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Closed-form formulations are difficult to find when the material behavior law is nonlinear. A linear approximation, on the other
hand, has a very narrow range of validity. In this communication, the Normal Form (NF) method is employed to solve a 1-D nonlinear
magnetodynamic problem. The discrete model is formulated in a state-space form suitable for NF applications. The resulting system
is then expanded on a linear mode basis to cubic order. Analytical solutions are obtained using the NF technique and compared to
traditional solutions. The results show the cubic polynomial adequately approximates the problem, and the NF solution is valid for
some range of magnetic field intensity.

Index Terms—Analytical solutions, computational electromagnetism, Eddy currents, diffusion problems, normal form method.

I. INTRODUCTION

THE need to control the efficiency of electrical devices
at the design stage is now a significant consideration.

Consequently, all kinds of losses, including eddy current losses,
must be correctly estimated. Since eddy current losses in
lamination steel are affected by multiple factors such as the
B(H) curve, conductivity, frequency, etc., multi-parameter
models for evaluating the losses are valuable during design.
As a result, closed-form formulations of these losses become
increasingly important.

However, there is no analytical expression to determine the
eddy current losses considering a nonlinear behavior of the
B(H) curve, so a 1-D magnetodynamic problem is handled nu-
merically, which is time-consuming. Furthermore, with closed-
form formulations in view, the numerical technique becomes
insufficient. The Normal Form (NF) method is a promising tool
not yet explored in computational electromagnetism to solve
nonlinear problems. The NF method is applied in mechanical
engineering to derive reduced-order models, especially by
defining nonlinear modes, an extension to the nonlinear regime
of the natural modes of vibration, thanks to invariant manifolds
of the phase space [1], [2], [3]. More recently, it is being
applied to reduce the size of finite element models [4]. It is
also applied to study the nonlinear behavior of stressed power
systems [5], [6]. It is attractive because it leads to an analyt-
ical (closed-form) expression for the solution. Applying this
method to solve a magnetodynamic problem, we can expect to
derive a closed-form expressions, for example, instantaneous
losses.

In this contribution, the application of the NF technique to
solve a nonlinear magnetodynamic problem is studied. The NF
application requires the equation to solve expressed in a state-
space form, with the nonlinear terms polynomials. The original
problem is introduced first. Next, the state-space representation
with nonlinear polynomial terms is derived following by the
NF representation. Finally, the results obtained by the nonlinear
state-space and the NF models are compared to the ones
obtained by the original problem.

II. A 1-D MAGNETODYNAMIC PROBLEM

A. Problem to solve

We consider a 1-D lamination model of thickness e along
the Ox axis, and infinite along the Oy and Oz axes. The field
distribution is symmetric and the conductivity σ is assumed
constant. A magnetic field Hs(t) = Hmax sin (ωt) is imposed
on the surface of the lamination, where f is the frequency and
ω = 2πf . The magnetic field H(x, t) verifies the following
equation:

d2H(x, t)

dx2
= −σ

dB

dt
[H(x, t)] with H(±e

2
, t) = Hs(t).

(1)
The preceding problem has a closed-form solution when the
B(H) curve is linear. The losses can then be determined,
precisely and very quickly. However, when the B(H) curve
is nonlinear, (1) has no analytical solution. An approximation
of the exact solution is then obtained by applying a numerical
method like the Finite Element, the Finite Difference, etc.

B. Discrete and state-space formulations

Let Nx be the number of nodes for the space discretization
and H(t) be the Nx×1 vector of magnetic field H(x, t) values
at the nodes. Applying the Finite Difference method we get:

MH(t) = −K[H(t)]
dH(t)

dt
+Hs(t), (2)

where M and K are Nx × Nx matrices, Hs is a vector
accounting for the boundary conditions on the surface of the
lamination (see (1)). The expression K[H(t)] implies that the
matrix K is a function of H(t). The state-space representation
can be written more concisely as:

dH(t)

dt
= f(H(t), t) + Fext(t), (3)

where the expression of f(H, t) = −K[H(t)]−1MH(t), and
Fext(t) = K[H(t)]−1Hs(t). Applying a numerical scheme
like the Newton-Raphson method, a nonlinear problem is
solved at each time step ti, i ∈ [1, Nt] to obtain H(ti), an
approximation of the vector H(t).



