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In this paper, the history, present status, and future of density-functional theory (DFT) is informally
reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists,
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the paper represents a broad snapshot of DFT, anno 2022.
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1 Introduction

What is the status of DFT? Where is DFT heading? What are the
important new developments in DFT and what are the points of
contention? What is DFT?

Such questions are discussed whenever developers and users of
DFT meet — in conferences and workshops, during coffee breaks
and over dinners. We do not expect short, clear answers to such
questions but the discussions and conversations they give rise to
are often informative and entertaining — and different to discus-
sions in publications and presentations. We learn about new ideas
and developments and about failed attempts — a casual remark
may trigger new research or lead to new collaborations. These
discussions are an important reason for travelling to conferences
and something we have missed during the pandemic.

This article is an attempt to bring such discussions to the
printed format — to let prominent workers in the field exchange
views and thoughts about DFT in an open informal manner, mim-
icking the format of a roundtable discussion, but backing up their
statements by arguments and references to the literature. The
end result should be a lively guide to DFT and its development.

The format of the present article is an unusual one, resembling
most closely the Faraday Discussions but not anchored to the talks
presented at a conference. It is to our knowledge the first paper
of its kind in PCCP and the first such paper on DFT. Given its
unusual format, we here describe how it came about.

The initiative for the article was taken by three of the authors,
Andy Teale, Trygve Helgaker, and Andreas Savin. Having received
a go-ahead for the project from the publisher, the three initiators
compiled an initial list of questions about DFT and some tentative
answers. A letter of invitation was then sent out to about hundred
workers in the field, inviting them “to participate in what will
hopefully be an open, thought provoking and informal discussion
about density-functional theory and its applications”. To clarify
the format of the article, the invitation contained a link to the
document with the preliminary questions and answers. A total of
67 accepted the invitation, bringing the total number of authors
to 70.
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In a process involving all authors, the preliminary questions
were revised and preliminary answers removed. A final set of
26 questions was agreed upon: five questions for Density func-
tional Theory (DFT), nine for Density-Functional Approximations
(DFAs), eight for The Future of DFT and DFAs, and four for Com-
municating and Sharing Our Results.

All authors were then invited by the initiators to contribute to
the discussion by providing answers to the questions and also
comments to answers over a six-week period, encouraging dis-
cussions among the authors. Guidelines were provided to ensure
a smooth collaborative process. The end result was an extensive
first draft of the manuscript, running over sixty pages and with
several hundred references. After a two-week internal review in-
volving all authors, an additional two weeks were allotted for re-
sponses to the internal review. The purpose of the internal review
was solely to improve clarity of expression — not to restrict in any
way the freedom of the authors to express their opinions.

The final draft was edited by the three initiators, with the aim
of improving the organization of the manuscript by reordering
contributions and comments, reducing, where possible, repetition
and ensuring a certain level of uniformity in notation. Having re-
ceived a final go-ahead from all co-authors, the final manuscript
was submitted to the journal. All work on the paper was carried
out using BIEX, using the Overleaf platform for ease of collabora-
tion.

The final manuscript provides an interesting snapshot of where
DFT stands today and where it is moving. It covers much of DFT
with an extensive bibliography, but coverage is nevertheless not
exhaustive — classical DFT and multicomponent DFT are not dis-
cussed, for example. The topics covered in the paper reflect the
interests of the authors. Also, the views stated are those of the
individual authors — as such, the paper has no conclusion. In the
spirit of the paper, you are instead encouraged to continue this
exchange of views, by contacting the authors.

2 Density-Functional Theory (DFT)

2.1 What is DFT?
(2.1.1) Savin Density-functional theory (DFT) is more than
existence theorems. I like to make the distinction between

1. a density functional, a number obtained from the density;

2. DFT, the collection of theorems useful for obtaining exact
results with procedures using density functionals, without
having to solve the exact many-body problem;

3. the methods using them - for example, the Kohn-Sham
method; and

4. density-functional approximations (DFAs), the approxima-
tions (or models).

The latter can originate from a choice of a “closed form”, as
mentioned in contribution (2.1.4), or from controllable ones, as
related to the numerical treatment and discussed in contribu-
tion (4.6.7).

(2.1.2) Levy Federico Zahariev and I have recently shown
in ref. 1 that it is useful and variationally valid to employ spin-
free wave functions in the constrained-search formulation when
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deriving certain properties of a functional for the purpose of its
approximation.

In the constrained-search formulation of pure-state (or ensem-
ble) DFT, the kinetic plus electron-electron repulsion energy of
a density is the expectation value of the wave function (or en-
semble) that yields this density and minimizes the kinetic plus
electron-electron repulsion expectation value. That is,

Ees =min | [v(op(rjar-+ £l M
where, with the use of pure-state wave functions,

F(p)z@nit;(W\T+W\T>, 2

where the wave functions are here spin-free, but antisymmetric
in the first M spatial coordinates and separately antisymmetric in
last (N — M) spatial coordinates. The generalization of F[p] to
ensembles should be clear. This generalization ensures convexity.

(2.1.3) Reining One may distinguish different possible as-
pects in this question: What is the message of DFT? Why has it been
successful? How is it used today? What distinguishes it from other
theories that deal with the many-body problem? Some are treated
later, so I think we should focus on the first aspect here. I also
think that, in answering this and many other questions, a glance
at other possible theoretical approaches is healthy, because we al-
ways learn from comparison, so let us try to have such a point of
view whenever possible.

The term DFT expresses the fact that observables in the ground
state at zero temperature can be considered as functionals of the
ground-state density. This can then be extended to thermal equi-
librium etc., as others point out. So, it means that the density is
a sufficient descriptor. It is important to say “can be considered as
a functional of the density” and not “is a functional of the den-
sity”, because this is a choice: observables can also be considered
as functionals of the many-body ground-state wave function, or
the one-body Green’s function, or many other possible choices.
The functional of the many-body ground-state wave function is
very simple (whereas the wave function is not, of course), and a
density functional will in most cases be exceedingly complicated
(whereas the density is simple). Actually, I chose to say “can be
considered as”, because this does not imply that there must be an
explicit expression.

A second important point: the density is not known a priori but
is needed as input to evaluate our density functionals for a given
system and observable. So, as a second aspect of DFT, we also
have to invoke the variational character of the energy as func-
tional of the density, because it allows us to find the density that
is needed to evaluate the functionals for the various observables,
without calculating the density from the many-body wave func-
tion. Otherwise, DFT could probably not compete with other ap-
proaches, not even as an idea — for example, also the external
potential is a sufficient descriptor (for given particle number or
chemical potential), it is simple, and it has the advantage that we
(think we) know it. The variational character also has the benefit
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that a slightly wrong density may still lead to a reasonable energy
(whereas this may not hold for other observables).

So, we may consider DFT as one possibility: one possible way
to formulate the calculation of observables in a many-body sys-
tem. There are many such ways, and we know that for most
systems we will never be able to obtain the exact answer. There-
fore, once we agree that those various ways are in principle exact,
the true question is: how suitable are they as starting points for
approximations? And so, for our purpose here: in which way is
DFT a good starting point for approximations?

(2.1.4) Scheffler Since the development of the quantum
mechanics of atoms and polyatomic systems, it was clear that in-
spection of the ground-state electron density p(r) provides the
information on the total number of electrons, N, the positions of
the atoms, {R;}, and from p(R;) the nuclear charges*~. Thus,
p(r) determines N, {R;}, {Z;} — that is, the many-electron Hamil-
tonian, and therefore, it determines everything. This is the algo-
rithm that defines how to go from the ground-state density to the
energy.

The theorem of Hohenberg and Kohn® and the works by
Levy " and Lieb’ are beautiful mathematical treatments. Impor-
tantly, the basic concept that the ground-state electron density de-
termines everything often enables decisive physical insight. The
often misleading assumption is that the above laid out, exact algo-
rithm “p(r) — ground-state energy (and even everything)” can be
expressed in terms of a closed mathematical expression. Approxi-
mating the algorithm by a mathematical functional, i.e., by a DFA,
suffers from the severe problem that the range of validity of this
functional is typically unclear: We can test its accuracy only by
comparing results with experiments or high-level wave-function
theories. We trust the reliability for systems that we believe (!)
are “similar” to the tested ones, but we don’t know about the ac-
curacy for untested systems. And the term “similar” is not even
defined.

Let me add: I am not aware of a proof that the exact exchange—
correlation-functional exists, beyond the noted algorithm which
requires to solve the many-body Schrédinger equation. How-
ever, and most importantly, the works by Hohenberg and Kohn
and Kohn and Sham have shown the way to develop density-
functional approximations which revolutionized the description
and understanding of poly-atomic systems.

(2.1.5) Kvaal I agree with Savin in contribution (2.1.1) -
in particular. with respect to the claim that a distinction between
exact DFT and approximate DFT is useful. In my opinion, they are
both conceptually and mathematically different. They share the
use of the density and potential as dual basic variables, but oth-
erwise the similarities disappear for me. For instance, a DFA will
have much nicer mathematical properties than the exact univer-
sal functional, as they are built from simple, explicit ingredients,
at least partially necessitated by the need for efficient numerical
evaluation and optimization in order to be useful. On the other
hand, the exact universal density functional has a complicated
implicit definition, leading to a highly complicated functional. A
concrete formulation of this is due to Schuch and Verstraete,

who demonstrated that, if an efficient evaluation of the universal



functional could be done, all NP hard problems would be solvable
in polynomial time. This is highly unlikely. On the other hand,
DFAs are necessarily computable! (It is of course one of the mar-
vels of DFT, that it is even possible to obtain such good results
with so little computational effort.)

Thus, approximate and exact density-functionals are mathe-
matically quite different. The noncomputability of the exact func-
tional indicates that systematically improvable DFAs are probably
possible, in the sense of mathematical a priori error estimation —
that is, mathematical statements towards an approximation’s ac-
curacy in terms of its adjustable parameters, such as basis size.
Therefore, I would like to go out on a limb and say that approx-
imate density functionals are not really approximations to exact
density functionals. They are instead largely independent and,
to a variable extent, semiempirical models that have the common
use of the density as a basic variable as a characteristic. The latter
aspect is for me an answer to the question “What is DFT?”

(2.1.6) Savin Let me comment on the difficulty of obtain-
ing exact functionals in a (semi)local form by choosing a simpler
example. The Hartree density functional,

1
Ey = E/]R3 RSP(l‘l)P(l‘z)/\rl — 1| dridry, 3)

is universal, and not only known but also simple. However, I
don’t see how to replace it by a (semi)local form.” One can argue
that this does not lead to problems, as we compute Ey explicitly.
However, this argument is not valid if we choose to express the
exchange functional, Fx, in a (semi)local form: for one-electron
systems, Ex = —Eyy.

(2.1.7) Yang I agree with Savin on the difficulty of semilo-
cal functionals. The example of the interaction energy of a one-
electron system is a clear case: the exact exchange—correlation
energy has to cancel the classical Coulomb energy.” Otherwise,
the functional has a self-interaction error (SIE).

For many years, the SIE had been assumed to be the main
systematic error in DFAs, related to the incorrect dissociation of
molecular ions, the underestimation of chemical reaction barri-
ers and band gaps of molecules and bulk materials, the overesti-
mation of polymer polarizability, and many other failure of com-
monly used DFAs. *“>** However, the development of two SIE-free
functionals, the BeckeO5 *~ and the MCY2 *~ functionals, changed
the understanding. ** While these two exchange—correlation func-
tionals, nonlocal and also nonsemilocal, are SIE-free by construc-
tion for any one-electron system and perform as well on ther-
modynamics benchmarks as hybrid functionals, they still retain
significant errors in the dissociation of molecular ions, band gaps
of molecules, and polymer polarizability problems, much like the
hybrid functional of B3LYP. The only significant improvement ob-
served is in the prediction of reaction barriers. Thus the system-

« Note that there is a (semi)local form for short-range interactions, e.g., 6(r; —r2),

1 - IR NI
E/RS RQS/J(rl)p(rg)S(rl —r;)dridr, = E/JRS/J(r) dr

atic error is clearly not the SIE.

To describe the systematic error of DFAs, the concept of the de-
localization error has been developed, and it can be understood
from the perspective of fractional charges. >>'° For systems of
small or moderate physical sizes, conventional DFAs usually have
good accuracy in total energies for an integer number of elec-
trons. For a fractional number of electrons, conventional DFAs,
however, violate the Perdew—Parr—Levy—Balduz (PPLB) linear-
ity condition , which states that the exact ground-state en-
ergy E(N) is a linear function of the fractional electron numbers
connecting adjacent integer points. Inconsistent with the require-
ment of the PPLB linearity condition, E(N) curves from conven-
tional DFAs are usually convex, with drastic underestimation to
the ground-state energies of fractional systems. The convex devi-
ation of conventional DFAs decreases when the systems become
larger and vanishes at the bulk limit. However, the delocalization
error is exhibited in another way, in which the error manifests it-
self in too low relative ground-state energies of ionized systems
and incorrect linear E(N) curves with wrong slopes at the bulk
limit. '

To reduce or eliminate the delocalization error, enormous ef-
forts have been devoted to the development of new exchange-
correlation functionals. None of these developments are based
on a semilocal form. All have nonlocal features in the functionals
- see the development of the scaling approaches.

(2.1.8) Yang In addition to the delocalization error charac-
terized by fractional charges, commonly used DFAs also have a
significant systematic static correlation error characterized by the
violation of the constancy conditions on fractional spins. ***">
The combination of the exact fractional charge condition*’ and
the exact fractional spin condition'”>*” leads to the general flat-
plane condition, “° the satisfaction of which is a necessary condi-
tion for describing the band gap of strongly correlated Mott in-
sulators. The flat-plane condition also leads to the conclusion
that the exact exchange—correlation functional cannot be a con-
tinuous functional of the electron density or the density matrix
of the noninteracting reference system everywhere.“". To reduce
or eliminate the static correlation error, one has to use nonlocal
functionals

(2.1.9) Yang The Hohenberg—Kohn work established the
principles for describing a many-electron system from the reduced
variable of its electron density and the Kohn—-Sham work provided
the formulation to use a noninteracting reference system to repre-
sent the electron density of a many-electron system. These works
are the solid foundation of DFT. However, they do not lead to
any systematic pathway to the approximation of the density func-
tional; see contribution (2.1.10). The specific approximations for
the density functionals are the key to all applications.

(2.1.10) Savin : Warren Pickett said during a talk (Brisbane,
1996): “True, the density gives the potential, and this makes the
Hohenberg-Kohn theorem sound so empty, because the potential,
we know it anyhow”. We do not need to start with an unknown
function, p(r), when it is equivalent to using a known function of
the position r — namely, the external potential, v(r).
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(2.1.11) Trickey The Pickett remark quoted by Savin is a
paraphrase of the analysis that Per-Olov Lowdin had attributed
earlier to E. Bright Wilson““. The density cusps tell you the nu-
clear charges, hence the external potential v, hence the Hamilto-
nian. Also see Krylov’s contribution (2.1.23) below.

(2.1.12) Helgaker : Isuppose the nontrivial result is that (for
a given number of electrons) the potential and density are dual
variables — what you can calculate from one, you can calculate
from the other. In particular, we can calculate the energy directly
from the density, bypassing the potential.

(2.1.13) Yang Indeed, the dual formulation of DFT is the
potential-functional theory (PFT).“” PFT establishes two results:
the dual of the Hohenberg—Kohn theorem in terms of the external
potential as the basic variable and the dual of the Kohn—Sham the-
orem in terms of the potential of the noninteracting reference sys-
tem. The first result provides a solution to the v-representability
problem in the original Hohenberg—Kohn work. The second result
provides the theoretical foundation for the optimized-effective-
potential approach for Kohn—Sham calculations with functionals
of orbitals.

(2.1.14) Helgaker I like to think of DFT in terms of
Legendre-Fenchel transforms.’>”" In short, from the concavity
and continuity of the ground-state energy v — E[v] as a function
of the external potential v € L3/2(R3) + L=(R?) follows the exis-
tence of a universal density functional p — F[p] as a function of
the electron density p € L3(R3)NL!(R3) such that

Ev] = iBf (Flp]+ (v|p)) « HK variation principle @
F[p] =sup(E[v] — (v|p)) + Lieb variation principle (5)
v

where (v|p) = [v(r)p(r)dr. Since E and F can be calculated from
each other, they contain the same information, only expressed in
different ways. However, although the Lieb variation is a power-
ful tool for analysis and method development, it is not a practical
tool for computation. Instead, the power of DFT derives from
Kohn-Sham theory, making it possible to approximate F[p] (suf-
ficiently) accurately and inexpensively for densities p of interest
to us by introducing orbitals.

(2.1.15) Levy In contribution (2.1.14), Helgaker states
that he prefers the Legendre-transform formulation. However,
it has been shown that the Legendre-transform formulation is
equivalent to the ensemble constrained search.

(2.1.16) Helgaker It is of course correct that the ensem-
ble constrained-search functional is identical to Lieb’s functional.
With respect to the different formulations of DFT, my view is the
following.

The Hohenberg-Kohn theorem,” often thought of as the cor-
nerstone of DFT, is easy to prove (apart from some subtleties)
but perhaps not so easy to understand intuitively. Hohenberg and
Kohn’s original formulation of DFT is therefore not only restric-
tive in scope (in that it assumes v-representability) but may also
appear a little mysterious.

Levy’s constrained-search formulation” took the mystery out
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of DFT and brought clarity and generality to the field — a major
step forward, indeed. Lieb’s convex formulation,’ on the other
hand, gave DFT beauty and elegance by identifying the density
functional with the Legendre transform (convex conjugate) of the
ground-state energy, thereby placing DFT in a broader mathemat-
ical framework.

It is an important and nontrivial result in DFT that the ensemble
constrained-search functional and the Legendre-transform func-
tional are the same — they are merely complementary formula-
tions of the same thing.’ Together, they constitute the solid foun-
dation of DFT.

(2.1.17) Scheffler I somehow disagree with the last sen-
tence of contribution (2.1.14). Clearly, Kohn—Sham theory has
provided us with significant understanding, for polyatomic sys-
tems, mostly for cases where the physics is largely governed by
the independent-particle kinetic-energy operator (or its orbitals).
However, in general, I would hesitate to call Kohn—-Sham theory
together with the known DFAs “(sufficiently) accurate”. A key sci-
entific problem is that the range of validity of the known DFAs is
unknown, and a reliable estimate of the accuracy and a systematic
convergence of the accuracy are not possible. Our own pragmatic
approach is to perform calculations with different DFAs, and if
the results are similar, we tend to accept them. Otherwise, we are
worried. And, if possible, we check final results by a higher-level
theory — by, for example, coupled-cluster theory.

(2.1.18) Kvaal : Itisinteresting to note, that in Lieb’s convex
formulation of exact DFT, the essence of which is succinctly de-
scribed in contribution (2.1.14), does not rely in any way on the
classical Hohenberg-Kohn theorems to establish duality of p and
v. Neither are the theorems necessary for the derivation of exact
Kohn-Sham theory. While the original Hohenberg-Kohn theo-
rems are now established rigorously, albeit with mild assumptions
on the potential,”* it is my opinion much easier to say that the
Legendre transform of E[v] is the essence and foundation of DFT,
from both a mathematical and a physical point of view. Lammert
has pointed out that the Hohenberg-Kohn density-potential cor-
respondence map is quite ill-behaved.~~ Nearby v-representable
densities may have wildly different potentials, and thus funda-
mental arguments that rely on, for example, some kind of differ-
entiation of v as a function of p are not useful, at least for exact
DFT.

(2.1.19) Laestadius With recent development of unique-
continuation from sets of measure zero, in particular by Gar-
rigue,”” I regard the Hohenberg—Kohn theorem as rigorous, al-
beit with some limitations. In particular, certain LP spaces need
to be consider for the potentials — for example, Theorem 30 in
ref. is a Hohenberg—Kohn result with all previous gaps filled,
although it is not given for L3/2 + L=,

Furthermore, comparing the situation with paramagnetic-
current DFT, where the lack of a (corresponding) Hohenberg—
Kohn theorem has been established by Capelle and Vignale,
it is striking that although (p,j,) determines the nondegenerate
ground state, if degeneracies are allowed, then the level of degen-
eracy is not determined.” A given (p,j,) can therefore be asso-
ciated with two different Hamiltonians (in fact, infinitely many)



that may have different numbers of degenerate ground states. (Of
course, this doesn’t stop the constrained search, which remains
well defined.) In DFT, the extra layer of a Hohenberg—Kohn theo-
rem (not just the first part of a constrained search) rules out such
situations. I view the Hohenberg—Kohn theorem as a gold reserve
— it is perhaps unexciting and just sits in the vault but is, on the
other hand, good to have in certain extreme situations.

(2.1.20) Helgaker Regarding the role of the Hohenberg—
Kohn theorem in DFT, it is interesting to see what role it plays
within the Legendre-Fenchel formulation of DFT. The condition
for a minimizing density in the Hohenberg—Kohn variation prin-
ciple in contribution (2.1.14) is —v € dF[p] where JF|[p] is the
subdifferential of F at p — that is, the collection of potentials with
ground-state density p. Likewise, the condition for a maximiz-
ing potential in the Lieb variation principle is p € dE[v], where
the subdifferential of E at v is the collection of all ground-state
densities of v. In fact, the two conditions are equivalent:

Ep]=F[p]+ (v|p) < —VvEIF[p] < p €IJEP]. (6)

By the Hohenberg-Kohn theorem, the optimality condition of the
Hohenberg-Kohn variation principle takes the form

IF[p] = {=v+c|c€eR}, pisv-representable,
0, p is not v-representable.

This uniqueness of the potential (up to an additive constant) is
not mission critical for DFT but tells us that there is a unique
maximizing potential in the Lieb variation principle (if any).

The optimality conditions in eqn (6) gives some additional in-
sight: the ground-state energy E and the universal density func-
tional F are functions whose subdifferential mappings (“func-
tional derivatives”) are each other’s inverses. Loosely speaking,
therefore, E and F may be obtained from each other by differen-
tiation followed by inversion and integration.

(2.1.21) Salahub Savin’s answer in contribution (2.1.1)
to “what is DFT?” appeals to me because of its breadth. DFT
appeals to different people for different reasons, from the joy of
pure theory, to the satisfying hard work of DFAs, to the romp
of applications across disciplines (when it works), to the agony
when it doesn’t (appealing to masochists, but also affording the
possibility of looping back for improvements). So “DFT” is like an
excellent marketing logo, as recognizable to scientists as the Nike
logo is to the general public. Reasons for buying into DFT are
numerous and varied, as reflected in the sections of this paper.

(2.1.22) Fuentealba : The first time I heard about DFT was in
the eighties in Germany, and people called it “Density Functional
Method”, because the theory is the quantum mechanics and one
cannot have a theory into another one.

(2.1.23) Krylov I first learned about the key ideas behind
DFT before its modern incarnation was developed. Back in the
eighties, chemists were using the Xo method, which was re-
garded by ab initio theorists as semiempirical and, therefore, in-
ferior to then-gold-standard — the full Hartree-Fock method. We
were struggling to understand why an inferior method would give

more accurate results. I think the real insight was to understand
that the Wilson conjecture — the observation that the one-electron
density contains all the information needed to reconstruct the
many-body Hamiltonian (and, therefore, to find the exact solu-
tion of the Schrédinger equation) — provides a physical justifica-
tion for the existence of a mapping between the density and the
exact energy of the system. The Hohenberg-Kohn theorems in-
form us that this mapping is unique.

With such justification, one can approach the problem of find-
ing this mapping in a completely different way — not by building
approximations to the known exact solution (as done in the wave-
function theory), but by parameterizing an empirical representa-
tion of the mapping device, the functional. Most DFAs are built
upon mathematical representations of the functional grounded in
our physical understanding of what it should look like (based on
exact results for model systems), but one can envision finding the
mapping without any such help from physics — for example, by
brute-force training of a neural network (machine learning).
One can, therefore, think of DFT as an empirical method that can
be made exact.

While the blind brute-force (e.g., via ML) discovery of the
density-energy mapping is, in principle, possible, it has impor-
tant limitations compared to physically motivated DFAs. First,
without any constrains due to physics, such brute-force search
is going to be computationally wasteful. Second, having discov-
ered the mapping between energy and density, one still has no
recipe for computing energy derivatives with respect to various
perturbations (i.e., properties), unless properties (or various en-
ergy derivatives) were included in the training. In contrast, us-
ing a physically motivated form of the functional opens access to
properties (although the quality is not guaranteed, as illustrated
by the developments of magnetic DFAs~").

(2.1.24) Helgaker I am not so fond of the Wilson conjec-
ture — it works only if we already know that the potential is a
Coulomb potential. It is a striking observation, but to some ex-
tent it trivializes DFT. The Hohenberg-Kohn theorem makes no
such assumptions regarding the potential.

(2.1.25) Jones : A fixation on exact energies appears to be so
strong among chemists that it justifies any amount of data fitting,
so reducing DFT to a “semiempirical” or “empirical” method. With
their focus on extended systems, materials scientists know that
new knowledge can result from DFT calculations, even if all the
calculated energies are wrong. See also contribution (2.2.23).

(2.1.26) Ayers Arguably, any electronic structure theory
method can be reformulated as a DFA by substituting its asso-
ciated energy functional into the Legendre transform or its as-
sociated wave-function ansatz into the constrained search. So
Hartree-Fock may be legitimately considered a DFT (a gener-
alized Kohn-Sham DFT). Is Hartree-Fock theory and its analy-
sis therefore DFT? Clearly, many coupled-cluster and propagator
methods are also frequently analysed as DFT. I would not like to
define DFT as “the sort of stuff that is done by density-functional
theorists” but some work that is marketed as DFT (cf. contribu-
tion (2.1.21)) is not presented in the context of the mathematical
framework of DFT (cf. contribution (2.1.1)).
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To me, only orbital-free DFT is unequivocally DFT; everything
else can also be fruitfully viewed from an alternative perspective.
Indeed, some theoretical approaches and computational methods
can legitimately be considered wave-function theories/methods,
density-matrix theories/methods, propagator theories/methods,
and density-functional theories/methods. I do not wish to take a
hard line and proclaim that these types of theories/methods are
not DFT because the philosophy (especially the emphasis on ex-
plicitly defining and characterizing the functional that is being ap-
proximated), traditions (especially the openness to pragmatic pa-
rameterization and approximation), and tools of DFT can be use-
ful even for theories/methods that are “not just DFT”. But other,
non-DFT, approaches could sometimes be even more useful.

(2.1.27) Gorling While the electron density certainly is a
key quantity in DFT, I feel that there is a too strong focus on it
— in particular, on the idea of getting the total energy or other
information directly from the density. While this is the idea be-
hind certain flavours of orbital-free DFT, it is not the idea behind
the most commonly used DFT approaches, which are the Kohn—
Sham or generalized Kohn—Sham methods. For these methods, a
quite different view on DFT can be taken: To consider the elec-
tron density as the quantity that enables one to associate the real
electronic system with a model system that has the same ground-
state density, which makes it possible to describe the ground-state
energy and other properties of the real system via the model sys-
tem, i.e., via its orbitals and eigenvalues. From the Kohn-Sham
orbitals, traditionally, only the ‘noninteracting’ kinetic energy is
calculated exactly, while the exchange-correlation energy is ap-
proximated by an explicit functional of the density.

But this is just one strategy. It is possible to determine addi-
tionally other contributions to the energy from the orbitals — for
example, parts of the exchange energy in hybrid methods — or
even to calculate all contributions to the energy exactly from the
occupied orbitals, except the correlation energy. The latter can
then be approximated by orbital-dependent functionals.““ In the
latter case, the density is not needed at all in the calculation of
the total DFT energy. If, furthermore, the orbitals are obtained via
the optimized-effective-potential (OEP) method ““~** or within an
appropriate generalized Kohn-Sham approach, then DFT meth-
ods results that do not require at any point the calculation of the
density. The density is then only required in the underlying for-
malism.

I feel, that the perception of DFT has been somewhat blurred by
a questionable statement that, one way or another, is frequently
found in textbooks and articles. This is the statement that DFT is
distinguished from wave-function methods by using the electron
density instead of a wave function to calculate the total energy
of an electronic system. This statement is at least misleading if
not wrong because most DFT methods used in practice are Kohn—
Sham or generalized Kohn-Sham methods, which require orbitals
and thus one-electron wave functions to calculate crucial parts of
the total energy.

(2.1.28) Gidopoulos I believe the distinction in the lit-
erature between wave-function methods and DFT is slightly dif-
ferent. In my understanding, the distinction is not that in DFT
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the energy is actually calculated from the density, once we know
the density, because the question remains how to find the density.
Rather, the distinction is that in DFT the solution to the electronic-
structure problem is obtained by minimizing a total energy as a
functional of the density, while in wave-function theory the solu-
tion is obtained by solving Schréodinger’s equation. So, calculating
the energy from the density does not mean literally plugging the
density into some orbital-free expression, but the process of mini-
mization of the total-energy density functional to obtain the min-
imum value, which is the total energy of the interacting system.

(2.1.29) Chattaraj Any theory that applies density to un-
derstand a many-particle system, without using the exact wave
function, can be termed as DFT.">~"/ According to Hohenberg—
Kohn theorems,” DFT is a theory that legitimizes the use of the
density to calculate all possible properties. The Hohenberg—Kohn
theorems are just existence theorems and do not provide any
know-how for an explicit form of the energy as a functional of
the density as well as functional forms of other properties.

(2.1.30) Trickey The foregoing discussion seems a bit
parochial - for example, the identification in contribution (2.1.4)
of DFT with “ground state”. That restriction seems to have been
accepted by subsequent commentators in this section. But there
are several instances of what generically is a DFT. There is, for
example, a well-developed classical DFT. Closer to the focus of
this discussion (many-fermion systems), there is free-energy DFT
(also known as finite-temperature DFT) “°. It inexorably involves
excited states. There has been progress on free-energy DFAs.
Another ensemble DFT is the Gross—Kohn-Oliveira (GOK) ap-
proach for excited states at 7 = 0K (see other commentators be-
low).

The common theme of these DFTs is the reduction of the inher-
ent complexity of the direct description of a many-body system to
the comparative simplicity of functionals of the density — either
explicitly, or implicitly in terms of auxiliary functions such as or-
bitals. The strategy, in the time-independent case at least, is to
obtain the relevant physics (hence also chemistry) by an appro-
priate minimization procedure on a functional of the density itself
(whether it be pure-state or ensemble).

(2.1.31) Galli In the Hohenberg-Kohn formulation, DFT is
an exact theory of ground and excited states, entirely based on
the electron density. That is, the density determines uniquely the
potential, hence both ground and excited state properties of the
system may in principle be derived. However there is no practi-
cal recipe on how to derive such potential and hence on how to
derive neither ground or excited state properties.The Kohn—-Sham
formulation instead, is applicable only to ground state properties,
although, as well know, applied in practise also to excited state.

(2.1.32) Schwerdtfeger We should be reminded that the
charge density p(r,r) is not Lorentz invariant. As relativistic
quantum (field) theory demands a fully covariant formalism,
we have to use the four-current density j* as a function of the
four-position x* instead of the charge density, the latter appear-
ing only as the time-like (first) component of the four-vector



(P, jx/c, jy/c, jz/c), where c is the speed of light in vacuum. The
Hohenberg-Kohn theorem has been generalized to the relativis-
tic domain by Rajagopal and Callaway -~ and field-theoretical as-
pects have also been taken into account by Engel”°. Beside this
enormous progress on the theoretical side, it is fair to say that ap-
plications in this most rigorous relativistic framework using the
current-dependent exchange—correlation energy functional are
more or less absent.”” The main reason lies, as one can guess,
in the fact that relativistic DFT (RDFT) faces exactly the same
fundamental problems as DFT in the nonrelativistic domain. As
we know, relativistic effects can be very large for electronic prop-
erties of compounds containing heavy elements, often larger than
the error introduced by many DFAs, thus justifying the intro-
duction of the exchange—correlation functional into the (no-pair)
Dirac-Coulomb (DC) equation (the Douglas—Kroll Kohn—-Sham
scheme) or into its corresponding two-component (such as ex-
act two-component [X2C]) or scalar relativistic schemes, with or
without the relativistic pseudopotential approximation. The lat-
ter together with DFT is clearly the main workhorse in solid-state
physics. One may however, question the inclusion of smaller
radiative QED corrections into RDFT as it cannot compete with
more accurate wave-function based methods. On the other hand,
we should mention that RDFT approximations based on the den-
sity p and the (noncollinear) magnetization density m~/>°° have
now become feasible and useful in many applications.

(2.1.33) Tellgren In my view, a lot of work remains to be
done on the theoretical side of RDFT too. Every rigorous formu-
lation of nonrelativistic ground-state DFT depends on the ground
state being identified as a global energy minimum. At the rela-
tivistic level, an energy minimization principle strong enough to
construct a DFT is missing and the present attempts to establish a
relativistic Hohenberg-Kohn theorem are not rigorous.

(2.1.34) Gritsenko DFT can be formally considered as the
result of the simplest exact functional closure of the conventional
expression for the nonrelativistic ground-state energy E[p,7,P],
which includes the electron density p, the first-order reduced den-
sity matrix (IRDM) v, and the diagonal part P of the 2RDM I'
corresponding to a ground-state wave function ¥. This can be
achieved in the spirit of the Bogoliubov—-Born-Green—Kirkwood-
Yvon (BBGKY) chain”” of the quantum dynamical reduced theo-
ries of many-electron systems. Truncation of BBGKY chain with
its exact or approximate closure at the mth level produces the-
ories that operate with the mth (and lower) order RDMs®". In
this sense, DFT can be considered as the result of the exact clo-
sure at the “zero” (i.e., only density functional) level of E[p, ¥, P]
with two maps, in complete analogy with those employed in
the derivation of time-dependent density-matrix-functional the-
ory (TDDMFT) °*. The first map is the evident map P+ T — y—
p, while the second map p — ¥ — I' employs the Hohenberg—
Kohn theorem. It is its simplicity and compactness in the BBGKY
sense and also its definite connection with a real world via its
exactness that make DFT such a fertile ground for the present
wealth of DFAs.

This great success of DFT can be favourably compared with
a rather tumultuous development of “higher-order” full 1RDM or

density-matrix-functional (DMFT) and 2RDM theories, which still
do not enjoy a truly successful “take-off”. The ongoing develop-
ment (see contribution (4.1.1)) explores a way“~ in which DFT
can help DMFT with such a “take-off”, while DMFT can help DFAs
with the problematic inclusion in the latter of nondynamical or
strong electron correlation.

2.2 What is Kohn-Sham DFT?

(2.2.1) Perdew Often we need to predict the ground-state
total energy and electron density of a system of real interact-
ing electrons in a scalar external potential (created, for example,
by their attraction to nuclei). Correlated wave-function theory
provides “the right answer for the right reason”, but at a high
computational price for systems of many electrons. Kohn-Sham
DFT"” employs a simpler noninteracting or Coulomb- uncorre-
lated wave function, but includes a density functional for the
exchange—correlation energy that is exact in principle but requires
improvable approximations in practice. It often provides “almost
the right answer for almost the right reason at almost the right
price” for real atoms, molecules, and materials. The noninter-
acting kinetic energy and the electron density are found by the
not-so-expensive self-consistent solution of effective one-electron
Schrédinger equations. Indeed, the exchange—correlation en-
ergy and exchange—correlation potential “exactify” the Hartree
approximation for the ground-state energy and density. The gen-
eralization from total density to spin density°" provides more in-
formation and enhances the accuracy of the approximations.

(2.2.2) Gould : Kohn-Sham DFT"* typically means any DFT
approximation that employs a set of one-body orbitals, usually
denoted {¢;}, to produce a kinetic energy functional, T;[p] :=
T;[{¢:}] that approximates the many-body kinetic energy, T[¥] =
(P|T|¥). Generalized Kohn—-Sham DFT incorporates traditional
approaches to DFT as well as “hybrid” functionals, which allow
for nonlocal operator treatment of the Hartree-Fock exchange
terms.

As a result, one can replace a many-body interacting Hamilto-
nian, H, by a simpler-to-evaluate one-body Kohn-Sham effective
Hamiltonian:

[~V +uslp] ()] 0u(r) = () ®

where vs is an effective one-body potential (or operator poten-
tial). The density may then be calculated as p = ¥;5coce |0i(r)[%,
while the energy is given by Eg[p] = Ts[p] + Euxc|p] + (v|p). We
will define vg and Epy. below.

Formally, one may define Ti[p] = sup,(E°(v) — (v|p)), where
E%(v) = infy{T[¥] + (v|oy)} in the notation defined in contribu-
tion (2.1.14).7 Thus, Ts[p] is the lowest kinetic energy of a non-
interacting system with density p. Kohn-Sham DFT is useful be-
cause the Hartree—exchange—correlation (Hxc) energy,

Enxe[p] := Flp] - Ts[p] , 9

T The meaning of T; is slightly different in hybrid DFT.
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is easier to approximate than F[p]. Here, Epy. incorporates
the energetics of the interacting system, including some kinetic-
energy terms. The one-body effective potential that minimizes
Ey[p] can be shown to be vg = v+ 8 Epxc/Sp.-

(2.2.3) Gritsenko A profound physical meaning of the
exchange—correlation part of the Kohn-Sham potential vy is re-
vealed with its partitioning

~hol _
Vxe = ng € +Vresp (10)

into the potential of the exchange—correlation hole 791 and the
response potential vresp. This partitioning emerges from differ-
entiation with respect to p of the exchange—correlation energy
Exc|p] represented via the exchange—correlation pair-correlation
function gy,

Exclp] = //P(l‘l)g_xc(l‘l,l‘z)rlep(rz)dl‘l dr, an

where the overbar indicates the coupling strength integrated pair-
correlation function. The potential #191€ the derivative of the
p functions under the integral, represents the universal interac-
tion (for both occupied and virtual Kohn-Sham orbitals) with the
exchange—correlation hole of the unit charge. In turn, the po-
tential Vresp, the derivative of the pair-correlation function gy,
exhibits the spatial step-like structure, with the individual steps
distinguishing various atomic and molecular electron shells.

