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A B S T R A C T

In this work, a WS2 nanosheet/graphite microfiber hybrid electrode has been fabricated by in situ synthesis of
WS2 nanosheets on the surface of graphite microfibers. The WS2 nanosheets possess an excellent electrocatalytic
oxidation response towards adenine and guanine that encourages the adsorption of nucleobases and charge
transfer at the surface of the microfibers. The WS2 nanosheet/graphite microfiber hybrid electrode shows high
sensitivity and selectivity for the detection of adenine and guanine. This hybrid microfiber electrode represents
an excellent candidate platform for development of an electrochemical biosensor due to its low cost, flexibility
and 3D morphology.

1. Introduction

The analysis of nucleobases is critical in the life sciences, especially
in the diagnosis of infectious diseases and the study of genetic muta-
tions. They store and transmit biological information and can influence
various genetic conditions such as metabolic disorders, blood diseases,
vision and hearing loss or neurodegenerative diseases [1,2]. Electro-
chemical methods are considered to be the most convenient and effi-
cacious techniques for detecting nucleobases because they exhibit ex-
cellent sensitivity, give quick results, and are cost effective [3–9]. P.
Zuman et al. first reported the electrochemical activity of nucleobases
in 1955 [10]. However, nucleobases have a weak direct electron
transfer capacity, and exhibit quite weak electrocatalytic oxidation
ability. High catalytic potentials can adversely affect detection by
electrochemical means [11–13]. Therefore, nanomaterials such as
graphene, metal nanoparticles and TiO2 have been employed to modify
electrodes in order to improve their electrochemical sensing perfor-
mance [14–18].

Due to their unique physical and chemical properties, nanomaterials
based on 2D layered transition metal dichalcogenides (TMDs) have
attracted much attention in recent years, particularly for applications in
sensing [19–21]. Tungsten disulfide (WS2) consists of S-W-S sandwiches
in a trigonal prism configuration. WS2 nanosheets produced by ex-
foliation from the bulk material or fabricated via hydrothermal
methods have been used in gas sensors and biosensors, among other

applications [22–24]. In particular, the interaction of DNA and nu-
cleotides with TMDs has continued to attract much scientific attention.
It has been reported that density function theory (DFT) calculations
show that the binding energy between a single nucleotide and MoS2

decreases in the order G > A > C > T. The average binding free
energy for different single nucleotides A, T, C, G on the MoS2 surface is
about 2.29 kcal/mol [25]. In particular, strategies for detecting DNA
using either a single WS2 nanosheet or a few layers of nanosheets have
been thoroughly discussed. DNA can be adsorbed onto WS2 via van der
Waals forces. WS2 is capable of discriminating between single-stranded
DNA and double-stranded DNA, which may prove useful in electro-
chemical or fluorescent sensors for biomedical applications. It has also
been found that nucleobases could be physisorbed onto WS2 due to van
der Waals interactions [26,27]. Adsorption of nucleobases on mono-
layer WS2 changes its photoluminescence emissions, which opens the
door for the development of label-free optical sensing approaches for
DNA sequencing [28]. To the best of our knowledge, the study of WS2

nanosheets for electrocatalytic oxidation of nucleobases has not yet
been reported, although layered WS2 nanosheets have been widely
studied as electrocatalysts due to their large surface area and excellent
electron transfer processes compared to other inorganic nanomaterials
[24,25].

TMD catalysts are commonly supported on carbon materials (e.g.
carbon nanofibers, carbon nanotubes, graphene, mesoporous carbon,
carbon foam) [29–34]. L. Wang et al. synthesized 3D carbon foam
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electrodes coated with MoxW1−xS2 alloys with different Mo/W ratios.
The electrocatalytic activity towards the hydrogen evolution reaction
(HER) can be tuned by varying the ratio of transition metals in the
compounds [31]. B. Seo et al. investigated the growth of TMDs (WS2,
MoS2) on carbon surfaces inside confined nanopores. Experimental
studies and adhesion energy calculations suggested that WS2 and MoS2

