchmarks are presented. In the first group, two
algorithms are proposed: Trapezoid and Newton-Raphson.
Those represent algorithms that have an inherent approx-
imative behavior or can be approximated efficiently, with
techniques such as loop perforation. The second group consists
of benchmark applications for which the generation of an
approximative version is not straightforward. Two algorithms
were chosen to represent this type of applications: Matrix
Multiplication and Cubic. The four benchmarks are presented
and detailed below.

1) Trapezoid: This is the perfect algorithm to be approx-
imated by loop perforation. That is because the Trapezoid
rule (numerical calculation of the area under a curve, i.e., an
integral) is itself a successive method. For each iteration of
the algorithm, the execution comes closer to a result of a great
exactitude. By loop perforation approximation, it is possible
to obtain a result with an acceptable exactitude with fewer
iterations. In this work experiments, the approximative version
of trapezoid achieves a result that differs from the original one
in 1× 10−1 (module).

2) Newton-Raphson: Similar to Trapezoid, this benchmark
is a perfect example of how loop perforation can be used in
approximate computing. It finds the zero of a function by
employing the Newton-Raphson method. The difference be-
tween this benchmark and Trapezoid is that Newton-Raphson
converges much quicker to the correct answer. Because of that,
the complete and the approximative versions of this algorithm
will have a smaller difference in the number of iterations than
the Trapezoid implementations. The approximated version of
newton-raphson achieves a result that differs from the original
one in 1× 10−3 on the worst case.

3) Matrix Multiplication: Given the nature of matrix multi-
plication, it is not an easy to approximate algorithm. There is,
however, ways to do it. One is limiting the precision of data
(e.g. using float precision instead of double). In this work,
a matrix multiplication using double precision is presented
as a non-approximated version. The approximated version is
the same multiplication implemented with the use of float
precision. In the architecture of the studied processor, double
data uses 64-bit, while float uses 32-bit data. The outputs of the
matrix multiplication using float precision differs from double
precision version at a maximum of 0.23 of modular difference.



TABLE I
BENCHMARKS DETAILS

Application
Execution
Time [cc]

Executed
Instructions [#]

Processed
Data Size [kB]

Register
Usage [%]

Approximation
Strategy

Trapezoid
Standart 4482792 3944856 102.800 75 -

Loop PerforationApproximated 1036678 953744 102.800 75

Newton-Raphson
Standart 546250 267662 0.818 56.25 -

Loop PerforationApproximated 434310 299674 0.818 56.25

Matrix Multiplication
Standart 2135490 277613 9.600 37.5 -

Data PrecisionApproximated 1995270 259385 4.800 37.5

Cubic
Standart 448118 282314 8.192 75 -

Data PrecisionApproximated 457186 288027 4.096 75

4) Cubic: This application comes from the automotive
package of MiBench [17]. It is based on the MiBench bench-
mark called ”Basic Math”, which consists of calculations
of cubic equations solutions, integer square roots, and angle
conversions. For this benchmark, however, only cubic equa-
tions solutions are executed. Approximating those calculations
shows the same problem of Matrix Multiplication benchmark.
The difference is that, in this case, many trigonometrical
functions such as sin and cosine calculations are deployed,
which are by themselves already approximative calculations.
Because of that, using a less precise data representation is
believed to have a higher impact on the algorithm outputs. This
application is approximated following that same strategy from
Matrix Multiplication. The approximated version of cubic
achieves a result that differs 1× 10−6 in module from the
original one at the worst case.

Table I presents important details of the benchmarks, such
as execution time (in clock cycles) and the amount of data pro-
cessed by them. The “executed instructions” column presents
the executed instructions count. It is based on the number
of clock cycles and the instructions per clock cycle of a
given benchmark. The “register usage” column presents the
percentage of registers used by the application, concerning the
general purpose ones (the same where the faults are injected).
This data is important, given that this work injects faults in
those registers, as it will be further detailed.