(2.2.4) Baerends : The Kohn-Sham method is often cited as
the method that made DFT a feasible computational method by
offering a decent approximation to (a large part of) the kinetic en-
ergy. The latter proved too hard to obtain as a density functional.
But more importantly, the Kohn—Sham method has provided DFT
with an orbital model. This has greatly facilitated its acceptance
in the computational chemistry community. After initial reserva-
tions about the Kohn—Sham orbitals (“they are only there to build
the density”), it has become evident that these orbitals are not
inferior to or more approximate than the Hartree-Fock orbitals,
but on the contrary are even more suitable for the qualitative and
semiquantitative molecular-orbital (MO) theories of chemistry. If
the exact Kohn—Sham orbitals and orbital energies could be ob-
tained, this would be evident.

The Kohn-Sham orbitals build the exact electron density, i.e.,
the exact charge distribution in molecules, so they are perfect
for the so-called charge control factor of chemical reactions. The
energies of the exact upper valence Kohn-Sham orbitals approx-
imate the first ionization energies exceedingly well: whereas the
Hartree-Fock orbital energies, within the frozen orbital approxi-
mation for ionization energies (Koopmans’ theorem), deviate typ-
ically more than 1€V from ionization energies, the exact Kohn—
Sham orbital energies have deviations that are typically an or-
der of magnitude smaller.°/-°° The virtual orbitals of the Kohn—
Sham model are not Koopmans-type approximations to the elec-
tron affinities, but the virtual-occupied orbital energy gaps are
excellent approximations to excitation energies.””>’” These are
properties that have been the basis for the whole edifice of orbital-
based explanations in chemistry.

Ultimately, virtually all explanations of chemical behaviour are
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cast in orbital language, even if the underlying computations are
based on the most sophisticated techniques of theoretical chem-
istry. The ready acceptance of DFT in chemistry has been greatly
aided by the availability of the familiar orbital model. As for the
old adage that Kohn—-Sham orbitals and orbital energies “have
no meaning, there is no Koopmans’ theorem like in Hartree-Fock
theory”: the opposite is true.”’>

The orbital energies of almost all DFAs do not have the nice
properties of the exact Kohn-Sham model, being some 5 eV too
high (not negative enough). This is unfortunate and has some ad-
verse consequences, but fortunately the upshift is approximately
the same for the upper valence and the lower virtual (valence)
orbitals, so the correct relative order is preserved in most DFAs.
Nevertheless, more efforts should be made to construct DFAs that
obey these exact Kohn—Sham properties (much) more closely.

(2.2.5) Krylov : The orbital picture of Kohn-Sham DFT is in-
deed of great importance. With the exact functional, the energy
of the highest occupied Kohn—-Sham orbitals become exact ioniza-
tion energies (as per Janak’s theorem). Numerical investigations
show that the shapes of the KS orbitals in cases when their IEs
are close to the exact IE (such as when tuning range-separation
parameter to make Koopmans IE to match Delta SCF IE) become
similar to the shapes of the Dyson orbitals’">’“. Interestingly, the
energies of lower-lying Kohn-Sham orbitals provide surprisingly
accurate approximations to the exact many-body ionization en-
ergies (IEs) (when used with appropriate DFAs),’~>’" which can
be understood by analysing the curvature of the total Kohn—Sham
energy with respect to the occupation numbers.

This endows the theory with the ability to provide physi-
cally relevant quantities — for example, Dyson orbitals enter the
expressions for photoionization/photodetachment cross-sections
and can even be reconstructed from experimental data.’* More-
over, the orbitals provide a link between many-body theories and
DFT - for example, one can judge the quality of a particular DFA
by how well the shapes and energies of the Kohn-Sham orbitals
agree with those from high-level many-body calculations (e.g.,
equation-of-motion coupled-cluster theory). '~ These ideas are al-
ready exploited in optimally-tuned range-separated DFAs.’~
But, perhaps more opportunities exist for using ab initio Dyson
orbitals to build better DFAs?

(2.2.6) Calaminici and Koster : To further underline the im-
portance of Kohn-Sham orbitals in chemistry and physics, we
mention their interpretative use in cluster science for the defi-
nition of so-called superatoms — see, for example, ref. and
references therein.

Specifically, the electronic states of small metal clusters are
bunched in shells. These shells are experimentally observed in
the variations of polarizabilities, ionization energies, and electron
affinities — to name a few characteristic observables. Kohn—-Sham
orbitals, as approximations to Dyson orbitals, reflect these shell
structures in a large variety of free and ligand-stabilized clusters.
Thus, the now common concept of superatoms in chemistry is
based almost exclusively on Kohn—Sham calculations and the cor-
responding canonical Kohn—-Sham orbitals.



(2.2.7) Gritsenko True, the shape of the accurate Dyson
orbital of a primary ionization is very close to that of the cor-
responding accurate occupied Kohn-Sham orbital ¢; obtained by
“reverse engineering” from the correlated density. However, the
same is true also for Dyson orbitals of the satellites of this ioniza-
tion, reflecting the fact that Dyson orbitals are neither orthogonal
to one another other nor normalized. This “unfortunate” feature
of Dyson orbitals definitely hinders their comparison with other,
“normally behaving” sets of orbitals.

Due to this, the Kohn-Sham orbital energies ¢; differ, in gen-
eral, from the ionization energies I; by the spectroscopic average
of the satellite ionizations (see contribution (2.4.9)) as well as
by the contributions from the response potential (see contribu-
tion (2.2.3)), with equality only for the highest occupied Kohn—
Sham molecular orbital.”® The “well-behaved” (i.e., orthonor-
mal) Kohn-Sham orbitals are, in no way, the “poor cousins” of the
Dyson orbitals, forming a distinctively different set of “optimal”
orbitals. Indeed, unlike the Dyson orbitals, the occupied Kohn—
Sham orbitals meaningfully accommodate the “electron pairs” of
conceptual chemistry, while their energies provide a fair estimate
of the potentials of primary ionizations. Furthermore, combined
with the virtual Kohn—-Sham orbitals and their energies, they form
the basis for the successful treatment of electronic excitations in
TDDFT (see contribution (2.4.9)).

(2.2.8) Staroverov The classic Kohn—-Sham scheme almost
solves the problem of the kinetic-energy functional but its one-
determinantal form creates formidable challenges for approxi-
mating the exchange—correlation part. These include the diffi-
culty of devising exchange—correlation functionals for strongly
correlated systems (see contribution (3.4.1)), limitations imposed
by the assumption of non-interacting v-representability by a single
Slater determinant, and the intricate behaviour of exact Kohn-
Sham potentials (e.g., shifts within nodal surfaces of the highest-
occupied Kohn-Sham orbital /), which DFAs somehow have to
get just right. Although the existing Kohn-Sham DFAs are amaz-
ingly more accurate than the Hartree-Fock method in general, it
is sobering that they still inherit most qualitative failures (see 3.4)
of the mean-field approximation. Ensemble methods (see Sec-
tion 3.7) seem unavoidable from this perspective.

(2.2.9) Reining : Just to emphasize a few points, more from
a solid-state physicist’s point of view: first, Kohn—Sham theory
seems to be a natural next step when choosing to work with DFT.
Certainly, formulating things (or at least, energies) in terms of
functionals of the density is very much helped by the fact that the
huge Hartree electrostatic energy is known as an explicit func-
tional of the density. It allows us to have a large part that we
know exactly and only a small remainder that has to be approxi-
mated.

What is more logical than continuing along this line and taking
out another part (the kinetic energy of some noninteracting sys-
tem)? And what is more logical than taking this noninteracting
system to be “similar” to the real system — with the same den-
sity, in the spirit of DFT? Generalized Kohn-Sham theory is then
also very natural, both because we know more pieces and because
(like the kinetic energy) we do not know them as explicit density

functionals. Making these pieces and the resulting “potentials”
more and more complex appears to build a continuous bridge
between Kohn-Sham and Green’s functions equations. Another
generalization is to start with the consideration that the calcula-
tion of any observable will in general integrate out certain details
of a system, so the same value for the observable might well be
found in a simpler system. This holds for the density — with the
Kohn-Sham system, for example — but one can also build auxil-
iary systems for other observables and profit from the Kohn—-Sham
experience.

Second, further to the discussion about the Kohn-Sham sys-
tem, we should keep in mind that, for a single electron, the
Kohn-Sham excitation energies equal the exact ones, while the
Kohn-Sham electron addition energies are different from the ex-
act ones. So we may expect that, for certain systems, there is a
reasonable correspondence for the excitation energies. It is far
from obvious that this would also hold true in extended systems
with many electrons, and, of course, the Kohn-Sham gap does not
equal the optical gap in general. The Kohn-Sham band structure
is nevertheless a powerful starting point for calculations using,
for example, one- and two-body Green’s functions.

Third, the sometimes bad reputation of the Kohn—Sham nonin-
teracting system stems from the fact that it is often used in place
of the real system — not to yield simply its density, but also any
other observable, in particular, spectral functions. Of course, this
can lead to strong disagreement with the truth — and the band
gap is just one example. Maybe we should just be more precise in
saying what we are doing here — namely, that we use the Kohn-
Sham expression (which is a functional of the density) for a given
observable as an approximate functional because we do not know
a better one? This doesn’t change the results, but it sounds a little
more fair to the Kohn—Sham noninteracting system.

(2.2.10) Draxl Indeed, the bad reputation of the Kohn-
Sham system may often come from the fact that we either tend to
overinterpret results or are not precise enough about what we are
doing. Sloppy phrases like “DFT is well known for its notorious
band-gap problem” might have been considered appropriate long
time ago, but should not be said anymore in 2021. Pointing out
the self-interaction error (SIE) of many functionals is certainly im-
portant, but we should always make clear at the very same time
that Kohn—-Sham eigenvalues are not supposed to provide band
gaps.

(2.2.11) Baerends I would like to endorse the statement
in contribution (2.2.10) that Kohn-Sham eigenvalues are not
(should not be) supposed to provide band gaps. The fact that
in solids the Kohn-Sham band gap is not equal to (or close to)
the fundamental gap I — A is extremely frequently cited as the
(notorious, infamous,...) band-gap problem. But it is a problem
of wrong expectations.

In molecules, it is well known that the Kohn-Sham HOMO-
LUMO gap is much below the / — A difference. This is due to the
fundamental difference that the Kohn—Sham system has an attrac-
tive potential due to the exchange-correlation hole of —1 electron
also for the virtual levels, while the Hartree—Fock system lacks this
attractive hole potential for the virtual levels. In the same way,
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the presence of this v19'¢ potential lowers the LUMO level (bottom

of the conduction band, BCB) in solids strongly./® The exchange-
correlation hole in solids is pretty localized — at a given point r, its
size is usually well within a unit-cell range around r and therefore
its potential is strongly stabilizing. In a delocalized excitation,
from an occupied Bloch state to an empty Bloch state, the excited
electron does not benefit from this stabilization. Neither does an
added electron - the excitation energy to this delocalized state is
understandably close to the fundamental gap. So, physically we
cannot expect the Kohn-Sham band gap to match approximately
the fundamental gap or a delocalized excitation energy. Excitons
in a solid (except for Frenkel excitons) typically have a large size,
extending over many unit cells. They have excitation energies not
much lower than the delocalized excitations, so also for them the
attractive Kohn-Sham potential v29¢ does not fit reality.

The situation is different in molecules since there the physical
hole that the excited electron leaves behind is roughly mimicked
by the attractive exchange-correlation hole in the Kohn—-Sham po-
tential. Hence the Kohn-Sham virtual-occupied orbital energy
differences have the nice property that they do approximate exci-
tation energies in molecules; °”>’" see contribution (2.4.9).

The difference between the Kohn-Sham band gap and the fun-
damental gap can be cast in the form of expectation values of the
response potential part v'*P of the Kohn—-Sham potential; "~ see
also contribution (3.8.6).

(2.2.12) Vignale : A question that keeps resurfacing is: Why
are the Kohn-Sham orbitals better than the Hartree-Fock or-
bitals? From the point of view of the variational principle, the
Hartree—Fock orbitals should be the best, since they build a Slater
determinant which has the lowest energy (defined as expectation
value of the Hamiltonian) among all Slater determinants. The
Kohn-Sham wave function — also a single Slater determinant —
cannot beat that. Nevertheless, we know that the DFT energy
is better than the Hartree-Fock energy and also that the Kohn—
Sham orbitals, as discussed in contribution (2.2.4), far from be-
ing meaningless, are in many ways “better” than the Hartree-Fock
orbitals.

The resolution of the apparent paradox is that the Kohn—-Sham
energy is not calculated as the expectation value of the Hamilto-
nian in the Kohn-Sham wave function. The moment we adopt
the Kohn-Sham approach, the original Hamiltonian of the system
is no longer relevant. We are dealing with a reference system that
is no longer interacting, but the rules for calculating the energy
from the orbitals have also changed and are now expressed in
terms of the exchange-correlation energy functional of the den-
sity. One could argue that the “particles” of this reference system
are the “quasiparticles” of the original system, and this may help
to rationalize the a priori surprising success of the Kohn-Sham
orbitals in predicting single-particle excitation energies.

(2.2.13) Baerends So in what sense are Kohn-Sham or-
bitals better than Hartree-Fock orbitals? When the energy of
the determinant of Kohn—-Sham orbitals is calculated with the full
Hamiltonian, its energy is of course higher than the Hartree-Fock
energy, but actually by only a tiny amount.“"” On the other hand,
the Kohn-Sham density, being equal to the exact one and not so
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diffuse as the Hartree-Fock one (in molecules), leads to much
improved (more negative) electron-nuclear energy. Also the or-
bital shapes are “better” than the too diffuse Hartree—Fock orbitals
(in molecules), so the kinetic energy is also considerably better
(higher). The errors of the Hartree-Fock model for these two
energy terms are large, in molecules often larger than the bond
energy, and they rapidly increase upon bond lengthening. " They
cancel to some extent, which is why they are not so readily rec-
ognized. The Hartree term is of course also better (exact) with
Kohn-Sham orbitals and density.

A tongue in cheek observation would be that the Hartree—Fock
model manages to build a determinant that has a little bit lower
expectation value of the Hamiltonian, but it has to distort the
orbitals (make them more diffuse) because the lowering of the
kinetic energy then just outweighs the energy penalty of the in-
crease in the electron-nuclear energy. The Hartree-Fock model
does not care — it just tries to get the lowest energy determinant.
As noted in contribution (2.2.12), the true power of Kohn-Sham
DFT has to come from accurate approximations of the exchange—
correlation energy (defined in the Kohn-Sham context), but the
good properties of the Kohn-Sham orbitals are an asset of this
model.

(2.2.14) Gidopoulos To address the recurring question by
Vignale in contribution (2.2.12), I would like to point out that
the Kohn—-Sham orbitals are in fact as “energetically optimal” as
the Hartree-Fock ones. Let me first quote Walter Kohn, who said
in his Nobel Prize lecture that while, the Hartree-Fock orbitals
are “total energy optimal”, the Kohn—-Sham orbitals are “density
optimal” because they yield the exact density.

Although, undeniably the Hartree—Fock Slater determinant has
the lowest energy among all Slater determinants, we now know
that the Kohn—-Sham determinant can at least match, if not beat
that (record), since it is “energy optimal” in a similar sense: In the
Hartree-Fock optimization, we use the full interacting N-electron
Hamiltonian, H and then seek the lowest energy Slater determi-
nant as the best approximate ground state. For the Kohn—-Sham
orbitals, we may perform an equivalent, but reverse Rayleigh—
Ritz optimization: Let us assume that the ground state W of the
physical N-electron, interacting system is somehow known (and
fixed). Then, we consider all N-electron effective, noninteracting
Hamiltonians, H,, with a local potential v(r). The ground-state
wave function and energy of each H, are ®, and E,, respectively.

For N > 1, ¥ cannot be the exact ground state of any of these
noninteracting Hamiltonians, ¥ # &, for each v, because ¥ is
an interacting state while all ®, are noninteracting states (Slater
determinants). Hence, the following Rayleigh-Ritz energy differ-
ence on the left-hand side is strictly positive:

(W|H,|¥) —E, > 0. (12)

This energy difference gives a measure of how well ¥ approxi-
mates the ground state ®, of the effective Hamiltonian H,. The
smaller the energy difference, the better the approximation of ¥
to ®,. It is elementary to confirm that the energy difference is
minimized by the exact Kohn-Sham Hamiltonian H,_."" Interest-
ingly, the exact density property of the Kohn—-Sham state is the



result of the Rayleigh-Ritz optimization and the density is not a
priori fixed. Hence, the Kohn-Sham Slater determinant, on top
of being “density optimal”, it is also “energetically optimal” in a
Rayleigh-Ritz optimization, which physically is equivalent to the
total energy minimization of Hartree-Fock theory.

I note that the variational principle in eqn (12) can be used
to construct optimally converging power series expansions for
the Kohn-Sham potential, without using the adiabatic connection
path formalism

(2.2.15) Yang I would like to address the physical mean-
ing of Kohn-Sham orbitals in calculations with DFAs. Most DFAs
to the exchange-correlation energy Ex. usually produce reason-
able total energies for small and medium-size molecules; how-
ever, they have major deficiencies in the orbital energies. As has
been known for a long time, for finite systems, the eigenvalue
of the HOMO for the exact Kohn-Sham potential is equal to the
negative of the first ionization potential (IP), as follows from the
asymptotic decay behaviour of the exact electron density and the
requirement that the Kohn-Sham effective potential be zero at
infinity. °~ However, in a Kohn-Sham calculation, the local Kohn—
Sham potential can have any additive constant and give the same
total energy and density but different orbital energies. Thus, the
argument based on the long-range behaviour of density and po-
tential hinges on a particular choice of the additive constant of
the potential.

The orbital energies for the frontier HOMO and LUMO have
been rigorously shown to be the DFA prediction of the negative
of the first IP and the first electron affinity (EA) in 2008.“" Three
key results were used in the proof. (1) The Janak theorem shows
that KS orbital energies are the derivatives of the total energy
with respect to the orbital occupation numbers. Note that the
Janak theorem does not relate orbital energies to any physical
observables. " (2) The left and right derivatives of the total en-
ergy with respect to the total electron number, or the left and
right chemical potentials, are the negative of the first IP and the
first EA respectively of the corresponding energy functional. This
follows from the linear condition on the behaviour of the total
energy for fractional number of electrons. '/ The linearity condi-
tion is true for the exact functional, or for a functional without
delocalization error for general systems. For infinite bulk sys-
tems, however, the linearity condition holds true for any func-
tional approximation. *~ (3) The chemical potentials were proved
to be the derivatives of the energy with respect to the orbital oc-
cupation numbers of HOMO and LUMO in a Kohn—-Sham calcula-
tion, when the exchange—correlation energy used is a functional
of the density. With the use of the Janak theorem, this then es-
tablishes that the KS HOMO and LUMO energies are the chemi-
cal potentials of the system for the given DFA.-" Similarly, when
the exchange—correlation energy is a functional of the noninter-
acting one-electron density matrix, the chemical potentials were
proved to be the derivatives of the energy with respect to the or-
bital occupation numbers of HOMO and LUMO in a generalized
Kohn-Sham calculation.“” Therefore, the HOMO and LUMO or-
bital energies are the DFA prediction of the negative of the first
IP and the first EA. This interpretation of the HOMO and LUMO

energies holds true for molecular and bulk systems, for any given
DFA.

Indeed, DFAs with minimal delocalization error have ex-
cellent predictions of IPs and EAs from the HOMO and LUMO
of generalized Kohn-Sham calculations, comparable to the ac-
curacy of GW approaches.”” In addition, the orbital energies
above the LUMO and below the HOMO approximate the cor-
responding quasi-particle energies, with similar accuracy as the
HOMO/LUMO for the IP/EA. This has been explored to describe
accurately the excitation energies and conical intersections of
molecular systems in the quasi-energy DFT approach based on
ground-state generalized Kohn-Sham calculations. “*

(2.2.16) Baerends
(2.2.11), it should be stressed that it is very important to dis-
tinguish between the properties of, on the one hand, the exact
(original) Kohn-Sham model of noninteracting electrons in a lo-
cal potential such that the exact density is reproduced and, on
the other hand, the currently popular DFAs — in particular, those
of the generalized Kohn—-Sham family with nonlocal potentials.
The local Kohn-Sham potential is unique by application of the
Hohenberg-Kohn theorem to the noninteracting electron system,
and so are the orbitals and orbital energies.

: In relation to contributions (2.2.15) and

The attractive properties of the exact Kohn—Sham orbitals and
orbital energies have been expounded in some contributions; see
contributions (2.4.9), (2.2.4), (2.2.13), and (2.2.11). A salient
feature of the exact Kohn-Sham model is that the LUMO is not
at —A (given that the HOMO is at —I) but much lower: the
HOMO-LUMO gap is approximately equal to the first excitation
energy.°”>/%>°/ It should be made clear that contribution (2.2.15)
does not contradict these properties of the exact Kohn-Sham
model. It refers to a different family of Kohn—-Sham models,
usually called the generalized Kohn-Sham models. These gen-
eralized models make it possible to include, for instance, part
of the exchange operator (a nonlocal potential) of the Hartree—
Fock model and adjust the local part of the potential so that the
density remains exact and adjust the exchange—correlation func-
tional so that the energy also remains exact.
the orbital energies are different from those generated by the
exact local Kohn-Sham potential. In such a generalized Kohn-
Sham model, one may strive to obtain that the HOMO is again
at —I and that the LUMO is now at —A, as is also done in the
Koopmans-compliant functionals.“®>°” The LUMO then becomes
more diffuse and one loses the simple representation of excita-
tions in TDDFT with just one or a few orbital transitions

In such a scheme,

(2.2.17) Yang In relation to the discussion in contribu-
tions (2.2.15) and (2.2.11) on the physical meaning of the HOMO
and LUMO in DFT, it is important to separate the two types of
one-electron Kohn-Sham Hamiltonians. The first one is from the
ground-state calculation with a given DFA EDFA| which yields the
density, orbitals and orbital energies of the noninteracting refer-
ence system, as developed in the original Kohn-Sham paper.

This is called the direct approach. " The second one is from an
inverse calculation, generating the local potential vZ (r) that re-
produces a given ground-state electron density, which can be
the exact density or an accurate density from high-level calcu-
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lations. We called this the inverse Kohn-Sham or inverse OEP
approach””, the potential so obtained is also called the “exact
Kohn-Sham” potential by Baerends in contribution (2.2.16).

In an inverse approach, the local potential is determined up
to an arbitrary constant. Thus, in principle, the absolute values
of the orbital energies are not defined. However, if the correct
asymptotic condition on the potential is satisfied, which also sets
the constant, then ey = —/ is obtained, where I is the experimen-
tal ionization energy, if an exact density is given (row 1 Table 1
). Similarly, a good approximation to the experimental —I is ex-
pected if a good approximation to the density is given from a
DFA calculation (row 1 in Table 1). However, the correspond-
ing LUMO energy has not been shown to relate to the ionization
energy and is not a good approximation to the experimental —/,
as discussed in contribution (2.2.16). In atomic calculations, the
unoccupied-orbital energies, {¢,}, obtained from inverse Kohn-
Sham calculations, have been shown to represent electronic exci-
tations, with g, — ey describing excitation energies of the system
with the same number of electrons. Using ¢, — ey to approximate
excitation energies for molecules is less successful.

In a direct calculation with a DFA - that is, when the energy is
minimized with respect to its variables, as discussed in contribu-
tion (2.2.15) — the HOMO energy of the noninteracting reference
system has been shown to be equal to the chemical potential. for

electron removal
OQEDFA\ ~
eg= | == 13
H < N ) ; (13)
Vext

and LUMO energy of the noninteracting reference system has
been established as being equal to the chemical potential for elec-

tron addition
QEDFAN T
o= (aN> (14)

Vext

for a Kohn-Sham calculation with ERFA[pZ (r)] and also for a gen-
eralized Kohn-Sham calculation with ERFA[pZ (v r)] in the work
of Cohen, Moris-Sanchez and Yang~" (Rows 2 and 4 in Table 1).
Note that these identifications are based on the assumption that
EPFA[pS (r)] and EPFA[pZ(r,r)] have an explicit and continuous
dependence on its variables pZ (r) and pZ (r/,r). But no locality
is assumed. With these identifications, the use of HOMO/LUMO
energy to approximate —// — A was then established, *” building
on the PPLB condition for fractional number of electrons and its
results for chemical potentials. '/ The quality of the approxima-
tion of ey to —I and/or g, to —A just reflects the quality of the
DFAs used, where the delocalization error of the DFA plays a key
role; '~ see contribution (2.2.15).

There are other approaches to direct calculation, using as the
basic computational variable either a local potential v¢ (r) in an
OEP approach or a nonlocal potential v¢ (r,r’) in the direct gen-
eralized OEP (GOEP) approach.”' The meaning of HOMO and
LUMO energies in direct OEP calculations was established in ref.

; see also Row 3 in Table 1.

In Table 1, we also list the results on the agreement of the elec-
tron density of noninteracting reference system with the density
of the physical system as defined by the linear response.
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(2.2.18) Trickey : The pervasive emphasis on the KS orbitals
to this point in the discussion is striking and, from the perspective
of my interest in orbital-free DFT, a bit overbalanced. From that
perspective, the KS orbitals and eigenvalues are not the crucial
insight provided by the Kohn—-Sham decomposition — that crucial
insight is the existence (assuming v-representable densities) of a
noninteracting system with the same density as the many-body
system. With that assumption, existence is provable by applica-
tion of Levy~’-Lieb’ for the ground-state and Runge-Gross”" (as
updated by Ruggenthaler, et al. “>>”°) for the time-dependent case
and Mermin“® for the temperature-dependent case. The orbitals
(and eigenvalues) are a valuable, exploitable by-product.

Particularizing to the ground state, Kohn—Sham DFT is, at base,
the decomposition of the Levy-Lieb functional (putting aside
to a separate discussion the issues associated with the original
Hohenberg-Kohn and later Levy-Lieb functionals) into physically
recognizable, interpretable, and computable parts. Orbital-free
DFT (better called one-orbital DFT) exploits only the decompo-
sition, while conventional Kohn—-Sham DFT also uses the Kohn-
Sham orbitals explicitly. Both variants (to use a currently promi-
nent word) are fundamentally Kohn—-Sham theory. Both have the
same definitions of kinetic energy, Hartree energy, exchange en-
ergy, and correlation energy. All those definitions depend upon
the Kohn-Sham determinant.

The distinction between those two variants is operational —
namely, what is done to exploit the Kohn—Sham decomposition
computationally. This is crucial because of the many statements
that one sees to the effect that orbital-free DFT is an “alterna-
tive formulation of DFT” that avoids the problems of Kohn—Sham
theory, etc. That completely ignores the underlying Kohn—-Sham
logic. That logic is in fact crucial to constraints on approximate
kinetic-energy density functionals (KEDFs).

(2.2.19) Gritsenko The unique feature of the exchange-
correlation part of the local Kohn—Sham potential is the richness
of the physical information on the local effects of electron cor-
relation, as reflected in the shape of the potential. This can be
favourably compared with the nonlocal Hartree-Fock and self-
energy potentials of the wave-function theory produced from the
corresponding kernels. The shape of the latter potentials is “ru-
ined” with singularities related to the orbital nodes. Contrary to
this, the steps of the Kohn-Sham exchange—correlation potential
meaningfully distinguish the local correlation effects in adjacent
atomic and molecular shells with the corresponding “gauges” (see
contribution (2.2.3)), while its integer discontinuity “jumps” sig-
nal occupation of (previously virtual) Kohn—Sham orbitals.

Then, instead of complaining about “the idiosyncratic be-
haviour” of the Kohn-Sham exchange—correlation potential, one
should fruitfully explore and employ this meaningful information
- see, for example, contributions (3.1.12) and (3.8.6). More-
over, one should not attempt to “wash away” this precious true
information by constructing artificially too smooth Kohn-Sham
exchange—correlation potentials by “reverse engineering” tech-
niques.

As to the generalized Kohn—Sham scheme, the term ‘Kohn-—
Sham’ seems to be misused in this case. Indeed, out of desire



Table 1 Properties of the electron density p?(r) and HOMO and LUMO orbital energies, ey and g, of the noninteracting reference systems in exact
DFT (EPFT) and various DFA models. The DFA models include all continuous functionals of the density ERXFfA[pZ(r)], continuous functionals of the
non-interacting density matrix EXX* [p9(r/,r)], and continuous functionals of the non-interacting orbitals and the external potential EXFA {6}, Vext (r)].
Computational approaches for pZ(r), €y and g include inverse calculations from a given (accurate) electron density and direct calculation methods
based on the original Kohn—Sham approach (KS), the optimized effective potential (OEP), the generalized Kohn—Sham (GKS) and the generalized
optimized effective potential (GOEP, which has been shown to be equivalent to orbital optimization (OO) Jin et al.”").

Three properties of each quantity are considered for each computational approach: (1) Agreement of pZ(r), the density of the noninteracting reference
system, with p®(r), the density of the physical system consistent with the exact DFT, or the density of the DFA as defined by the linear response
pe(r)= SEVDgFrA/Svg“(r), Chen et al.”*, Voora et al. ”*; (2) Agreement of the HOMO orbital energy ey with (QEQSA/aN);“ the chemical potential of
electron removal for the functional employed; (3) Agreement of the LUMO orbital energy & with (QEZEA/QN):;M the chemical potential of electron
addition for the functional employed. No entry indicates that it is impossible or not yet known how to conduct the corresponding calculation. (Table
provided by Yang, extended from ref. 90).

noninteracting system type EPFT EDA[p8 (r)] EDA([pS (r,r)] Eg M {@po }s vext(T)]
Inverse KS/Inverse OEP v¢ (r) inverse po(r) yes yes yes yes
€1 @ (b) (b) (b)
e no no no no
KS ¢ (r) direct pd(r) yes
&y yes
gL yes
OEP /2 (1) direct pd(r) yes yes/no () o
e yes @
gL yes no
GKS V¢ (r,1’) direct pS(r) yes yes
on yes yes
£ yes yes
GOEP/00 v¢ (r,r’) direct pg(r) yes yes no
& yes (e) yes (e) (63
£ yes (e) yes (e) ()

* (a) In an inverse calculation, the potential is determined up to an arbitrary constant and the absolute values of the orbital energies are therefore
undefined. However, if the correct asymptotic condition on the potential is imposed, which also sets the constant, then g5 = —I, is obtained, where
I is the experimental ionization energy Parr and Yang

* (b) If the correct asymptotic condition on the potential is imposed, and if a good electron density is obtained from the DFA, then the inverse OEP
calculation will leads to &y that is a good approximation to the experimental —/.

* () The agreement between p? (r) with §ED™ /Gvey(r) is only true at the complete basis set limit for the basis set expansion of v7 (r), and not so
for any finite basis set Jin et al.

e (d) Similar to (b), if the correct asymptotic condition on the potential is imposed, then the direct OEP calculation will lead to &y that is a good
approximation to the experimental —/.

* (e) For explicit functionals of the density, or the density matrix, GOEP/OO gives the same total energies and density matrix as in regular SCF. But
the orbitals obtained in general are no longer the canonical orbitals and thus have no orbital energies directly. However, a unitary rotation can
bring them to the canonical orbitals with proper orbital energies in agreement with the corresponding chemical potentials.

e (f) In GOEP or OO calculations, the Hamiltonian for the non-interacting system is not available, so neither are the non-interacting orbital energies.
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to get electron affinities as the energies of virtual orbitals, the
original Kohn-Sham theory is forcefully “crashed” in some (out
of infinitely many) variants of the generalized Kohn—Sham “land-
scape” by mixing different theories both globally and with range-
separation techniques.

(2.2.20) Gorling and Kronik With respect to the term
‘generalized Kohn-Sham’, we feel that it is appropriate. The
generalized Kohn-Sham approach®” relies on the basic idea of
the original Kohn—Sham formalism by exploiting the Hohenberg—
Kohn theorem to introduce a model system with the same ground-
state density, in order to have access to quantities that help in
the description of the electronic system. Such quantities can be
energies, typically the ‘noninteracting’ kinetic energy or the ex-
change energy, but can also be orbital eigenvalues. The gener-
alized Kohn—-Sham approach generalizes the Kohn-Sham one in
the sense that it extends the range of possible model systems.
Like all proper generalizations, it contains the original Kohn—
Sham approach as a special case. As also discussed in contribu-
tion (2.4.8), the generalized Kohn—-Sham approach provides more
flexibility and establishes a firm formal foundation for frequently
used methods that do not calculate the exchange-correlation po-
tential as a functional derivative with respect to the electron den-
sity, notably hybrid functional methods. And, as also discussed in
contribution (4.1.5), a specific generalized-Kohn-Sham map need
not be “crashed”, but rather can be judiciously chosen, nonempir-
ically, based on physical constraints.

(2.2.21) Gorling : Itis instructive to define which electronic-
structure approaches are Kohn—-Sham methods. Such a defini-
tion reveals the key characteristics of the Kohn—-Sham formalism
and shows the scope and perspective that the Kohn—Sham for-
malism provides. By a quite wide definition, those methods are
Kohn-Sham methods that rely on a model system of noninteract-
ing ‘electrons’ with the same ground-state electron density as the
true physical electronic system and with a local multiplicative po-
tential. The noninteracting ‘electrons’ are particles that are iden-
tical to electrons — in particular, they have the spin of electrons —
but do not interact among themselves. Given that the particles of
the Kohn-Sham system are noninteracting, the Kohn-Sham equa-
tion for the Kohn—-Sham orbitals and their eigenvalues in eqn (8)
emerges immediately.

Traditionally, the Kohn—Sham orbitals are used only to evalu-
ate the kinetic energy of the Kohn—-Sham model system, which
represents the bulk of the full kinetic energy, taking into account
the fermionic nature of electrons. The Kohn-Sham orbitals, how-
ever, contain much more information than their kinetic energy.
The occupied Kohn-Sham orbitals, for example, enable an exact
calculation of the exchange energy. This means all parts of the to-
tal energy except the correlation energy can be easily calculated
exactly, technically by evaluating the Hartree-Fock energy with
Kohn-Sham orbitals. Indeed, approximating only the remaining
small part of the energy, the correlation energy, is a natural and
systematic approach. For individually approximating the correla-
tion energy, orbital-dependent functionals~“ can be constructed
that use occupied as well as unoccupied Kohn-Sham orbitals and
their orbital energies, in this way exploiting much more of the
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information contained in the Kohn—-Sham model system.
Historically, this route was not pursued for three reasons:

1. to avoid the high cost of evaluating the exact exchange en-
ergy, which nowadays is not really a problem for molecules
up to a size of several hundred atoms. For larger systems
or when very many electronic-structure calculations are re-
quired, in ab initio dynamics simulations, for example, the
cost of exact exchange remains an issue.

2. to benefit from error cancellation between exchange and
correlation contributions. While this is a valid reason, the
cancellation is not complete, limiting the accuracy that can
be reached by traditional Kohn-Sham methods.

3. to avoid the problem that the exchange potential is not di-
rectly accessible in terms of the Kohn—-Sham orbitals. With
the OEP method, functional derivatives of orbital-dependent
energy expressions, including — for example, the Kohn—Sham
exchange potential — are accessible.

While basis-set OEP methods were numerically problematic in
the past, robust, numerically stable basis-set OEP methods are
now available. ™ Moreover, orbital-dependent functionals can be
evaluated in a post-self-consistent-field (post-SCF) manner, avoid-
ing the need to take functional derivatives of orbital-dependent
functionals with respect to the electron density. Alternatively,
functional derivatives can be taken with respect to orbitals in-
stead of the electron density, leading to generalized Kohn—-Sham
methods.

Meta-GGA and hybrid functionals are established functionals
that depend on the occupied orbitals. Correlation functionals
based on the adiabatic-connection fluctuation—dissipation theo-
depend on unoccupied as well as occupied orbitals and
their eigenvalues. The simplest example of such a functional
is the correlation energy within the random-phase approxima-
tion (RPA).””~Y" All these methods are Kohn—-Sham methods or,
depending on the way the exchange—-correlation potential is ob-
tained, generalized Kohn-Sham methods.

rem- "

(2.2.22) Trickey The remark by Goérling about the compu-
tational cost of exact exchange deserves emphasis. He observes
that the cost “nowadays is not really a problem for molecules up
to a size of several hundred atoms. For larger systems or when
very many electronic-structure calculations are required, in ab ini-
tio dynamics simulations, for example, the cost of exact exchange
remains an issue.”

This is a crucial distinction between gas-phase chemistry and
materials physics and chemistry. For those with access to signif-
icant computing resources, exact exchange is not prohibitive for
the comparatively small number of calculations needed to study
an isolated molecule of up to a few hundred atoms. But that is
manifestly not true for ab initio molecular dynamics (AIMD) of
several thousand molecular-dynamics (MD) steps used to screen
tens of different but kindred condensed-phase systems, for each
of which the constituents are molecules with 300 or more non-
hydrogen atoms. This distinction illustrates the compelling im-
portance of continued effort to improve lower-rung DFAs. It also



is but one example that there is more than gas-phase chemistry at
stake in the development of DFT methodology and algorithms.

(2.2.23) Jones : Iagree with Trickey in contribution (2.2.22)
and Gorling in contribution (2.2.21). The computational effort re-
quired in many “real-world” applications is often underestimated
— see also Trickey in contribution (3.2.12), concerning other prob-
lems of extended systems. A single MD simulation of nanosec-
onds with a time step of femtoseconds can mean millions (!)
of self-consistent DFT calculations of a system with hundreds of
atoms. A factor of ten (or even of two) in computer time per
time step can mean the difference between completing the calcu-
lation and abandoning it.

(2.2.24) Savin The Hohenberg-Kohn theorem is valid for
many Hamiltonians, including those with no interaction between
particles. The latter case shows already the difficulty of construct-
ing closed-form approximations to an energy density functional.
Kohn and Sham decided to alleviate the treatment of electronic
systems by treating accurately a (model) noninteracting system
and by using density-functional corrections only for the differ-
ence between the energy of this system and the system of interest,
with interacting electrons. Note that this idea is easily extended
to other model Hamiltonians, making it possible to go beyond the
use of a single Slater-determinant reference within DFT - see, for
example, ref.