favour basal and edge bonding modes with the carbon support, re-
spectively [32]. The electrochemical activity and catalytic properties
may vary depending on the energy of adhesion between the TMDs and
the various supports [34]. Graphite microfibers have attracted much
attention due to their unique 1D fibrous morphology and high elec-
tronic conductivity. Small flexible fiber electrodes can potentially be
used in vivo. Furthermore, instead of relying on physical adsorption of
nanomaterials on glassy carbon, gold or other solid electrodes, nanos-
tructures can be synthesized in situ on the surface of the microfibers,
resulting in a larger electrochemically active surface area, higher uti-
lization efficiency, superior electron transfer and excellent stability.
Electrochemical biosensors based on nanostructured hybrid microfiber
electrodes have been developed for DNA, glucose and H2O2 detection
[35–37].

In this work, we have produced WS2 nanosheets in situ on graphite
microfibers via a hydrothermal method and obtained a WS2 nanosheet/
graphite microfiber hybrid material. The resulting WS2 nanosheet/
graphite microfiber electrode combines the electronic conductivity and
fibrous morphology of graphite fibers with the high electrocatalytic
ability of WS2, and has been used as the working electrode in the
electrocatalytic oxidation of adenine and guanine. It is assumed that the
WS2 nanosheets play an important role in the enhanced charge transfer
process and surface adsorption of nucleobases. The fibrous WS2 na-
nosheet hybrid electrode is considered to be a promising candidate for
detection of nucleic acids in in vivo diagnosis and molecular biology
research.

2. Experimental

2.1. Reagents and materials

All the reagents used here are commercially available and of ana-
lytical grade. WCl6 and thioacetamide (C2H5NS) were bought from
Sigma. Adenine and guanine were obtained from Aladdin (Shanghai,
China). Phosphate buffer solutions (PBS, 0.1 M) were prepared using
Na2HPO4 and NaH2PO4 and were adjusted to pH 7.0. Commercial
graphite microfibers were obtained from Toray (M40-JB-12K) (Japan).

2.2. Preparation of WS2 nanosheet/graphite microfiber hybrid material

The surfaces of the graphite microfibers were first cleaned by so-
nicating sequentially in acetone, 3.0 M HNO3, 1.0 M KOH and distilled
water for several minutes, followed by drying at 60 °C overnight [38].
In a typical experiment, WS2 nanosheets were then formed on the
graphite microfibers through a hydrothermal method [39]. 3 mM WCl6
and 15 mM C2H5NS were dissolved in 50 mL DI water and stirred at
room temperature for 60 min. This solution and about 10 cm graphite
microfibers were then transferred to a 50 mL Teflon-lined autoclave and
heated to 265 °C and kept for 24 h. After cooling to room temperature,
the hybrid graphite fibers were washed using DI water, and dried at
50 °C for 6 h, producing the WS2 nanosheet/graphite microfiber hybrid
material.

2.3. Materials characterization

The crystalline structure of the WS2 nanosheet/graphite microfiber
hybrid was obtained with an X-ray diffraction (XRD) spectrometer (D8-
advance, Bruker AXS, Germany). The morphology of the WS2 na-
nosheet/graphite microfiber hybrid was characterized by a field emis-
sion scanning electron microscope (FESEM) (HITACHI S8020, Japan)

and transmission electron microscope (TEM) (JEM 2100F, Japan). The
composition of the WS2 nanosheet/graphite fiber hybrid was analysed
by an energy-dispersion spectroscope (EDS, Oxford link system), which
was equipped with SEM. Raman spectroscopy was carried out using the
532 nm excitation line (LabRAM HR Evolution, HORIBA). X-ray pho-
toelectron spectra (XPS) were recorded using a K-alpha, Thermo Fisher
Scientific (ESCALAB 250xi).

2.4. Electrochemical measurements

Electrochemical measurements were recorded on a Gamry electro-
chemical workstation (Gamry Reference 3000, America). A standard
three-electrode system was used: Ag/AgCl (saturated KCl) was used as
the reference electrode; a Pt plate (1 cm × 1 cm) was used as the
counter electrode; the WS2 nanosheet/graphite microfiber material was
used as the working electrode. The enrichment of adenine and guanine
was performed at the open circuit and the optimal enrichment time at
the electrodes was found to be 150 s.