C. Fault Injection and Error Classification

The fault injection experiments are performed on the Zed-
Board, a Zynq-7000 APSoC board. Figure 2 shows the experi-
ment setup environment. The ZedBoard and the Power Control
are connected to the host computer. The USB-TTL Converter,
responsible for transmitting the serial data, is connected to the
ZedBoard and the host computer. The adopted methodology
follows the same scheme presented in [18]. The system
consists of the following modules:

• Injector Module: Intellectual property (IP) designed in
hardware description language (in this case, VHDL) and
implemented in the FPGA layer of Zynq. It is responsible
for performing the fault injection procedure presented in
Figure 3, to be detailed further.

• Power Control: Electrical device in charge of power up
the board in each injection cycle.

• System Controller: Software application running on a host
computer responsible for Power Control management. It
also saves the fault injection logs, which are received by
serial communication.

The injector module injects bit-flips on the processor’s reg-
ister file. The affected ARM registers are the general-purpose
ones, from R0 to R12, and the specific ones, which are the
Stack Pointer (SP), Link Register (LR), and Program Counter
(PC). The faults are injected using an interrupt mechanism,
which locks the processor and applies an XOR mask to the
target register, provoking a bit-flip. The injection time, target
register, bit to be flipped, and processor core where the fault
will be injected are randomly defined. The injection time is
also randomly determined, being a random point between the
start and the finish of the execution. It is intended to simulate
real scenarios, where the fault can affect the system any
moment during the application execution. Figure 3 presents
a procedure flow performed by the injector module. First,
the injector is configured with all the random injection data
defined by the ARM CPU0, as generating random numbers
in FPGA logic has a high complexity. Once configured, the
injector counts clock cycles until it reaches the injection time.
Next, an interruption is launched to inject the bit-flip in the
processor register defined in the configuration. In the end,
the module compares the application results with a golden
execution output (that is, with no fault injected) to check for
errors. Errors are classified as UNACE (no error), SDC (silent
data corruption, when there is an error in the output), and
HANG (application not finished successfully).

When working with approximated values, it is expected that
the applications applying such approximations are capable of
tolerating them. However, that may not be the case. For many
safety-critical applications, there is no such margin of tolerated
error allowed. ARFT is expected to achieve the same fault
detection rate of a classical DWC method with less overhead
when applied to applications capable of tolerating a small
deviation from expected results.

V. RESULTS AND DISCUSSION

ARFT is evaluated by comparing its SDC detection
rates with the ones from an ordinary redundancy method.
The results are compared with single-core complete (non-
approximative) redundancy, which is a traditional DWC. The
execution overheads from ARFT and DWC are also presented.



ZedBoard

Zynq-7000
USB-TTL Converter

Power Control

Fig. 2. Experiment setup view

Fig. 3. Fault injection procedure flow [18]

The assessed results are shown on Table II. Two types of DWC
are presented. The first one checks for errors using a precise
checker, that is, by simply comparing the results. The other
one uses an approximate checker that compares the results
taking into consideration an acceptable threshold (the same
employed by ARFT and presented at Section IV-B for each
application). Because ARFT works with approximate values, it
always uses an approximate checker. Subsection V-A presents
the performance results for ARFT on different applications.
A critical analysis of these results is developed in subsection
V-B.

A. ARFT Performance

Table II presents the performance of ARFT and traditional
DWC methods. Overhead values are shown concerning the
unprotected version of the algorithm, so an overhead with the
value equal to 2 means that the benchmark spent two times
the execution time of the unprotected version.