One way to get a closed-form solution of (3) is to linearize
it around the origin. However, as we will see later, the validity
range of a linear approximation is rather small compared to
the range of variation of the magnitude of the magnetic field,
Hmax. A higher-order polynomial expansion can adequately
approximate (3). Then, by applying the Normal Form method,
the new nonlinear problem based on a high-order polynomial
expansion can be transformed into a linear problem. A closed-
form solution of this linear problem can be obtained, leading
to a closed-form of an approximation of our initial nonlinear
problem (1). To calculate the eddy current losses in an electrical
machine defined by a Finite Element model for example, we
have to compute the losses on each element of the mesh of
parts made of lamination. The usual method consist in solving
the 1-D problem in (2) on each element with the evolution of
the magnetic field Hs on the element. This operation could take
time if the number of elements is large. The NF technique may
provide a closed-form solution to calculate the losses, thereby
reducing the calculation on each element and hence the total
losses. The NF technique is discussed in the following section.

III. NORMAL FORM THEORY

In (3), f is a smooth vector function of the entries, H(t).
As noted earlier, the system in (3) can be approximated by a
Taylor expansion around the origin. However, the presence of
a harmonic, time-dependent forcing term, Fext(t), renders the
standard NF application impracticable because the definitions
of time-dependent invariant manifolds are required [2]. To
ease this challenge, we invoke the intuitive state-augmentation
method proposed in [7] to convert (3) to an autonomous system
dH̃
dt = f̃(H̃), free of a time-dependent forcing term. f̃ is the

vectorial function of the augmented state vector, H̃. The state-
augmentation procedure is described next.

A. State-augmentation for realizing an autonomous system

Beginning with (2), let us define a new state variable X1

verifying the following equations.

d2X1

dt2
= −ω2X1 , X1(0) = 0,

dX1

dt

∣∣∣∣
t=0

= ωHmax.

(4)
Define another state X2 = dX1

dt . Therefore,

dX1

dt
= X2, X2(0) = ωHmax, (5a)

dX2

dt
= −ω2X1, X1(0) = 0. (5b)

The system of (5) is written in a state variable form, and
the solution X1 = Hmax sinωt corresponds to the source
term we want to impose on the boundary. Equations (5) are
used to augment (2) to make the system autonomous and fit
for standard NF applications. The augmented system now has
Naug = Nx + 2 differential equations as follows:

 dH
dt

dX
dt

 =

 −K[H(t)]−1M K[H(t)]−1Mc

Mr

 H

X

 , (6)

where X = [X1 X2]
T , Mc is an Nx-by-2 matrix with

Mc(1,1) = 1 and other entries zero, Mr is a 2-by-Nx + 2
matrix with Mr(1,Nx+2) = 1, Mr(2,Nx+1)

= −ω2 and other
entries zero. Note also that the forcing term is applicable only
to the first row. System (6) can now be written more compactly
as

dH̃

dt
= f̃(H̃), (7)

which can be Taylor-expanded around H̃0 =
[
H0 X0

]T
.

H0 is an 1×Nx zero vector and X0 =
[
0 ωHmax

]
.

B. Taylor expansion

Applying a Taylor expansion to each equation of the system
(6) and truncating at the third order, leads to a polynomial
expression of the time derivative dH̃

dt . The i-th entry of the dH̃
dt

is given by:

dH̃i

dt
=

Naug∑
j=1

AijH̃j +

Naug∑
j=1

Naug∑
k=1

F2ijkH̃jH̃k + . . .