(2.2.25) Tozer : A feature of regular Kohn—-Sham calculations
using common exchange—correlation functionals is that the elec-
tronic energy does not in general equal the sum of the occupied
orbital energies. Recently, Levy and Zahariev "“ proposed the
direct energy Kohn-Sham (DEKS) scheme, whereby the Hartree—
exchange—correlation potential is shifted by a constant, in order
to make the electronic energy equal to the sum of the orbital en-
ergies. This shifted potential has attractive theoretical character-
istics and so it is desirable to try to model it directly for use in
DEKS calculations. The use of density-scaling homogeneity con-
siderations is one possible way forward.

(2.2.26) Arbuznikov The remarks of Schwerdtfeger in con-
tribution (2.1.32) have prompted me to add a few words on rela-
tivistic exchange—correlation functionals.

Despite the lack of a rigorous theory that would allow one to
construct them in a systematic way, a potentially useful prag-
matic solution within the Dirac—-Coulomb-Breit framework has
been known for a long time. Since relativistic effects become
important at high densities — that is, in exchange-dominated
core regions — one could, in a first approximation, restrict one-
self to an appropriate treatment of the exchange energy. For
the exchange energy of the relativistic homogeneous electron gas
(RHEG) »»»°/>*"° a multiplicative correction (a kind of “enhance-
ment factor”) has been derived as a simple analytic function ®(f3),
where B = (372p)'/3 /¢ (in atomic units). This function satisfies
®(B) > 1 and tends to one at the low-density limit; it is a sum
of both Coulomb (longitudinal) and Breit (transverse) contribu-
tions. This scheme has been implemented and tested for atoms at
the LDA level ¥/ and subsequently extended to the GGA level
via data on the linear response of the RHEG to a weak perturb-

ing potential.”” Data for several small diatomics are available as
well.

While valence-shell related properties turned out not to be
sensitive with respect to these corrections, '~ a high sensitivity
of core one-electron energies of heavy atoms has been clearly
demonstrated. *’® For heavy atoms, these corrections seem to be
of the same order of magnitude as atomic (nonrelativistic) corre-
lation energies. So far, it appears that these corrections have
not yet been implemented into a molecular or solid-state code.
Obviously, studies of the impact on core-related properties will
be of interest. Recently, short-range LDA and GGA exchange
functionals have been developed and implemented in a similar
way,*~”>*** but again only for atoms and ions so far.

A very recent development of a potentially useful relativistic lo-
cal hybrid functional **~ within an X2C code should be mentioned
as well.

2.3 What can be described with DFT?

(2.3.1) Helgaker : Pure (non-Kohn-Sham) DFT supplies the
ground-state density and the ground-state energy. We can then
(in principle) obtain rigorously all properties that can be ex-
pressed as functions of the density and the energy — for example,
derivatives of the energy with respect to nuclear displacements or
nuclear magnetic moments (provided DFT has been extended to
deal with magnetism, by either BDFT or CDFT). We can in princi-
ple also calculate excitation energies, from equi-ensembles.

In practice, we are doing Kohn—-Sham DFT, which in addition
to the density and the ground-state energy (in principle, both ex-
act) also gives us the Kohn—Sham noninteracting wave function,
from which many more properties of the system can be obtained,
but only approximately, given that the Kohn—Sham wave function
is a noninteracting approximation to the exact many-body wave
function.

We are of course free to use the Kohn-Sham wave function as a
zero-order starting point for a many-body treatment — but we are
then leaving the domain of DFT.

(2.3.2) Gorling The ground-state electron density yields
the electron number and the Hohenberg-Kohn theorem tells us
that it determines furthermore the external potential and thus
the Hamiltonian operator which determines all properties of an
electronic system. Therefore the ground-state electron density
determines the energy and the properties of the ground state and
of all excited states. In practice, we typically use DFT to get in-
formation on ground-state properties and for excited states we
switch to TDDFT in the linear response regime. However, it might
be worthwhile to devote more effort to explore how excited-state
energies and properties can be obtained in DFT without invoking
TDDFT.

(2.3.3) Krylov I would like to see some thoughts of how
to approach the problem of extracting properties that cannot be
formally expressed in terms of the electron density or one-particle
density matrix. The value of $? is such a property.

(2.3.4) Reining I agree, in principle, that we should get
from the density all properties that are determined by the external
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potential and the number of electrons. Why do we then feel that
we have so little diversity in the observables that are tradition-
ally dealt with in DFT? First, this statement is actually not true,
if we consider the Kohn—-Sham observables as approximations to
the true density functional of, for example, spectra — there are
many such calculations around. The Kohn—-Sham expressions are
of course not explicit functionals of the density, but implicit ones,
via the orbitals. But why is it so difficult to go beyond the Kohn-
Sham approximation and find better ones for these observables?

Again, this is actually not completely the case. Take the polar-
izability — we do go beyond the Kohn-Sham independent parti-
cle polarizability, by adding Hartree (i.e., the bare Coulomb in-
teraction in the integral kernel of the Dyson equation) effects
in the RPA, and even exchange—correlation effects through the
exchange—correlation kernel, which is also a density functional.
Like Gorling in contribution (2.3.2), you might object that this is
TDDFT, but I would say it is linear response in the ground state,
so we are talking about functionals of the ground-state density.
Simply, we have derived this ground-state density functional us-
ing TDDFT, but who cares how we derived it once we have it?
We could of course dream of finding simpler functionals for the
polarizability, maybe even explicit functionals of the ground-state
density, but since even the kinetic energy is so difficult, I wouldn’t
bet on this in the near future.

(2.3.5) Yang An exact DFT calculation for the ground state
of an N electron system provides directly the ground state total
energy E,(N) and electron density. It also provides the ground
state energies for the corresponding (N — 1) and (N + 1) electron
systems directly through the chemical potentials of the N electron
system. The extension of a similar connection to the excited states
of the corresponding (N — 1) and (N + 1) electron systems has re-
cently been made. However, since the exact func-
tional is not available in an explicit form, neither is the method
for the associated chemical potential calculations. We now focus
on the discussion on explicit functional forms that include most
existing DFAs.

For an N-electron system, a Kohn-Sham calculation with an
exchange—correlation functional that is an explicit and contin-
uous functional of electron density leads directly to E,(N — 1)
and E,(N + 1), the ground-state energies of the corresponding
(N—1) and (N +1) electron systems. Similar connections fol-
low for a generalized Kohn—-Sham calculation with an exchange-
correlation functional that is an explicit and continuous func-
tional of the noninteracting reference density matrix. This is
true because of the following: (1) it has been proved that the
HOMO/LUMO energy is the chemical potential for electron re-
moval/addition, " (See Table 1) (2) the PPLB condition shows
that the chemical potential of the N-electron system is —/ and
—A." Thus the band gap can be predicted from the HOMO-
LUMO gap, in either Kohn-Sham calculations with an explicit
functional of electron density or generalized Kohn-Sham calcu-
lations with an explicit functional of the noninteracting reference
density matrix. This connection is independent of the functional
approximation. However, the accuracy of the prediction depends
on the quality of the functional used. “" For functionals with mini-
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mal delocalization error, the prediction is comparable to, or better
than, that of GW approaches. “*°

Similarly to the access to the ground state information of the
corresponding (N — 1) and (N + 1) electron systems, it has been
argued recently that € (N), the orbital energies of orbitals above
LUMO and below HOMO also approximate the corresponding
quasiparticle energies o™/~ (N) as follows: &,(N) ~ w; (N) =
En(N+1)—Ey(N), and &,(N) ~ o, (N) = Eg(N) — E,(N —1). This
then links directly to the excited-state energies of the correspond-
ing (N+1) and (N — 1) systems. °»°%" %1% Extensive numerical
evidence supports this claim. “>>°%**>**% Thus, the excited-state
energies of N electron systems can be obtained from ground-state
calculations on the (N —1) or (N +1) electron systems. >

2.4 What concepts are useful for the development and un-
derstanding of DFT?

(2.4.1) Perdew : An open subsystem of fluctuating (and thus
on average noninteger) electron number is a surprisingly useful
concept. Real atoms have integer electron numbers, but local and
semilocal approximations to the DFA for the exchange-correlation
energy spuriously predict the transfer (delocalization) of a frac-
tion of an electron between two different well-separated open-
shell atoms (or between two open subsystems of a combined sys-
tem). Nature’s integer preference is explained by invoking an
ensemble description of each separated open quantum subsystem
that is equivalent to making a wave-function description of the
combined system. '’ When the electron number in the open quan-
tum subsystem is varied between two adjacent integers, its exact
total energy and electron density vary linearly with the electron
number (piecewise linearity), so the exact energy minimizes at an
integer electron number.

This has important practical consequences. In particular, lo-
cal and semilocal approximations predict incorrect energies and
densities for a diatomic molecule AB in the dissociation limit. In
fact, these approximations are much more accurate for integer
than for fractional electron number. This problem still plagues
density functional approximations. A non-self-consistent cure is
to evaluate the approximate functionals on Hartree-Fock densi-
ties, which localize an integer charge around each separated nu-
cleus. Doing that also cures some related problems, such as
spurious charge transfers at smaller internuclear separations.

(2.4.2) Perdew and Savin In many cases, the energy
and wave function of the interacting system can be connected
smoothly to those of the Kohn—-Sham noninteracting system of the
same electron density. Then the exact exchange—correlation en-
ergy for that density becomes an integral over the strength of the
electron—electron interaction, which subsumes both the potential
energy of exchange and correlation and the kinetic energy of elec-
tron correlation. The adiabatic connection (AC) and the idea of
modelling the pair density associated with it served as
the key inspiration not only for passing from LDA to GGAs ' >,
but also for making the step to hybrid functionals'“*. Note that
it is not necessary to use the pair density in the adiabatic cou-
pling; one can use the first-order density matrix as well — see, for



example, ref.

(2.4.3) Sun Related to the concepts mentioned above
— that is, the AC and fractional charges — the concept of the
exchange—correlation hole has been useful for the development
and understanding of DFT. For example, the sum rules for the ex-
change and correlation holes have been used to explain the suc-
cesses of LDA, while the successful PW91 GGA functional was
constructed by enforcing the sum rules for the exchange and
correlation holes on the gradient expansion approximation of
slowly varying densities. The construction of the SCAN meta-
GGA was guided by the understanding of the exchange and cor-
relation holes. In particular, prototypical systems with very lo-
calized exchange correlation holes can be used as appropriate
norms, whose exchange—correlation energies can be exactly or
nearly exactly predicted by a semilocal density-functional approx-
imation. Semilocal approximations, whose underlying exchange—
correlation-hole models are necessarily semilocal, must fail to de-
scribe systems with delocalized exchange correlation holes — for
example, systems characterized by fractional charges.

(2.4.4) Xu : The AC path mentioned in contribution (2.4.2),
which bridges the fictitious noninteracting Kohn-Sham system
to the fully interacting real system, is one of the most impor-
tant concepts in the development and understanding of DFT.

The coupling-constant integration along the AC path defines
the Kohn—-Sham exchange-correlation functional, which also ac-
counts for the kinetic energy of correlation. The more we
know about the AC path, the better DFAs we can construct.

The first widely recognized hybrid DFA is Becke’s half-and-half
functional. It was derived based on a linear model for the AC
path, which was then empirically extended, leading eventually to
the widely used B3LYP functional. More sophisticated AC
models have been used to develop and rationalize the popular
“nonempirical” PBEO functional, '~/ as well as some other hybrid
functionals.

The AC formalism has provided an important playground for
the development of the advanced DFAs that involve the unoc-
cupied Kohn-Sham orbitals. The random-phase approximation
(RPA) was introduced to the DFT community via the adiabatic-
connection fluctuation—dissipation formalism. “/>*“” Gorling-Levy
(GL) perturbation theory *°" shows that the initial slope of the AC
path is twice the second-order GL perturbation energy (GL2). For
systems with a linear AC path, the exact exchange-correlation
functional is therefore nothing but the exact exchange plus GL2
correlation energy. The AC formalism has motivated the ini-
tial developments of several successful double-hybrid approxima-
tions by further mixing the second-order perturbation (PT2) en-
ergy with the already successful hybrid functionals. *~*~

(2.4.5) Gori-Giorgi The AC can be mathematically ex-
tended outside the usual range between the Kohn—Sham and the
physical systems — for example, to negative coupling strengths
(attractive electrons) or, more interestingly, to very large pos-
itive coupling strengths (electrons repelling each other infinitely
strongly, or, equivalently, the Levy-Lieb functional in the i — 0
limit*°>*°/). This latter case defines the limit of strictly corre-
lated electrons (SCE), '°°~ which yields the functional com-

plementary to the Kohn-Sham kinetic energy — that is, the mini-
mum possible electron—electron interaction of a system with given
one-electron density p(r); see eqn (76) in contribution (4.5.8).
The SCE functional also yields the exact low-density limit of the
exchange—correlation functional of Kohn-Sham DFT. Although
chemical systems are usually very far from this limiting situation,
the SCE functional sheds light on the nonlocal nature of the exact
exchange—correlation functional and can inspire the construction
of new approximations to handle strong correlation.

Another way to use the SCE limit in chemistry is to build inter-
polation models of the AC between the Kohn—-Sham limit (which
may include exact exchange and second-order perturbation the-
ory) and the expansion at strong coupling strength. 7>+ %~~
The interpolation strategy based on global quantities (integrated
over all space, a strategy that can be viewed as creating nonlin-
ear hybrids and double hybrids) was abandoned for some time
because of its lack of size consistency. However, more recently, it
has been shown that size consistency can be easily restored for
these functionals at no extra computational cost.

(2.4.6) Teale and Helgaker : The AC is certainly a powerful
tool for understanding the universal density functional. Using the
Lieb variation principle (see contribution (2.1.14)), the AC can be
calculated to high accuracy using many-body wave-function tech-
niques.
path, generalized AC paths, such as those based on the error func-
tion, can be calculated and are relevant for range-separated hy-
brid functionals. ">~

As well as the usual linear adiabatic-connection

Such calculations can also be used to extract the coupling-
constant-dependent one- and two-particle density matrices. The
one-particle density matrices may be used to define an AC focus-
ing on the kinetic component of the DFT correlation energy — see,
for example, ref. ,155, as alluded to in contribution (2.4.8)
and calculated in ref. . The two-particle density matrices can
be used to give direct access to the exchange-correlation hole
and its coupling-constant average. All these quantities can
be determined using high-level ab initio methods, giving valuable
insight into the near exact behaviour of F[p]. The challenge is
to parameterize simple models to construct useful DFAs — work
that is still an active area of research.

All of the adiabatic pathways above focus on the density-fixed
case, relevant to Kohn-Sham DFT. However, if one notes the con-
jugate relationship between F[p] and E[v], a natural alternative is
a potential-fixed adiabatic connection, a possibility that has also
been explored numerically. "°*>*°° Since the density is no longer
fixed, the calculations of the AC pathway are in the potential-
fixed case much simpler to perform, but the noninteracting ref-
erence system (the bare nucleus system) is further from a realis-
tic electronic system than its Kohn—Sham counterpart. Recently,
other adiabatic connections have been developed that do not in-
sist on a fixed density along the adiabatic pathway — see, for ex-
ample, ref. for an AC that recovers the Mgller—Plesset series
as its low coupling-strength expansion. The utility of the AC as a
concept for understanding new theories based on these alterna-
tive pathways and their relative pros and cons compared with the
Kohn-Sham approach underlines its importance as a concept in
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electronic-structure method development.

(2.4.7) Kaupp and Arbuznikov : The AC, which has already
been invoked in contributions (2.4.2)-(2.4.6) as an important
principle for the development of DFAs, is usually applied to the
energy functional, where its existence is well established. *°"
Increasingly, however, interpolations along local ACs have
been used, meaning that the coupling-strength (1) integration
is applied to the corresponding energy density or even to the
exchange—correlation hole followed by integration over one and
two spatial coordinates, respectively. While the existence of a “lo-
cal adiabatic connection” has never been proven rigorously, Becke
argued that such an approach does not violate any basic princi-
ples and is just a matter of changing the order of integration that
is valid for continuous functions — see also, for example, ref.

One of the first applications of the local AC to the develop-
ment of DFAs was to derive the B88 correlation functional
Given that the global AC is the founding principle underpin-
ning (global) hybrid functionals (see (2.4.2), (2.4.4), and (2.4.6)
above), =527 a local AC should be relevant for local hy-
brid functionals (LHs) with position-dependent exact-exchange
admixture. Let us mention in passing our early attempts to de-
rive local mixing functions for LHs from local AC interpolation.
Other important hyper-GGA functionals simulate strong correla-
tion effects and also make use of local interpolations. -

Most notable in this context are recent efforts to include the
SCE limit (1 — ) of the AC by local AC interpolation. **%*°/~
Importantly, the local AC approach has advantages compared to
the global AC in terms of achieving size-consistency for DFAs in
the presence of degeneracies.

(2.4.8) Kronik An important concept that I have found
to be very useful is that of generalized Kohn-Sham theory, in-
troduced by Seidl et al.®~ This involves mapping of the many-
electron system onto a partially interacting model system, repre-
sented by a single Slater determinant, such that the ground-state
electron density is conserved. The original Kohn—-Sham theory
then emerges as a special case of generalized Kohn—Sham theory,
where the partial interaction is set to zero.

Generalized Kohn-Sham theory, recently extended to both
TDDFT and ensemble DFT, provides a useful viewpoint
that rigorously justifies the use of nonmultiplicative potentials. In
particular, this means that the use of Fock-exchange potential op-
erators (and variants thereof) in hybrid functionals (both global
and range-separated), originally viewed as an ad hoc and theoret-
ically unjustified merger of Kohn—-Sham and Hartree-Fock theo-
ries, are rigorously derived and justified within generalized Kohn—
Sham theory. */~ While, for a given system, there is only one exact
Kohn-Sham map, there are infinitely many partially-interacting
systems to which an exact generalized Kohn—-Sham map may be
This added flexibility has been found to be useful for
spectroscopy — in particular, for choosing generalized-Kohn—-Sham
maps in which the derivative discontinuity is eliminated; see elab-
oration in contribution (4.1.5).

(2.4.9) Gritsenko A useful concept of Kohn—Sham DFT is
the meaning of the energies of the Kohn-Sham orbitals. Ac-

formed.
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cording to the Kohn-Sham analogue of Koopmans’ theorem,
the energy ¢; of the occupied Kohn—-Sham orbital ¢; can be inter-
preted as approximate relaxed vertical potential /; of the primary
ionization, & =~ —I;. The quality of this approximation is better
for the outer-valence Kohn-Sham orbitals, with equality for the
HOMO. The deviation of ¢ of the lower-lying Kohn—-Sham or-
bitals from —/; is, primarily, due to the spectroscopically-averaged
contributions from ionization of the corresponding “shake-up”
satellites. °® The energies €, of virtual Kohn—-Sham orbitals ¢, in-
clude the “excitonic” type particle-hole interaction; see contribu-
tion (2.2.3). The difference g, — ¢; therefore serves as a good-
quality zero-order estimate of the corresponding excitation en-
ergy from TDDFT. With the electron affinity provided by the en-
ergy of the anionic Kohn—-Sham HOMO, the Kohn-Sham orbitals
deliver all the important one-electron quantities.

(2.4.10) Baerends : The formal theory — beginning with the
Hohenberg-Kohn theorem - is clear enough. It offers the prospect
of finding important properties, notably the energy, as functionals
of the electron density. However, the functional relation between
the density and the energy remains obscure. The theory tells us
that the density uniquely determines the energy (or rather, that
each ground-state density is associated with a specific energy),
but it tells us nothing about the precise relation. When two den-
sities are close to each other (given some topological definition of
distance between densities), there is no guarantee that the corre-
sponding energies are also close. In other words, we do not (yet)
know how to derive from the one-electron density information on
the pair density, which determines the (correlation) energy. It is
a fundamental weakness of the theory that it provides no clue to
the solution of this problem.

In ab initio quantum chemistry, the route that is followed, in
many different ways, consists of finding computationally feasible
and sufficiently accurate approximations to the full configuration-
interaction (FCI) solution. One may call this a mathematically-
oriented approach. One can view DFT as an attempt — maybe
often unconsciously - to follow the route of finding physical mod-
els for the pair-correlation function. The largest part of the
LDA functional is the exchange functional, which is practically
the same as Slater’s original p*/3 approximation. Slater derived
his “exchange hole” from a simple model (local hole of constant
depth integrating to —1) which leads to practically the same ex-
change energy expression (with p*/3 density dependence) as the
homogeneous electron gas of LDA. But the Slater construction
shows that the interpretation is not necessarily that of an electron-
gas exchange approximation. Indeed, it has been realized that
this simple local hole is much more like an exchange—correlation
hole - for instance, accounting for considerable left-right cor-
relation in the chemical bond (which is why it soon was called
an exchange—correlation approximation) °°.The Slater (or LDA)
hole yields much better bond energies for prototypical diatomic
molecules than the exchange hole of the Hartree-Fock model:
bonding changes from severe underbinding in Hartree—Fock the-
ory to some overbinding in LDA. Also, the systematic errors in fre-
quencies and bond distances that characterize the Hartree-Fock
model disappear. This tells us that modelling of the exchange—



correlation energy may not be so difficult after all.

The major improvement in the step from LDA to GGA comes
from improved modelling of the exchange approximation. Becke’s
parameterization was fitted to reproduce the exchange energies
of the rare-gas atoms, and Perdew’s nonempirical GGA approx-
imation of the exchange hole likewise considerably improved
atomic exchange energies.
cess of GGA (improvement over LDA) for bonds in simple di-
atomic molecules originates from these exchange improvements.
This is mystifying since one would expect the better exchange ap-
proximation of GGA to reproduce more closely the poor Hartree—
Fock results. Apparently, the GGA exchange improvements have
turned the exchange holes into better exchange—correlation holes.
So, there is still a considerable lack of precise understanding why
the most successful models work, which perhaps explains the lack
of consistent improvement beyond the GGA level. On the other
hand, the “physical route” to the correlation problem by mod-
elling of the exchange-correlation hole is hopefully a fruitful way
forward that can be pursued independently of the clarification of
the mathematical intricacies of DFT.

(2.4.11) Gori-Giorgi Besides the argument that the
exchange—correlation hole is much more localized than the ex-
change hole,"” other possible ways to understand the interest-
ing point made in contribution (2.4.10) about fitting exchange
on atoms and getting correlation in molecules could be: (i) The
exchange energy functional (and the exchange hole) changes lin-
early under uniform coordinate scaling. The correlation energy
(and hole), by contrast, does not exhibit any simple scaling. How-
ever, when the electron—electron interaction becomes dominant
with respect to the kinetic energy (see contributions (2.4.5) and
(4.5.8)), then the exchange—correlation energy scales again as
the exchange energy. *°/>*/~>*/° It might thus make sense to have
an exchange-like functional to capture (at least part of the) static
(left-right) correlation. (ii) More recent work by Burke, Perdew
and coworkers (see ref. for a recent review) has clarified the
sense in which LDA is a universal limit for coulombically bound
systems, with exchange as the leading term.

(2.4.12) Krylov : Reduced quantities, such as state and tran-
sition density matrices, natural orbitals, natural transition orbitals
(NTOs), and Dyson orbitals, are very useful for understanding
what DFT can and cannot do.’* These objects are also useful
for making rigorous connections between DFT and wave-function
theories, as well as for interpretation.

For example, NTOs afford a unified and rigorous description
of electronic transitions in terms of MO theory, which is also ex-
perimentally verifiable, noting that observables such as absorp-
tion cross-sections can be rigorously expressed in terms of matrix
elements between hole and particle NTOs. By using natural or-
bitals and their occupations, one can compare such properties as
diradical character and the number of effectively unpaired elec-
trons; '/ although not observable, these quantities are useful for
understanding the underlying electronic structure and for judging
whether DFT captures the physics of the problem.

(2.4.13) Krylov The observation that the response of the
density of one electronic state (e.g., the ground state) contains

The main contribution to the suc-

the information about the entire spectrum of the system is both
an opportunity for useful extensions and a liability in the context
of the applicability of the theory. This observation has been used
to extend Kohn-Sham DFT to describe excited states via TDDFT.
The same observation, coupled with the fact that the quality of
the response of the density depends on the quality of the density,
also enabled the extension of Kohn-Sham DFT to electronic struc-
tures that have multi-configurational character and, therefore, are
not well described by the single determinant. Although with ex-
act Kohn-Sham DFT, we should be able to treat any type of elec-
tronic structure, current DFAs implicitly rely on the expectation
that a single Slater determinant provides a good zero-order rep-
resentation of the wave function; consequently, most Kohn-Sham
DFAs fail when the electronic structure is multi-configurational.
In the spin-flip DFT (SF-TDDFT) approach, the “difficult” multi-
configurational states (such as diradicals, molecules with broken
bonds, transition metals) are described by means of spin-flipping
excitations from a well-behaved high-spin reference state. "~
In exact DFT, this approach should yield identical results to the
traditional Kohn-Sham treatment — however, with the current in-
carnations of Kohn—-Sham DFT, the SE-TDDFT method provides an
effective solution to certain types of multi-configurational states.
Thinking in terms of response properties also helps to under-
stand when to anticipate potential problems. For example, while
a TDDFT calculation may yield excellent excitation energies for a
few valence states of interest, it may fail miserably in describ-
ing nonlinear properties, such as two-photon cross-sections, if
the chosen functional does not treat (higher-lying) Rydberg states
correctly.

2.5 What useful concepts of electronic structure theory have
emerged from DFT?

(2.5.1) Gill Inspection of the electronic Schrodinger equa-
tion for a large molecule does not lead one to anticipate that
most of its interesting properties can be partitioned into almost-
additive contributions from its various parts. As a result, there
is an apparent inconsistency between the baroque complexity of
quantum chemistry’s many-body framework and the simplicity
and predictive power of chemistry’s “functional group” paradigm.
Kohn-Sham DFT models, in which the exchange—correlation en-
ergy is approximated by an integral over all space of a function of
the electron density, have partially bridged that conceptual gap.

(2.5.2) Kronik Regarding contribution (2.5.1): Interest-
ingly, decades after his seminal DFT work, Walter Kohn formal-
ized the idea of almost-additive local contributions by introducing
the concept of “nearsightedness” of electrons in many-atom sys-
tems; see also contribution (5.4.7). Nearsightedness means that
(with some caveats), for a fixed chemical potential, local elec-
tronic properties, such as the density, p(r), depend significantly
on the effective external potential only at nearby points. *“*

(2.5.3) Ayers, Chattaraj, Chermette, De Proft, Fuentealba,
Geerlings, Liu, Vela, and Yang : In the variational equation of
DFT, the Lagrange multiplier u was identified by Parr and cowork-
ers in 19787'°" as the partial derivative of the energy E with re-
spect to the number of electrons N, at constant external potential
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The chemical potential is the negative electronegativity y = —u
by the Iczkowski-Margrave definition “> and reduces to the Mul-
liken electronegativity in a finite-difference approximation. As
the electron density p(r) can be shown to be equal to the func-
tional derivative of the energy with respect to the external poten-

tial,
OE
/0= (), 1

two basic quantities u and p(r) can thereby be seen as responses
of the energy to perturbations in N and v, respectively.

This observation forms the basis of conceptual DFT
where, starting from the energy functional E[N,v] for atoms,
molecules, and the solid state, derivatives of the type
(98" E JON™8v(r;)6v(ry)...6v(r,y) are identified as response
functions of the system’s energy to perturbations in N and v, im-
portant for chemical reactions, with u and p being the first-order
(n=m+m' = 1) responses. Second-order properties (n = 2) like
the chemical hardness,

JI’E
v
and its inverse, the chemical softness § = 1/n, the Fukui function
)
£r) = ( P )) (18)
and the linear response function
8’E
/ J—
1)~ (i) 4
and even third order properties, with
df(r)
@) (r) =
1200 = (7). 20)

as the most representative member the dual descriptor, followed.
All of them have proven their merits as concepts in the electronic-
structure theory of atoms, molecules and the solid state, ' °“
emerging in a natural way in conceptual DFT which, on the basis
of the initial identifications, forms an integral part of DFT.

All these response functions and some others derived from
the energy function E(N), of which the electrophilicity ® is the
most eminent representative, "°“>'°” were shown to bear chem-
ical relevance. To give some examples: the chemical hardness
1 in eqn (17) was identified with Pearson’s hardness, while the
Fukui function f(r) was recognized as a generalization of Fukui’s
frontier MO concept, its product with the total softness, the local
softness s(r) = Sf(r) being a local indicator for soft regions in a
molecule.

The first conceptual development of the chemical potential u
was based on the assumption that the fundamental functional
E[N,v(r)] is differentiable everywhere for both variables. *“* Sub-
sequently, the exact piecewise linear conditions at fractional par-
ticle numbers were established originally by Perdew, Parr, Levy,
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and Baldus (PPLB) '/ based on grand canonical ensembles at zero
temperature and later by Yang, Zhang, and Ayers based on pure
states with degeneracy.

The piecewise linearity of E[N,v(r)] with respect to N means
that the derivatives at integer electron numbers are discontin-
uous. In particular, at a given integer N, the chemical poten-
tial u = (dE/IN)v the Fukui function f(r) = (dp(r)/dN))v and
other related quantities are discontinuous, the corresponding left
and right derivatives being different. In view of this disconti-
nuity, use of the derivative notation is best understood with an
underlying finite-difference mathematical definition*>*”", where
e.g. the right derivative is obtained by evaluating E(N+1) -
E(N). This interpretation is particularly important for second
derivatives such as the chemical hardness in eqn (17).
the chemical hardness describes the change in the first derivative
at an integer electron number N, it will be zero or infinite at N and
have no physical meaning unless interpreted in the above finite-
difference manner. The PPLB condition is thus the foundation for
the discussion of derivatives. It leads to the identification of the
left and right chemical potentials with the ionization energy 7 and
the electron affinity A, respectively. */ This identification was used
to establish the physical meaning of the HOMO and LUMO orbital
energies as the density-functional prediction of -/ and -A, respec-
tively, associated with the functional approximation used.

(2.5.4) Liu The use of density functionals to quantify
and rationalize traditional chemical concepts and physiochemi-
cal properties is an ongoing research topic in DFT. The first
example was by Nalewajski and Parr, who proved that the
Hirshfeld partitioning (the Hirshfeld charge) arises from the con-
strained minimization of information gain (the Kullback-Leibler
divergence, an explicit density functional), subject to the normal-
ization condition of the total electron density.

Steric effects have been quantified in DFT by the Weizsacker
kinetic energy functional. Its functional derivative has been
employed to predict stereoselectivity. Pauli energy was vali-
dated as a robust identifier for double, triple, quadruple, and even
higher covalent bonds.

Since

The electron localization function
(ELF) 7% and related tools for analysing the nature of chem-
ical bonds come from DFT and are now ubiquitous in com-
putational chemistry. Other examples include the average local
ionization energy
and molecules.

(2.5.6) Pernal The concept of the adiabatic connection
(AQ), conceived within the DFT framework and successfully used
to develop approximations to exchange—correlation functionals —
see contributions (2.4.2)—(2.4.7) - has inspired the development
of methods for calculating the dynamical correlation energy in
wave-function theories. In the general AC theory developed
and elsewhere, one is not restricted to adopting a

(2.5.5) Staroverov

and classical turning surfaces of atoms

in ref.
noninteracting Kohn—-Sham system as a reference system, corre-
sponding to a vanishing coupling constant. If, instead, the ref-
erence wave function consists of a combination of Slater deter-
minants and orbitals are partitioned into noninteracting groups
(most commonly into doubly occupied (inactive), fractionally oc-



cupied (active), and unoccupied (virtual) orbitals, as in multicon-
figurational self-consistent-field (MCSCF) theory) then, by follow-
ing the AC path, the limit of no correlation is smoothly connected
with the full electron-correlation limit.

A difference between AC-DFT and multiconfigurational AC the-
ory is that, in the former theory, the electron density is fixed to
the exact density by a local one-body potential varying along the
AC path, while in the latter, the condition of a constant density
is imposed as an approximation. AC-based correlation energy ap-
proximations have been used with MCSCF, complete-active-space
SCF (CASSCF), density-matrix-renormalization group (DMRG) or
geminal theories. “”~>"" These multiconfigurational AC approxi-
mations rely on the adiabatic-connection fluctuation-dissipation
formalism and the (extended) RPA. An appealing feature of the
multiconfigurational AC methods is that only one- and two-
electron reduced density matrices are needed, as opposed to
perturbation approaches such as complete-active space second-
order perturbation theory (CASPT2) or N-electron valence-state
second-order perturbation theory (NEVPT2), which require three-
and four-body RDMs.

It has been recognized that, in the general AC theory, the ref-
erence state need not be an electronic ground state as long as
it is not degenerate. This has motivated the development of AC
methods for excited states, which recover the dynamical correla-
tion energy for a specific state. "~ It may be worth exploring if a
similar approach could be developed for Kohn—Sham DFT, taking
an excited Kohn-Sham determinant as the noninteracting system.
The clear advantage over TDDFT would then be the description
of states of double-excitation character.

(2.5.7) Pernal There has always been an intuitive under-
standing that short-range correlation relates to the electron cusp
in the wave-function description, while long-range correlation
plays a role when electron pairs dissociate or when van der Waals
bonds are formed. Range separation of electron correlation has
gained mathematical rigour in the range-separated multiconfigu-
rational formulation of DFT """/, In range-separate multicon-
figuational DFT (RS MC-DFT), only the long-range part of the
electron interaction operator, which is bounded at electron co-
alescence and is characterized by a proper Coulomb tail, is re-
tained in the many-body Hamiltonian. Consequently, a wave
function in RS MC-DFT has no electron cusp, which greatly sim-
plifies the many-body problem — approximate wave functions call
for shorter configuration-interaction (CI) expansions than when
the full Coulomb interaction operator is used.

The long-range electron correlation energy naturally emerges
as the difference between the energies of the full CI wave function
and the chosen model (CI, CASSCF, etc.). %=~ The short-range
correlation energy is rigorously defined as

ESR[p] = pin (|74 W|¥) — min <~P\T + WLR|‘P>

- <¢KS[PHWSR|CI’KS[P]> @D

and depend on the underlying range-separation of the electron
interaction operator, W = WR 4+ WSR_ Approximations for the

short- and long-range correlation energies can be developed in-
dependently. One of the appealing features of RS MC-DFT is that
models developed in wave-function theory (WFT) and existing
approximate exchange—correlation functionals may be adapted to
a range-separated electron interaction.

The rigorous range separation of electron correlation has led
to a proliferation of wave-function methods using short-range
exchange—correlation functionals as an inexpensive way of ac-
counting for dynamical (short-range) correlation, thereby im-
proving their accuracy and/or efficiency. A promising direc-
tion of development of DFT via its merger with WFT is enabled by
gaining access to a correlated two-particle local function — the on-
top pair density — which can be used as a variable in correlation
functionals in addition to the electron density; see, for example,
ref. and contribution (4.1.1).

(2.5.8) Grimme In the early days of quantum-chemical
method development for electronic structure, drastically sim-
plified methods for large systems termed “semiempirical” like
MNDO, AM1 or PM6 were derived as approximations to
Hartree-Fock theory. Usually, minimal atom-centred atomic-
orbital (AO) basis sets and severe integral (multipole) approxi-
mations were applied, enabling a reasonably accurate, extremely
fast treatment of mostly organic molecules. Because of the ap-
plied ZDO approximation and their Hartree-Fock origin, these
methods are not robust for more complicated electronic systems
like, for example, the important class of organometallic catalysts.

This situation changed in the mid 1990s when the tight-binding
(TB) semiempirical theory was proposed as an approximation to
Kohn-Sham DFT,“'“>“*" based on previous work of Foulkes and
Haydock. "> The current theoretical view on TB methods, which
in the meantime have been consistently parameterized for the
whole periodic table, is based on a Taylor expansion of the
total energy E around a reference density py, constructed as a
sum of atomic valence densities:

E[p] = E [po] + EM [y, 5p]
+EP [po, (8p)*] +EP [po, (8p)*] +-++ (22)

where the fluctuations dp are expressed in terms of multipoles
and the series is usually truncated at third order. Short-range
repulsive, exchange—correlation as well as dispersion effects are
typically described using empirical pairwise potentials.

The speed-up of a TB calculation compared to, for example, a
regular GGA(PBE) DFT calculation, is about three orders of mag-
nitude, at little loss of accuracy for common properties like elec-
tronic and geometric structures. Thermochemical data and, in
particular, conformational energies are generally not so well de-
scribed, which is at least partially attributed to the small (mostly
minimal) AO basis sets employed.“° The development of more
accurate, but still sufficiently fast, TB methods is an important fu-
ture field that should take advantage of more on advanced DFAs.

(2.5.9) Aradi and Frauenheim The efficient DFT-based
TB methods are not restricted to “classical” DFT and to ground-
state properties only. Several DFT extensions have been suc-
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cessfully ported into the density- functional tight-binding (DFTB)
framework and implemented in various program packages.
The DFTB version of those extensions (hybrid functionals
TDDFT, Ehrenfest dynamics, Greens-function-based elec-
tron transport~-" etc.) are typically several orders of magnitude
faster than their DFT counterparts, allowing for a more efficient
treatment of large systems and/or long time scales.

(2.5.10) Koster For decades, X, and Kohn-Sham DFT
methods have served as a playground for the development of
density-fitting methods.“~**“* Commonly used approaches are
the variational fitting of the Coulomb““~ and Fock““* potentials.
With these fitting approaches, the formal scaling of first-principles
Hartree-Fock and Kohn-Sham calculations is reduced by one or-
der of magnitude without lowering the accuracy of the underlying
methodology. To avoid linear-algebra bottlenecks associated with
variational density fitting, iterative Krylov subspace solvers are
advocated.

A further simplification of Kohn—-Sham DFT implementations
can be achieved by using the approximated density from the vari-
ational fitting of the Coulomb potential for the evaluation of the
exchange—correlation energy and potential. “““>“=/ The resulting
energy expression remains variational and yields optimized struc-
tures and relative energies that are almost indistinguishable from
standard Kohn—-Sham approaches, but at a substantially reduced
computational effort. The extension of this auxiliary DFT (ADFT)
approach to perturbation theory permits first-principles molecu-
lar property calculations of systems with up to thousand atoms
— for example, second-order analytic energy derivatives. ““° Most
recently, ADFT also serves as platform for the development of new
DFAs.