Results show that ARFT detected the same percentage of
SDCs of the DWC using the approximated checker for all
the benchmarks, except for Cubic. On the Cubic application,
not all the SDCs were detected: even DWC with precise
checker is not capable of detecting all errors. Nevertheless,
ARFT was still capable of achieving a detection ratio close
to 100%. Using approximate checker did not impact the
error detection rate of traditional DWC. Data shows that
both Trapezoid and Newton-Raphson presented a significant

TABLE II
ARFT FAULT DETECTION AND PERFORMANCE ANALYSIS

Application Version SDC Detection Execution
OverheadPrecise

Checker
Approx.
Checker

Trapezoid
DWC 100 100 2.02
ARFT - 100 1.24

Newton-Raphson
DWC 100 100 2.12
ARFT - 100 1.93

Matrix
Multiplication

DWC 100 100 2.09
ARFT - 100 2.05

Cubic
DWC 98.94 99.44 2.30
ARFT - 98.28 2.26

improvement on overhead using ARFT. Nevertheless, even
though ARFT achieved an excellent SDC detection on the
Matrix Multiplication benchmark, there was a minimal gain
on overhead. The same applies to the Cubic benchmark.

B. Critical Analysis of the Obtained Results

On almost all benchmarks, ARFT overhead is smaller than
the DWC with the precise checker. The results show that the
expectations ARFT were realistic.

The overhead reduction of the Newton-Raphson benchmark
is not as remarkable as the one from Trapezoid. As explained
at Section IV-B2, Newton-Raphson’s approximative version is
not much different from its complete counterpart regarding the
number of iterations. Because of that, its overhead is not very
different either. However, it is clear that even for algorithms
like this one, the ARFT method achieves the same efficiency
as complete redundancy with considerably lower overhead.

The results from Matrix Multiplication and Cubic show that
approximation by changing data precision does not highly
impacts the performance. An analysis of the benchmark code
easily explains it. The Cubic benchmark makes use of math
functions from the math.h C library. Those functions return
double type values. As explained in section IV-B4, this bench-
mark was approximated by changing the data types from
double to float. Because of that, the usage of the math.h
functions imply in type conversions during the execution,
causing performance loss. It is, however, important to notice
that the used fault injection system always injects one fault per
execution, and only on registers. Because of that, the amount
of data being used and the application execution time has little
impact on fault tolerance in this work.

Past works that examined fault tolerance under radiation
proved that the application cross-section is profoundly influ-
enced by the size of memory in use and execution time [19]
(which is a behavior not observable in this work experiments).
Both Cubic and Matrix Multiplication benchmarks are pro-
foundly affected by the size of their inputs and computed data.
The approximation by data precision implies a considerable
reduction of the processed data size, as shown in Table I.
Therefore, it is reasonable to consider that if tested by a
radiation experiment, those algorithms, making use of ARFT,
would present better fault detection than an ordinary DWC. In



light of that, the low overhead reduction presented by ARFT
for those applications is an acceptable burden.

The fact that the approximate checker does not impact the
SDC detection of DWC indicates that approximation may be
acceptable for fault tolerance purposes. It shows that faults
usually provoke errors of medium or significant magnitude.
Because of that, approximation may be used as means of ac-
celerating the fault detection without reducing fault coverage.
Errors may occur not only in the thread to be protected but
also on the redundant task causing false detections. Taking it
into consideration, another positive impact of approximative
computing on fault tolerance is that it can be less prone to
errors [4], reducing the number of false positives that may be
present on conventional redundancy techniques.

It is clear that the approximation strategy is crucial for
the overhead reduction. The results show that applications
using loop perforation to approximate the code presented a
much higher execution time overhead decrease than the ones
that used data precision approximation. Both approximation
methods seem to achieve the same SDC detection. However,
the reduction in processed data size obtained by data precision
approximation (Table I) needs to be taken into account: not
only because of the behavior it may present under radiation
experiments, but also because of resource usage. Some em-
bedded systems have limited resources, making a full DWC
impossible. Due to the reduced memory usage of ARFT
with data precision approximation, it can be implemented on
systems where a classic error check mechanism usage would
be impossible. If data precision approximation were applied
to both the original and the redundancy task, ARFT would
provide complete SDC detection with no memory overhead
(comparing with the execution of a single task with double
precision computation).

VI. CONCLUSION

This work presented a technique which uses approximative
computing for error detection purposes. ARFT is capable of
detecting the same amount of error as the ordinary duplication
with comparison method with less overhead for most cases.
Results show that approximative computing can be safely used
for fault tolerance means and present good performance. A
previous analysis of the code to be protected is enough to
unveil its protection capacity by this technique.