3. Results and discussion

The XRD patterns of the WS2 nanosheet/graphite microfiber hybrid
were recorded and compared with those of the bare graphite microfiber
and WS2 separately (Fig. 1A). The diffraction peak of the graphite mi-
crofiber (curve b) centered at 2θ = 25.7 can be assigned to graphite
(JCPDS 65-6212). The JPCDS card of WS2 (denoted as a) showed peaks
at 14.1°, 33.0°, 58.2° corresponding to (002), (100), and (110) planes,
indicating the presence of the WS2 hexagonal phase. The XRD pattern of
the crystalline phase of the WS2 nanosheet/graphite microfiber hybrid
is given in curve c. Apart from the peak at 14.1°, no other new peaks
were observed in the XRD pattern, showing that the nanosheets grow in
the (002) direction. The crystalline structure of the WS2 nanosheet/
graphite microfiber hybrid was further characterized using Raman
spectroscopy (Fig. 1B). The Raman spectrum of the graphite fiber
(curve a) showed typical G and D peaks at 1585 cm−1 and 1350 cm−1,
respectively. The Raman spectrum of the WS2 nanosheet/graphite mi-
crofiber hybrid also showed peaks at 350 cm−1 and 413 cm−1, which
correspond to the E2g and A1g peaks for WS2 (curve b) [40]. The pure
graphite microfiber and the WS2 nanosheet/graphite microfiber hybrid
were also examined using SEM to check the surface morphology. The
graphite microfibers are about 5 μm in diameter and have a smooth
surface (Fig. 1C). The image of the WS2 nanosheet/graphite microfiber
hybrid shows that the graphite microfiber is buried in dense layers of
WS2 nanosheets (Fig. 1D, E). The WS2 nanosheets are randomly con-
nected with each other, forming a porous surface (Fig. 1F). WS2 na-
nosheets were exfoliated from the surface of the microfibers and
characterized using TEM. The TEM images show that the vertical edges
of the WS2 nanosheets possess a layered structure (Fig. 1G). Further-
more, the interplanar distance between the lattice fringes was about
0.62 nm, corresponding to the distance between the (002) planes of
WS2 crystals (Fig. 1H) [41]. The chemical composition of the WS2/
graphite microfiber hybrid was analysed by energy-dispersion spec-
troscopy (EDS). The EDS spectrum is shown in Fig. 1I. The elements S,
C, O, W and Al were detected, which indicated that the WS2 nanosheet/
graphite microfiber hybrid electrode had been fabricated successfully
(Al and O are from the substrate). The molar ratio W:S was calculated to
be 5.69:11.98 (which is approximately 1:2) from the peak intensities
(see insert in Fig. 1I), confirming the stoichiometry of the product.

It is well known that WS2 monosheets can form not only the usual
semiconducting prismatic structure (2H-WS2) but also the less common
distorted octahedral structure (1T-WS2), which exhibits metallic beha-
vior [42]. The 1T-WS2 form has recently been shown to be very efficient
in redox reactions [43]. The chemical composition of the as-prepared
WS2 nanosheets on the graphite fiber was further analysed by X-ray
photoelectron spectroscopy (XPS). Fig. 2A shows two peaks at 32.0 eV
and 34.1 eV for W4f7/2 and W4f5/2 of 1T-WS2, respectively. The
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characteristic peaks of 2H-WS2 are shifted by about 0.9 eV to a higher
binding energy compared to those of 1T-WS2, being located at 32.9 eV
and 35.0 eV, respectively. In addition, WS2 is partially oxidized, as
evidenced by the characteristic peaks of W6+ at 36.0 eV and 38.1 eV.
Fig. 2B shows the high-resolution XPS S2p spectrum. Two peaks are
located at 161.8 eV and 163.5 eV, corresponding to the S2p3/2 and
S2p1/2 of 1T-WS2, respectively. Similarly, it is found that the S2p peaks
of 2H-WS2 are shifted to a higher bonding energy compared with those
of 1T-WS2. The 1T-WS2 and 2H-WS2 coexist in the sample with a ratio
of 2.5/1 (1 T/2H) [31,44]. Furthermore, the composition after the
electrochemical oxidative treatment was also investigated. As shown in
Fig. 2C and D, the XPS peaks show no obvious change compared with
those recorded before the electrochemical oxidative treatment, in-
dicating that the WS2 nanosheet/graphite microfiber hybrid electrode
has excellent stability.