(2.5.11) Galli : DFT (and by that I mean approximate Kohn—
Sham formulations of DFT) have been key in the description of
chemical bonding in condensed systems, including solids and lig-
uids, in different phases and under different thermodynamic con-
ditions. It has been especially critical for understanding trends in
chemical bonding in solids as a function of temperature, pressure
and, more recently, even external fields, although we are still far
from having accurate descriptions in many cases. It is also im-
portant to note that the use of approximate DFT (beginning with
LDA) is at the basis of the development of first-principles molec-
ular dynamics and hence the ability to study finite-temperature
properties of materials.

Orbitals obtained from the solution of the Kohn-Sham equa-
tions are also at the basis of most of many-body perturbation
theories solving, in approximate manners, the Dyson and Bethe—
Salpeter equations (GW and BSE methods). These approaches
have brought tremendous progress in understanding properties
of solids, in spite of some lack of accuracy, and almost all of them
(for solids) are based on DFT.

(2.5.12) Reining Further to the usefulness of DFT as start-
ing point for Green’s functions methods, I would like to point out
combinations, for example, approximations for vertex corrections
beyond the GW method are derived from DFT and TDDFT.
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3 Density Functional Approximations

3.1 What strategies have been useful in constructing DFAs?

(3.1.1) Chermette It is worth recalling that DFAs span a
wide range, from quasi ab-initio to fully semiempirical status. The
first category, promoted by Perdew and collaborators, introduces
parameters that are almost all fixed by theoretical constraints.
This approach, which allows us to use the resulting exchange—
correlation functionals in exotic systems with some confidence
(assuming universality of the functional), may, however, involve
constraints that can be questioned, as being not necessarily ap-
propriate for molecular systems — for example, the uniform-gas
limit. This constraint was removed by Handy et al. in the
OPTX exchange functional and is a reminiscent of the X-alpha
functional. This approach, coupled to a correlation functional
(e.g., in the OPBE functional), may lead to a good description of
spin states.

The second category, promoted by the Minnesota team, has led
to functionals involving up to 64 parameters. These functionals
may be very accurate for — but limited to — small classes of molec-
ular systems and properties. In a paper involving 200 combi-
nations of exchange and correlation functionals“~*,Mardirossian
and Head-Gordon compared the performance of these exchange—
correlation functionals applied to 82 data sets, with and with-
out dispersion corrections, and documented the scattering of the
performance among the properties for given classes of molecular
systems.

(3.1.2) Perdew The original local density approximation
(LDA) °° for the exchange—correlation energy was based upon fit-
ting to an appropriate norm or system for which the approxima-
tion is exact: the electron gas of uniform density. Nonempirical
generalizations of LDA have been constructed by satisfying addi-
tional exact constraints or mathematical properties derived from
exact but impractical expressions (see, for example, refs. 97, s

) for the functional. For example, the PBE functional satis-
fied 11 exact constraints, and the SCAN functional
structed to satisfy all 17 known exact constraints that a meta-
GGA can satisfy. The SCAN functional also fits generalized ap-
propriate norms, such as the hydrogen atom and neutral atoms
of large atomic number. By contrast, empirical constructions are
fitted to experimental or higher-level computational data (usually
for molecules), which can make them more reliably interpolative
and less widely predictive than the nonempirical functionals.

Of course, these two approaches are often combined. The most
accurate functionals (including meta-GGAs, hybrids, and RPA-like
functionals) generalize Kohn—-Sham theory"” by employing as ar-
guments of the energy density not only the electron density and
its gradient, but also the occupied or even the unoccupied or-
bitals or one-electron wave functions, and by optimizing those
arguments. A sometimes important but seldom discussed step in
the development of a functional is “deconstruction”: removing
what is wrong or unnecessary, as in the transition from gradient
expansions to generalized gradient expansions.

‘was con-

(3.1.3) Chermette As suggested in contribution (3.1.2),
in case of semiempirical functionals (see contribution (3.1.1))



which may involve dozens of parameters, it is especially impor-
tant to remove all the fitted parameters with statistically insignif-
icant weights in the fits. The reason is that these parameters
introduce noise in the calculations and restrain severely the ap-
plication domain to the classes of molecular systems that have
been used in the training set. Approaches like variance analysis
spring to mind, but more elaborate methods may also be used
— for example, Mardirossian and Head-Gordon have detailed
the strategy they used for a combinatorial approach to handle the
problem, which is made more complicated by the fact that the
objective function to be optimized (usually a least-squares sum)
is a (linear) combination of inhomogeneous quantities (energies,
structural data, other physical properties) that are combined with
ad hoc weights in the objective function.

(3.1.4) Adamo and Ciofini The terms “empirical” and
“nonempirical” used above deserve some clarification. For us,
the term “nonempirical” denotes those DFAs whose internal co-
efficients are not determined by an error minimization relative to
external reference data sets (experimental or theoretical), but in-
stead are fixed using only constraints derived by theory. The term
“empirical” denotes, by contrast, those functionals whose coeffi-
cients are determined by a parameterization procedure. However,
since these latter functionals may also respect some theoretical
constraints, we prefer to use the term “semiempirical” to under-
line their theoretical foundation. In our opinion, these two terms,
“nonempirical” and “semiempirical”, are not measures of quality,
but rather indicate how the functional has been developed. Be-
tween these two classes, the term “minimally parameterized” is
also used, to underline that an effort has been made to reduce
the number of functional parameters, as mentioned above.

(3.1.5) Loos The uniform electron gas, a hypothetical in-
finite substance where an infinite number of electrons “bathe”
in a (uniform) positively charged jelly of infinite volume, is one
of the success stories of DFT and, in particular, the parameteri-
zation of its correlation energy as a function of the density has
been enormously useful for the construction of DFAs. > From a
more general point of view, model systems (especially the ones
with uniform electron densities) provide new ways for improving
and testing DFAs.“° In this regard, finite uniform electron gases
(where electrons are confined to the surface of a sphere) can be
seen as an extension of the conventional “infinite” version thanks
to additional degrees of freedom coming from the tunable “finite-
ness” of the electron gas.~"/>

(3.1.6) Reining I would like to elaborate on the contribu-
tion of Loos in (3.1.5): using results from the uniform electron
gas has been invaluable for the success of DFT. Here, we should
stress how much DFT has profited from other people’s work and
methods - in particular, from the quantum Monte Carlo calcu-
lations of Ceperley and Alder. “°~ This is important: trying to use
the strong points of other methods — and trying to use the knowl-
edge of model systems for the real materials we are interested in.

This strategy could be extended much further.

(3.1.7) Savin : Animportant decision in constructing DFAs is
the choice of parts to be approximated by a closed form. Hohen-

berg and Kohn already considered it necessary to treat exactly
the Hartree term, thus treating the electrostatic contribution to
the energy correctly.” Kohn and Sham decided to leave the DFA
for exchange and correlation (Section II.A of their paper), or for
correlation only (Section IL.B).“” One can discuss having a part of
exchange treated by orbitals and a part by DFAs, as done in hybrid
DFT.'~" One can also decide to treat only a part of correlation by
a DFA - see, for example, ref.

(3.1.8) Staroverov : The analytic derivations of density func-
tionals for model systems that gave us the Dirac exchange and
Thomas-Fermi theory, as well as derivations of DFAs from model
exchange—correlation holes
cess of this analytic approach seems difficult to sustain in DFT, but
that is almost certainly because not everything has been tried. At-
tempts to connect DFT with wave-function methods explicitly can
also result in effective practical methods, especially for calcula-
tions of accurate Kohn-Sham potentials. ““~~

have been seminal. The suc-

(3.1.9) Johnson Explicit modelling of the separate ex-
change, dynamical, and nondynamical correlation holes has been
a very successful strategy in functional development. The (ex-
act) exchange—correlation energy can be written in terms of the
exchange—correlation hole as:

1

Exc = B
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The total exchange-correlation hole can be decomposed into sep-
arate exchange, parallel-spin correlation, and opposite-spin cor-
relation holes. Real space models can then be proposed that obey
known constraints, such as normalization, as well as density and
curvature constraints at a reference point.

Another useful strategy in the development of GGAs is to en-
force a large-gradient limit of the enhancement factor, ="
which ensures an accurate treatment of nonbonded repulsion in
van der Waals complexes. ““““*” Such functionals are capable of
high accuracy for modelling intermolecular interactions in both
gas-phase and solid-state systems, when paired with a density-
functional dispersion correction.

(3.1.10) Adamo and Ciofini It is worth underlining how
the respect of known theoretical constrains can help in the de-
velopment of DFA approximations. In this sense, we should first
mention Becke’s half-and-half model, which introduces the AC at
the heart of functional construction. “* Another example is the
PBEO functional, '°* defined based on the ansatz of Perdew
and co-workers for the form of the AC path. '~/ The relationship
between the AC ansatz and numerical performance has been ex-
plored by Yang and co-workers. Later, the introduction of the
GL limit (see contribution (2.4.4)) in functional development
has led to the definition of double-hybrid functionals, including
some nonempirical approaches.

Interestingly, since the introduction of Becke’s half-and-half
model, constraints derived from properties of the AC have been
used for functional development, thereby avoiding introducing
variables to be fitted to external (not theoretical) data. In other
words, increasing the number of theoretical constraints in going
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from local to hybrid functionals leads to improved numerical per-
formance (at least within the same functional family) for a large
number of chemical properties.

(3.1.11) Sun In the approach of using exact constraints to
construct DFAs mentioned in contribution (3.1.2), two different
levels of exact constraints have been successfully used. For ex-
ample, the PW91 GGA functional was constructed to satisfy the
exact constraints of the exchange—correlation hole, while the very
similar PBE GGA functional was constructed to satisfy exact con-
straints of the exchange—correlation energy. The SCAN meta-GGA
functional was constructed by satisfying the exact constraints of
the exchange—correlation energy but guided also by properties of
the exchange—correlation hole.

(3.1.12) Gritsenko A useful strategy in constructing ap-
proximations to the Kohn-Sham exchange—correlation potential
is the statistical averaging of (different) orbital potentials (SAOP).
The SAOP exchange—correlation potential, which statistically av-
erages the potential with the correct Coulombic asymptotics and
the potential arising from the step structure of the atomic and
molecular electron shells, produces a good-quality estimate of
vertical ionization potentials and yields a high-quality zero-order
estimate of excitation energies within TDDFT.

(3.1.13) Romaniello : The link between DFT and many-body
perturbation theory (MBPT) based on Green’s functions has been
particularly beneficial. The Sham-Schliiter equation (SSE)~"’,
which relates the Kohn-Sham potential of DFT to the self-energy
of MBPT, has given several insights into approximations to the
vxe. As an example, one can easily retrieve the OEP equations
from the linearized version of the SSE. "

Also, the time-dependent version of the SSE-°" has been very
useful in the context of TDDFT. For example, one can show that
the TDDFT exchange—correlation kernel fy. can be written ex-
actly as two contributions, one responsible for the shift of the
Kohn-Sham band gap to the fundamental gap and the other ac-
counting for excitonic effects.“°" This splitting has been recently
used to calculate accurate optical spectra of semiconductors and
insulators within a pure Kohn—Sham TDDFT framework — that is,
without invoking empirical information nor theory beyond Kohn—
Sham DFT (e.g., GW theory) to correct the Kohn—Sham gap.

(3.1.14) Galli One of the outstanding open problems in
defining approximate density functionals pertains to the descrip-
tion of the electronic properties of solid-solid and solid-liquid
interfaces. When systems with different dielectric properties are
interfaced — for example, a metal with an insulator or a semicon-
ductor such as silicon with an insulating liquid such as water —
none of the existing functionals can accurately describe band off-
sets and other electronic properties. This issue can be mitigated
by carrying out GW calculations starting from DFT orbitals (for
nonmetallic systems) However, this GW @DFT approach does not
work when the underlying wave function provided by DFT turns
out to be too inaccurate as a starting point — for example, for
some transition-metal oxides.

A useful strategy for deriving approximate functionals for inter-
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faces may be based on an approximate treatment of the screened
Coulomb interaction and of dielectric matrices; the latter may
then be used to derive approximate hybrid functionals with pa-
rameters that capture how the dielectric screening varies in differ-
ent part of the system (see, e.g., ref. and references therein).

3.2 How accurate do we need DFAs to be?

(3.2.1) Jones Table 2 shows that “accuracy” has different
meanings in different contexts. If one is interested in properties
such as cohesive energies and structures in different phases of ex-
tended systems, then it is impossible in practice to determine ac-
curate total energies using DFT methods. If the goal, however, is
to shed new light on a problem or to make unbiased predictions,
then DFT calculations can be a reliable partner. They share with
other approaches the benefits of error cancellation, and users of
molecular dynamics welcome the fact that forces are straightfor-
ward to calculate and consistent with variations in the energy.

In extended systems, it is often impractical to repeat calcu-
lations with different functional approximations [see contribu-
tion (2.1.17)], and it is essential to develop a level of “trust”
[see contribution (3.2.7)] in the approximations one uses and a
feeling for their limitations. My own applications over several
decades show a clear preference for main-group elements, which
might imply less trust in the ability of particular DFAs to describe
transition and rare-earth elements. This is perhaps not surprising,
since some DFAs describe energy differences in the corresponding
atoms very poorly.

(3.2.2) Schwerdtfeger : The accuracy really depends on the
property in question, on whether the corresponding operators
sample the density more in the outer region or in the region close
to the nucleus). I find Table 2 quite useful, but we should be
reminded of some more problematic cases for properties such as
polarizabilities or hyper-polarizabilities.

Moreover, if we have an incorrect long-range behaviour of the
one-particle density, then the region close to the nucleus will also
suffer because of charge conservation. As a result, properties like
electric-field gradients (EFGs) are not so well described by cur-
rently available DFAs — the worst results are perhaps obtained
for the late transition metals. To illustrate, the Cu EFG in CuF
at the experimental bond distance is measured to be (in atomic
units) —0.31(2), while some representative DFAs give +0.495
(LDA), +0.444 (PW91), and +0.146 (B3LYP). At the coupled-
cluster CCSD(T) level, we have —0.439 (—0.341 if relativistic ef-
fects are included). “°° To address this problem, the parameters in
the CAMB3LYP functional can be tailored such that accurate re-
sults for EFG (and other short-range properties) are produced,
but this is not a nice solution and no unique functional exists that
performs well for all properties concerned.

One should also mention that, as for molecules, the perfor-
mance of various DFAs for the solid state has been extensively
analysed in the past — see, for example, refs. -274. Here, a
few percent error range is typical for solid-state properties such
as lattice constants, cohesive energies and bulk moduli if (for
the heavier elements) relativistic effects and (for the lighter el-



Table 2 Common accuracy objectives.

Property
Heats of formation

Accuracy Required
1 kcal/mol@

3 kecal/molP

0.3 kcal/mol?

1.6 kecal/molP

0.1 kcal/mold

1 kcal/mol®

1 kecal/mol®

Heats of formation (“intensive”)¢

Conformational energies
Barrier heights
Ionization potentials

Band gaps 0.1evf
Excitation energies 0.1evf
Bond lengths 1 pm8
Vibrational frequencies <3cm!h
Shielding constants 0.5%—-5%!
Dipole moments 0.1-0.2 D/
Dipole polarizabilities 0.5-1 a.ul
Electric field gradients 0.1-0.2 a.uJ

4 Savin: Mean value of the experimental uncertainties compiled
in ref. for over 500 molecules containing elements with
Z < 18. See also ref

b Savin: Qus, cf. contribution (3.3.12), obtained from the experi-
mental uncertainties compiled in ref. for over 500 molecules
containing elements with Z < 18.

¢ Savin: Heat of formation divided by (the number of atoms -1),
justified by the mean of the values obtained by detaching succes-
sively one atom after the other.

4 Grimme: molecular total energy difference for the same cova-
lently bound structure but with different three-dimensional shape
normally obtained by rotation around covalent bonds.

¢ Schwerdtfeger: Based on ref

f Kronik: An experimental accuracy of 0.1 eV in band gap mea-
surements is possible, as well as desirable, but not at all trivial
and may require the combination of several measurement tech-
niques. Many reported experimental results, especially for insu-
lators, do not necessarily reach this level of accuracy. Also, some
reported band gaps arise from correction terms to optical gap val-
ues. Furthermore, experimental band gaps are also influenced
by electron-nucleus coupling, sometimes quite significantly. This
should be taken into account when comparing to results of elec-
tronic structure theory that do not include such coupling.

$ Helgaker: The uncertainties in experimental bond lengths de-
pend strongly on the experimental technique used — an accuracy
of 1 pm for covalent bonds of first-row atoms is a reasonable tar-
get for computation. For benchmark data of wave-function meth-
ods, see ref.

h Draxl: For vibrational frequencies, even semilocal DFT does al-
ready very well, if computed consistently (i.e., for the optimized
geometry~°/). The situation is more tricky for intensities, as these
are typically not measured for solids. The situation may be differ-
ent for molecules; thus a distinction would be needed. Note that
intensities can’t be obtained by DFT alone.

i Kaupp: The necessary and achievable accuracy for shieldings
and relative shifts differs from nucleus to nucleus and for differ-
ent applications. The best way to report the accuracy that allows
a comparison between different nuclei, is to give relative devia-
tions in %, normalized to the shielding or shift range of a given
nucleus (either computed or experimental). For meaningful accu-
racy, this should not exceed a few percent, sub-percent accuracy
is better, and is achievable at least for light main-group systems.
This is not yet the case for transition-metal nuclei.

J Schwerdtfeger: These accuracies are expected from any decent
ab-initio calculation. For comparable accuracies for electric field
gradients achieved by coupled-cluster methods see ref. , for
DFT see ref. s

ements) phonon contributions are included. For finite tempera-
tures, thermal effects need to be included as well.

(3.2.3) Fuentealba Let me illustrate Schwerdtfeger’s point
regarding polarizabilities with some numbers. The dipole polar-
izability of a Lis cluster has been calculated using the B3LYP and
PW91 functionals, the values being (in atomic units) 355 and
394, respectively“/”. But the experimental value is 327 — no ex-
planation. More dramatically, for the Cug cluster, the calculated
value is 295, while the experimental value is 984 “/°. Pathetic.

(3.2.4) Calaminici : The accuracies of static Kohn—-Sham DFT
dipole polarizabilities are usually in the range of 1%. However,
the errors in dynamic dipole polarizabilities can be catastrophic
— in particular, for planar conjugated systems. Here, the long-
range behaviour of the functional used is critical.#’/ The polar-
izabilities of small metal clusters can be significantly influenced
by temperature effects.“’® Furthermore, the experimental refer-
ences for static polarizabilities of such clusters are not always re-
liable. In particular, this is the case for the available measured
copper-cluster polarizabilities in the literature.

(3.2.5) Chermette As far as bond lengths are concerned,
the accuracy can be better than 1pm (perhaps has small as
0.3 pm) if the aim of the calculation is to compare bond lengths
of organic isomers and conformers. On the other hand, if heavy
atoms are present, 3pm or even 5pm can be considered fine,
even with relativistic corrections added. There is room for im-
provement.

(3.2.6) Grimme
range — from one tenth to hundreds of kcal/mol. The often cited
“chemical accuracy” of 1 kcal/mol usually refers to bond or atom-
ization energies, which (for small systems) on the order of a few
hundred kcal/mol. While this definition is appropriate for some
thermochemical problems, it is inappropriate for others. For ex-
ample, the very relevant conformational energies of typical phar-
maceutical drug molecules with about 50 atoms are on the or-
der of the thermal energy at room temperature (0.6 kcal/mol).
Hence, in practical applications, only errors less than about 0.1-
0.2 kcal/mol are acceptable.

Another aspect to consider here is that the most important pri-
mary application of current Kohn—Sham DFT in chemistry is prob-

Chemically relevant energies span a huge

ably the determination of equilibrium structures (R.) including
those of chemical transition states. Even with rather simple DFAs
(e.g., GGAs), basically no severe outliers are obtained, even in
electronically difficult cases — a fact that, in retrospect, was ex-
tremely important for the development of computational chem-
istry. As such, newly proposed, empirical DFAs, should be care-
fully tested not only for energies but additionally for the computa-
tion of Re structures. Similar considerations hold for the compu-
tation of vibrational frequencies, which are of utmost importance
for thermostatistical properties — for example, Gibbs free energies.

(3.2.7) Savin : It seems to me that in most cases, calculations
— like experiments — are not carried out to obtain specific num-
bers, but to answer some questions. Furthermore, the methods
of quantum chemistry do not provide error bars for our calcula-
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tions. The expected accuracy is therefore what we have from our
experience with methods, which may not apply to a specific case.
This experience may be tainted by trust acquired over years and
not revised by an active following of progress in the field.

Another aspect is that we may overemphasize the accuracy of
what we take as a reference. Herbstein discusses several factors
that may affect the measurement of such basic data as single-
crystal unit-cell dimensions.
perimental error bars are often missing or can be quite large.
Sometimes advanced wave-function calculations are not pushed
far enough to be used as a reference.

Cioslowski et al. show that ex-

(3.2.8) Adamo and Ciofini : Insome cases, determining how
accurate DFAs need to be is probably even more difficult than
determining how accurate existing DFAs are in fact for a given
property. Indeed, even for a single, well-defined property, the
target accuracy will depend strongly depend on which question
we aim to answer (as already pointed out by Savin in contribu-
tion (3.2.7)). The necessary accuracy will depend strongly on the
type of “interaction with the real world” is desired, following the
excellent classification given by Kronik in contribution (3.8.5):
confirmation, interpretation, or prediction. In our experience,
this is particularly true for the interpretation and prediction of
excited-state properties of molecular systems.

There have been a huge number of publications assessing the
performance of different DFAs within TDDFT for the prediction of
excitation energies both using theoretical and experimental ref-
erence data — see, for instance, refs. —-286. Nonetheless, two
difficulties are becoming nowadays evident: the reliability of af-
fordable theoretical reference methods for large molecular sys-
tems may be difficult to assess, and the fact that excitation ener-
gies may not be the only property needed to provide a full answer
to a given chemical question.

Concerning the first point, thanks to a number of detailed stud-
ies that compare DFAs results with those obtained using differ-
ent reference methods, it has become evident that, especially for
complex molecular systems, assessing the accuracy of DFAs is
also dependent on the choice of reference. By targeting an ac-
curacy below a certain threshold in the excitation energy, one is
probably simply targeting the error bar of the methods used as
reference.“®’ Furthermore, errors depend on the type of excita-
tions considered - for instance, local or charge-transfer excita-
tions. Due to the different impact of the approximation used in a
given DFA on the different types of excitation, it is very difficult
to assess a global accuracy for this DFA in predicting excitation
energies. More severely, (vertical) excitation energies are often
not what one aims for as a chemical answer since the quantita-
tive description of the photophysical properties of a given molec-
ular system are related to the prediction of its entire spectrum
(absorption or emission), practically manifested in the observed
colour. “°° In this case, the accuracy we would like to reach — and
which is asked for in industrial application, for instance - is the
sensitivity of human colour perception.

To achieve this objective, one needs to combine a very high
(and energy-dependent) accuracy in the excitation energy with
a very good description of the band shape. This latter is mostly
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obtained using approaches enabling to describe the vibrational
broadening, that is the vibronic coupling between ground and
excited state. Previous studies““~ have nonetheless demonstrated
that the same DFA can hardly reproduce with the same accuracy
both electronic excitation energies and vibrational broadening.
Finally, the comparison with experimental data can become even
more complicated if environment effects, usually modelled with
approximate methods, have to be considered. “”" This latter point
is of course of relevance, for any theoretical approach used and
not exclusively limited to DFT.

(3.2.9) Barone Sufficiently accurate molecular structures
are a prerequisite for the computation of thermodynamic, ki-
netic, and spectroscopic properties. In this connection, the latest-
generation DFAs (hybrid and, especially, double hybrids) with dis-
persion corrections added perform a remarkable job for main-
group elements, in noncovalent complexes and for transition
states.“”'~=”° Furthermore, the remaining errors are rather sys-
tematic and can be corrected for by linear regression, depending
only on the atomic numbers of the involved atoms.~""“"> As a
matter of fact, energies and properties can usually be calculated
very accurately at DFT geometries with negligible errors provided
that the functional and the basis set are properly selected. The
situation is more involved for transition metals, where compre-
hensive benchmarks are still missing.

From another point of view, comparison with experiment re-
quires vibrational corrections to geometric parameters and zero-
point energies. The situation for main-group elements is again
very satisfactory, with latest-generation DFAs in conjunction with
second-order vibrational perturbation theory (or anharmonic
treatments) providing remarkably accurate results without the
need for any scaling factor.~"“=”" The above remarks concern
isolated molecules (or low-pressure gas-phase). The situation is
more involved in condensed phases, where much work to improve
the accuracy of the results is ongoing.

(3.2.10) Piecuch While it is important to set accuracy tar-
gets for any quantum-chemistry approach, not only for methods
based on DFT, it may be useful to keep in mind that some quanti-
ties, such as binding energies in weakly bound clusters, activation
energies, and vibrational frequencies, to name a few examples,
vary so much among the various systems (in the case of vibra-
tional frequencies, even within a given system) that setting up
fixed error limits is not necessarily helpful. In all such cases, the
relative (percent) errors may be more informative when setting
up accuracy standards.

For example, it is commonly accepted that achieving a
1 kcal/mol (chemical) accuracy for binding energies involving co-
valently bound molecular species is often desirable, but setting
a similar accuracy target for activation energies, which can be
on the order of 1kcal/mol in some processes and more than
10kcal/mol in others, may be misleading. Furthermore, one can
have reaction mechanisms that involve larger and smaller barri-
ers along the same reaction pathway or along multiple competing
pathways. A 1kcal/mol accuracy level does not work well for
noncovalent interactions either. In fact, even the frequently men-
tioned value of about 0.1kcal/mol may not be adequate in this



case.

If we replace the error criteria for the binding energies in
weakly bound species and activation energies by relative errors
of, say, 5%, then we may be in a better position to judge and
make recommendations regarding what method to use. Indeed,
if the activation energies along the reaction pathway of interest
are on the order of 10kcal/mol or more, as in ref. , then
~5% relative errors translate into total errors on the order of
0.5-1 kcal/mol, which is good enough to understand the reaction
mechanism. However, if the activation barriers are on the order
of 1-5 kcal/mol, or if we must decide if a particular reaction has
a barrier or is barrierless, as in ref. , then a fixed accuracy
criterion may be insufficient to make a proper recommendation
regarding what method to use. Similarly, a fixed 0.1 kcal/mol cri-
terion might be of little use for some noncovalent interactions,
where there are many cases in which the interaction energies are
as small as 1 kcal/mol or less and equally many cases in which the
interaction energies are on the order of a few kcal/mol or more. A
good illustration of the former situation is the magnesium dimer,
which is an important weakly bound system in studies of ultra-
cold and collisional phenomena and which is characterized by a
binding energy of about 430 cm™!; see refs. ,299. To properly
understand this system, one must be able to reach an accuracy on
the order of a few cm~!, which is a major undertaking, even for
the highest levels of ab initio wave-function theory. ="

The magnesium-dimer example is also a reminder that in set-
ting accuracy targets, we should be careful about treating wave-
function methods, including those based on coupled-cluster the-
ory, as providers of reliable reference information. As is very well
known, wave-function methods exhibit a much slower conver-
gence with the basis set than methods based on DFT. Also, the
treatment of core electrons is usually different in DFT and wave-
function calculations. Wave-function calculations are often car-
ried out with frozen core electrons, whereas DFT (putting aside
the issue of relativistic effective core potentials) is an all-electron
theory. Thus, judging DFAs by comparison with wave-function
approaches may sometimes be misleading or questionable. " Fi-
nally, the CCSD(T) approach, often regarded as a standard for
high-accuracy calculations, fails not only in multireference situ-
ations, such as covalent bond stretching and biradicals, but also
in many cases of noncovalent interactions, including the afore-
mentioned magnesium dimer, where the CCSD(T) binding en-
ergy extrapolated to the complete basis-set limit has a substan-
tial error.#””>""Y While the development of ab initio wave func-
tion methods can be well served by comparisons with full CI, the
development of DFAs may be better served by comparisons with
reliable experimental data.

The idea of setting up accuracy targets using relative (percent)
errors may easily be extended to other properties in Table 2. For
example, the aforementioned 5% error limit would work well
for vibrational frequencies, including low-frequency and high-
frequency modes. Clearly, depending on the nature of the ap-
plication, one may replace the 5% target by a different target.

(3.2.11) Kaupp and Arbuznikov Several contributions in
this section indicate that accuracy depends on the type of property
one looks at. While highly empirical DFAs have concentrated on
relative energies relevant for chemical processes, a wide-ranging
recent discussion has put electron densities into focus. "<~
Here, we should clearly distinguish different spatial regions in
an atom, molecule or solid, as different requirements hold for
the core, valence, asymptotic, and intermediate regions. For
example, many (albeit not all!) empirical Minnesota function-
als, which give excellent valence energies and probably reason-
able valence densities, produce highly erratic hyperfine couplings
for transition-metal nuclei and also perform poorly for
NMR shifts and spin-spin coupling constants . A position-
dependent admixture of Hartree-Fock exchange in local hybrid
functionals”*“~*/ seems to be one way to improve specifically
properties of operators that act near the nuclei or far away from
them - see contribution (4.1.10).

(3.2.12) Trickey One of the most striking features of Ta-
ble 2 is what is not there. Except for band gaps, there is noth-
ing about solids, no cohesive energies, no bulk moduli, no crys-
talline phase-transition pressures. (We here assume that “bond
lengths” can be interpreted generously as including lattice con-
stants.) With the disclaimer that what follow are simply values
that seem to be fitting from experience but not from study, plau-
sible useful accuracy values seem to be 0.015 A for cell constants,
about 0.1 eV/atom for cohesive energies, +4% for bulk moduli,
and +2% for transition pressures (assuming the crystal structures
are correct). The main point is that work is needed on such crite-
ria.

Add to that something little discussed in this round table
— namely, that predictive screening of materials requires even-
handed accuracy across states of aggregation. One must have
the same computationally affordable functional and protocols
for both the isolated molecular constituents and the condensed
phases, with correspondingly consistently appropriate accuracy
for both constituents and aggregates.
in first-principles computational materials physics to prescribe a
highly sophisticated DFA of great accuracy for the molecular con-
stituents that cannot be afforded in condensed-phase studies or is
deliberately tuned (e.g., OPTx) to be accurate for molecules only.

It is of little or no use

(3.2.13) Baerends A striking deficiency of almost all DFAs
is the error of about 5eV in the orbital energies. This is a much
larger error (more than 100 kcal/mol!) than in the total energy
and unacceptable in view of the desired chemical accuracy. Its
origin can be clarified using the partitioning of the exchange-
correlation potential in the hole potential part and response part,
Vxe = 17231‘3 + 7P| where the overbar indicates that we are deal-
ing with coupling constant integrated quantities; see Section 2.4.
The exchange—correlation hole potential is directly related to
the exchange—correlation energy density, w29 (r) = 2¢,.(r) with
Exclp] = [exc|p](r)p(r)dr. The response part originates from the
functional derivative of the &, factor in the total energy.

Given DFAs with good total energies, the error in the orbital
energies should not come from the hole part of the exchange-
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correlation potential — indeed, it has been argued that the error is
in the response potential. It is quite common that an approx-
imation to an integrand is decent in the sense that the integral
(the energy) is well approximated, while the derivative of the in-
tegrand (the potential) is still very poor.

The response part of the current DFA potentials is too repulsive
over the bulk molecular region, causing the 4-6 eV upshift of the
orbital levels. A better approximation to the response potential
is called for, rather than just the derivative that arises from exist-
ing LDA or (meta-)GGA energy density approximations. Indeed,
replacing the LDA/GGA response part of the potential with the
approximate response potential from ref. (a local potential
determined from nonlocal input) already improves the orbital en-
ergy spectrum a lot. °*° Better approximations to the Kohn-Sham
potential of course also improve response properties such as (hy-
per)polarizabilities and excitation energies. “*° Note that this im-
provement is not primarily an effect of the correct asymptotic be-
haviour since the orbital energies are mostly determined by the
potential in regions where the orbitals have a large amplitude
(i.e., the region where the bulk molecular density resides). Ob-
viously, the accuracy of the DFA potential has been lagging far
behind that of the energy. It needs to be improved, preferably in
a more fundamental way than by pragmatically admixing some
percentage of a nonlocal exchange potential.

(3.2.14) Gorling The origin of the errors that most DFAs
exhibit for the Kohn—Sham orbital energies is the presence of un-
physical self-interactions. A solution to this problem has been
around for a long time — namely, an exact treatment of the Kohn—
Sham exchange potential, which requires the OEP method.
If the exact local Kohn—-Sham exchange potential — that is, the
OEP exchange potential — is used, then the HOMO eigenvalue im-
mediately is close to the IP as it should, whereas, in conventional
GGA calculations, it is typically several eV to high. Moreover,
the Kohn-Sham eigenvalue spectrum changes qualitatively: An
exact-exchange (EXX-OEP) calculation gives a Rydberg series as
it should, while a GGA calculation does not. Thus, if the self-
interaction contained in the Hartree potential is properly can-
celled by the exact Kohn-Sham exchange potential, then a quali-
tatively correct and quantitatively much more accurate spectrum
of Kohn-Sham orbital energies is obtained. *"~

The OEP method has a bad reputation because of numerical
problems. However, these problems have been solved and com-
putationally efficient, numerically stable OEP methods are now
available.”" An exact treatment of exchange requires correlation
functionals that go along with it. Such correlation functionals ex-
ist — for example, RPA-based functionals””~'"* — but are so far
not very popular. The poor orbital energies are thus the price to
pay for approximating exchange and correlation together in most
DFAs, in order to exploit error cancellations.

(3.2.15) Neese I very much welcome this discussion. In
practice, there is a large self-interaction error (SIE). This error
is large and profoundly influences the localization/delocalization
of the Kohn-Sham orbitals and consequently, the properties de-
rived from them and the associated electron density. We know
that removing the SIE using established methods like the Perdew—
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Zunger scheme” destroys much of the accuracy of Kohn—-Sham
DFT. The development of physically based correlation functionals
becomes challenging with this error in the background.

I am aware of brilliant attempts to develop correlation func-
tionals on top of self-interaction free references (discussed in the
preceding contribution by Gorling). I would be delighted to see
this approach receive even more attention in functional develop-
ment.

(3.2.16) Baerends To further this discussion, let me note
that that it is indeed generally accepted that the origin of the
poor orbital energies of presently available DFAs are the unphys-
ical self-interactions. However, it is not completely clear what
is meant by SIE. The one-electron SIE is felt to be evident: the
exchange—correlation energy of a one-electron system like the H
atom (in this case just the exchange energy) should cancel the
Hartree energy. Actually, LDA is not so bad for the H atom: the
Hartree energy of 8.01 eV is cancelled to a reasonable degree by
the LDA exchange energy of —6.89 eV, yielding an error of only
1.12eV. If we add the B88 GGA gradient correction for the ex-
change energy, then the SIE is reduced to 0.04 eV. The same very
small SIE is observed for the H, molecule at the equilibrium dis-
tance.

This should give us pause for thought when we want to blame
the SIE for failures of DFAs. How much SIE is there really in the
current DFAs? The DFA error in the orbital energy is of a different
order of magnitude: 6.88¢eV above the exact H-atom value with
LDA and 6.20eV when the B88 gradient correction is added —
clearly, not the same effect as the tiny SIE in the total energy. The
effect on the orbital energies that we call SIE arises when we take
the functional derivative of the energy (it is in v'*P).

A general definition of SIE is not so easy to formulate. In
the original Perdew—Zunger work, the total energy was taken
as starting point for constructing the correction.” The most im-
portant effect of the Perdew—Zunger correction was, however, to
change the potential and most of their discussion was focused
on orbital energies. A straightforward definition of the SIE (also
in the many-electron case) would be the error incurred by the
exchange—correlation hole not integrating to —1 electron. Now,
the first exact property that is required of the model holes in DFT
is that they do integrate to —1 electron, as is already true for
Slater’s p!/3 approximation. This does indeed lead to reason-
able results for the total energy but does not guarantee a good
potential because of deficiencies that appear in the step to the
corresponding potential.

Using exact exchange (100% or at least a very large percent-
age) in either a generalized Kohn-Sham or EXX-OEP manner
also provides a large improvement in the orbital energies, as
noted in contribution (3.2.14). The improvement is due to the
way the step to the potential works out in that case, as it does
for the Hartree-Fock-like correction in the Perdew-Zunger self-
interaction correction.

(3.2.17) Gidopoulos In our group, we share the view that
self-interactions are behind the errors of Kohn—-Sham orbital en-
ergies, an opinion advocated strongly also by Rod Bartlett.”~" As
Baerends explains, the effects of self-interaction are not evident



in the DFA total energy and the error in the Kohn-Sham orbital
energies is about an order of magnitude greater than the error
in the total energy. So why blame self-interaction for the Kohn—
Sham orbital error? Our reasoning for arguing that the errors in
the Kohn-Sham orbital energies are due to self-interaction, when
even the definition of self-interaction in the total energy is un-
clear, is simple.

Gorling was the first to point out that we can use Pois-
son’s equation to define an effective charge density from the
Kohn-Sham potential. ' Then, the Laplacian of the Kohn-Sham
Hartree-exchange—correlation (Hxc) potential vy (r) defines un-
ambiguously an effective charge density prep(r) whose Coulomb
potential is the Hxc potential:

_ [ Prep(r)

VzVch(r) = —47Prep(r), VHxc(T) = r—r| dr'. 24)

The “repulsion” or “screening” density prep(r) effectively mimics
the repulsion felt by each electron. For a system of N electrons in
a self-interaction-free theory, the integrated charge Qrep 0f prep(r)
should be Qrep = N — 1, because each electron is repelled by the
other N — 1 electrons but not by itself. However, in local and
semilocal DFAs, Qrep = N, which we interpret to imply that each
Kohn-Sham electron is effectively repelled by all electrons of the
system, including itself, and so self-interaction is present.