Naug∑
j=1

Naug∑
k=1

Naug∑
l=1

F3ijklH̃jH̃kH̃l,

(8)

where H̃i is the i-th component of vector H̃ and, for all
i, j, k, l = 1, 2, . . . Naug:

Aij =
∂f̃i

∂H̃j

∣∣∣∣∣
H̃=H̃0

, F2ijk =
1

2

∂2f̃i

∂H̃j∂H̃k

∣∣∣∣∣
H̃=H̃0

, (9a)

F3ijkl =
1

6

∂3f̃i

∂H̃j∂H̃k∂H̃l

∣∣∣∣∣
H̃=H̃0

. (9b)

We define then A, F2, and F3, respectively as tensors of size
(Naug ×Naug), (Naug ×Naug ×Naug), and (Naug ×Naug ×
Naug ×Naug) corresponding to 1st, 2nd, and 3rd order terms
calculated at the initial point H̃0. Equation (8) can be expressed
compactly as

dH̃

dt
= AH̃+ Γ(H̃), (10)

where Γ(H̃) = F2(H̃) + F3(H̃), with Γ(0) = 0. In the fol-
lowing subsection, the normal form of (10) is derived.

C. Normal form

Let us denote by Ui, and Vi the i-th columns of right
and left eigenvectors respectively, U = [uij ], V = [vij ], the
corresponding matrices and Λ = VTAU = diag(λp), the
diagonal matrix of its eigenvalues, p, i, j = 1, . . . Naug . It has
been assumed that the matrix A is diagonalizable. Utilizing
the transformation:

H̃ = Uy (11)

in (10) and multiplying the result by the left eigenvectors
yields:

dy

dt
= Λy +C2(y) +D3(y), (12)



where
C2(y) +D3(y) = VTΓ(Uy),

or, for all p, q, r, s = 1, 2, . . . Naug , the p-th component is given
by:

dyp
dt

= λpyp +

Naug∑
q=1

Naug∑
r=1

Cpqryqyr + . . .

Naug∑
q=1

Naug∑
r=1

Naug∑
s=1

Dpqrsyqyrys,

(13)

where Dpqrs = F3ijklvipujqukruls and Cpqr =
F2ijkvipujqukr.

NF theory consists in transforming (12) into a system of
linear or semi-linear time differential equations by a nonlinear
near-identity transformation, written as [8]:

y = z+ h2(z) + h3(z), (14)

where z is the state variable in NF coordinate, h2 and h3 are
respectively complex valued quadratic and cubic polynomials
in z with h2jkl and h3jpqr coefficients evaluated such that (12)
is simplified. From (14), the time derivative dy

dt is given by:

dy

dt
=

dz

dt

(
I +

dh2(z)

dz
+

dh3(z)

dz

)
, (15)

For |z| sufficiently small,
(
I+ dh2(z)

dz + dh3(z)
dz

)−1

is invert-
ible and can be approximated with a power series. Therefore,
substituting (15) into (12) yields

dz

dt
= Λz+ F̂(z) +O(|z|4) (16)

where

F̂(z) = C2(z) +D3(z) +Λh2(z)−
dh2(z)

dz
Λz+ . . .

Λh3(z)−
dh3(z)

dz
Λz.

O(|z|4) represents terms of order higher than 3 and are
neglected. In order to remove nonlinear terms from (16), the
second term F̂(z) on the right hand side of (16) is set to zero.
Then, the coefficients of the tensors h2(z) and h3(z) can be
determined as [8]

h2pqr =
Cpqr

λq + λr − λp
, h3pqrs =

Dpqrs

λq + λr + λs − λp
. (17)

It is seen that if the denominators of (17) are near zero
with significant numerators, the value of the the coefficients
of the tensors h2(z) and h3(z) (see (17)) may be very large,
leading to an inconsistent transformation. The nullity of the
denominators results in special relations among the complex
eigenvalues, so-called resonance or near-resonance [8]. Thus,
not all nonlinear terms can be annihilated from (16). The
state-augmentation scheme introduces a complex conjugate
eigenvalue pair due to the forcing frequency, which leads to

resonance, but in our case, the resonant terms are trivial com-
pared to the linear terms and were thus neglected. Therefore,
(16) simplifies to a completely linear system:

dz

dt
= Λz, (18)

which can be solved rapidly to get a closed-form solution

z(t) = z0e
Λt. (19)

The system of (18) has several advantages. Because of the
NF, it is much simpler than the system (8) since it has no
nonlinear terms; it can be truncated to a few relevant modes for
model reductions, and it leads to a more straightforward closed-
form solution. From the expression of z(t), we can calculate
y(t) using (14), then H̃ from (11); finally, we obtain H(t) by
removing X from H̃. It can be noted that with the help of NF,
the cubic polynomial (8) reduces to a linear problem.