A myriad of algorithms used on safety-critical systems has
an approximative output nature, making small variances in
output acceptable. Variables such as velocity, acceleration and
wind direction are critical for an avionics system, yet their
values are approximations. Critical systems’ tasks making use
of this kind of variables (or outputting them) arise as suitable
candidates for protection with ARFT.

Compared to traditional redundancy check techniques,
ARFT was able to achieve at least the same level of error
detection. Despite the need for an in-depth study of its
radiation behavior, data presented in the literature indicate
that ARFT would rise as a better error detection technique
than ordinary (and approximated) DWC. Future works include
repeating the tests on real radioactive environments to achieve
more reliable results.

REFERENCES

[1] M. Pignol, “Cots-based applications in space avionics,” in 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010), March
2010, pp. 1213–1219.

[2] G. K. Saha, “Software based fault tolerance: A survey,” Ubiquity,
vol. 2006, no. July, pp. 1:1–1:1, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1147994.1147995

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1–6.

[4] G. S. Rodrigues and F. L. Kastensmidt, “Evaluating the behavior of
successive approximation algorithms under soft errors,” in 2017 18th
IEEE Latin American Test Symposium (LATS), March 2017, pp. 1–6.

[5] Xilinx. (2017) Zynq-7000 all programmable soc overview. [Online].
Available: http://xilinx.com/

[6] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, “Soft-
error detection using control flow assertions,” in Proceedings 18th IEEE
Symposium on Defect and Fault Tolerance in VLSI Systems, Nov 2003,
pp. 581–588.

[7] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, June 1984.

[8] G. S. Rodrigues, F. Rosa, . B. de Oliveira, F. L. Kastensmidt, L. Ost,
and R. Reis, “Analyzing the impact of fault-tolerance methods in arm
processors under soft errors running linux and parallelization apis,” IEEE
Transactions on Nuclear Science, vol. 64, no. 8, pp. 2196–2203, Aug
2017.

[9] M. Fayyaz and T. Vladimirova, “Fault-tolerant distributed approach to
satellite on-board computer design,” in 2014 IEEE Aerospace Confer-
ence, March 2014, pp. 1–12.

[10] E. P. de Freitas, M. A. Wehrmeister, E. T. Silva, F. C. Carvalho, C. E.
Pereira, and F. R. Wagner, DERAF: A High-Level Aspects Framework for
Distributed Embedded Real-Time Systems Design. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 55–74.

[11] F. Restrepo-Calle, S. Cuenca-Asensi, A. Martı́nez-Álvarez, E. Chielle,
and F. L. Kastensmidt, “Application-based analysis of register file
criticality for reliability assessment in embedded microprocessors,”
Journal of Electronic Testing, vol. 31, no. 2, pp. 139–150, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s10836-015-5513-9

[12] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[13] L. A. Tambara, P. Rech, E. Chielle, J. Tonfat, and F. L. Kastensmidt,
“Analyzing the impact of radiation-induced failures in programmable
socs,” IEEE Transactions on Nuclear Science, vol. 63, no. 4, pp. 2217–
2224, Aug 2016.

[14] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 124–134.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025133

[15] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic optimization
of floating-point programs with tunable precision,” SIGPLAN
Not., vol. 49, no. 6, pp. 53–64, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2666356.2594302

[16] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C.
Rinard, “Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels,” in Proceedings of the 2014
ACM International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’14. New
York, NY, USA: ACM, 2014, pp. 309–328. [Online]. Available:
http://doi.acm.org/10.1145/2660193.2660231

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[18] Á. B. de Oliveira, L. A. Tambara, and F. L. Kastensmidt, Exploring
Performance Overhead Versus Soft Error Detection in Lockstep Dual-
Core ARM Cortex-A9 Processor Embedded into Xilinx Zynq APSoC.
Cham: Springer International Publishing, 2017, pp. 189–201.

[19] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766–786, April 2014.