We agree with Baerends that the quality of the total energy in
local and semilocal DFAs is (far) superior to the quality of the
Kohn-Sham potential and hence we have decided not to interfere
with the total energy of the DFA. Instead, we impose constraints
on the effective local potential to reduce the self-interaction er-
rors from it. These constraints, Qrep = N — 1 and prep(r) > 0, are
enforced with the OEP method, whose mathematical (rather than
numerical) problems with finite basis sets are now well under-
stood. <%

The computational cost of these OEP calculations is determined
by the matrix elements of the DFA functional derivative, a local
potential, and is comparable to performing a small number (about
ten) of DFA calculations. Imposing these constraints, the error of
the HOMO Kohn-Sham orbital energies for local and semilocal
DFAs reduces to about 1eV. For one-electron systems, the two
constraints give correctly a zero Hxc potential. *=

(3.2.18) Kronik Following the important points raised in
contributions (2.1.7) and (3.2.17), I think it is worthwhile to
emphasize that piecewise linearity, freedom from self-interaction,
and an asymptotically correct Kohn—Sham potential — all three of
which are important principles for DFA construction — are some-
what related yet inequivalent properties of the exact density func-
tional.

(3.2.19) Xu The IP and EA are fundamental properties
of atoms, molecules and solids, which are often associated with
the orbital energies via Koopmans’ theorem
theory or Janak theorem®" in Kohn-Sham DFT; see contribu-
tions (2.2.4), (2.4.9), and (3.2.13). However, it is well-known
that relaxation and correlation effects are often important in elec-
tron detachment and attachment processes, calling for extensions
to the theory. **»7</~

in Hartree-Fock

From the perspective of fractional charges, '~ an integration ap-
proach has been developed for the double-hybrid functionals,
whose justification lies in the fact that they are found to fulfil
better the piecewise linearity condition (see contribution (2.4.1))
and suffer less from delocalization error. Furthermore, the
extended Koopmans’ theorem (EKT) can be applied to the
double-hybrid (DH) functionals, leading to the EKT-DH meth-
ods, which are shown to be capable of describing the break-
downs of the quasi-particle approximations for the inner-valence
IPs, at a relatively low computational cost and a high accuracy.

3.3 How should we validate the quality of DFAs?

(3.3.1) Staroverov : In ab initio methods, quality is synony-
mous with overall accuracy. The current state of DFT suggests
that one may need at least two interconnected criteria to charac-
terize the quality of DFAs: accuracy and mathematical rigour (i.e.,
the extent to which the DFA satisfies exact constraints), which is
a proxy for universality. Of course, the choice and relative impor-
tance of various exact constraints, test sets, metrics of accuracy,
etc. are subjective, but some consensus may not be impossible to
reach.

(3.3.2) De Proft and Geerlings A remark aside from the
validation itself is the use of a certain DFA after its validation. It
can be asked, once a given DFA has proven its merits in a certain
domain, that this DFA should additionally be benchmarked for
problems (compounds, properties, reactions) that do not differ
markedly from those for which the DFA has been successfully val-
idated in the literature and for which one can reasonably expect
that it will perform well for the problem at hand (cf. the notion
“level of trust” introduced in contribution (3.2.1)).

This procedure, sometimes requested by reviewers, is often
time consuming. In addition, if one asks authors to benchmark
each DFA for every type of compound in every type of reaction,
it can be argued that one is perhaps approaching a new level of
parameterization.

(3.3.3) Gill : The development of a small number of data sets
of unimpeachable experimental data, against which the predic-
tions of new DFAs can be compared objectively and reproducibly,
is essential. Both the data sets and the software used to evaluate
DFA performance should be freely accessible and entirely trans-
parent. It was the publication of such comparisons in the early
1990s that led to the widespread adoption of DFT in the chemical
community.

(3.3.4) Gould While not quite as robust as experimental
data, we now have access to some impressively large quantum-
chemical benchmark sets (about 5000 energy differences in
MGCDB84 and 1500 in GMTKNS55°°") against which to val-
idate DFAs. However, key overall quality metrics can be repro-
duced almost perfectly by about 150 entries of the original bench-
mark sets (less than 10%). This means that a large part of
these sets contain redundant information. It is therefore impor-
tant that validation protocols test DFAs across diverse physics and
chemistry — we should not just assume that testing against more
systems will automatically do a better job. New applications of
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statistical techniques may be required to develop robust valida-
tion protocols.

(3.3.5) Grimme Validation of DFAs on benchmark sets out-
side the common chemical compound space is essential if we are
to find universal and practically robust methods. Automatically
generated molecular structures — as employed, for example, in
the “mindless benchmarking” scheme proposed in ref. — may

offer a solution to this problem.

(3.3.6) Krylov Extending the validation studies to more
properties is important — for example, what works well for dipole
moments may not give you good polarizabilities, and so on.

(3.3.7) Neese I completely agree with the comment of
Krylov. It seems to me that enormous efforts are directed towards
developing functionals that provide good total energies and sig-
nificant progress in this direction is undeniable. Yet, there are
many other properties of chemical interest. In addition, accuracy
in total energies does not translate to accuracy in other properties
— for example, we have frequently seen that some popular func-
tionals that provide good total energies fail spectacularly in the
computation of hyperfine couplings, excitation energies or other
spectroscopic properties (as eluded to in contribution (3.2.11)).
At this point, co-convergence of energy and properties appears to
be exclusive to wave-function-based ab initio methods.

The development of standardized test sets has been very ben-
eficial for the development of DFT. It would seem beneficial, yet
challenging, to include a wide range of additional data in the de-
velopment of new functionals to come closer to co-convergence.

(3.3.8) Trickey Regarding validation construed broadly:
what constitutes a meaningful, hence valid, improvement in a
DFA? If a DFA improves over another by 0.2 kcal/mol mean ab-
solute error (MAE) on atomization energies and 0.02 A on bond
lengths, etc., is that really an improvement or is it in the noise of
the data sets themselves? If my group produces a DFA that gives
essentially the same errors on a large collection of canonical data
sets as the best older DFA on the same Perdew—Schmidt rung,
but the new DFA is much more stable numerically or 20% faster,
wouldn’t such improvements be validation themselves?

(3.3.9) Savin : True, the superiority of one DFA over another
can be significantly diminished after taking into account the un-
certainty in the reference data.

(3.3.10) Barone Ideally a DFA should provide accurate re-
sults for a broad set of molecular properties. However, from a
pragmatic point of view, there is a difference between special-
ized and broadly applicable DFAs and the choice between the two
classes depends on the problem at hand. My personal view is that
the most suitable strategy is to enforce the largest possible num-
ber of formal constraints that a DFA should obey while leaving a
few parameters free for improving accuracy. However, at present,
DFA benchmark is severely biased towards energies and (perhaps)
first-order properties of molecules containing atoms belonging to
the first three rows of the periodic table.
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(3.3.11) Pernot To answer the question of Trickey about
the intercomparison of DFAs, a small difference in MAEs between
two DFAs certainly cannot be relied upon without additional in-
formation. This difference might be an artefact of the limited size
of a nonexhaustive reference data set. As a result, there may be a
high probability of rank inversion when the data set is perturbed
by adding or suppressing a few points. A set of tools has recently
been proposed to address this problem - for example, by estimat-
ing a rank inversion probability, P, or by using statistics based
on system-wise comparisons, such as the systematic improvement
probability. *°~>

(3.3.12) Pernot Validation requires the comparison of cal-
culated values with a set of high-quality reference data. The re-
sulting errors are used to estimate validation statistics. An impor-
tant fact to have in mind is that the distribution of errors has no
reason to be normal, essentially because the errors are dom-
inated by systematic contributions from all the approximations
involved in a calculation — level of theory, basis set quality, values
of parameters, and so on.

This is why statistics such as the MAE should not be used to

estimate the confidence level of a DFA. There are more pertinent
metrics such as Qg5 (the 95th quantile of the absolute error dis-
tribution), on which a level of confidence can be based.
We then know that there is a 5% risk to get an absolute error
above Qys. By comparison, the probability for absolute errors to
be above the MAE has been observed to vary between 0.2 and
0.45.°"" From a MAE value of let us say 0.5 kcal/mol, one cannot
estimate the probability/risk for the errors to exceed 1 kcal/mol.

The confidence we have in the prediction capabilities of a given
method has something to do with probabilistic forecasting; this
however, may depend on factors difficult to quantify, such as de-
ciding about the probability we consider good enough to take a
decision. Ideally, a DFA should be judged on its prediction uncer-
tainty, like any measurement method, but this requires the cor-
rection of systematic errors, which goes beyond the realm of the
DFA itself.

(3.3.13) Savin : Could it be that the importance of accuracy
is overemphasized? Let us take as an example the intensive at-
omization energies (i.e., per atom) as obtained with the B3LYP
functional on a widely used benchmark data set.”“° Let us now
consider what the measures mentioned in contribution (3.3.12)
provide.”“* The often quoted “chemical accuracy” of 1kcal/mol
corresponds to the mean absolute error of the B3LYP functional
However, this accuracy is reached by only about half of the sys-
tems in the data set.

Let us now ask ourselves what is smallest target accuracy that
is reached by 95% of the systems in this data set. It turns out that,
to satisfy this condition, the target accuracy must be as large as
3-5kcal/mol, the presence of the interval arising from the finite
size of the data set. Nevertheless, the B3LYP functional is a very
successful DFA.

(3.3.14) Neese It appears to me that “sufficient accuracy”
is something that depends largely on the context of the computa-
tional problem at hand. Take a very exothermic reaction, with a
free-energy change of around —50 kcal/mol. I don’t think I would



understand anything about this reaction any better whether I
compute the energy change to be —47 or —53kcal/mol, nor
would it change any conclusion. On the other hand, if one wants
to correctly predict the enantiomeric excess of a bifurcating re-
action that may lead to different stereochemical outcomes, then
even one half of a kcal/mol matters.

Related to this problem of adjusting the “useful” accuracy to
the problem at hand is the question of what else is needed for
a successful chemical prediction or interpretation? For example,
we have learned the hard way that getting accurate electronic
energies from coupled-cluster theory will not necessarily lead to
more accurate chemical predictions. In real-life chemical applica-
tions, there are other important error sources, for example com-
ing from solvation or entropy effects. In addition one can not
stress enough how important it is to carefully construct the com-
putational model. In studying complex molecules (or enzyme ac-
tive sites), one needs to pay a great deal of attention to possi-
ble alternative conformers, alternative protonation states, possi-
ble hydrogen bonds or potentially functionally important solvent
molecules, to name only a few important aspects of model con-
struction. In our experience, the errors stemming from failing to
treat any of the mentioned effects correctly can easily overwhelm
the error in the electronic energies. If this is the case, focusing
on computing accurate electronic energies on irrelevant chemical
models or with a large, possibly unrecognized solvation energy er-
ror in the background appears rather pointless - the conclusions
drawn form the calculations will likely be wrong or will fail to
properly explain the experimental findings. These aspects require
a great deal of chemical common sense on the part of the compu-
tational chemist and are independent of the intrinsic accuracy of
the chosen theoretical method.

(3.3.15) Galli The validation of DFAs requires first a seri-
ous verification effort. This verification should include compar-
isons of properties obtained with different codes, taking care to
ensure convergence of all numerical parameters involved in the
calculations.

Sometimes statements on the validity of DFAs made in the liter-
ature are inaccurate or just not correct because a detailed analysis
of numerical approximations has not been carried out before as-
sessing the accuracy of the DFA. It is important to realize that the
impact of poorly converged numerical calculations on the assess-
ment of the validity of the theory is not the same for all properties
and hence numerical verification should be done for each prop-
erty of interest separately. It is also important to keep in mind that
many comparisons of various DFAs in the solid state are made
using pseudopotentials that are not consistent with the level of
theory adopted for the valence electrons. For example, almost all
hybrid DFT calculations are carried out with PBE pseudopoten-
tials; and all comparisons are thus tainted by this inconsistency.

(3.3.16) Galli We should push for a much more concerted
effort of the different communities using DFT, aimed towards
the verification and validation of properties calculated with DFAs.
Different communities of DFT users, with different “cultures”, still
exist: the quantum-chemistry community, the solid-state and ma-

terials science community, and the community carrying out first-
principles MD and interested in finite-temperature properties. It
would be very important for these communities to come together
and establish a list of properties, comparing results for molecular
and solid-state systems .

3.4 Where do existing DFAs work and where do they fail?

(3.4.1) Johnson Existing Kohn—-Sham DFAs fail for systems
where the orbital occupations cannot be represented by a single
Slater determinant. The classic example of a multireference sys-
tem that cannot be represented by a single Slater determinant is
the stretched H, molecule. The ground-state wave function in the
dissociation limit is an equal mixture of two determinants. A sim-
ple single-determinant wave function from MO theory incorrectly
includes both covalent and ionic terms and, consequently, gives
in the dissociation limit an energy of only —11/16E},, compared
to the exact energy of —1E};,. Despite not using an explicit wave
function, Kohn—-Sham DFAs are valid only for single-determinant
states and suffer from similar errors as Hartree—Fock-based wave-
function methods for multi-reference systems. **“ This can be un-
derstood by examination of the pair density.

For a Slater-determinant wave function, the pair density is

O(ry,r) = Z‘Piz(l‘l)%z(l‘z)
ij

=Y 6i(r1)9;(r2)9;(x1)9i(r2)86,.6, (25)
ij

where the sums run over pairs of occupied orbitals ¢; of spin o;.
The exact pair density is the probability of finding a pair of elec-
trons simultaneously at two points in space; it determines the
proper form of the exchange—correlation energy via the adiabatic
connection.

Notably, the form of the pair density gives rise to the exchange
hole in the case of parallel spins (35, s, = 1) and leads to a deple-
tion of probability of finding a second, same-spin electron near
a reference electron. However, for multi-determinental wave
functions, the pair density behaves quite differently. Instead of
leading to a Fermi (exchange) hole, with a depletion of parallel-
spin electron density around a reference point, multi-reference
systems can instead have a Fermi “heap” around the reference
point,”°*” with an accumulation of parallel-spin electron density.
This physics is not captured by Kohn—-Sham DFAs, which model a
localized exchange hole.

While there are other types of systems (such as those exhibiting
significant delocalization error) where a particular DFA or class
of DFAs may fail, all Kohn—Sham DFAs fail for multi-reference
systems. Examples include stretched covalent bonds, > organic
biradicals, and solid Au,S.

(3.4.2) Rebolini Although Kohn-Sham theory is in princi-
ple valid for all systems, in practice existing DFAs mostly fail at
describing multi-reference systems. However, one may want to
distinguish between properties that depend on the total density
of the system, which may still be properly described, and proper-
ties which depend specifically on the strongly-correlated electrons
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where DFAs are almost “expected” to fail — for instance, DFAs can
be used to study the equilibrium structure, phonon spectrum, and
polarization of strongly-correlated materials but fail to describe
most magnetic properties.

(3.4.3) Neese : The first thing that comes to my mind in this
context is the multiplet problem - that is, the simple fact that a
single electron configuration (meaning a distribution of electrons
among orbitals with occupation 0, 1 or 2) gives, in general, a
number of different many-particle states with different spin cou-
plings among the unpaired electrons.

This is not an esoteric formal remark. In open-shell transition-
metal complexes, for example, the multiplet problem is extremely
prevalent and affects all of their physical (spectroscopic) proper-
ties in a profound way. Take a simple L-edge (2p — 3d) exci-
tation. In a d° system, this excitation leads to as many as 1512
different final states that all contribute to the L-edge absorption
spectrum. Yet, in a particle-hole theory such as TDDFT, one only
has 15 particle-hole pairs to work with. How to describe 1512
states with only 15 particle-hole pairs is not clear. In practice,
the failures are dramatic. Another example are the d—d spectra
of these ions, which frequently show low-lying double excitations
that are completely absent from the DFT-computed spectra.

Similar remarks hold for many multi-determinantal (as op-
posed to multi-configurational) problems, like spin-coupled open-
shell ions. Surely, broken-symmetry DFT is a highly useful tool,
yet it is a bit of a crutch and I am not aware of a satisfactory
formal solution that would also be practical.

I find it important to distinguish between multi-determinantal
and multi-configuration problems. In the former case, there is a
single electronic configuration but spin coupling of the unpaired
electrons leads to a multi-determinantal wave function. In the
latter case, there is an actual mixing of configurations with dif-
ferent orbital occupations. The former case is far easier and far
more frequent. Recognizing this distinction may help (and, in
fact, has already helped) to design more tailored approximations
— for example, spin-flip methods.

(3.4.4) Ayers : Multireference effects are obviously problem-
atic in single-determinant theories like Kohn—Sham DFT. But even
if one changed to a different starting point (perhaps by moving to
an extended DFT), there would still be (different) types of corre-
lation that would be difficult to describe. Indeed, for every prac-
tical electronic-structure method I know, I can think of some type
of electron correlation that it struggles to describe, so ab initio
DFT~”" is no solution. I would not say the situation is hopeless,
but I accept that different flavours of DFAs will be needed for dif-
ferent types of properties and systems.

(3.4.5) Piecuch This clearly is a rich topic, and all of us
could find examples of situations (molecular systems, solids, se-
lected properties other than energy, etc.) where the existing
functionals used in conjunction with Kohn-Sham DFT and TD-
DFT struggle. Bond breaking, doubly-excited and charge-transfer
states, strong correlations, and dispersion forces require addi-
tional — sometimes a lot of additional — effort beyond conven-
tional Kohn-Sham DFT computations. However, from my point
of view, which is the point of view of an ordinary user of DFT
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codes, a larger issue is the lack of transferability of DFT-based
recommendations.

Focusing on my own experiences, the widely used B3LYP func-
tional is among the best DFAs for studies of the activation barriers
that determine aerobic oxidations of alcohols by gold nanoparti-
cles,“”° the BP86 and B97-D functionals performing considerably
worse. At the same time, B3LYP and other hybrid functionals
work poorly and the BP86 (especially when corrected for disper-
sion) and B97-D functionals are impressively accurate in appli-
cations of DFT to methyl-cobalt bond dissociation and low-lying
excited states of methylcobalamin. >~

The latter situation is similar to that created by the applica-
tion of various DFAs to dicopper—dioxygen structural motifs. For
example, when examining isomerization curves connecting the
bis(u-ox0) and p-1n2:n2-peroxo isomers of Cu,O, cores supported
by 0, 2, 4, and 6 ammonia ligands, hybrid functionals fail, the
magnitude of the error being directly proportional to the percent-
age Hartree-Fock exchange in the functional. >/ Pure GGAs work
well in this case.

There is nothing new in the observation that pure GGAs may
work better in situations involving static correlation. However,
improving predictability of the outcome of DFT computations, so
that one could, for example, avoid calibrating DFT functionals
anytime a new system is studied, while addressing fundamental
issues such as the issue of SIE, would be useful. I realize that there
has been great progress in addressing these and related issues
in all sorts of interesting ways, but an additional effort toward
improving the situation in this area would be helpful for the users
of DFT methods.

(3.4.6) Gagliardi Another class of systems where Kohn-
Sham DFT encounters some challenges is the determination of
the spin ladder in multi-metallic compounds. Some of these com-
pounds are molecular magnets with potential applications in in-
formation storage, quantum computation, and molecular elec-
tronics. In compounds containing several magnetic centres,
the spin carriers can magnetically interact in many ways. A pro-
totypical system is a tris-hydroxo-bridged Cr(III)-Cr(III) system
(Kremer’s dimer), which consists of two antiferromagnetically
coupled Cr(III) metal centres with a d3—-d3 electron configuration.

Pantzasis " pointed out that Kohn—-Sham DFT generally fails
to reproduce the experimental spin ladder for such systems (un-
less some ad-hoc spin purification is performed, and thus the mag-
netic coupling constant, and a more physical representation of
the low-spin states requires a multireference treatment based on
restricted-active-space SCF (RASSCF) or DMRG wave functions.
However, also within the context of a large active space, a post
wave-function treatment is needed. Multireference pair-density
functional theory (MC-PDFT) starting from a large active space
(DMRG or RASSCF active space with 30 electrons in 22 orbitals)
gives encouraging results.

(3.4.7) Kaupp and Arbuznikov In the context of the fail-
ures for multi-reference cases, it seems important to mention
attempts to account for strong-correlation effects and minimize
fractional-spin errors. <>=%°°< An important direction of develop-
ment are Becke’s real-space models of nondynamical correlation



(initially the BO5 functional '“), which have been extended to
account for strong-correlation terms by relying on the adiabatic
connection (Becke’s B13 model and the related KP16/B13
model by Kong and Proynov). One interesting aspect of
these functionals is that they are based on full exact exchange
and model nondynamical correlation without using semilocal ex-
change.

Another important direction including strong-
correlation effects also makes use of the adiabatic connection
but extends it to the strongly-correlated (1 — o) limit. “*'°/>
While the question of how to best represent the noninteracting
reference system of Kohn-Sham theory and the validity of the
adiabatic connection for multi-reference cases is still open, these
approaches provide some hope of obtaining functionals that in-
corporate such effects.

towards

(3.4.8) Romaniello : Kohn-Sham band structures are widely
employed in solid-state physics. However, whereas this may be a
reasonable approximation to the true charged excitation energies
in the limit of weak correlation, it completely fails in the limit of
strong correlation, as pointed out in contribution (3.4.2).

The paramagnetic phase of transition-metal oxides — which is
systematically described as metallic, contrary to experiment —
is a paradigmatic example. These systems are a challenge also
for more advanced methods such as the GW method. How-
ever, this problem arises since we are modelling the paramagnetic
phase as nonmagnetic. Trimarchi et al. have recently shown
that band-structure theories can give a correct description of these
systems provided that one models the spin-disordered paramag-
netic phase using a larger supercell.

In fact, this is routinely done to model the spin-ordered antifer-
romagnetic phase: the nonmagnetic unit cell is doubled so that
a different spin can be specified for the transition-metal atom.
In this case, a band-gap opening is usually obtained in band-
structure theories, reflecting the fact that the more physical in-
formation is put into the problem the less accurate a theory needs
to be.

Maybe I can clarify this point with the simple example of the
Hubbard dimer at one-half filling, which can give insight into a
paramagnetic or an antiferromagnetic spin structure, depending
on whether or not the spin symmetry is broken. In the atomic
limit (where the electron—electron interaction dominates over the
kinetic energy, hence we are in the regime of strong correlation)
the two electrons, one with spin up and the other with spin down,
are localized one on one site and the other on the other site with
equal probability — that is, the ground state is the spin singlet
[¥o) = 1/v2(] 1)) —|11). The spectral function (which is re-
lated to photoemission spectra) thus shows, for each spin, two
peaks with the same spectral weight 1/2 — one for the removal
of an electron (peak at &y, which is the orbital energy), and one
for the addition of a second electron (peak at & + U, with U the
on-site electron-electron interaction), representing, respectively,
the removal and addition energies, of an isolated atom with one
electron.

Even the GW method cannot reproduce this spectrum. The
GW method gives only one peak at & + U /2, in line with the fact

that this method describes the paramagnetic phase of transition-
metal oxides as metallic. This happens because the GW method
treats the charge/spin density as a classical charge distribution,
with half an electron with spin up and half an electron with spin
down on each atom that respond to the additional electron or
hole added to the system in a photoemission experiment. If one
considers instead the spin-symmetry broken state [¥y) = |1 /) (og
equivalently, | | 1)), which is also an eigenstate of the system in
this limit, then the GW method gives the correct spectral func-
tion. In this case, the electrons have fixed positions and one does
not need to consider explicitly the correlation between two par-
ticles. One may therefore think that there is little correlation in
this state. In reality, the system is correlated, but part of the cor-
relation is included in the symmetry breaking.

(3.4.9) Galli
lic and insulating phases and interfaces between low-gap and
wide-band gap semiconductors remain challenging to describe
with existing DFAs — namely, band offsets of these interfaces are
not accurate with most functionals and even structural proper-
ties in some cases””” turn out to be inaccurate. The electronic
properties of several transition-metal oxides are equally challeng-
ing to describe with existing DFAs, especially those considered
as highly correlated materials. Empirical fixes have been pro-
posed and used, as in the DFT+U method, but their predictive
power is yet unclear, especially in cases where different values
of U must be used for different oxidation states of the metal in
the same oxide. An outstanding open problem is, for example,
the metal-to-insulator transition in vanadium oxide (just to name
one transition-metal oxide as a function of oxygen composition or
temperature.

. As indicated earlier, interfaces between metal-

3.5 What type or level of spatial nonlocality is required in

explicit density functionals for the energy ?
(3.5.1) Perdew Given the exact electron density for a real
system, and excluding exotic cases like the strongly stretched hy-
drogen molecule ion, the meta-GGA level of nonlocality can of-
ten give an accurate energy. But the level of nonlocality of
the exchange—correlation potential (functional derivative of the
exchange—correlation energy) can be much more critical for the
electron density. The meta-GGA density is not sufficiently lo-
calized around the nuclear centres for some chemical problems,
where the Hartree-Fock density, which comes from a more nonlo-
cal exchange—correlation potential, is better. In a solid metal,
however, the Hartree-Fock and even the meta-GGA density may
be too localized in comparison with the exact density. Impor-
tantly, an approximate functional that is accurate for the energies
on the exact electron densities of a wide class of real systems can
still have inaccurate functional derivatives and thus inaccurate
self-consistent densities in that class.

(3.5.2) Chermette : To generalize Perdew’s statement in con-
tribution (3.5.1), a given approximate functional can be very ac-
curate for a given property, such as density, (everywhere or at
nuclei), energy, or properties involving functional derivatives, but
not for other ones. Indeed, this is just a consequence of the ap-
proximate nature of a DFA.
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(3.5.3) Baerends : One consequence of the orbital levels for
most DFAs being much too high (see contribution (3.2.13)) is a
much too high-lying LUMO level. Adding an extra electron to the
system then causes the LUMO level (containing the added elec-
tron) to be so close to zero that the LUMO becomes very diffuse,
or even above zero, with an infinitely extended LUMO. This is
a case where the Hartree-Fock method yields a much improved
density. °°/ A similar effect can be achieved by using a more accu-
rate model Kohn—-Sham potential. *°~

On the other hand, while the Hartree-Fock density is typically
very good for atoms, the Hartree-Fock model often yields poor
bonding densities for molecules, being too diffuse around nuclear
centres. For instance, for H, it has been demonstrated that, due to
this diffuse character, the errors in the one-electron energy terms
(not sufficiently negative electron-nuclear energy and too low ki-
netic energy) are comparable to the error in the electron—electron
energy.”” Upon stretching, H, the errors in the one-electron en-
ergy terms soon exceed the two-electron energy errors. For N, ©",
the one-electron errors due to the too diffuse Hartree-Fock den-
sity are at the equilibrium distance already larger than the total
bond energy of about 10 eV!

These errors can be understood from the limited flexibility of
the Hartree-Fock wave function — that is, they arise from the lack
of electron correlation. This gives a strong incentive to develop
accurate model Kohn-Sham potentials that do better for the den-
sity and for the orbital energies and is also very important for the
MO-theoretical explanations in chemistry.

(3.5.4) Xu The electron density and the electronic energy
are two quantities of fundamental importance. While an accu-
rate description of density allows for correct physical insight from
the charge distribution, accurate determination of energies and
their changes allows for precise quantification of the properties
of a system of interest. The Hohenberg—Kohn theorems “>”, which
state that there exists a mapping from the ground-state electron
density of a many-body system to its total energy, lay the foun-
dation of modern DFT. To put DFT in practical use, the central
questions are then (Q1) how to find the ground-state density of
a physical system, and (Q2) how to set up a mapping from the
density to the total energy. The Kohn—Sham scheme
Q1 and Q2 simultaneously in a self-consistent way, using a local
exchange—correlation potential, obtained by taking the derivative
directly from a given DFA.

answers

However, Q1 and Q2 can also be pursued separately. In
cases where the Hartree-Fock method yields a much improved
density (see contributions (3.5.1) and (3.5.3)), evaluation of the
energy using a GGA functional on the Hartree-Fock density yields
a much improved energy.”/*~—/~ It seems impractical, or even im-
possible, to demand that all properties be calculated accurately
using a single, low-rung DFA; see contribution (3.5.2). It may
eventually be possible for top-rung DFAs to give good densities,
energies, and other properties, simultaneously. On the
other hand, it is important to take both accuracy and efficiency
into account. Hence, one can use a low-rung DFA to generate
good orbitals and a good density efficiently, while using a top-
rung functional to evaluate the energy accurately, as in the XYG3
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double-hybrid functional

(3.5.5) Ayers : If one wishes to describe strong/static correla-
tion using a Kohn—Sham DFA, then it is clear that enormous (even
infinite) spatial nonlocality is required, because the (spherically-
averaged) exchange-correlation hole can have a significant long-
range structure. Moreover, when the multireference character is
strong, that structure is exquisitely sensitive to small perturba-
tions.

(3.5.6) Gill : Local DFAs are intrinsically incapable of captur-
ing dispersion energy, which arises from long-range correlation
effects between electrons.

(3.5.7) Grimme The fact that semilocal DFAs yield an in-
consistent or even unbound description of small van-der-Waals
complexes was discovered in the mid-90s by Becke, Hobza, and
Pulay.”/°=/® Noble gas dimers have been investigated several
times as difficult cases for KS-DFT, with large errors and some-
times qualitatively wrong behaviour being found. However, this
"DFT failure" is actually a failure of the usual semi-local approxi-
mations and not of the theory itself. Around the same time, Meijer
and Sprik presented an analysis of the problem for the typical case
of the benzene dimer and noted related errors in the computed
lattice energy or mass density of molecular crystals. General
claims that semilocal DFAs cannot describe nonlocal long-range
correlation (London forces) were occasionally made, °“" but with-
out further theoretical explanation - in particular, regarding the
role of the correlation functional. Even as late as in 2002, the
situation was not clear as indicated by a study of van Mourik and
Gdanitz, which identified over-repulsive as well as over-binding
functionals. For a more detailed historic account of the de-
velopment of the dispersion problem in Kohn-Sham DFT, which
cannot be solved simply by including nonlocal Fock exchange as
is done in hybrid functionals; see ref.

In those early days, the simple and but incomplete picture pre-
vailed that the dispersion energy is only relevant for the inter-
molecular situation — that is, for van der Waals complexes and
condensed phases. The modern notion — namely, that intramolec-
ular dispersion effects are especially important in large systems
and in standard thermochemical applications — emerged only over
the last ten years. Nowadays, newly proposed and accurate
DFAs account for dispersion, which is mandatory for quantitative
calculations and often even to obtain qualitatively correct results.

The most prominent dispersion correction schemes, which can
be added to established DFAs, can be classified into the four
groups (i) nonlocal, density-based functionals (e.g., vdW-
DF or VV10), (ii) Cg-based, atom-pairwise semiclassical mod-
els (e.g., D3/D4, XDM, TS/MBD), (iii) one-electron effective po-
tentials, and (iv) highly parameterized density functionals (e.g.,
MO06). Some of these methods, which mostly contain empirical
components, yield very accurate long-range interactions, close to
coupled-cluster accuracy (with a typical relative error of less than
5%) at low, often negligible computational cost.

Problems for particular systems or seemingly large differences
between dispersion-corrected DFAs can often be attributed to
an inaccurate description of short-range exchange—correlation ef-
fects, which are more difficult to describe than the long-range



regime, dominated by 1/R~% interactions. Dispersion effects can
also be hidden by exaggerated charge-transfer interactions in-
duced by the SIE in GGAs. °“° Note further that, although London
dispersion as a nonlocal correlation effect is omnipresent, it can
be partly quenched in typical condensed-phase chemistry appli-
cations. In such systems, intramolecular noncovalent interactions
compete with intermolecular solvent interactions and their sub-
tle balance requires a sophisticated theoretical treatment of both
dispersion and solvation.

(3.5.8) Tozer The electrostatic theorem of Feynman (ob-
tained by applying the differential Hellmann-Feynman theorem to
a nuclear perturbation) states that the force on a nucleus equals
the classical electrostatic force due to the electrons and nuclei in
the system.~“" This has great physical appeal since it relates the
force on a nucleus directly to the electron density, in the true spirit
of DFT.

The electrostatic theorem is formally exact, but breaks down for
nonvariational methodologies and/or finite basis sets, meaning it
is of limited use in practice. However, for small systems where
variational methodologies can be used with very large basis sets,
the theorem is quantitatively applicable, meaning it provides an
alternative perspective for viewing the “dispersion problem” of lo-
cal functionals. "’ Errors in dispersion forces can be understood
in terms of errors in electron densities, which in turn can be un-
derstood in terms of errors in the exchange—correlation potential
in the Kohn-Sham equations. Similar arguments can be applied
to other problems, such as static correlation or delocalization er-
rors.

(3.5.9) Gori-Giorgi : The relevance of errors in electron den-
sities for capturing dispersion interactions may need some recon-
sideration, or at least needs to be better understood, especially
in the DFT setting. Pragmatically, poor densities can give very
good dispersion energies — as an extreme example, it has been
shown that it is possible to get exact dispersion energies between
two one-electron systems up to and including orders R~!9 without
any deformation of the monomer densities.

The subtle point with the electrostatic theorem of Feyn-
is that the result depends on whether one performs
the derivative with respect to the nuclear position in the original
coordinates or in the coordinates in which the electrons are cen-
tred on their respective nuclei.””* In the first case, the interaction
energy depends only on the density distortion at order R~/ (for
which the underlying wave function must be accurate to second
order in the dipole-dipole and dipole—quadrupole interaction); in
the second case, the interaction energy depends only on the dis-
tortion of the interfragment pair density at order R—3 (for which
the underlying wave function must be accurate only to first or-
der in the dipole-dipole interaction).~”*
may suggest a route to build approximate exchange—correlation
functionals by considering a simplified real-space mechanism, in
which dispersion is reduced to the competition between kinetic
energy and monomer—-monomer interaction (thus keeping the
density and pair density of the monomers unchanged, but pro-
ducing an accurate interfragment pair density).

man >

These observations

(3.5.10) Dobson Much relevant physics can be included
in energy functionals via use of generalized “densities” assem-
bled from Kohn-Sham orbitals, such as the positive local kinetic-
energy density 7 (r) used in meta-GGAs. Here, however, attention
will be focused, as per the title question for this section, on strictly
explicit functionals of the electron number density p and its space
derivatives such as Vp and V?p.

It may be useful to consider nonlocal functionals as a sum of
“one-point”, “two-point”, “three-point”,...contributions, where
the nth term involves a 3n-dimensional space integral of a func-
tion F, of the density and its derivatives, sampled at n different
spatial points:

EZ/F| dl’+//del‘]dl‘2+///F3dl']dl'2dl‘3+... (26)

with
Flel(r,p(r),Vp(r)7...), 27)
B =F(r,p(r),Vp(ry),....r2,p(r2),Vp(rz),...), (28)

and so on. Here, three dots ... represent possibly a small finite
number of additional space derivatives of p. Keeping an infinite
number of derivatives would probably be equivalent to knowing
the density everywhere via a three-dimensional Taylor series, at
least for smooth densities. Then perhaps even the first term in on
the right-hand side of eqn (26) would represent the most general
nonlocal density functional.

The LDA and GGA functionals correspond to the first term
of the expansion in eqn(26). Examples of the second-order
term (“two-point functionals”) are the naive Hartree energy and
the vdW-DF energy functional of Langreth, Lundqvist, and co-
workers.

The expansion in eqn (26) may be relevant in the quest for ex-
plicit density functionals for the kinetic energy, a topic that has
seen revived interest recently in the context of orbital-free DFT.
Here, however, I will confine my remarks to the theory of van-
der-Waals interactions (London dispersion),
more familiar.

For dispersion interactions, the second-order term in eqn (26)
has already had considerable success via the vdW-DF func-
tional*”~ and its extensions~””. The third-order term would be
needed, for example, for a strictly explicit density functional to
capture the Axilrod-Teller-Muto interaction — that is, the van
der Waals interaction between three atoms, taken beyond the
summed interaction between pairs of atoms).

It has been known for some time that widely-spaced low-
dimensional metals have van-der-Waals interactions that are qual-
itatively different from those between nonmetallic structures with
a similar geometry;~"°~"° for some discussion, see Chapter 11
of ref. . Recently, it has been found that this specific metal-
lic van-der-Waals physics is important beyond the asymptotic re-
gion, indeed right down to contact, for metallic nanotubes and
doped graphene sheets. This behaviour was captured by calcula-
tions of the electron correlation energy in direct RPA (dRPA).
Methods like dRPA start from an electronic band-structure calcu-
lation and are thereby sensitive to the presence or absence of a

with which I am
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zero HOMO-LUMO gap (band gap). I fear that a very high or-
der in the functional expansion in eqn (26) might be needed to
capture such physics. I wonder, though, whether one could use a
close examination of the ground-state electron density in the tun-
nelling region between atoms, in order to recognize the band gap.
Certainly, this region determines the overlap (tunnelling) energy
integral 7 in the tight-binding description of electronic band struc-
ture. In that case, perhaps the first few terms on the right-hand
side of eqn (26) might be sufficient.

3.6 What is the role of symmetry breaking/restoration for
DFAs?

(3.6.1) Perdew Symmetry breaking reveals strong correla-
tions that are present in a symmetry-preserving correlated wave
function but “freeze out” in the total density or spin density of
a Kohn-Sham DFT calculation. "Y' This often provides real infor-
mation about the system being studied, and sometimes enhances
the accuracy of the approximate functional. For example, when
the bond length of the hydrogen molecule is strongly stretched,
the symmetry-preserving ground-state wave function is a spin-
unpolarized singlet state, whose energy most standard DFAs can-
not get right, but the symmetry-broken solution reveals the cor-
rect dissociation to two separate hydrogen atoms, one spin up
and the other spin down. In this way, symmetry breaking in ap-
proximate Kohn-Sham theory can capture what is a strong cor-
relation in wave-function theory. What is strongly-correlated for
one reference state can be weakly-correlated or even uncorrelated
for another reference state. Kohn-Sham theory can also be re-
interpreted as a theory not for the up- and down-spin densities
but for the total density and on-top pair density.

It is only via symmetry breaking that the interaction of the elec-
trons with the nuclei can be regarded as a static external poten-
tial. In a symmetry-unbroken wave function for electrons and nu-
clei, all potentials are internal and all effects are correlations. The
quantum theory of measurement requires a symmetry-broken or
classical observer. The measured antiferromagnetism of solids is a
physical symmetry breaking: a fluctuation or correlation that per-
sists for a long time even on the human scale. “““ Thus, condensed
matter physicists tend to be more comfortable with symmetry
breaking than many quantum chemists are. While the symmetry
of the ground state of a finite system remains unbroken when av-
eraged over an infinite time interval, the time interval over which
the symmetry remains broken in a fluctuation can grow rapidly
as the spatial extent of the system grows. The macroscopic world
as we perceive it is symmetry-broken and classical.