The electrocatalytic oxidation of adenine and guanine at the WS2

nanosheet/graphite microfiber electrode was explored by cyclic vol-
tammetry (CV). Fig. 3A shows the CVs recorded at a graphite microfiber
electrode and a WS2 nanosheet/graphite microfiber electrode in 0.1 M
PBS at pH 7.0 containing 1 × 10−5 M adenine and 1 × 10−5 M guanine
at a scan rate of 100 mV s−1. At the graphite microfiber electrode, two
broad oxidation peaks were observed at +0.73 and + 1.03 V, corre-
sponding to the electrochemical oxidation of adenine and guanine, re-
spectively. However, two well-defined oxidation peaks for adenine and
guanine were observed when using the WS2 nanosheet/graphite

microfiber electrodes. Note that these two peak potentials are about
90 mV and 70 mV more negative than those at the graphite microfiber
electrode, indicating the catalytic activity of the WS2 nanosheets to-
wards the oxidation of adenine and guanine. In addition, the peaks with
higher currents at the WS2 nanosheet/graphite microfiber electrode are
much sharper than those at the graphite microfiber electrode, in-
dicating the good electrocatalytic oxidation behaviour of WS2 na-
nosheets towards adenine and guanine. The highly electrocatalytic ac-
tivity of the WS2 nanosheet/graphite microfiber electrode may be due
to the layered WS2 nanosheets increasing the surface area of the mi-
crofiber electrode and promoting electron transfer. The CVs of adenine
and guanine at the WS2 nanosheet/graphite microfiber electrode were
then recorded at various scan rates (Fig. 3B). The oxidation peak cur-
rents increase linearly with the scan rate from 50 mV s−1 to
300 mV s−1, which suggests that the electrocatalytic oxidation of ade-
nine and guanine at the WS2 nanosheet/graphite microfiber electrode is
a surface-controlled process (Fig. 3C) [13].

The electron transfer kinetics and electrocatalytic ability of transi-
tion metal dichalconides can be improved using carbon supports or
electrochemical treatments. X. Chia et al. demonstrated an electro-
chemical method to alter the electron transfer kinetics and catalytic
properties of MoS2 films, in which a 2H-1T transition was observed on
applying an electrochemical potential. We therefore investigated the
composition of the WS2 nanosheets after the electrochemical detection
of adenine and guanine. High-resolution XPS spectra recorded in the

Fig. 1. (A) XRD patterns of (a) WS2 (JCPDS 84-1398), (b) graphite microfiber (JCPDS 65–6212) and (c) WS2 nanosheet/graphite microfiber. (B) Raman spectra of (a)
graphite microfiber and (b) WS2 nanosheet/graphite microfiber hybrid. SEM images of (C) graphite microfiber, (D, E) WS2 nanosheet/graphite microfiber hybrid and
(F) high resolution SEM image of WS2 nanosheets. (G, H) TEM images of WS2 nanosheets. (I) EDS spectrum of WS2 nanosheet/graphite microfiber on Al substrate.
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W4f and S2p regions are shown in Fig. 2C and D. From the XPS results,
it is evident that the surface chemistry remains practically unaltered
during the electrochemical treatments, which suggests that the varia-
tion in electrocatalytic behaviour is caused by electronic changes rather
than surface changes [45]. Electrochemical treatment of the WS2 na-
nosheets/graphite microfiber electrode may be a good topic for future
research.