IV. APPLICATION TO A 1-D DIFFUSION PROBLEM

We considered a lamination with a thickness e = 1 mm,
a conductivity σ = 6 MS, and the nonlinear B(H) curve
depicted in Fig. 1. To account for symmetry conditions, we
discretized the Ox axis with Nx = 30 nodes and considered
only half of the lamination thickness. We solved (2) using a
time-stepping method with 100 steps per period. The solution
H(t) of (2) is considered the reference solution, denoted
by Href (t). We solved (2) by approximating its equivalent
augmented system with (i) a linear system (i.e. setting the
nonlinear terms in (10) to zero and (ii) a 3rd-order polynomial
(10), which is a pre-requisite for the NF approach. The obtained
H(t) are denoted by Hln(t) and Hpoly(t), respectively. We
solved (2) by the NF method, keeping the same time steps. The
H(t) obtained is denoted by Hnf (t). To evaluate the errors
between the reference and approximate solutions as a function
of the maximum applied field Hmax, we defined the relative
error ϵH for a period as:

(20)ϵH =
|Href (t)−Happrox(t)|

|Href (t)|
,

where Happrox(t) is either Hln(t), Hpoly(t), or Hnf (t) as the
case may be. We simulated three periods for the frequencies
f = 10, 100, and 1000 Hz. We are only interested in the
steady state, which is reached after three periods. We calculated
then the error only on the last period. The error evolution

Fig. 1. B(H) curve.

for the linear approximation is shown in Fig. 2. The curves
show that a very narrow range of validity. If we take tolerance
about 3%, it implies that the linear solution is valid only
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Fig. 2. Relative error for the Linear solution.

up to Hmax = 24 A/m at 10 Hz and about Hmax = 27
A/m at 100 Hz. The above result demonstrates that the linear
system does not effectively approximate the nonlinear problem,
emphasizing the importance of a higher-order approximation.

With cubic approximation, Fig. 3 points that the maximum
ϵH is less than 0.15%, indicating the 3rd-order polynomial is
accurate even when the lamination is saturated. In fact, even for
Hmax = 1400 A/m, which corresponds to a very high level
of saturation (see Fig. 1), the error is lower than 0.15% for all
frequencies. The observed outcome is interesting as it suggests
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that NF application may be promising. In the NF case, Fig. 4
shows an increased range of validity in comparison with the
linear case. Keeping the same error tolerance, the NF solution
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Fig. 4. Relative error for the NF solution compared to linear solution.

is valid only up to Hmax = 100 A/m at 10 Hz, about Hmax =
200 A/m at 100 and 1000 Hz. Though improved from the linear
case, the NF result is far from that of cubic polynomial from
where it was derived. The sources of this discrepancy has to

be investigated in-depth. The inaccuracy could be due to the
limitation of the intuitive state-augmentation method employed
to convert (2) to an autonomous system. The transformation
(14) is near-identity, implying that y0 should be near z0 for
it to be accurate. With Hmax as a part of the initial condition
for the augmented system (see (5)), it is uncertain that the
near-identity transformation will be valid if Hmax becomes
large. Moreover, the intuitive state-augmentation scheme takes
the forcing frequency ω into the state matrix A in a form
that affects its conditioning. A time-dependent NF derivation,
preserving the forcing term, is not impossible and can be
pursued in future to improve the solution.

V. CONCLUSION

In this paper, the NF method was employed to obtain a
closed-form solution to a 1-D diffusion problem. The results
showed that a polynomial approximation ( 3rd order in this
study), a fundamental step for the NF procedure, is accurate.
However, the NF solution has a restricted region of validity.
Being the first investigation of the NF technique in this
field, several future works are envisaged for amelioration. The
accuracy of the cubic expansion suggests the NF analysis can
be improved to obtain a wider-range valid analytical solution
of the diffusion problem. For example, a time-dependent NF
will be pursued via a time-dependent near-identity transforma-
tion such as the one proposed in [9]. Although only a 1-D
scenario was studied, validations on 1-D problems can lead to
extensions to 2-D and 3-D problems.
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