(3.6.2) Gould It is worth noting that, although symmetry
breaking is extremely useful and often physically reasonable for
the reasons mentioned in contribution (3.6.1), there are cases
where preserving symmetries is important. A prime example is
when we are interested in spectroscopic properties that are meant
to be degenerate, but where the degeneracy is “spoiled” by sym-
metry breaking. Such cases can be dealt with by careful applica-
tion of ensemble theories, as discussed in Section 3.7

(3.6.3) Vignale With reference to contribution (3.6.2), a
good case in point is that of open-shell atoms, where rotational
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symmetry demands the existence of a degenerate multiplet of
ground states when the magnitude of the orbital angular momen-
tum L is nonzero. There is no functional that I know that can
guarantee that this degeneracy is respected when the densities of
the degenerate states are not trivially related to each other by a
rotation. Years ago, Becke attempted to solve this problem by in-
troducing a current-dependent functional, but could not achieve
rigorous degeneracy.

(3.6.4) Gould : It is worth noting that ensemble DFT, which
invokes multiple Kohn—Sham states via ensemble density matri-
ces, can restore all degeneracy. This is briefly discussed in Sec-
tion 3.7.

(3.6.5) Savin : Spin-symmetry breaking is related to the gen-
eral problem of degeneracy, as is the localization/delocalization
problem. *” Note that the two-body density does not have the en-
semble property used for the one-particle density. However, the
real problem (not only for DFAs) is to deal with near degeneracy.

(3.6.6) Loos In the DFT context, symmetry breaking
might be seen as a signature of the approximate nature of a
given exchange—-correlation functional. Taking as an example
the dissociation of the hydrogen molecule discussed in contribu-
tion (3.6.1), one might expect to never see any symmetry break-
ing if one employs the exact exchange—correlation functional
within Kohn-Sham DFT, which is true for the Hubbard dimer.
Thus, the ability of a given functional not to break the (spin and
spatial) symmetries could be potentially seen as a diagnostic of
its quality.

(3.6.7) Gould While this is almost certainly true for ex-
act spin-free DFT, there is an important consideration in Kohn-
Sham DFT with spin densities. Even if we fix calculations to
the exact total density, p = p; +p,, the Kohn-Sham kinetic en-
ergy Ts[p+,p,] can depend on { = |py —p,|/p (or, rather, on its
Kohn-Sham equivalent, which may not be the same), and this
dependence must be mirrored by Exc[pt,p;]. Since Kohn-Sham
spin DFT seeks to minimize Ts[p;,p,], it might be the case that
Ts[py, py] is minimized for a broken symmetry. It would be nice to
determine if there is any exact symmetry breaking, or if spin DFT
also preserves symmetries.

(3.6.8) Gori-Giorgi Kohn-Sham DFT that uses SCE limit
(see contributions (2.4.5) and (4.5.8)) to approximate the
exchange—correlation functional is able to stretch the H, molecule
without spin symmetry breaking.'“”>""> The SCE functional is
also able to capture charge localization in very low-density sys-
tems without spatial symmetry breaking. However, the SCE
functional is a very nonlocal approximation to the exchange—
correlation functional (which is exact in a certain limit) and, at
present, rather involved to evaluate. It also strongly overesti-
mates correlation, so that a better strategy could be to design
functionals that are inspired by the mathematical SCE structure
but simplify and renormalize it. *“*~

Apart from the reasons mentioned in contribution (3.6.2), fur-
ther efforts to avoid symmetry breaking might be worthwhile in
order to obtain potential-energy surfaces without kinks.



(3.6.9) Gorling To understand symmetry in Kohn-Sham
DFT, it is necessary to look not only at the symmetry of the density
or spin density but at the symmetry of the Hamiltonian operator
of the true electronic system and of the Kohn-Sham Hamiltonian
operator. The nonrelativistic Hamiltonian operator of the true
electronic system is rotationally invariant in spin space even for
a spin-polarized system with an odd number of electrons. There-
fore spin is a good quantum number.

In the Kohn-Sham treatment, we then have a choice: (i) We
can require the spin density to be identical in the Kohn—-Sham and
true electronic systems. This choice amounts to a spin-polarized
Kohn-Sham calculation with a Kohn-Sham Hamiltonian operator
that is no longer rotationally invariant in spin space. Spin is then
no longer a good quantum number for the Kohn—-Sham determi-
nant — that is, spin poisoning occurs. (ii) Alternatively, we can re-
quire the total density but not the individual spin densities of the
Kohn-Sham system to be identical to the true electronic system.
The Kohn-Sham Hamiltonian operator then remains rotationally
invariant in spin space and we get identical spin-up and -down
orbitals. As a result, the orbitals and the Kohn—-Sham wave func-
tion can be chosen to have well-defined spin but the individual
Kohn-Sham spin-up and -down densities are no longer identical
to those of the true electronic system. In practice, approach (i) is
typically taken — however, approach (ii) is equally correct from a
formal perspective, a point Walter Kohn made from time to time.

A similar choice can be made with respect to symmetries in real
space. In open-shell atoms, for example, one can either require
that the total density or the spin densities for the Kohn—-Sham
system and true electronic systems are identical or require that
only their totally symmetric (i.e., spherical) real-space compo-
nents are identical. "/ Depending on the choice made, the Kohn—
Sham Hamiltonian either has a symmetry lower than the spherical
symmetry of the true Hamiltonian in real space or is spherically
symmetric in real space like the Hamiltonian of the true electronic
system.

These choices, leading to different but formally correct Kohn—
Sham approaches, must be distinguished from symmetry breaking
of the type observed in a dissociating hydrogen molecule. The
Kohn—-Sham Hamiltonian has been shown to exhibit at least the
symmetry of the total density or spin density of the true elec-
tronic system. *”/ In the dissociating hydrogen molecule, the true
density is non-spin-polarized at all distances. Therefore, an ex-
act spin-polarized Kohn—-Sham calculation always reduces to the
non-spin-polarized case. If this reduction does not occur, then it
is an artefact of the employed approximate exchange—correlation
functional, pointing to a shortcoming in the description of static
correlation.

Finally, it should be pointed out that symmetry-breaking con-
tributions in the Hamiltonian of the real system necessarily lead
to corresponding terms in the Kohn—-Sham Hamiltonian. Spin—
orbit interactions, for example, require from a formal point of
view the presence of terms in the Kohn-Sham potentials that cou-
ple to spin or magnetization currents. " In practice, these terms
are often neglected. It is interesting to note that, from a formal
point of view, terms in the Kohn-Sham potential that couple to
noncollinear spin are not required in the presence of spin—orbit

interactions.

(3.6.10) Chermette Taking approach (ii) of contribu-
tion (3.6.9), a powerful, although limited, method of use for
spectroscopy is ligand-field DFT (LFDFT) developed by Daul et
This semiempirical method uses all the symmetry con-
straints included in the ligand-field formalism. Its parameters are
extracted from a standard (usually restricted GGA) Kohn-Sham
calculation. The spherical symmetry of the atomic densities is
obtained by fractional occupation of the involved orbitals.

For instance, for a f’ — d' transition in a lanthanide com-
pound (here europium), the GGA Kohn-Sham MO occupations
corresponding to the 4f°d! configuration is 6/7¢ for the (7) MOs
strongly localized on the Eu/4f orbital, and 1/5e for the (5) MOs
mostly localized on the Eu/5d orbital. See, for example, the case
of the Eu(ny-CyHyg), complex, for which the 30030 multiplet en-
ergy levels have been calculated.

(3.6.11) Krylov To properly deal with symmetry breaking,
we need to look at properties that are rigorously defined - for ex-
ample, it is difficult to discuss what spin symmetry means within
DFT because S? is a two-electron operator.

So spin-contaminated (as traditionally computed) KS DFT or
TDDFT solutions might, in fact represent the correct spin densi-
ties of the spin-pure correlated many body wave functions — for
example, an open shell doublet radical (such as CH3) in which
the unpaired electron has alpha spin, is known to have areas with
the excess beta-spin density. “*~ This cannot be reproduced by a
spin-adapted (ROHF) KS determinant (which only allows for the
excess alpha density), hence suggesting that a spin-polarized KS
determinant provides a more appropriate description.

Because we do not know how to compute the $? value in DFT,
we should formulate this question — whether or not we have un-
physical symmetry breaking — in terms of finding molecular prop-
erties that could report on it. The same concerns apply to spatial
symmetry breaking. One example of how one may approach this
problem is a charge-transfer system, such as (He)] or the charged
ethylene dimer. Charge localization is very sensitive to Hartree—
Fock-like symmetry breaking and also to the SIE. The comparison
of charge localization patterns against high-level reference data
can inform us whether symmetry breaking is real or artificial;
some useful examples can be found in ref.

(3.6.12) Baerends In contribution (3.6.6), the “challenge”
is put forward that, with the dissociating H, molecule as an ex-
ample, one would never see any symmetry breaking if one em-
ploys the exact exchange-correlation functional within Kohn—
Sham DFT. Actually, the dissociating H, molecule is a simple
enough system that such a functional can be formulated.“** This
functional becomes exact in the dissociation limit and does not
lead to any symmetry breaking. Not unexpectedly, it is orbital
dependent and employs in addition to the oy orbital the oy or-
bital. Since such involvement of “unoccupied” orbitals can be reg-
ulated via the natural orbital occupations, this ushers in reduced-
density-matrix-functional theory. For heavier systems, such func-
tionals become approximate, but can still provide good dissoci-
ation curves without symmetry breaking. In the Kohn-Sham
context, the temperature-assisted occupation DFT (TAO-DFT) of

al. *"
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Chai”'" is an example of attempts to involve virtual Kohn—Sham
orbitals via 1IRDM-like occupation schemes.

3.7 What is the role of ensemble methods for DFAs?

(3.7.1) Savin When discussing ensembles, we should be
careful to distinguish between the different cases. Are we inter-
ested in describing ensembles associated with degenerate states?
For example, do we want to construct universal density function-
als that have the same value for all the densities of the ensem-
ble? Do we mean errors that show up due to the locality in our
approximations “*/ — for example, at dissociation? Do we mean
ensembles that show up in (even accurate) Kohn—-Sham calcula-
tions (cf. the pure-state v-representability discussion in ref. ©6)?
Do these ensembles survive at weak interactions? If a multi-
reference treatment is needed in wave-function theory, can we
use ensembles with (semi)local DFAs in DFT? We should keep in
mind that the same classical ensemble may correspond to differ-
ent wave functions, by ignoring the effect of the interference term
produced by the sign (phase) of the coefficients. Ensembles are
introduced for very different reasons for ground states, excited
states and high temperature.

(3.7.2) Gould Ensemble DFT extends the Kohn-Sham
method and related theorems to a much wider range of problems
— everything including thermal states,”® degenerate states,”
“partial” electrons,’ excited states, and states that give
direct access to fundamental gaps“~*. DFAs based on ensemble
principles should be able to inherit this generality and thereby
offer insights into systems that cannot be described by standard
DFAs.

Thermal ensembles are rather different to the other types of
ensembles. The following discussion thus focuses on other types
of ensembles, which give insight into spectroscopic properties of
electronic systems, like fundamental and optical gaps.

Despite representational issues in some systems, there are a
wide variety of problems for which ensembles can be described
cleanly, and for which mappings are one-to-one. “““ In such cases,
key ensemble functionals may be defined as, >

‘g\c}gnstraints [P} = Suvp((goc/})nstraints [V] - (V‘p)) ) 29)
gc};)nstraints vl = inf [T +AW+ Zv(riﬂ (30)
i

I',constraints

where T and W are the kinetic-energy and two-electron repulsion
operators, respectively. Here, the energy is found by a constrained
minimization over density matrices I', with different constraints
leading to different types of ensemble theories. One may then
define an ensemble Kohn-Sham theory, using,

Zlp] :==7"lp] . Sixclp] =7 Ip] = 7°lp], €20

where .7; and éjxc serve the same role as in conventional DFT.
“Constraints” are henceforth implied by the use of calligraphic
letters.

Equation (31) defines an ensemble Kohn-Sham system with
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orbitals obeying,

vslp] =v+ 2l (32

[5V2+vs[p]] 61 =€ii ,
The density, p = ¥, f;|¢;|%, is defined using orbitals with allowed
fractional occupation factors, f;, that reflect the nature of the en-
semble. Ensembles are thus amenable the same machinery as
standard DFT - that is, by approximating &pxc[p] and then find-
ing a set of self-consistent orbitals and density. Accommodating
ensembles in Kohn—-Sham DFT not only extends approximations
to new problems (like excited states), but can also remedy defi-
ciencies in standard approximations. >

A major difficulty in treating ensembles is that the minimiz-
ing wave functions and ensembles are not guaranteed to be
unique and cannot be used explicitly to define functionals — the
“nonuniqueness disaster”. This is related to issues raised in
contribution (3.7.1). One must thus resort to more founda-
tional relationships to further break &y, into useful pieces that
may then be approximated. A rigorous separation into Hartree—
exchange and correlation terms is achieved by using,

, &elp] :==buxclp] — Suxlp] 5
(33)

which gives the usual results for pure states. In the special case
of ensemble that preserve fundamental symmetries by equally
weighting states related by symmetry operations, one may
also rigorously define the Hartree term & PT[p] and exchange
term & PT[p] using the fluctuation-dissipation theorem.**° The
resulting orbital functionals reduce to their usual definitions in
pure states. Hybrid functionals formed on these orbital function-
als (e.g., by using 7 + &EPT + a&EPT, where « is a HF mixing pa-
rameter) may be defined using ensemble generalized Kohn—-Sham
theory.

An additional challenge in ensemble DFT is that the correlation
energy is more complicated than its standard (pure-state) DFT
counterpart. Firstly, because it must address multiple states at
once. Secondly, because it contains density-driven (DD) correla-
tions, which are a consequence of the fact that Kohn—Sham
states reproduce the correct total density, but not the correct den-
sities of the individual interacting states included in the ensemble.
Gould and Pittalis defined DD correlations in special types of en-
sembles. ““/ Fromager then provided a rigorous general scheme
for understanding DD correlations.

(3.7.3) Fromager Just for the sake of clarity, it is probably
good to explain why a distinction has to be made between ther-
mal ensembles and other types of ensembles like, for example,
the Gross-Oliveira-Kohn (GOK) ensemble ““" or the more recent
N-centred ensembles ', which are (somehow artificially) con-
structed in order to compute neutral or charged excitation ener-
gies in a completely time-independent formalism.

The discussion that follows focuses on the latter type of en-
sembles, which we could refer to as “pre-defined" ensembles. In-
deed, unlike in thermal DFT,**”>*°" the ensemble weights & =
(&o,&1,---,&;,...) that are assigned to each state within the ensem-



ble will always be known before the ensemble DFT calculation is
carried out. They are chosen (in principle, arbitrarily) and fixed.
In other words, in the exact theory, the Hohenberg-Kohn theorem
is established for a given ensemble or, equivalently, for a given set
€ of weight values. The one-to-one correspondence between local
potentials and ensemble densities relies on the extension (from
pure ground states to ensembles) of the Rayleigh-Ritz variational
principle,

Ey= H\I}i,H<H>lP — ;§1E1 = ?l}},% {;&(FI}%} , (34)

where {E;} are the targeted (ground- and excited-state) energies.
The ensemble Hartree—exchange—correlation (Hxc) energy func-
tional

Sitxelp] = Efyelp] (35)

is said to be universal because it does not depend on the exter-
nal (local) potential. However, it is expected to depend on the
ensemble under study, through its weight dependence. The lat-
ter originates from the fact that a density p that integrates to a
fixed integer number N of electrons can be both pure-state and
ensemble N-representable at the same time: ="

p(r) = py(r) = Z[‘,ér pw, (). 36

A simple example is provided by the hydrogen atom. The effective
1s orbital

07, (r) = /(1 - )04, (r) + £02,(r), 37)

which represents the ground state of —V2/2+v(r) in the poten-
tial vé (r) = V%[(bfs(r)} / (2¢1§S(r)), has the same density as the GOK
ensemble constructed from the regular 1s and 2s orbitals with
weights (1 —&) and &, respectively.

In the general many-electron case, the ensemble Hxc func-
tional needs to know if it has to compute the Hxc energy of a
pure ground state or of an ensemble consisting of ground and
excited states, hence the & dependence in Eﬁxc [p]. The extraction
of excitation energies from an ensemble DFT calculation reveals
the importance of this weight dependence.”~""=%"2% In
particular, it has been shown that ensemble density-functional
weight derivatives 8Eﬁxc[p] /0&; are directly connected to the
derivative discontinuities that the Hxc potential exhibits when a
given excited state is incorporated into the ensemble.

In DFT for (canonical, for simplicity) thermal ensem-
bles, “=7>*°%">/ the ensemble weights are controlled by a single
parameter — the temperature or, equivalently, the inverse temper-
ature . In thermal DFT, the variational principle is extended to
the total (Helmholtz) energy, which contains an entropic contri-
bution:

min {Z&(H%y,}% min {Z/l,(H)xy,+l;leln7q}. (38)
1 1

¥} 7 {¥rA}

Note that, unlike in GOK or N-centred ensemble DFT, the min-
imizing ensemble weights A; = ¢ P /(¥ ¢ PEr) are energy de-

pendent. Therefore, they are unknown when the calculation
starts. Moreover, even though both interacting and noninteract-
ing Kohn-Sham systems are described at the same temperature
and share the same (ensemble) thermal density, their ensemble
weights are different, simply because Kohn—-Sham energies do not
match the true interacting ones.

With these major differences in mind, the discussion on en-
semble DFAs that follows essentially applies also to thermal DFT.
The ensemble-weight dependence of the Hxc functional simply
reduces to a temperature dependence.

(3.7.4) Gould The last few years have seen significant de-
velopment of new ensemble DFAs — especially for excited states.
There are two main approaches: i) explicit functionals of the
density and ensemble weights (i.e., constraints); ii) ensemble-
adaptation of existing functionals.

(3.7.5) Loos Concerning point i) of contribution (3.7.4),
different strategies have been followed. In ref. , Loos and Fro-
mager constructed a weight-dependent LDA (correlation) func-
tional for GOK DFT using both finite and infinite uniform
electron gases. This functional was employed to compute sin-
gle and double excitations in one-dimensional systems. In ref.

, Marut et al. designed, in the spirit of optimally-tuned range-
separated hybrid functionals, a two-step system-dependent pro-
cedure (resulting in the construction of a weight-dependent ex-
change functional) to obtain accurate double excitations for two-
electron atomic and molecular systems. The transferability of
these weight-dependent functionals remains questionable.

(3.7.6) Gould On point ii) of contribution (3.7.4), the abil-
ity to rigorously define &gy **” and then break it down into &PT
and &IPT4%° has offered insights into adapting existing approx-
imations to ensembles — because the exact-exchange functional
of more complex excitations can obey combination rules that re-
late it to simpler pure-state systems for which approximations al-
ready exist. I showed that using exact-exchange relationships for
ensembles allowed ensemble DFT to outperform the ASCF and
TDDFT methods using the same DFAs.“*” This success has been
partially transferred to double excitations. Despite improve-
ments from using the ensemble version of the on-top pair density
II(r,r) given for pure states in eqn (25), how to effectively
reuse existing correlation DFAs remains an outstanding problem.
It should be noted, however, that these DFAs require solution of
orbital equations

Note that the approaches discussed above focus on modelling
the Hx functional and state-driven correlations. ““/>*~° Failure to
include DD correlations in ensemble DFAs leads to “DD correla-
tion errors” that are avoided in pure-state DFT. Gould introduced
an extrapolation scheme to approximately avoid DD correlation
€rrors.

(3.7.7) Loos Several current limitations of ensemble DFT
are worth mentioning here:

1. Self-consistent ensemble DFT calculations still lack a well-
defined computational protocol (usual or generalized Kohn—
Sham schemes, OEP-type algorithms, CASSCF-type orbital
optimization techniques, etc). How best to correct the ghost-
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interaction error at an affordable cost is also an open ques-
tion.

2. In GOK DFT, one is supposed to know in advance the
energy ordering of the excited states, which is far from being
straightforward.

3. Different flavours of ensemble DFT are used depending on
the type of excitations targeted. In this context, a unified
theory for charge and neutral excitations would be desirable
in order to be able to compute both the fundamental and
optical gaps from a single calculation.

(3.7.8) Fromager I would like to complement the discus-
sion in sections (3.7.4), (3.7.6), and (3.7.7) from the perspective
of state-averaged (usually multiconfigurational) wave-function-
based methods. "~ The incorporation of ensemble-weight depen-
dencies into DFAs is probably the most challenging task in ensem-
ble DFT. Defining Hartree, exchange, and correlation ensemble
energies is not as straightforward as in regular ground-state DFT.
Various decompositions have actually been proposed. “=>~"=%

They all have their advantages and drawbacks. A dilemma
already appears at the Hartree-only level of approximation. In
the original formulation of GOK
DFTs, the ensemble Hartree energy is evaluated from the regular
ground-state Hartree density functional

Eulp] = % /I %drdr’ (39)

and N-centred ensemble

as follows:

ef. 1

d
& Eqy

Y& pq»,] : (40)
1

where {®;} are trial Kohn—-Sham wave functions. While the
above definition is formally convenient because it ensures that the
Kohn-Sham orbitals are obtained from a single (local) ensemble-
density-functional potential (Hartree-only in this case), it is, from
a practical point of view, a very poor choice. The reason is
that it contains unphysical “ghost” interaction terms between the
states. The Hartree energy defined in this way also varies
quadratically with the ensemble weights, by construction, while
the exact ensemble energy varies linearly. At first sight, it seems
better to opt for the following definition,

& 'L Y &iEnlps,). (41)
1

where individual Hartree energies are used instead. The above
ensemble Hartree energy is an implicit functional of the ensem-
ble density. If we want to preserve the original formulation of
ensemble DFT, where a single local ensemble Kohn-Sham poten-
tial is employed, OEP techniques must be employed.
Nevertheless, it is possible to tackle the problem differently. In-
deed, an orbital-dependent Hartree-only density functional can
be defined using Lieb’s maximization (see eqn (29)) and the fol-
lowing approximate expression for the potential-functional en-
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semble energy:

51 = min {;g, <<T + YN v(r,-)>q)l +EH[pq,,]) } L 42)

This procedure can be seen as the Hartree-only version
for single-configuration (Kohn-Sham) wave functions of the
state-averaged complete-active-space self-consistent-field (SA-
CASSCF) method. Its practical disadvantage is that standard
SCF routines cannot be used in this context. Indeed, as each
Kohn-Sham state generates its own Hartree potential, there is no
single ensemble potential from which the minimizing Kohn-Sham
orbitals can be determined (by diagonalization). /=% %2440 If
we want to avoid the use of OEPs, this is essentially the price to
pay for constructing ghost-interaction-free ensemble energies in a
systematic and general way. Mapping the true interacting ensem-
ble density onto such an approximate Hartree-only state-averaged
ensemble leads to an alternative (in principle, exact) formulation
of ensemble DFT."*® An exact ensemble exchange scheme is ob-
tained along the same lines from the following approximate en-
semble energy expression (note that, in practice, complementary
fractions of exact and approximate density-functional expressions
for the ensemble exchange energy are usually combined “~°**°):

5] - min {;§,<T+W+Zjv_lv(ri)>¢l}. (43)

In this case, the individual (nonlocal) exchange potentials are
functionals of the individual one-electron reduced density matri-
ces.

Electron correlation can be introduced (approximately) into
the theory by recycling the regular (weight-independent) ground-
state correlation functional E.[p] as follows:

£ = min {;g, (<T+W+Zf’:1v(r,»)>¢l +Ec[p<pl]) } . (44

Mapping the true ensemble density onto such an (approximate)
ensemble leads to another exact formulation of ensemble DFT. In
order to recover the exact ensemble energy, a density-functional
correction should then in principle be designed,

AEE[p] = Y & ((T+ W)y, — (T +W)a, —Eclpa,]),  (45)
1

where {¥;} and {®;} are, respectively, the true interacting and
auxiliary (generalized Kohn—Sham) density-functional ensembles
with density

p(r) =Y &ipy,(r) =} &pa, (r). (46)
T T

This is perhaps where the challenge in ensemble DFT lies — in-
deed, in computational studies, AE¢ [p] is usually neglected. " It
is far from clear how accurate such an approximation is and if er-
ror cancellations systematically occur in this context; hence, the
(urgent) need for a clearer hierarchy of approximations — that is,
a Jacob’s ladder for ensembles.

Let us give further insight into the approximation of eqn (44).



From the more explicit expression
Eclpo,| = (T + W>‘P0[Pd>/] —{T+ W>‘I’§S [ps,]? (47)

where Wy[p] and ®K5[p] are the standard interacting and Kohn-
Sham noninteracting density-functional ground-state wave func-
tions, respectively, we can rewrite the exact ensemble density-
functional correlation correction to Eq. (44) as follows:

AE§ [p] = ;é[ <<T+W>\*’1 - <T+W>\PO[P<I>I])

Y e (T Wie — T+ Wiggspp, ). 48)
1

At this point, we stress that the density constraint of eqn (46) does
not imply that, within the ensemble, interacting and Kohn—-Sham
densities match individually — in general, they do not."*/
This can be seen in the regular ground-state limit of the the-
ory, when the weights assigned to the excited states are equal
This specific feature of ensemble DFT is reflected in
the implicit weight-dependence of the Kohn-Sham wave func-
tions {®;}. It is related to the concept of density-driven (DD)
correlation recently introduced by Gould and Pittalis; see con-
tribution (3.7.2). Moreover, even if the exact individual densities
pw, (which can be extracted, in principle exactly, from the Kohn-
Sham ensemble “““) were used instead of the bare Kohn-Sham
densities pg,, one would still not recover the exact ensemble cor-
relation energy simply because, for a given excited-state density
pw,, Yolpy,] is always a ground-state wave function. The fact
that the true excited-state wave function ¥; differs from ¥y [py,]
can be related to the concept of state-driven (SD) correlation.

In the light of this analysis, the following decomposition may be
used as a guideline for the development of ensemble correlation
DFAs:

to zero.

AEE [p] = Z‘bél <<T+W>‘P, - <T+W>‘P0[pxyl])
1>

R (74 W), = (T4 W)agsp, )

X8 (T +Wha o)~ T+ Whafp,)) . @9)
1

where the ground-state (I = 0) interacting contributions in the
first summation rigorously cancel out.

Let us finally mention that ensemble DFT does not give a di-
rect access to response properties such as oscillator strengths or
to Dyson orbitals (in the case of N-centred ensemble DFT “<*).
The extension of Gorling-Levy perturbation theory°""*/>**® to
ensembles should probably be explored for that purpose.

(3.7.9) Grimme Finite-(electronic)-temperature Kohn—
Sham DFT, even with standard GGA or hybrid DFAs, can be used
routinely to approximately describe difficult static-correlation
problems in large systems even if the resulting energies need
to be taken with caution. Such calculations often improve SCF
convergence and can be employed, for example, in a molecular-
dynamics treatment of high-energy chemistry (mass spectrome-

try “*”) or for the analysis of static-correlation effects

(3.7.10) Chermette Most of the ensemble approaches dis-
cussed here are for “true” ground states or excited states, which
naturally involve an integer (total) number of electrons. How-
ever, reactions or excitation processes may be described with a
noninteger number of electrons, which mimics the approach of
a charged or simply polarized species or particles. The relax-
ation of the MOs that occurs through the addition or depletion
of a small amount of an electron is a tool not (yet) widely used.
Organometallic complexes are sensitive to this because of their
partially filled d orbitals. As a result, static (quasi-degeneracy)
correlation may play a significant role - see, for instance, ref.

(3.7.11) Gao I would like to add an alternative formulation
of the density functional of an ensemble energy in multistate DFT
(MSDFT). We have been experimenting with this approach
in the past few years, with excellent results in a variety of applica-
tions — including applications to singlet fission, “°* proton-coupled
electron transfer, conical intersections, local-valence and
charge-transfer excited states, “°> and core-level excitation ener-
gies.

Recently, my coworker Dr. Yangyi Lu and I proved that MS-
DFT is an exact DFT in the subspace V" spanned by the lowest N
eigenstates of the Hamiltonian. It is proved (1) that the Hamil-
tonian projected onto VV is a matrix functional H[D(r)] of the
multistate matrix density D(r) and (2) that variational minimiza-
tion of the multistate ensemble energy, Eys[D] = try[S~'H(D)],
gives the exact energies and densities of all N eigenstates. The
second theorem corresponds to an extension of the Theophilou
variational principle for the whole subspace in terms of
H[D(r)], ensuring that the energies and vectors of individual
states are obtained simultaneously. In these expressions, D(r) is a
matrix of electron densities and transition densities of a set of ba-
sis states that represent the ensemble density py (r) = try [~ D(r)]
of the subspace V¥, where S is the overlap matrix of the basis
states; D(r) is not to be confused with the one-electron density
matrix.

The multistate matrix density D(r) can be sufficiently repre-
sented by N? nonorthogonal (necessary) determinants. In a de-
parture from Kohn-Sham DFT for the ground state, we intro-
duce in MSDFT an “active space” of N interacting states {®4;A =
1,...,N}, each of which is written as a linear combination of N
nonorthogonal determinants, ®4 = fo apsWpa, to completely rep-
resent D(r) of the real (fully interacting) system. Its matrix ele-
ments are computed from one-electron orbitals {x?p (r)} in the
manner

N Ne
Dap(r) =Y apaags y i 10 (1) 2" (x) (50)
v Tk

where fﬁA’qB is the overlap between two Slater determinants of
the corresponding (ne — 1) orbitals. Unlike the diagonal state den-
sities, the transition density Dsg(r) with A # B can be positive,
negative or complex.

Analogous to the ground-state DFT, we can define a Lieb-like
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subspace energy functional

= pv(l‘),WN - H}
(6D

Flpy] = inf{try (Ho[D(r)]) | v [S~'D(r)]

where Hy =T +W = H —v(r). The constrained minimization in
eqn (51) imposes the condition that the total density of the N
eigenstates of primary interest is identical to the ensemble den-
sity.

The optimal ensemble density py (r) is found by minimizing the
multistate ensemble-energy functional, an implicit functional of
pv (r), with respect to the state coefficients c4; and D(r),

N N
Ewvs [pv (r Z Y carcsi{-ZaDan(r)] + / v(r)Dap(r)dr}. (52)
I=1AB
The energies of all N eigenstates of H within the subspace VV are
thus simultaneously determined.

N
E;[D] =Y carcprHap[Das(r)] (53)
4B

where 7 = 1,...,N and E| is the ground state energy.

The matrix functional of the full Hamiltonian H in the subspace
V¥ is given by

HID()] = Z[D()] + [v(r)D (54)

where .7 [D(r)] is the universal matrix functional, whose elements
in terms of one-body orbitals are

Z[D(r)] = Tys[D(r)] + Enx[D(r)] + Exc[D(r)] (55)
The first and second terms in eqn (55) are, respectively, the mul-
tistate (active space) matrix functionals of the kinetic energy, and
Hartree-exchange energy:

Tias = Z“ﬁAanZ Vi <

— V") 56)

N Ne
AB AgB
Efy =) apadgs ), f? el (ijIkI) pp 4 (57)
Pq i<jk<l

where (ijl[kl)4, g, is the two-electron Coulomb-exchange inte-

gral with fl ,]de 9 being the coefficient. The multistate exchange—
correlation matrix function Ex[D(r)] is defined by eqn (55), ac-
counting for the remaining correlation energy not included in the

multistate active space.

Notice that I have introduced a new class of density functional,
the transition density functional (TDF) E4B[D(r)] between states
A and B."°° The physical interpretation of the TDF is the dynamic
correlation contribution to the electronic coupling between two
Although the functional form of the TDF is not
known (similar to the exchange-correlation functional in Kohn-
Sham DFT), in special cases such as spin-coupling interactions, it
can be determined with the constraint of spin-multiplet degener-
acy with the high-spin state determined separately using Kohn-
Sham DFT.*>>%% Obviously, as in Kohn-Sham DFT, ELB[D(r)]

basis states. "~
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also includes the corresponding residual kinetic energy not ex-
pressed in the orbital term.

One way to construct the multistate active space is to use

constrained Kohn—-Sham determinants for the states of interest.
These non-Aufbau configurations can be optimized via a ASCF
procedure, *°” or by the targeted orbital optimization method.
If we do not simultaneously optimize {cas,apa} in eqn (52), the
orbitals in each determinant will be separately optimized, and
they are generally nonorthogonal. Then, the procedure is equiva-
lent to nonorthogonal state interaction (NOSI), a convenient ap-
proximation to the full MSSCF solution. “*
first carries out the optimization of each determinant configura-
tion as a constrained Kohn-Sham DFT calculation. Then,
this is followed by a single step of diagonalization of the Hamil-
tonian matrix functional (eqn (54)), with the approximations for
the off-diagonal elements Hyp given in refs ,453, to yield
the energies of the adiabatic states. Consequently, all adiabatic
states in the ensemble, including the ground state, are treated on
an equal footing in the course of minimizing the ensemble density
functional.

In this case, one

Since state interactions are explicitly included in the active
space that defines the ensemble energy, the effect of interference
highlighted in contribution (3.7.1) is naturally included in MS-
DFT.

3.8 What has DFT told us about the real world?
(3.8.1) Jones DFT would not be “the workhorse of quan-
tum chemistry and materials science” if it had not provided much
information about the real world. This is obvious in areas of par-
ticular interest to me, where its ability to make useful predictions
of interesting physical properties broke new ground.

However, this is not the main lesson that DFT has taught me
about the “real world”. I participated in (and survived) the strug-
gle of a small number of scientists to convince the overwhelming
majority of theoretical chemists that density-functional calcula-
tions could play an important role in chemistry. This struggle
(from the mid-1970s to the breakthrough to general acceptance
in the early 1990s) was against a conservative community that,
with few exceptions, did not hesitate to “vilify” (Baerends, per-
sonal communication), ridicule, or ignore a development that ev-
eryone now knows was in its own interests. Such long-running
rejection of unfamiliar ideas is certainly not unique in science,
but I hope that it will not be repeated in the density-functional
community.

(3.8.2) Salahub Jones’s answer about DFT being vilified
in the early days reminds me of a tongue-in-cheek paper I wrote
in 1999 as part of a Theor: Chem. Acta series reviewing contribu-
tions of DFT to end-of-the-century applications “°~. Here is the
beginning:

“lam. A faint knock on the downstairs door. Or was it? Then
the unmistakable thump of a heavy boot against the door and
the crack of the door jamb as it shattered. Had his sordid past
caught up with him? The interrogation would be swift and on
the spot. Where did that wooden chair come from? And the
bare light bulb slowly swaying above it? Whose face was that, al-



most invisible behind the glare? Inquisitor: Are you now or have
you ever been a member of the Xalpha party? Mild-mannered
respectable density-functional-theory practitioner (MMRDFTP):
What? (Where had he heard that voice before?) Inquisitor: Are
you now or have you ever been a member of the Xalpha party?
MMRDFTP: I'm a Mild-mannered respectable density-functional-
theory practitioner (MMRDFTP). What do you mean by breaking
into my house in the middle of the night and hauling me out of
bed like that? I was just in the middle of a great dream about
an exchange-correlation functional that had the right asymptotic
form and took care of dispersion seamlessly. Could have done
excited states too, and eminently parallelizable. And now I've
forgotten what it looked like. ..”
Perhaps this has something to do with the “real world”...

(3.8.3) Schwerdtfeger I remember the days when John
Pople and Walter Kohn each argued their case of what the future
will be, wave-function or density-functional based. It is clear that
we can reach unprecedented accuracy in wave-function-based
theory, testing even the standard model of physics. A nice exam-
ple here is the accurate determination the fine structure constant
from QED

And to make it clear: wave-function-based theory should be
used wherever it can be used. But this is exactly the point. DFT
is applied for large systems because of its low computational scal-
ing law, O(n3), with the number of particles involved n, and where
wave-function-based theory has (and in future will still have) real
problems — for example, in describing electron correlation for
strongly correlated and metallic systems. The electron-correlation
problem for metallic systems in wave-function-based theory was
already pointed out in early days by Fulde *°“. Here, DFT gave us
many useful results of the “real world” where ab initio theory is
just not able (yet) to do the same job. It has become therefore an
invaluable tool for materials science, solid-state physics, and the
simulation of biomolecules.

What is perhaps a bit annoying (at least to me) are the “quick
fixes” applied to DFT when one does not get reasonably accurate
results — I just mention here the better description of electron
pairing due to the on-site Coulomb repulsion by the use of the
Hubbard term in DFT+U."%?>"°® On the other hand, many-body
theory can be used successfully within a DFT formalism as the
many applications in solid-state physics show — for example, by
using GW and Bethe-Salpeter theory leading to quite accurate
solid-state properties. So the two worlds come together somehow.

(3.8.4) Chermette Young researchers may be reminded of
the difficult youth of DFT in chemistry, even though interesting
and interpreted *°” in the 1970s and
1980s. A similar situation occurred in other domains, such as the
quasi-crystal discovery, not accepted by the crystallographers for
a while.

results were obtained “/

(3.8.5) Kronik
ways:

. DFT interacts with the “real world” in three

Confirmation: Sometimes experimental findings can be conflict-
ing or controversial, owing to sample quality, complexity of

measurement, difficulty of interpretation, or all of the above.
“Reproducing” the experiment on the computer, using DFT,
allows theorists to weigh in on such controversies.

Interpretation: Often the experimental result is beyond dispute,
but it is poorly understood. With DFT, we can easily test
for the effect of, for example, adding, moving, or remov-
ing an atom; we can examine the role of transition states
and metastable states; we can assess what individual (Kohn—
Sham) electron orbitals do and more. By doing so, we can
explain experiment. The same tasks would range from the
exceedingly difficult to the a priori impossible if attempted
experimentally.

Prediction : Suggesting new mechanisms and properties before
they have been examined experimentally, or indeed even
suggesting new useful molecules or materials before they
have been synthesized, once seemed like a distant “holy
grail”. It is a testament to the quality of modern DFAs that
such predictions are becoming increasingly successful.