Fig. 4A displays the differential pulse voltammograms (DPV) of
2 × 10−5 M adenine and 2 × 10−5 M guanine in 0.1 M PBS solution
(pH 7.0). The DPV peak potential of guanine at a graphite microfiber
electrode is located at 0.75 V. In the case of the WS2 nanosheet/graphite
microfiber electrode, the peak potential is negatively shifted to 0.66 V.
For adenine, the oxidation peak potential on WS2 nanosheet/graphite
microfiber electrodes is also negatively shifted to 0.96 V. Compared to
the current response of a bare graphite microfiber electrode (curve c),
the oxidation peak currents of adenine and guanine obtained at a WS2

nanosheet/graphite microfiber electrode (curve d) are obviously
higher. The enhancement in the peak current and the negative shift of

the oxidation potential are clear evidence of the electrocatalytic activity
of WS2 nanosheets towards the oxidation of guanine and adenine.

The determination of adenine and guanine at a WS2 nanosheet/
graphite microfiber electrode was explored by DPV. The peak currents
increased with the increasing concentration of adenine and guanine
(Fig. 4B). Fig. 4C shows the linear relationship between the peak cur-
rents and the concentration of adenine and guanine. A good linear re-
sponse to either adenine or guanine concentrations is obtained within
the range from 0.5 μM to 20 μM (correlation coefficient 0.993). The
detection limits based on S/N = 3 for adenine and guanine were cal-
culated to be 5 × 10−8 M and 9 × 10−8 M, respectively. The proposed
WS2 nanosheet/graphite microfiber electrode may therefore be used for
the sensitive determination of adenine and guanine.

The effect of interfering species was investigated by adding different
types of ions into the PBS containing 2 × 10−5 M adenine and
2 × 10−5 M guanine (Fig. 4D). It can be seen that inorganic ions such as
Mg2+, Ca2+, Zn2+, Cl−, NO3

− and SO4
2− had almost no effect on the

determination of guanine and adenine (signal change < 5.0%).

Fig. 2. High-resolution XPS W4f and S2p spectra of as-prepared WS2 nanosheet/graphite microfiber (A, B) and after the electrochemical detection of adenine and
guanine (C, D).

Fig.3. (A) CV of 0.1 M PBS (pH 7.0) without guanine and adenine at the graphite microfiber electrode (curve a) and WS2 nanosheet/graphite microfiber electrode
(curve b). CV of 0.1 M PBS (pH 7.0) with 1 × 10−5 M guanine and adenine at the graphite microfiber electrode (curve c) and WS2 nanosheet/graphite microfiber
electrode (curve d) (scan rate 100 mV s−1). (B) CV of 0.1 M PBS (pH 7.0) with 1 × 10−5 M guanine and adenine at the WS2 nanosheet/graphite microfiber electrode
at different scan rates; (C) variation of peak currents with potential scan rates.
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The long-term stability of the WS2 nanosheet/graphite microfiber
electrodes was also investigated. These electrodes retained 93% of their
initial current response after 2 weeks stored in pH 7.0 PBS at 4 °C, de-
monstrating that the microfiber electrode retains an acceptable detec-
tion performance for a reasonable time.

4. Conclusions

In this work, WS2 nanosheets were successfully prepared in situ on
the surface of graphite microfibers to form a hybrid WS2 nanosheet/
graphite microfiber material, which was used as the working electrode
for electrocatalytic oxidation of adenine and guanine. The WS2 na-
nosheet/graphite microfiber electrode exhibits good electrocatalytic
oxidation activity towards adenine and guanine due to its good ad-
sorption ability and the charge transfer provided by the WS2 na-
nosheets. The hybrid WS2 nanosheet/graphite microfiber electrode
could detect adenine and guanine with high sensitivity, high selectivity
and good stability. Furthermore, because of its fiber morphology and
flexibility, the electrode has the potential to monitor nucleobases in
some difficult environments, even within a targeted cell or in vivo. We
believe that this hybrid WS2 nanosheet/graphite microfiber electrode
offers a significant new platform for biosensing applications.
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