(3.8.6) Gritsenko DFT provides an astonishing example of
how, arguably, the most exotic ultra-nonlocal feature of Kohn—
Sham theory supplies the missing piece of information about one
of the most important experimental characteristics of solid-state
physics: the fundamental band gap Eg. The feature in ques-
tion is a finite upward jump Ay, of the Kohn-Sham exchange—
correlation potential of a bulk crystal with a finite Eg, when just
a single electron is added to the conductance band. Addition
to the too low Kohn-Sham band gap Egs of a simple estimate
of Ay extracted from the Gritsenko—van Leeuwen—-van Lenthe—
Baerends (GLLB) or Becke-Johnson (BJ) model exchange-
correlation potentials produced surprisingly good-quality Eg for
many extended systems.

(3.8.7) Galli : DFT has told us about trends in properties and
chemical bonding in numerous molecular and condensed phases,
in spite of inherent inaccuracies of existing DFAs and shown pre-
dictive power and great usefulness in interpreting experiments.
DFT has also been overused and those instances should of course
be corrected. It should be emphasized that DFT is at the basis
of all MBPT studies and even of quantum Monte Carlo calcula-
tions of solids, where the starting wave function is in most cases
constructed from DFT orbitals.

(3.8.8) Neese There is no doubt in my mind that com-
putational chemistry would not be nearly as popular and impor-
tant in chemistry as it is today without the huge success that
DFT has enjoyed. While linear-scaling wave-function-based ap-
proaches have a come a very long way and can now be routinely
used in most computational chemistry studies, I do not foresee
that even the best linear-scaling approaches will make DFT obso-
lete in any shape or form. For example, it is difficult to see how
correlated wave functions could compete with the speed and ac-
curacy of DFT for geometries and harmonic frequencies. On the
other hand, correlated wave functions are conceptually and nu-
merically superior to DFT for a number of properties, for example
magnetic properties. Personally, I hope for a fruitful interplay and
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co-existence, in which computational chemists make the best use
of the available computational tools, no matter what theoretical
framework they are based on.

(3.8.9) Barone : What is the meaning of the “real world”? All
computations are performed on model systems, so that compar-
ison with experiment requires the definition of both the math-
ematical (here the DFA) and the physical (the system investi-
gated). Since DFT allows us to increase the dimensions of the
physical model more than is possible with wave-function meth-
ods, we come closer to the “real system”. As a result, the discrep-
ancies with experimental results are more probably related to de-
ficiencies of the mathematical model. Of course, here multilayer
(QM/QM’) models play a significant role, at least for nonperiodic
systems.

(3.8.10) Helgaker I sometimes wonder whether we as a
community would know more or less about the role of dispersion
in chemistry and physics if DFT had not struggled to describe it.
By being able to turn on and off dispersion as described for ex-
ample by Grimme, °“~ we have observed the effects of dispersion
in a very transparent manner — this was for me, at least, an eye-
opener. In general, DFT forces us to discuss the real world in a
different manner than with many-body wave functions.

3.9 What is the status of DFT-based tools for interpretation
of chemical phenomena?

(3.9.1) Ayers, Chattaraj, Chermette, De Proft, Fuentealba,
Geerlings, Liu, Vela, and Yang The role of conceptual DFT
in this endeavour has been very important: its past and recent ac-
complishments have been summarized in earlier reviews °*
and a recent “status” paper where also its present status,
prospects. and issues are scrutinized. The present status can be
best understood by considering the aim of conceptual DFT and
the philosophy behind its realization.

The aim of conceptual DFT was clarified at a conference in
Changsha City, China in 2018, attended by almost all of the most
influential workers in the field, and formulated in the above men-
tioned status paper as “to develop a nonempirical, mathemati-
cally and physically sound, density-based, quantum-chemical the-
ory for interpreting and predicting chemical phenomena , espe-
cially chemical reactions”.”/~ This aim should be realized with
a philosophy based on three fundamental precepts: observabil-
ity (our understanding of chemical observations should be based
on quantum-mechanical observables — in particular, the energy,
the density and their derivatives); universality (the results should
not depend on the type of calculations) and mathematical rigour
(aiming at a well-defined mathematical framework).

Based on these precepts, conceptual DFT has introduced a
number of molecular reactivity descriptors, mostly response
functions or descriptors derived from the E(N) curve, that
— either alone or in combination with the electronegativity-
equalization principle, the hard/soft-acid/base principle, the
maximum-hardness principle, or the minimum-electrophilicity
principle, for example — have served as valuable tools for the
interpretation of experimental and theoretical (computational)
data for a wide variety of reactions. Its scope comprises “gener-
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alized” acid-base, complexation and redox reactions and a mul-
titude of “classical” organic reaction types including pericyclic re-
actions, with substrates varying from inorganic to organic and
organometallic molecules, to polymers and the solid state. The
success of conceptual DFT in pervading a broad range of chemi-
cal subdisciplines — from inorganic, organic, and organometallic
chemistry to biochemistry and materials chemistry — can be de-
scribed as getting “insight from numbers”, experimental or theo-
retical.

Pitfalls and shortcomings are still to be coped with, however,
both on the more fundamental issues (e.g., the nature of the E(N)
function and the issue of differentiability, the convergence of the
E = E[N,v] perturbation series in N and v) and on more applied
aspects (e.g., the delineation of the scope of the various princi-
ples) before the next step, from interpretation to prediction, can
safely be taken; see Section 4.8.

(3.9.2) Baerends On the topic of differentiability of E(N)
hinted at in contribution (3.9.1), let us note that there truly is a
fundamental problem.“/* In the Euler-Lagrange equation for the
optimization of the density,

%(r) {Ev[p} u ( [ piwyar —N)} _o, (58)

the total functional derivative of E, [p] has to be broken down into
its partial derivatives

SE,[p] _ (SEv[p}) N (BEv[p])
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Here, the density is written as a product p(r) = No(r) of the parti-
cle number N with a shape function o(r) that integrates to 1.
According to the theory of optimization under constraints, the
Lagrange multiplier u at the optimum density p? is equal to the
partial derivative with the shape function held constant, dE/JdN
for short. But the Hohenberg-Kohn theorem does not define the

energy for densities with a noninteger number of electrons. So
the energy for a density with noninteger N in a neighbourhood of

pN

is not defined and the derivative does not exist.

The typical solution in the theory of variations under con-
straints is to choose some extension of the functional into the
domain where it is not defined. This extension is essentially ar-
bitrary, the only requirement is that the extension obeys conti-
nuity properties so that the derivative exists. At this point, the
Lagrange multiplier, which is the force of constraint keeping the
density at integer N, is undetermined. It is determined by the cho-
sen extension of E[p] into the noninteger domain. This is not a
problem, it is directly related to the well-known gauge freedom of
the Kohn-Sham potential, to which an arbitrary constant may be
added.”’" In a widely cited paper by Parr et al. (see also con-
tribution (2.5.3)), the Lagrange multiplier 4 has been described
as “a characteristic constant for a system”, but without any proof
or arguments. This contradicts the essential arbitrariness of the
constant u, and therefore of JE/JdN. Atoms and molecules have



an ionization energy and an electron affinity — there is no addi-
tional physical quantity u = dE/JN.

The best known choice for extension of E,[p] into the noninte-
ger domain is the one of ref. - namely, forming an ensemble
of the ground-state density matrix of the N-electron system with
either the density matrix of the ground state of the (N +1) sys-
tem or the ground state of the (N — 1) system. This procedure
leads to piecewise linear energy behaviour. This choice precludes
application of the Euler-Lagrange variation method because the
derivative JE/dN does not exist (is discontinuous at the integer
point). More extensive discussion of these matters is given in ref.

(3.9.3) Liu Two schemes for partitioning the total energy
in DFT have been applied to understand different chemical pro-
cesses and transformations. From these schemes, a unified
view of molecular conformational stability has emerged, in which
the electrostatic interaction plays the dominant role, while the
contributions of steric repulsion and quantum effects are minor
yet indispensable. This was also recently utilized to analyse
the effects of cooperativity, frustration, and homochiral-
ity. Regioselectivity, nucleophilicity, and electrophilicity have
also been quantified by information gain and Hirshfeld charge.
Recent studies of density-based quantities for aromaticity and an-
tiaromaticity yielded two opposite propensities, one for aromatic-
ity and the other for antiaromaticity, depending on the number of
m-electrons.

(3.9.4) Chermette As pointed out in contribution (3.9.3),
for most molecular systems, the electrostatic interactions dom-
inate over steric repulsion and other quantum effects. Accord-
ingly, an analysis of the molecular perturbation introduced by a
small charge (typically +0.1¢) leads to interesting insights in the
understanding of reactivity.

The perturbed energy can be analysed as a contribution from
excited configurations, whose importance may be estimated by
their oscillator strengths. In most cases, it appears that only a lim-
ited number of excitations contribute significantly to the overall
response to the perturbation, suggesting that chemical reactivity
can be predicted by analysing the reshuffling of electron density
upon excitation. The stabilization energy due to interaction
between the polarization density and the electrostatic potential
ov(r) is given by

AE [8v(r)] = i 2 [8v ()] (Eo— Er) (60)
k=1

where ¢ [5v(r)] is the oscillator strength of the kth excited state
and Ej — E; is minus the kth excitation energy. Therefore,
eqn (60) can be viewed a minus the energy required to rearrange
the electron configuration so that c% electrons are promoted from
the ground state to the kth state. Following the same line of
thought, the plot of c]% versus (Ey— Ej) can be considered as a
polarization spectrum. The polarization density can be computed
as

8p(r)= Y. cuph (r), (61)
k=1

where p(’)< (r) is the transition density coupling the kth state to the
ground state.

From a link between conceptual DFT and statistical thermody-
namics, it has been shown that the perturbation energy due to in-
termolecular electrostatic interactions can be understood in terms
of effective work and heat exchange, ““~ the first-order correction
J p (r) 8v(r) dr being the effective work and the second-order cor-
rection in eqn (60) being the heat exchange. A polarization en-
tropy and a polarization temperature can also been defined by
this analogy. Therefore, using the external electrostatic poten-
tial as a probe and the polarization energy, entropy, and density
as electronic responses, one can get qualitative and quantitative
insight into the reactivity and the selectivity of molecular frag-
ments.

(3.9.5) Fuentealba One should not forget that, along with
density functionals, one has density functions as a special case.
Ramon Carbé-Dorca Carre has studied the mathematical struc-
ture of such functions.

(3.9.6) Ayers One advantage of the popularity of DFT is
that it gave publicity to methods based on the direct analysis of
the the electron density (and higher-order electron distribution
functions), some of which developed concurrently with, or even
predated, the emergence of modern DFT. Simply stated, DFT is
a useful method not only for predicting reactivity as discussed
in contribution (3.9.1) but also for describing and characteriz-
ing molecular electronic structure. Indeed, the framework of the
quantum theory of atoms in molecules (QTAIM) and more
generally quantum chemical topology (QCT) *“> were largely de-
veloped alongside DFT, and use the same quantities (notably the
density and its derivatives, various energy densities, and various
strategies for characterizing, representing, and approximating the
exchange—correlation hole) to obtain insight into molecular struc-
ture and chemical bonding.

4 The Future of DFT and DFAs

4.1 What are the important lines of development in DFT and
for DFAs?

(4.1.1) Gritsenko and Pernal Importantly, DFT can re-
solve a bottleneck problem of wave-function theory and DMFT
regarding the reliable description of dynamical electron corre-
lation. Indeed, nondynamical correlation can be efficiently ac-
counted for with the small CAS CI and DMRG ab initio approaches
or with DMFT functionals of the extended Léwdin-Shull (ELS)
type, °“ all in relatively small basis sets. It is the description of
the residual dynamical correlation, which requires the inclusion
of prohibitively many CI excitations in a sufficiently large basis,
or many very weakly occupied natural orbitals, which is difficult
to describe with approximate DMFT functionals.

This bottleneck problem has been efficiently resolved in the
CASIIDFT and ELS+ (the extension of the above mentioned
ELS method) * methods, which share the following master for-
mula for the electronic energy:

Ee—EFf 4 / PX](r) ec[p (r)]dr, 62)
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Here E'f is the CAS or ELS electronic energy, & is a standard
DFT correlation energy density functional, while P[X] is a scaling
factor depending on the CAS or ELS on-top pair density II(r,r)
and the density p(r):

X(r) = 20T, (63)

Effectively, the dynamical correlation energy is a functional of
I(r,r) and p(r) and the method works because X(r) locally
probes the effect of nondynamical correlation exerted on the dy-
namical correlation. More precisely, the region where X(r) <1
represents suppression of dynamical correlation by nondynamical
correlation, while the region where X(r) > 1 indicates enhance-
ment of dynamical correlation in excited states of ionic type.
The CASIIDFT and ELS+ methods reproduce well, in a rela-
tively small orbital basis, the accurate potential-energy curves in
the complete basis-set (CBS) limit; also, the CASTIDFT method
yields good-quality vertical excitation energies for prototypical
molecules. This development shows a promising new direc-
tion of combining ab initio methods with DFAs via the on-top pair
density correlation functional.

(4.1.2) Gagliardi The on-top pair density is the diagonal
part of the two-body density matrix in the coordinate represen-
tation. It plays a very general role in wave-function theory and
has also been used in many contexts in DFT and DMFT with both
single- and multiconfigurational reference states. Many examples
of multiconfigurational DFT have shown that use of the pair den-
sity gives superior results. One recent utilization of the pair den-
sity has occurred in multiconfigurational pair-density functional
theory (MC-PDFT)."“%"°” In MC-PDFT, the energy is computed
by combining wave-function theory for the classical components
of the electronic energy (kinetic energy, electron-nuclear attrac-
tion, and classical electron-electron repulsion) with a functional
for the nonclassical components of the energy (exchange and cor-
relation). MC-PDFT is a special case of multiconfigurational non-
classical functional theory (MC-NCFT).

The expression for the MC-NCFT energy is

Enienerr [WMC] = ENSGo + Enc[F [y (64)

: MC
where the classical energy Ej. -

pulsion, nucleus-electron attraction, classical electron—electron
repulsion, and electronic kinetic energy. The nonclassical func-
tional En. depends on a featurization f of the reference wave
function yMC, which may be the density, on-top density, and their
gradients, or other attributes of the wave function - it can, for ex-
ample, be the on-top functional Eo. MC-PDFT does not use wave-
function theory for the internal correlation energy. The method
has shown promising performances in several applications involv-
ing ground and excited states of multireference systems. """
Analytic gradients for the state-specific and state-average formu-
lations are available. "

contains the nucleus—nucleus re-

There are two main issues that should be addressed in the fu-
ture, if MC-PDFT is to become a routine method for multirefer-
ence systems:
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1. How should one choose reference wave functions for these
calculations and make them affordable for extended sys-
tems? Instead of using the CASSCF wave function, one
can use RASSCF or generalized-active-space SCF (GASSCF)
wave functions or DMRG wave functions. “”~ Related to this
challenge is the task of automating active-space selections to
make these methods more user friendly.

2. The second direction of development is towards the func-
tional form. Currently, functionals are borrowed from the
Kohn-Sham world, but specific functionals for this theory
should eventually be developed. One possibility is to de-
velop multiconfigurational density-driven functional meth-
ods that correct the classical or total energy of a multi-
configurational wave-function method through the use of a
machine-learned functional.

(4.1.3) Jensen A promising alternative to variants of
single-determinantal Kohn-Sham DFT, including hybrid and long-
range corrected DFT, is to use range separation not only for the
exchange energy but also for the correlation energy, as origi-
nally suggested by Savin > and mentioned by him in contribu-
tion (2.2.24); see also contributions (2.5.6) and (2.5.7) from Per-
nal.

The separation of the electron—electron repulsion into a long-
range (Ir) part and a short-range (sr) part is usually achieved with
the error function erf(—urj;) where u is an interaction-strength
parameter. By means of adiabatic connection, one obtains a con-
tinuous range of possible DFA models defined by different values
of u > 0. In particular, one obtains Kohn—-Sham DFT for u =0
and pure wave-function theory (WFT) for u — o; the adiabatic
connection from p =0 to u =  thus provides an alternative path
to Kohn-Sham DFT.

The more interesting case is to use the adiabatic connection
from a partially interacting system at finite yt > 0 to y = co. One
then obtains a hybrid IrWFT-srDFT model, which, for a suffi-
ciently large u, can describe nondynamical long-range correla-
tions adequately and also give correct spin symmetry of open-
shell molecules by means of a multi-determinant reference
wave function. This approach is much simpler than attempting
to describe them with a complicated Kohn—-Sham DFA functional
based on a single determinant. On the other hand, the dynamical
short-range correlation effects can be described efficiently with a
semilocal stDFT functional connecting to a Kohn—Sham DFT func-
tional in the y = 0 limit.

In the hypothetical case of short-range exact density functionals
and long-range full CI wave functions for any u value, the total
energy would be the same for all u values. The idea is to use
the u value for which the least computational work is needed to
obtain good-quality energies and properties.

The computationally most efficient rWFT-srDFT model will be
for the smallest u value for which long-range and spin correla-
tions can be described to the desired accuracy, as this leads to
the most compact IrtWFT part with the smallest number of active
orbitals. By comparison with accurate WFT calculations, it has
been found that a value around p = 0.4 can be considered univer-



sally applicable for valence properties of singlet molecules.
Preliminary investigations of transition-metal complexes indicate
that a value around p = 1.0 may be needed to describe their spin
correlation sufficiently well.

A particularly promising choice for the IrWFT part is to use
the variational multiconfigurational self-consistent field descrip-
tion, leading to an IrMCSCE-srDFT (MC-srDFT) model. Because
it is variational, the MC—srDFT model can also be used for molec-
ular response properties, just like TDDFT in Kohn-Sham DFT —
not only for excitation energies and transition moments, but in
general for optical, electrical, and magnetic perturbations. For
molecules with strong nondynamical correlation, the kinetic en-
ergy will be better described with the MC—srDFT model than with
Kohn-Sham-DFT, thus a smaller kinetic-energy correction needs
to be described by the correlation functional.

Note also that the MC—srDFT approach can be used not only
for electronic ground states, but also in state-specific models for
excited electronic states of any spin multiplicity and spatial sym-
metry.

(4.1.4) Loos Recent developments by Giner, Toulouse, and
coworkers on DFT-based basis-set corrections for wave-function
theory (based on the range-separation of the electron interaction)
are particularly promising with respect to removing, at a low com-
putational cost, the basis-set incompleteness error in high-level
calculations.

(4.1.5) Kronik The concept of “optimal tuning” has proven
to be highly useful for extracting accurate one- and two-electron
excitation energies from (relatively) simple DFAs.“° In DFT re-
search, we typically seek an increasingly general DFA, which can
come as close as possible to the ideal of a universal functional. But
this comes at an increasingly large computational cost. Optimal
tuning deviates from this paradigm. It seeks to retain a reasonably
simple, low-cost general functional form, in which one or two pa-
rameters remain undetermined. The remaining freedom affords
enhanced accuracy, with the parameter(s) determined nonempir-
ically, but in a system-specific way, by demanding that a physical
constraint be obeyed.

The most successful practical incarnation of this idea has been
based on another highly successful idea — namely, that of range-
separated hybrid functionals. "~ These functionals can ex-
hibit an asymptotically correct long-range (free “° or screened *"~)
Coulomb potential, while retaining a useful balance between ex-
change and correlation in the short range. The range-separation
parameter is then tuned, per system, by enforcing the ionization-
potential theorem '/ (or variants thereof). The approach has been
successful in overcoming issues considered very challenging for
DFAs, notably the infamous band-gap problem~"" and the
prediction of charge-transfer excitation energies,~"*>"/ through
systematic elimination of derivative discontinuity errors. Im-
portantly, this approach restores the physical picture of single-
and two-quasi-particle excitation thresholds, by reliably predict-
ing them from the HOMO-LUMO eigenvalue difference of a DFT
calculation and the lowest eigenvalue of a TDDFT calculation,
respectively, using the same exchange-correlation functional
Extensions of these ideas can be expected to continue to play a

role in DFT applications to spectroscopy.

(4.1.6) Johnson Development of a DFA that can elimi-
nate the delocalization error is needed. The delocalization er-
ror, also known as the many-electron self-interaction error, refers
to the tendency of many DFAs to overstabilize systems with
highly delocalized electrons or fractional charges on separated
moieties. *%~Y">Y” This error affects charge-transfer complexes,
extended hydrogen-bonding networks, halogen bonds, organic
salt crystals, systems with extended m-conjugation, and transition
states of many radical reactions, to list a few examples. It is also
responsible for the notorious band-gap problem. =*>°

While many approaches to reducing the delocalization error
have been proposed, none is a panacea. Typically, one can reduce
the delocalization error through a (frequently range-dependent)
mixing of local, DFA exchange and nonlocal, Hartree-Fock ex-
change. However, the optimal mixing is known to be highly sys-
tem and size dependent.”"*>°*“ Development of a practical and
universally applicable DFA with a minimal delocalization error re-
mains an outstanding challenge and would represent a significant
advance.

(4.1.7) Gould It is likely that any advance on the
delocalization-error front would also help to resolve some of the
issues with strong correlation, given how closely linked the two
problems are. DFAs from Gori-Giorgi and Vuckovic that are based
on the SCE limit (see contribution (2.4.5)) offer some innovative
ways of thinking about both problems.

(4.1.8) Gorling A promising line of work in DFT is the
development of correlation functionals based on the adiabatic-
connection fluctuation—dissipation theorem.”’-”® Such correla-
tion functionals are used in conjunction with an exact treatment
of all other parts of the total energy, obtained by simply evaluating
the expression of the Hartree-Fock total energy with Kohn—Sham
orbitals. The simplest of these correlation functionals is based on
the RPA.””~*Y* Already the RPA yields competitive reaction and
transition-state energies but can in addition treat noncovalent in-
teractions.

There a various ways to go beyond the RPA. Highly promising
are o-functionals”**°*%, which are technically closely related to
the RPA but formally rooted in many-body perturbation theory
along the adiabatic connection. Methods using o-functionals are
distinctively more accurate than RPA based or conventional func-
tionals — they reach chemical accuracy for main-group chemistry
and treat noncovalent interactions accurately.

While some methods based on the adiabatic-connection
fluctuation—dissipation theorem are computationally expensive,
this is not at all true for functionals within the RPA or for o-
functionals. These are typically evaluated in a post-SCF way, ide-
ally using orbitals and eigenvalues from hybrid DFT methods. In
this case, the post-SCF calculation of the total energy using the
RPA or the o-functional requires only a fraction of the computa-
tional time of the preceding hybrid calculation and thus can be
easily carried out routinely.

There is much room for further developing correlation func-
tionals based on the adiabatic-connection fluctuation—dissipation
theorem and these functionals open up a new area for DFT -
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the field of highly accurate electronic-structure calculations, so
far dominated by wave-function methods like the hierarchy of
coupled-cluster methods.

(4.1.9) Xu Despite being highly successful for main-group
chemistry, =/ 7% the PT2-based double-hybrid approxima-
tions inherit the intrinsic deficiency of the PT2 correlation model
for nondynamical correlation, which hinders their application to
some of the challenging problems of DFT, such as stretched H,
and other molecules (see contribution (3.4.1)) without symmetry
breaking (see Section 3.6) and transition-metal complexes (see
contributions (3.2.2) and (4.1.11)).

A simple replacement of standard PT2 by more sophisticated
correlation models from wave-function theory does not seem to
lead to a notable improvement in accuracy despite the higher
cost.”'° Some recent efforts to develop efficient models that go
beyond PT2 for double-hybrid approximations have led to some
encouraging schemes for further progress.

(4.1.10) Kaupp and Arbuznikov One generalization of the
concept of hybrid functionals that tries to account for local differ-
ences in the relative importance of exchange and correlation as
well as for the differing spatial demands of different property op-
erators is to use position-dependent Hartree-Fock exchange ad-
mixture in local hybrid functionals (LHs).” ®"/>><" While this
introduces the ambiguities of locally mixing exchange-energy
densities (the “gauge-problem” of LHs~““7°<”) and some (man-
ageable) additional requirements regarding two-electron inte-
grals compared with standard (“global”) hybrids, the advantages
of position-dependent exchange admixtures for various proper-
ties depending on different regions of space have been demon-
strated. V021070

These advantages extend also to TDDFT computations of var-
ious types of excitations, including core, valence, and Rydberg
excitations, with particularly good performances for triplet excita-
tions.“%”<” In general, LHs give extra flexibility to balance min-
imal self-interaction or delocalization errors in some regions of
space with the simulation of left-right correlation in bonds. LHs
can be further extended in various directions by combining with
range separation (e.g., local range separation~~"—>°“ and range-
separated LHs~~>>”°"), by adding dispersion either via correction
terms or via nonlocal van-der-Waals functionals, potentially by
adding nonlocal rung-5 correlation contributions, or by adding
corrections for strong correlation.

(4.1.11) Xu There is an ongoing effort devoted to the de-
velopment of reference data sets that are sufficiently accurate for
benchmarking functional performance.”””»>°° A recent progress
in the community is the emergence of large data sets for the main-
group chemistry — for example, the MGCDB84 set with about
5000 data points maintained by Head-Gordon’s group~’* and the
GMTKNS55 set of Grimme’s group with about 1500 data points
Comprehensive benchmarking of existing DFAs for main-group
chemistry has become a reality, numerically validating the con-
cept of Jacob’s Ladder of Kohn—-Sham DFT by demonstrating that
a higher-rung DFA is, in general, more accurate than a lower-rung
DFA.

For transition-metal systems, the situation is more complex
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and less developed than for main-group systems. Large
transition-metal test sets with accurate reference data are ur-
gently needed. It is not merely important for benchmarking
Kohn-Sham DFAs, but also fundamentally important for under-
standing the limitations of current Kohn—Sham DFAs for strongly-
correlated systems as mentioned in contribution (3.4.1), since
transition-metal systems often have a strong multireference char-
acter.

(4.1.12) Ruzsinszky Density functionals at the meta-GGA
level harbour a great potential that has not been fully exploited.
The excellent performance of the SCAN and r2SCAN functionals
and the deorbitalized meta-GGA versions*“">>"* work very well
for structural and energetic properties. Less is known in practice
about the capability of some meta-GGAs for fundamental band
gaps”+" and excited states. While the TB-mBJ potential
ers accurate band gaps, its accuracy originates from fitting.

The recent TASK~"~ and modified (mTASK) meta-GGA DFAs
are energy functionals developed explicitly for band gaps. Both
DFAs excelled in accuracy for band gaps of some important
but limited test sets of bulk solids and two-dimensional materi-
als. However, more tests should be done in order to reveal the
strengths (and limitations as well) and applicability of these meta-
GGAs. With more information, the TASK and mTASK approxi-
mations can compete with available hybrid functionals such as
the HSEO06 functional in accuracy, at a more favourable computa-
tional cost. Such applications for the fundamental band gap could
initiate the development of exchange—correlation kernels for op-
tical response properties constructed from these meta-GGA func-
tionals. This latter possibility is an obvious advantage of DFAs that
possess functional derivatives. The static exchange-correlation
kernel from a DFA is its second functional derivative with respect
to the density, which needs to exist for this approximation.

deliv-

(4.1.13) Chattaraj Orbital-free DFT with approximate
interacting kinetic-energy functionals should be explored fur-
ther. >

(4.1.14) Fuentealba The question is: Is there any hope to
get a relatively accurate kinetic-energy functional? It must be
highly nonlocal. Machine learning (ML) may help.

(4.1.15) Trickey : Apropos ML and orbital-free DFT, a warn-
ing is in order about good answers for bad reasons. There have
been several instances of machine-learning manuscripts that pur-
ported to provide a kinetic-energy density functional (KEDF) but
the functional dependence on the density p was such that ordi-
nary uniform scaling of T;[p] was violated.

(4.1.16) Carter : Orbital-free DFT simulations that utilize ex-
isting nonlocal KEDFs are already quite accurate for a number of
properties of solid and liquid main-group metals~“/ — see, for ex-
ample, an orbital-free DFT MD study of the dynamics of liquid tin
in ref. using our open-source orbital-free DFT code PROFESS
3.0.”"” These nonlocal KEDFs - see ref. for a software library
— are successful for such nearly-free electron-like systems because
they are directly derived from the physics of the perturbed free-
electron gas (the Lindhard function); for recent analysis, see refs.
and



The real challenge is to develop KEDFs that can describe
molecules and transition metals (similar problems will exist for
f-block elements). The inherent angular momentum dependence
of the electron distributions — captured by orbitals but not by
densities — makes KEDF development for far-from-uniform den-
sities truly a grand challenge. Self-consistent all-electron calcula-
tions, without pseudopotentials/effective core potentials, are also
a huge challenge due to the same issues. We have shown how
difficult this is to accomplish in several papers, where we can
achieve small wins but easily break our models as well; see, for
example, refs. -557, as I believe strongly — as discussed later
in contribution (4.4.4) — in the value of publishing failures to gain
insight into how to advance the field.

(4.1.17) Trickey : We too have been working on orbital-free
DFT with emphasis on one-point KEDFs designed to satisfy con-
straints. One can get surprisingly good forces from those, but
at the cost (so far) of inaccurate (too high) energies.”~“>>” An
oft-ignored requirement on KEDFs is their N-representability; see
Ayers and Liu~"". See the preceding remarks by Carter about non-
local functionals. Also note her remark about local pseudopoten-
tials. It may be that orbital-free DFT is forced into all-electron cal-
culations of a modified projected-augmented wave (PAW) type.
A crucial point for the orbital-free DFT agenda that often goes
undiscussed is to get rid of the orbital dependence in DFAs. This
is the antithesis of much of the activity in the quantum chemistry
community, as much of the discussion in this round table con-
firms. We have made considerable progress on de-orbitalization
of meta-GGA DFAs >*0->41,561 by inclusion of a dimensionless V2p
dependence, though the success of that approach is quite depen-
dent upon the numerical stability of the parent meta-GGA DFA.

(4.1.18) Carter We also did some work on single-point
KEDFs, based on pointwise kinetic energy density and ELF anal-
yses, emphasizing approaches that enable self-consistent calcula-
tions. °°+>°> Most single-point GGA KEDFs are unable to converge
densities self-consistently, with the VT84F KEDF of Trickey et al.
being a notable exception, rendering most of them im-
practical for most applications.

Our single-point KEDFs have no problems converging and yield
properties in good agreement with Kohn—Sham DFT for the usual
materials — simple metals — but again, we can easily break them.
Just study a vacancy or an alloy, both of which by contrast are
handled well by our 1999 nonlocal WGC KEDF. °°*>°°> Our 2015
pointwise analysis of our single-point KEDFs compared to the
WGC KEDF indicates at least some of what is needed to help im-
prove such single-point KEDFs~°® — namely, reproducing of the
inherent multivaluedness of the non-von-Weizsédcker component
of the GGA enhancement factor when plotted against the reduced
density gradient. The WGC KEDF, remarkably, does so, indicat-
ing yet another fundamental reason it is so accurate for simple
metals.

(4.1.19) Carter Regarding N-representability in contribu-
tion (4.1.17): This is more difficult than it seems — we worked on
this for quite some time, without much success; see Chapter 7 of
ref.

(4.1.20) Liu Relevant to KEDFs in orbital-free DFT is the
Pauli energy, which has recently been employed to identify strong
covalent interactions. If approximate KEDFs are utilized for
the same purpose, miserable results are obtained. -/ This quality
appraisal test for approximate KEDFs shows that they are unable
to accurately account for the kinetic energy distribution in the
medium range away from nuclei, where chemical bonding takes
place and the Pauli energy plays a crucial role.

(4.1.21) Teale and Helgaker : Recently, we addressed the is-
sue of attempting to solve the Euler-Lagrange equation of orbital-
free DFT in the all-electron context. Using a second-order
optimization method based on the trust-region image method
(TRIM), we could robustly solve the equation for many systems by
simultaneously optimizing the density and the chemical potential
in the saddle function (p,u) — F[p]+ [(v(r) — u)p(r)dr+uN. An
interesting finding is that more complicated GGA-type function-
als often show an erroneous nonconvex behaviour for the model
Ts[p] (where tilde indicates an approximate quantity). As a result,
many solutions (rather than one solution) to the Euler-Lagrange
problem with a given particle number N are found. Since T[p]
is the noninteracting limit of F[p] and since both functionals are
convex with respect to the density variations, it would be inter-
esting to explore techniques to impose convexity on approximate
Ts[p] and Flp] = Ts[p] + En[p] + Exc[p].

(4.1.22) Trickey This remark from Teale and Helgaker is
interesting because it suggests a different kind of constraint to
impose in the construction of better KEDFs. It also will be impor-
tant to see what the TRIM method does on a modern, constraint-
based (all-electron) generalized gradient approximation such as
our VT84F. By the way, since GGA KEDFs are inherently sin-
gular, a direction of interest to us is nonsingular combinations of
reduced density derivatives.

(4.1.23) Vignale Orbital-free approaches can be valu-
able not only in static DFT but also in time-dependent DFT. I
would like to point out the existence of an orbital-free quantum-
continuum-mechanics (QCM) approach, *°"~
alternative to the time-dependent Kohn-Sham approach in cal-
culating the dynamics of interacting electronic systems. This ap-
proach is based on the observation that the density p(r,7) and
current j(r,z) of the many-body system obey the exact equations
of motion

which offers an

:—V'j(l’,l), (65)

and

L, 21)

5= —p(r,t)Vv(r,t) +.F(r,1), (66)

where m is the electron mass, v(r,?) is the potential and .% (r,t) is
the force density arising from interactions between the particles.
The calculation of the force density from the expectation value of
the corresponding operator is a prohibitively difficult task: how-
ever, to the extent that we trust the basic tenets of time-dependent
density and current DFT, we can assume that .% is a functional of
the basic variables p and j. If an approximate form of this func-
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tional is adopted, then eqn (65) and (66) become a closed set of
partial differential equations, akin to the equations of fluid me-
chanics, which can yield a huge amount of information about the
evolution of the system without invoking the exact wave function.

A particularly simple and appealing approximation to the force
functional was proposed in ref. , for the linear response
regime - that is, when the system is assumed to remain close to
the ground state. The approximate force is then given by

_ SE[u]

F 1) = Su(r,t)’

(67)

where E[u] is the energy (kinetic plus potential) of the state
obtained from the ground-state wave function by applying a
position- and time-dependent translation operator with displace-
ment vector u(r,#). The displacement field is related to the cur-
rent and the density by the relation

3(r.0) = pol) 55, (69

where py(r) is the ground-state density and the functional deriva-
tive is evaluated to first order in u. This approximation was
dubbed the “elastic approximation” in refs. s and reduces
the problem of finding excitation energies to a standard eigen-
value problem with a dynamical matrix that is constructed from
ground-state properties such as the pair correlation function and
the one-particle density matrix. Only a few applications of this
theory have been reported to date — see ref. for a very recent
one.

The elastic approximation is expected to work well for systems
whose dynamics is dominated by collective modes, but not so well
for independent-particle dynamics. There is much room for im-
provement, which makes this an exciting direction of research.
Just to mention one possibility, the elastic approximation assumes
that the force is instantaneously determined by the current: this
leads to infinitely sharp excitation energies. We could go beyond
the elastic approximation by introducing a physically motivated
form of time retardation, which would immediately lead to more
realistic spectra in extended systems.

4.2 What role will DFT play in multiscale and embedding
methods?

(4.2.1) Salahub
tion (2.2.1) situates DFT appropriately for multiscale modelling
applications as providing “almost the right answer for almost
the right reason at almost the right price”. QM/MM or em-
bedding models have a “high-accuracy” method embedded in
a “low-accuracy” method. In situations where DFT accuracy is
good enough and if the speed is adequate, then DFT can be
the high-accuracy method, usually coupled with a molecular-
mechanical force field or various solvation models for the low-
accuracy method. If DFT speed is an issue, then DFT can be used
to calibrate faster semiempirical methods, like DFTB, again com-
bined with an MM force field, for example. DFT can also be the
embedding method as with frozen-density embedding theory, re-
quiring kinetic-energy functionals.

I think Perdew’s comment in contribu-
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(4.2.2) Carter Beyond chemical applications, I want to re-
mind readers of early work done to develop multiscale methods
coupling quantum mechanics to higher-length-scale methods for
studying materials properties, in order to simulate phenomena
that cannot be handled properly by one scale alone - see, for ex-
ample, this brief review from 15 years ago.”’~ While the coupled
quantum-atomistic methods will be familiar to this readership
(very much in the spirit of QM/MM and/or ab initio molecular
dynamics/Monte Carlo), there are examples of coupling quantum
mechanics (typically DFT) to continuum solid-mechanics meth-
ods, with feedback between scales that could offer ideas to build
upon in the chemistry/physics realm going forward.

(4.2.3) Galli : Embedding techniques based on DFT are hav-
ing an increasingly high impact in the study of highly correlated
materials. There are many interesting problems that naturally
lend themselves to a quantum-embedding description — for ex-
ample, spin defects in solids or more generally point defects in
materials, active site of catalysts, molecular adsorbates on sur-
faces, and nanostructures embedded in condensed systems, in-
cluding solvents, to name a few. The great majority of embed-
ding theories used in the literature today have some DFT compo-
nent (e.g., wave-function-method embedding in DFT, DMFT, and
Green’s-function-based embedding). In addition, using embed-
ding theories, one may define second- quantized Hamiltonians
and devise frameworks to carry out quantum-mechanical calcula-
tions for solids on near-term quantum computers — see, for exam-
ple, ref.

(4.2.4) Wesolowski The Hohenberg-Kohn theorems and
Kohn-Sham formulation of DFT are crucial for multiscale and/or
embedding methods that apply multiplicative embedding opera-
tors (embedding potentials). The formal framework of frozen-
density embedding theory (FDET) establishes the exact relations
between the optimal embedded wave function, the embedding
potential, and the Hohenberg-Kohn energy functional, for any
nonnegative real function pg(r) used as the only quantum de-
scriptor for the environment of an embedded system. For em-
bedded wave functions obtained variationally, the FDET energy
functional Ex..[Wa,ps] satisfies the following equality by con-
struction:

min EyOFT[¥a,pp] = ESOCT (W4, pp] = Efis[0R + PB]
Wa—Na

Epx[p] (69)

= min
Vr: p(r)=pp(r)
P (r)—Nap

where p{(r) = <‘I‘X|):fgl 6(rj—r) \‘{—'f‘> Recently, an expression
for the total energy that (similarly to eqn (69)) is consistent with
the Hohenberg-Kohn energy functional, was derived also for
methods in which the correlation energy is obtained as a nonva-
riational correction to variationally obtained wave functions.
For whatever form of the embedded wave function, including the
one introduced by Wesolowski and Warshel~’/, FDET represents
a bottom-up approach to deal with the quantum embedding prob-
lem in multi-level/multi-scale simulations.

The optimal total density is the sum of individual components



pe(r) and pj (r) considered as independent variables in the total
energy expression. Such a choice of independent variables makes
it possible to use the information about the environment of the
embedded species obtained from any physical model capable of
delivering pg(r). Generating pg(r) using a wave-function descrip-
tion of the environment is one of several possible choices. Other
choices include pg(r) obtained from continuum models of the en-
vironment’®, from X-ray diffraction data”’” generated using a
library of molecular electron densities, or from a simplified
treatment of the electronic polarization.”®' A particular version
of FDET, where a noninteracting reference system is used for both
pa(r) and pg(r) and where both densities are subject to optimiza-
tion, is equivalent to Cortona’s formulation of DFT.

(4.2.5) Carter The earliest FDET actually precedes
Wesolowski and Warshel’s 1993 paper; that credit should go to
Cortona, who proposed the first DFT-in-DFT embedding using
KEDFs.~““ As far as I am aware, the first WF-in-DFT embedding
utilizing this idea of an embedding potential containing a KEDF
potential, as in FDET, was introduced by my group in 1998 in
ref. , where we carried out, for example, MP4-in-DFT cal-
culations for CO adsorbed on Cu(111). A follow-up, more
detailed paper discussing our KEDF-based embedded correlated
wave-function (ECW) theory also provides in the introduction im-
portant context of earlier embedded WF theories, for those inter-
ested in the history of the field. " A 2008 review article sum-
marizes the state of embedding (and other) electronic-structure
methods for solids at that time. "~ As Wesolowski points out in
contribution (4.2.4), the FDET formalism subsequently was gen-
eralized by Wesolowski and coworkers to encompass methods be-
yond DFT, including a correlated wave-function treatment of sub-
systems.

However, for all the reasons summarized above, when dis-
cussing orbital-free DFT, the KEDF potentials introduce errors one
would like to avoid, since we do not yet have KEDFs that reli-
ably work across the periodic table. Because of this, more than
10 years ago we proposed density-functional embedding theory
(DFET), in which one eschews use of KEDF potentials and
instead uses OEP theory to solve for an exact (within a given
DFA) embedding potential that describes the interaction between
the embedded region and its environment. (Note that DFET is
fully generalizable to more than two subsystems but, since we
are mostly interested in fairly localized phenomena, typically two
subsystems of a cluster of atoms embedded in a periodic slab
background is sufficient.) This embedding potential thus solved
for is then “frozen”, with no approximation other than the choice
of exchange-correlation functional used to perform the OEP cal-
culation. Since exchange—correlation functionals in use today are
much more accurate and transferable across the periodic table
than KEDFs, the embedding potential thus derived is much more
accurate as well. This frozen embedding potential then is added
as a one-electron operator to the cluster Hamiltonian. Thereafter,
one can exploit readily any quantum-chemistry method for con-
ducting the ECW calculations.

See ref. for a brief review and ref.
review of DFET

for a more in-depth
and its cousin, potential-functional embed-

ding theory (PFET). The latter can deliver self-consistent em-
bedding potentials for hybrid ECW/DFT systems, >~ "~ albeit at
considerable cost. Frankly, we've yet to find cases in which such
self-consistency was terribly important, although I imagine such
cases will emerge. If one is careful to include sufficient numbers
of atoms in the embedded region such that the embedding poten-
tial does not overlap the phenomenon of interest but instead is
essentially a physical boundary condition, then the frozen exact
embedding potential we derive from DFET works very well. Thus
we have continued to use DFET/ECW theory rather than PFET —
with considerable success — to study problems where conventional
DFAs fail, such as for phenomena involving electron transfer

and excited states involved in electrochemistry and photochem-

istry on metals; for a recent review on the latter, see ref. . You
are welcome to utilize our codes that compute embedding poten-
tials and the AO-integrals in a variety of formats (see ref. ) to

try these calculations for yourself. There you can also find codes
for a generalization of DFET to nonlocal embedding potentials
that can also describe covalently bonded systems, in what we re-
fer to as density-matrix-functional embedding theory (DMFET),
where the same idea of using OEP is applied to density matrices
rather than densities. ">

Recent benchmarks that we have conducted comparing elec-
trochemical carbon dioxide reduction modelled by a conven-
tional DFA versus DFET/ECW theory reveals critical insights for
modellers: for qualitative conclusions regarding reactions that
do not involve electron transfer, the DFA is acceptable. By
contrast, for any step involving electron transfer, specifically
proton-coupled electron transfer (which we find to be the most
favourable pathway), the DFA fails on multiple fronts (specifically
it yields results inconsistent with experiments) due to too facile
electron transfer (as expected from self-interaction error and the
lack of a derivative discontinuity) whereas DFET/ECW predic-
tions agree with experiments and produces qualitatively different
products than the DFA®"Y — a cautionary tale for DFT modellers
of electrochemistry.

Finally we recently extended DFET/ECW theory to
ionic/covalent materials; nearly all our previous work was
done on metals. Before solving for the embedding potential
with OEP theory, we cap the dangling bonds that were created
at fragment edges by initial covalent bond cleavage, while parti-
tioning atoms into subsystems. The capping eliminates potential
spin-polarization artefacts that unpaired electrons at fragment
edges would produce. The DFET theory is modified to account for
the density of the capping atoms while solving for the embedding
potential. °”* An interesting sustainable energy application using
this new theory examined metal-to-ligand charge-transfer states
in a Ru-bpy dye attached to a titania cluster, as a model for such
excitations in a dye-sensitized solar cell. The ECW calculations
were conducted at the embedded CASPT2 level, predicting both
lifetimes of singlet excited states and the positioning of triplet
excited states, in order to consider the competition between
fluorescent and phosphorescent decay.

(4.2.6) Wesolowski Owing to the consistency with the

Hohenberg-Kohn energy functional, the formal framework of
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FDET provides a convenient tool for identifying the approxi-
mations/assumptions in any method that uses a multiplicative
embedding operator. Multiplicative embedding operators are
used commonly in QM/MM approaches, where they represent
the classical electrostatic interactions, but also in various quan-
tum embedding methods including those reviewed in contribu-
tion (4.2.5). A direct comparison of the expressions for the energy
and the embedded potential of these methods with their FDET
counterparts for each method discussed in contribution (4.2.5) is
straightforward. For most of the methods, the approximations are
easy to identify.

Concerning the potential-functional embedding theory (PDFT),
FDET expressions for the total energy and the embedding poten-
tial admit also the embedded wave-function and the environment
density obtained from PDFT. In such a case, the total energies
and embedding potentials of PFET and FDET are expected to be
the same, in the absence of additional assumptions and approx-
imations. In their exact form, both approaches target the same
solutions. The identity of the corresponding quantities, one given
as an explicit functional of the environment density (FDET) and
one not (self-consistent PFET), might lead to a better understand-
ing of the relevant density functionals.

Concerning Cortona’s formulation of DFT applied originally to
atoms in solids, it is worthwhile to recall an intriguing obser-
vation regarding LDA made when it was used for intermolecu-
lar complexes in our exploratory works."”"~°"> For such com-
plexes, LDA is known to be inadequate for approximating the
exchange—correlation energy. However, when applied simultane-
ously for both the exchange—correlation and nonadditive kinetic-
energy functionals, LDA yields surprisingly good interaction en-
ergies. The reasons for this apparent compensation of errors re-
mains an open question.

(4.2.7) Piecuch I have no doubt that DFT will continue to
play a major role in the development of multiscale and embed-
ding methods. I have been impressed by the ability of the FDET
approach of Wesotowski and Warshel”// to compete with the con-
siderably more expensive high-level equation-of-motion coupled-
cluster calculations with singles, doubles, and noniterative com-
pletely renormalized triples (6-CR-EOMCC(2,3)) in accurately re-
producing the experimentally observed shifts of excitation ener-
gies due to hydrogen bonding.
While this question may not belong to this section, and it may
very well be that it is even ill-defined, our results obtained in ref.
, especially the failure of the supermolecular TDDFT approach
to produce accurate results for the same spectral shifts, made me
wonder if practical implementations of TDDFT, which invoke a
variety of approximations, satisfy the property of size intensivity
of excitation energies (satisfied by properly developed methods
based on equation-of-motion coupled-cluster theory). One might
say that FDET and other embedding techniques are size inten-
sive by design, which is yet another argument in their favour in
applications involving excitation spectra in condensed phases.
We recently used the ab initio embedding scheme called
the effective-fragment-potential approach®’’ combined with the
aforementioned §-CR-EOMCC(2,3) calculations, the properly cal-
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ibrated DFT and TDDFT methods to optimize geometries, and
the DFT continuum solvation model based on the solute-electron-
density approach®"® to accurately model photochemistry of the
strongest known super photobase abbreviated as FRO-SB in vari-
ous alcohol solutions. °”” This would not be possible without mix-
ing DFT and TDDFT with embedding and ab initio approaches.

(4.2.8) Fromager : An alternative approach to quantum em-
bedding initiated with the seminal work of Knizia and Chan

on density-matrix embedding theory (DMET) has been inten-
sively developed in the last few years in both condensed-
matter physics and quantum chemistry®'™ At first
sight, DMET looks more like a wave-function-based method that
has nothing to do with DFT. Nevertheless, connections can be
made when the convergence criteria involve diagonal elements
of the (one-electron reduced) density matrix only. °*+>>°*" In
this context, the localized “impurity” orbital occupations p; =
Yo—t, L(a;am) play the role of the density and the correlation
embedding potential, °*“ which is used in the full-size system, is a
collection of one-electron (“on-site” in lattice models“*~) energies
vi. The latter are adjusted so that the corresponding embedded
impurity orbitals have the same occupation as in the full-size sys-
tem. Referring to a noninteracting Kohn-Sham (full-size) system
in this context is appealing because it is a way to “exactify” the
embedding procedure.

In regular DMET, the bath orbitals (which exchange electrons
with the impurity orbitals) are constructed from the Schmidt de-
composition of the approximate mean-field wave function (which
is computed for the full system). The resulting reduced-in-size
“impurity+bath” cluster is then treated in wave-function theory
as a closed system.

Sekaran et al. have recently shown that this procedure is equiv-
alent to a (much simpler) density matrix-functional Householder
transformation when the density matrix is idempotent.”*~ They
have also shown that, when the transformation is applied to a
correlated density matrix, the cluster becomes an open subsys-
tem. Therefore, if the full system is described at the noninter-
acting Kohn-Sham level (which is still exact density-wise), then
the usual separation of the cluster from its environment is per-
fectly justified. The correlation potential then learns from the
cluster (in which interactions are reintroduced, after applying the
Householder transformation) through the density constraint.

Thus, we obtain a new type of density-functional approxima-
tion (with an implicit dependence on the density) where we can
afford an accurate description of strong electron correlation. Ob-
viously, in general, the cluster’s environment (which is usually
neglected) contributes to the total correlation energy. A formally
exact density-functional embedding theory would in principle be
obtained by deriving, in this context, a multi-reference version of
Gorling-Levy perturbation theory. '~ /%%

(4.2.9) Grimme While Kohn-Sham-DFT calculations with
accurate DFAs in combination with good one-particle basis sets
are feasible for molecules with a few hundreds of atoms, they
are still computationally too demanding for many purposes — for
example in large scale screening applications, for the combinato-
rial problem of conformational sampling of flexible molecules, or



the computation of vibrational Gibbs free energies of large sys-
tems. While the initial steps in typical multilevel approaches can
be conducted routinely at a semiempirical or force-field level,

at some point in the applied filtering procedures, higher accuracy
is required - in particular, for relative (chemical) energies.

This motivated the development of composite Kohn-Sham-DFT
methods — for example, from the 3c-family B97-3c or r2SCAN-
3c¢Pte at the (meta)GGA level. The sought-after compromise
between computational effort and accuracy is achieved here by
applying tailored, medium-sized atom-centred AO basis sets on
top of standard or slightly modified DFAs and adding appropriate
atom pairwise potentials to account for dispersion and basis-set
incompleteness. The recently proposed r>?SCAN-3c method out-
performs some hybrid-DFT/QZ approaches for reaction and con-
formational energies as well as for noncovalent interactions at a
speed-up of two to three orders of magnitude.

(4.2.10) Koster : For QM/MM MD applications, Kohn-Sham
DFT with density fitting or auxiliary DFT (ADFT) are very promis-
ing QM methods. In combination with DFT-optimized ba-
sis sets and automatically generated auxiliary functions, ADFT
Born-Oppenheimer MD simulations on the nanosecond timescale
are possible. These calculations permit the simulation of finite-
system melting, to determine the corresponding melting temper-
atures and latent heats. "~ The extension of these calculations to
QM/MM models will allow the simulation of finite-system phase
transitions in MM environments within the NVT and NPT ensem-
bles.

(4.2.11) Gao : A general approach that goes beyond QM/MM
are the fragment-based methods. °~“ In 2013, we edited a special
issue of Accounts of Chemical Research on this topic.
Fragment-based methods such as the explicit polarization (X-
Pol) model can be designed as general QM/QM embedding ap-
proaches in which each fragment can be individually repre-
sented by any electronic-structure method, with the inclusion of
the instantaneous environmental effects through Hartree, Pauli
exchange, and dispersion potentials. Importantly, X-Pol and
other fragment-based methods provide a framework for the de-
velopment of next-generation quantum-mechanics force fields
(QMFFs) for condensed-phase and biomolecular simulations.
In a QMFF, QM effects such as polarization, charge transfer, and
the change of the potential-energy surface itself due to dynamical
fluctuations as well as chemical reactions are naturally included.
These effects would be very difficult, if not impossible, to describe
using the current MM force fields.

4.3 In what areas of application are improvements needed?
(4.3.1) Helgaker, Teale, and Laestadius Current-DFT, in
which the density functional depends on both the charge density
p and the paramagnetic component of the current density j,, was
introduced in 1987 by Vignale and Rasolt.
assumed a Hohenberg-Kohn-type theorem, but it was later rec-
ognized that no such theorem had been rigorously established.

Moreover, the conclusion in ref. 34 was that the pair (p, jp) cannot
determine the scalar and vector potentials v and A, respectively,
since a wave function can be the ground state of infinitely many

The initial works

systems when the flexibility of a vector potential is added. This
observation rules out a Hohenberg-Kohn theorem for the param-
agnetic current density. Regarding the total (as opposed to para-
magnetic) current, no Hohenberg-Kohn-type theorem has so far
been established but it is not precluded either since no counterex-
amples have been found.

Nevertheless, the relationship between the domains of E(v,A)
and F(p,jp) is sufficient to establish the Vignale-Rasolt formu-
lation as a rigorous extension of DFT to systems in an external
magnetic field. To obtain a convex formulation, however, the
change of variables u = v+ |A|?/2 is needed, imposing a formula-
tion of the theory where the potential space can absorb the norm
squared of the vector potential. Such a formulation of CDFT
inherits the mathematical structure of standard DFT, only lacking
the uniqueness provided by a Hohenberg—Kohn result.

The lack of a Hohenberg—Kohn theorem for current-DFT has led
to confusion in the literature and some (erroneous) claims ques-
tioning the validity of the Vignale-Rasolt formulation — see refs.

and for a discussion of these points. Aside from these
controversies, questions regarding the mathematical properties of
F(p,jp) remained unclear, particularly regarding whether a for-
mulation analogous to Lieb’s treatment of DFT could be estab-
lished for current-DFT.

Such a Legendre-Fenchel formulation of current-DFT was de-
veloped in ref. - but the equivalence of the Vignale-
Rasolt constrained-search functional and the Lieb-type functional
was only very recently established with the proof of the lower
semicontinuity and expectation-valued nature of F(p,jp)."”~ The
expectation-valuedness is important for the adiabatic connec-
tion since it allows the energy to be partitioned (into exchange
and correlation parts) in terms of the minimizing density ma-
trix (or wave function) that satisfies the density constraint. The
Kohn-Sham formulation of current-DFT was introduced already
in 1987°°%°°° and recently several practical implementations of
this approach for general molecular systems using London atomic
orbitals for gauge-origin independence have appeared.

As current-DFT becomes a more widely applicable and practi-
cal tool for molecular simulations, several open questions remain
both from a theoretical and a numerical point of view:

Representability: For current-DFT, representability issues may
be more acute.””’
proaches play a role in this context?

To what extent may ensemble ap-

Current-dependent functionals: Approximate current-dependent
exchange—correlation functionals Exc(p,jp) are still in an
early stage of development although some approaches have
been presented for extending existing DFAs."””~°“° Those
based on meta-GGA functionals have shown some promise
in strong fields.
properties such as NMR shieldings, central to chemistry, are
more modest. What is the optimal gauge-invariant pa-
rameterization of Exc(p,jp)? How may new functionals be
developed and tested?

However, improvements for low-field

Alternative formulations of DFT in a magnetic field: Current-DFT
is not the only way to extend DFT to systems in a magnetic
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field. The B-DFT formulation of Grayce and Harris requires
functionals of the form E(v;B) and F(p;B), which simplifies
numerical implementation and avoids an explicit functional
dependence on jp, at the cost of some degree of universal-
ity. °*>>°%® Could the simplifications outweigh the loss of uni-
versality in practical implementations? Another alternative
would be to consider the coupling of internal magnetic fields
with the external field via a Maxwell-Kohn-Sham approach,
which does feature a Hohenberg—Kohn result for the to-
tal current density.°"/ Such an extension may be important
in strong-field time-dependent light-matter interactions
and leads to a more appealing functional dependence on the
total current density, rather than only on its paramagnetic
component. Finally, we mention linear-vector-potential DFT
(LDFT), a simplified formulation of current-DFT suitable for
uniform magnetic fields.

Given recent strides in better understanding the theoretical
foundations of current-DFT, and the construction of several prac-
tical implementations, addressing these challenges should lead to
further progress and improvements for accuracy of magnetic re-
sponse properties with DFAs.

(4.3.2) Gorling : As pointed out in contribution (4.3.1), the
development of approximate exchange—correlation functionals in
current-DFT is not an easy task and is still in its early stage. It
is, however, possible to the treat the exchange contribution to
these functionals exactly by generalizing the OEP method to spin-
current DFT. ””" By this generalization, exact exchange vector po-
tentials coupling to density currents and exact exchange magnetic
fields coupling to noncollinear spin components arise (in addition
to the usual exchange potential coupling to the electron density)
and can actually be calculated.

(4.3.3) Tellgren : Iagree with contribution (4.3.1) and want
to elaborate that the development of practical current-DFT func-
tionals has only reached a crude stage of development compared
with conventional DFT functionals. Pure current-DFT functionals
should depend only on the density and the paramagnetic vorticity
v=Vxplj,.

At least for molecular systems, pure functionals are not yet
practically useful. Instead, the more pragmatic meta-GGA func-
tionals are presently much better at capturing the response to
magnetic fields. However, recent work has shown that the ki-
netic energy density employed in these meta-GGA functionals
only builds in the correct gauge correction, but not any vortic-
ity dependence.

One way forward is to employ a local tensor, akin to a stress-
energy tensor, that encodes both the vorticity and a gauge-
invariant kinetic energy in a natural way; °~* see also the C-MGGA
form in ref. This tensor furthermore obeys strong N-
representability conditions that enable discrimination of regions
with one, two, three, and four-or-more Kohn-Sham orbitals. The
isoorbital indicators that underlie many standard approximations
discriminate rigorously only between one and two-or-more or-
bitals.
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(4.3.4) Vignale Following up on contributions (4.3.1) and
(4.3.2), I'would say that all generalizations of the original DFT of
Hohenberg, Kohn, and Sham require a firmer mathematical basis.
The absence of a strict Hohenberg—Kohn theorem is a problem not
only for current DFT but also for spin-DFT, and, probably, also for
DFT of superconductors.

Fortunately, there are many indications that the “nonunique-
ness” of the potential is harmless for Kohn—-Sham applications be-
cause the wave function remains unique even when the potential
is not. However, I do feel that all multivariable DFTs have an-
other hidden problem — namely, to what extent can the intensive
variables of the theory be varied arbitrarily and independently
of each other? This problem may be particularly severe when
there are global constraints enforced by symmetry — for example,
the total angular momentum of a rotationally symmetric system.
Or there may be inequalities, whereby the maximum value of a
density (say, the spin density) can never exceed some maximum
value that is controlled by another density (say, the particle den-
sity). Such constraints affect the intensive variables but not their
conjugate fields, which can always be varied independently. This
is one of the main reasons (if not the only one) why the map from
densities to potentials is generally not invertible.

4.4 What extensions are needed to get ground- and excited-
state properties and observables in DFT?

(4.4.1) Vignale and Ullrich Interest in noncollinear spin
magnetism in systems with strong spin-orbit coupling has greatly
increased since the emergence of spintronics and the discovery
of topological materials. The SU(2) formulation of spin DFT for a
noncollinear spin density seems to be nearing a “phase transition”
with the appearance of new DFAs. There exist several interesting
ideas for the construction of noncollinear spin functionals using
gauge-invariant blocks °~~ and orbital functionals: °> they should
be pursued.

(4.4.2) Gidopoulos The expectation value of any observ-
able quantity is a functional of the ground-state density. As far as
I am aware, there is little progress in developing exact or approx-
imate functionals for general observables, except for the total en-
ergy and the density itself. The definition of the density functional
of any observable is known — for example, if Q is the operator for
the observable Q, then the density functional Q[p] is given by

Olp] = (¥p|0|¥p) (70

where ¥, is the minimizing state in the definition of the universal
internal energy density functional

Flp] (P|T+W|W) = (Wp|T+W|¥,). (71)

= min

Y—p
Since we do not have a good approximation to ¥y, the Kohn-
Sham state &;[p] is sometimes employed

0lp] =~ (@s[p]|Q|Ps[p]) (72)

but this approximation is often not accurate enough.
Since the definition of the density functional of a general ob-



servable is known, the development of an approximate or exact
density functional Q[p] means trying to find an exact or approxi-
mate expression that does not depend on the unknown interact-
ing state ¥y, but which depends only on the density and also on
quantities that can be obtained from a Kohn-Sham calculation
(e.g., the Kohn-Sham state, orbitals, and eigenvalues) and which
is more accurate than the obvious approximation in eqn (72). Re-
cently, we managed to write down such a density functional for
the magnetization density in DFT (not spin DFT) for open-shell
systems in the absence of an external magnetic field

(4.4.3) Gould Much recent work on ensemble DFT (see
Section 3.7) and DFAs is focused on excited states. Ensem-
ble DFT has the useful feature that differentiation with respect
to ensemble weights give access to Kohn—-Sham wave functions
(which can be multireference, “”) densities, and energies of ex-
cited states. It has already been shown that ensemble DFAs
can outperform their DFT or TDDFT counterparts in some dif-
ficult cases. " Moreover, ensemble DFT can do so without
breaking any symmetries and thus preserves spectroscopic
features such as degeneracies.

(4.4.4) Maitra and Ullrich : Ensemble DFT is an elegant way
to obtain excitation energies; however, we do not know how to
obtain oscillator strengths from it. A more versatile approach to
the calculation of spectroscopic properties such as optical spectra,
excited-state forces, excited-state dipole moments and transition-
dipole moments is via TDDFT.” ">/~ More than that, TDDFT
gives access to a wealth of properties and observables in the non-
linear and real-time regimes, including high-harmonic generation
or transient absorption, and, in general, electron dynamics on the
attosecond time-scale. TDDFT can also be coupled with ionic dy-
namics, allowing practical calculations of the photochemistry of
complex systems in mixed quantum-classical approaches. Need-
less to say, all these applications, while based on a theory that is
in principle exact, involve approximations.

TDDFT has been overwhelmingly successful for a wide range
of excited-state properties, but there are also spectacular failures.
In the linear response regime, for example, it is now well un-
derstood that caution should exercised when standard DFAs are
used to study states of double-excitation or charge-transfer char-
acter, and that these standard DFAs fail to yield excitonic spectra
of semiconductors. However, such failures provide us with an op-
portunity to learn and improve our DFAs — much work remains
to be done, but progress has been steady. It is also worth noting
that the effort is well spent, given that TDDFT computations have
a far smaller carbon footprint than alternative methods.

(4.4.5) Romaniello Jacob and collaborators have recently
proposed a scheme to extract the many-body spectral function
of an interacting many-electron system from an equilibrium DFT
calculation. °°*>°°* This has been achieved by using an extension
of DFT, called steady-state DFT (i-DFT).

(4.4.6) Jensen Excitation energies and transition proper-
ties may also be calculated using the long-range MCSCF - short-
range DFT (MC-srDFT) method, which offers improved accuracy
compared to TDDFT for ground states characterized by signifi-

cant long-range nondynamical correlation and excited states with
double-excitation character.””*"”~ The possibility of performing
a state-specific optimization of an excited state with the MC-
stDFT method offers another direct path to modelling excited
states of any spin symmetry and any spatial symmetry; see contri-
bution (4.1.3). Improvements to currently available short-range
DFAs are needed to model the spin densities accurately, most
likely by using the on-top pair density.

(4.4.7) Romaniello An elegant but not often used (I do
not know why) method for calculating the linear response of fi-
nite and extended systems is TD-current-DFT (TDCDFT). °°>~

In TDCDFT, the basic quantity is the total current-density of the
system, rather than the density as in TDDFT, that has a one-to-
one mapping with an external vector potential. There are three
main reasons for using TDCDFT:

1. for extended systems, it allows a well-defined expression for
the macroscopic polarization of the system in terms of the
induced current-density in the bulk; °“>

2. it allows one to treat the response to transverse fields; *°“

3. instead of looking for frequency-dependent approximations
to the exchange—correlation kernel that are nonlocal func-
tionals of the density (as done in TDDFT), one can look for
consistent frequency-dependent approximations that are lo-
cal functionals of the current-density, such as the Vignale—
Kohn (VK) functional.

Recently, Berger proposed a functional in the context of TDCDFT
that can describe excitons in 3D materials.”’* Linear response of
2D materials by contrast remains a challenge in TD(C)DFT.

(4.4.8) Savin : Asrecalled in contribution (2.2.24), the uni-
versal functional, F[p] does not depend only on the density, but
also on the Hamiltonian used. Bauer added operators to the
Hamiltonian and, by exploiting the Hellmann-Feynman theorem,
showed that properties can be obtained in this manner (even if
not only the density is needed to get the expectation value of
the operator). Bauer’s approach requires density functionals
that are specific for each property and new, property-specific DFAs
must therefore be generated - see, for example, ref.

This approach of DFT to molecular properties is not only inter-
esting from a fundamental point of view; it can also show how far
the present ideas for generating approximations can be taken? —
or help us understand why our current ideas work for the energy
but not for a given property.

(4.4.9) De Proft and Geerlings In conceptual DFT, the
extension to excited states should certainly also be considered
for use in, for example, photochemical reactions; see also Sec-
tion 4.8. Its status and prospects have recently been commented
on in ref.

4.5 How can DFT further benefit from rigorous develop-
ments?

(4.5.1) Chattaraj As systematic improvement is not possi-

ble in DFT (unlike in ab initio wave-function theory), research
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on fundamental aspects should continue. To achieve the goal of
chemical accuracy in DFT, different approaches should be pur-
sued side-by-side/in parallel, including the development of im-
proved parameter-free functionals.

(4.5.2) Lewin Rigorous mathematical results have played
an important role in DFT. The most celebrated work is that of
Elliott Lieb from 1983, who introduced the correct functional
analysis setting for the ground-state problem.’ Several exact con-
straints have also been found, which could then be used in the
construction of nonempirical DFAs, as mentioned by Perdew in
contribution (3.1.2). This includes, for instance, the Lieb—Oxford
bound, °/> which provides an exact lower bound on the smallest
possible Coulomb energy of N electrons, expressed only in terms
of their density p. A recent review of known rigorous results for
DFT can be found in ref.

Several mathematical problems are still open and it would be
nice to discuss here which of those could have an impact in DFT.
I will only mention three problems which, in my opinion, deserve
attention in the future.

The first is to better understand the Kohn-Sham potential. We
have no rigorous proof that vs, which appears in eqn (8) and (32),
for example, exists and, to my knowledge, no efficient numerical
tool to construct an approximate one exists. Let me try to be a bit
more precise.

Recall that a density p is (ensemble) v-representable when it
arises from an N-electron (mixed) ground state with an external
potential v. Let me emphasize that there are two notions of v-
representability, for the interacting and noninteracting cases, re-
spectively. The question is whether a v-representable density (for
the interacting system) is v-representable by the noninteracting
system. In other words, we need to study the set of densities
that are simultaneously v-representable for the two cases. At the
moment, nothing is known rigorously about this set, to my knowl-
edge — in principle, it could even be empty! Of course, to prop-
erly discuss this problem, it is important to first fix a class of ad-
missible potentials v that we wish to consider in DFT. This class
should be large in order to increase the probability of being v-
representable, but probably not too crazy either. Lieb considered
all potentials belonging to L3/2(R3) + L™ (RR?) because the energy
is always bounded-below for such potentials.” However, many
physical cases do not appear in this class, such as the harmonic
potential for instance. This is definitely a too small class.

One can understand v-representability in several other equiva-
lent ways, all described by Lieb.’ My preference goes towards the
Legendre-Frenchel point of view, which requires the use of mixed
states and ensemble v-representability and was already discussed
above in contributions (2.1.14) and (3.7.2). We know that the
corresponding lowest total energy and the lowest kinetic energy
for a given density p satisfy the duality principles

Fol=sw{Enbl - [ ptpwar}. o)

nlp] =sup {E4111 - [ p(epar}. (74)
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where Ey[v] and EJ[v] are the interacting and noninteracting
ground-state energies in an external potential v, respectively.
Again, one should specify the set of potentials v in the two
suprema, but any reasonable class will yield the same final value.
The question is whether these suprema are attained (our desired
potential vs is a maximizer for T;[p]) and then the chances that
this happens are much higher if the allowed class of potentials
v is larger. Let me recall in passing that the existence of a dual
potential is well understood in classical DFT. At zero tempera-
ture this follows from methods in multimarginal optimal trans-
portation.°’" At positive temperature, this result was proved by
Chayes, Chayes, and Lieb. "’/ The quantum kinetic energy is thus
the main obstacle here. Discretized quantum systems are studied
in refs. 32,678,

Another point of view has been mentioned above in contribu-
tions (2.2.2) and (3.7.2) and involves a kind of differentiability of
F[p] and T;[p]. Any potential solving a maximum principle such
as in eqn (74) is, formally at least, a derivative of the correspond-
ing functional.’ To be able to treat the difference F[p] — Ts[p], we
thus need both to be differentiable at the same time. Although
the notion of differentiability looks natural and intuitive, it is in
fact not so easy. The reason is that the natural domain of F[p] is
the set of densities with a finite von Weizicker energy’, which is
not such a nice set.

Lieb proved that the two sets of v-representable densities are
dense in the space L' (R?)NL3(R3).” The problem is that a dense
set can, in principle, be extremely small — think of the rational
numbers, which are dense but form a set of zero measure in the
set of real numbers. Even worse, we need to look at the inter-
section of these two dense sets, which can be arbitrarily small or
even empty. Very little is thus known mathematically about this
problem.

Let me now quickly mention the other two problems I had in
mind. The second one is to improve existing exact constraints.
For instance, I already mentioned the Lieb—Oxford bound, of
which the best constant is believed to be that of the uniform elec-
tron gas. "’ But at present, we have no idea on how to
justify this rigorously.

Finally, I would like to mention that, unlike ground-state DFT,
TDDFT is very poorly understood mathematically.

(4.5.3) Kvaal Moreau-Yosida regularized Kohn—-Sham the-
ory does not suffer from the nondifferentiability of F[p] — Ts[p]
and the problem of nonrepresentability therefore does not arise;
see remarks in contribution (4.5.6). Also, Lammert has made an
interesting attempt to coarse-grain exact DFT, where this issue is
to a large extent resolved.

(4.5.4) Laestadius : An important work addressing differen-
tiability of the density functional F[p] is Lammert’s work in ref.

. Lammert provides a counterexample of a convex and lower
semicontinuous function with a (unique) subdifferential that is
not differentiable. Thus, this illustrates that convexity and lower
semicontinuity are not enough to establish “F’ = —”, even for
variations that stay within the domain of the density functional
F[p] — that is, Lieb’s set of N-representable densities .#y.



(4.5.5) Helgaker : With regard to contribution (4.5.4), sub-
differentiability of F on a dense subset of the N-representable
densities .#y (namely, on the set of v-representable densities .27y)
follows from the convexity and lower semicontinuity of the uni-
versal density functional F. It is a general result of convex analy-
sis that a proper lower semicontinuous convex function (here F)
is subdifferentiable on a dense subset (here 27y) of its effective
domain (here .#y) and everywhere in the interior of its effective
domain (here the empty set since .#y has no interior).

(4.5.6) Helgaker, Teale, Laestadius, and Kvaal : As pointed
out in contribution (4.5.2), a central problem of DFT is the rep-
resentability problem of Kohn-Sham theory. In short, what one
would like to have is a simultaneous solution to the interacting
and noninteracting Euler-Lagrange equations:

SFlp] _ 8Ts[p] _
dp(r) dp(r)

where p is simultaneously the ground-state density of the inter-
acting system in the external potential v and the ground-state
density of the noninteracting system in the external potential vs.
The problem is that F nor T; are everywhere discontinuous and
therefore not differentiable °°” — more precisely, they are subdif-
ferentiable but only on a (dense) subset of their domains’ and
there is no reason to believe that these subsets are the same for
the interacting and noninteracting problems. In short, we cannot
hope to find a Kohn—Sham noninteracting system with exactly the
same ground-state density as the interacting system.

However, imagine that we change the ground-state energy
in the manner E,[v] = E[v] — 1y||v||> where y > 0 can be arbi-
trarily small. The density functional then becomes F,[p] =
ming (F[p] + %,Hﬁ —p||?) and likewise for (73)y. Importantly, F,
and (Ts)y are both everywhere differentiable, meaning that the in-
teracting and noninteracting Euler-Lagrange equations can now
be solved simultaneously. ”“:°°“ In convex analysis, such a proce-
dure is known as the Moreau—Yosida regularization. °“> Once the
regularized energy Ey[v] has been calculated, it is trivial to obtain
E[v] and nothing is lost — that is, the Moreau-Yosida regulariza-
tion of F has the curious property of being lossless with respect to
the calculation of the ground-state energy E[v]. The only caveat
is that ||v|| must be finite, which is only satisfied for Coulomb po-
tentials by constraining the system to an arbitrarily large box.

In the regularized setting, every density is both interacting and
noninteracting representable — a rigorous exact Kohn-Sham the-
ory is thereby established. However, such a density need not be a
“physical” density.

The Moreau-Yosida regularization of DFT may also be of practi-
cal interest as a tool for guaranteeing and improving convergence
of the Kohn-Sham iterations. "

—v(r), —vs(r) (75)

(4.5.7) Laestadius Representability of a given density p
can also be understood as the Lieb functional F[p] = sup,{E[v] —
Jp(r)v(r)dr} (see contribution (2.1.14)) attaining its maximum,
such that p is representable by its maximizing potential. In anal-
ogy with the above discussion of the Moreau—Yosida procedure,
a maximizing potential can here be guaranteed by a regulariza-
tion of of E[v] — [ p(r)v(r)dr using fixed weight functions o; € L.

Such a scheme only makes use of partial information of the den-
sity constraint, i.e., [po; = [pra; , for all i (for more details see
Ref. ).

(4.5.8) Gori-Giorgi The /i — 0 limit of the Levy-Lieb func-
tional (see contribution (2.4.5)) establishes a link °°“°°” between
DFT and the mathematical field of optimal transport; see, for ex-
ample, ref. . When 7% — 0, the Levy-Lieb functional tends to
the SCE functional *~*

W3Flp] = inf (¥|W|¥), (76)
—p

which defines an optimal-transport multimarginal problem with
the repulsive Coulomb interaction as cost function. Tech-
niques from optimal transport made it possible, for example, to
prove®”" that the exact SCE functional for one-dimensional sys-
tems is provided by the solution first guessed by Seidl *°° on phys-
ical grounds. Another application is on the Lieb—Oxford bound
(see contribution (4.5.2)), where optimal-transport methods can
be used to improve bounds on the optimal constant.

Some open questions that remain on the rigorous side concern
the next leading term in the /& — 0 expansion, whose form was
conjectured in ref. . A first step in this direction has been
recently taken.“”" I do have the feeling that there is still a lot to
learn from the connection with optimal transport and by further
analysing this limit, which provides complementary information
with respect to perturbation theory. Although it is a semiclassical
limit, it may perhaps be corrected for exchange (spin) effects,
and could be combined with Kohn—Sham DFT. ">

(4.5.9) Lewin I fully agree with contribution (4.5.8). Re-
lated to the above discussion in contribution (4.5.2), one inter-
esting question could be to understand what can be said about
the Kohn-Sham potential vs in the limit # — 0. As I have men-
tioned, all densities are v-representable in the SCE limit eqn (76).
So, more v-representable densities seem to exist when 7 gets suf-
ficiently small. ..

(4.5.10) Gori-Giorgi : A first (brute-force) attempt to get in-
sight into this intriguing question has been made by Grossi et
al.,””’ who explicitly computed the functional derivative of the
next leading term*“* in the # — 0 expansion, in the special one-
dimensional case (for which we now know °”“ that the functional
proposed in is exact). However, Kohn—-Sham self-consistent
calculations that include the functional derivative of this next
leading term make the density poorer relative to the bare
Kohn-Sham SCE result - even for very low-density systems, where
inclusion of this term improves the energy. This suggests that this
is not the right route to take to answer the question on vg, or at
least that we need to better understand the expansion.

(4.5.11) Arbuznikov and Kaupp
in contribution (4.5.2), we would like to make a point about the
difference between global and local exact constraints. Most of
the extremely important and useful known and proven exact con-
straints pertain to global (integral) energy functionals. Yet most
DFAs are designed with local (exchange and/or correlation) en-
ergy densities in mind. Apart from the issue of the nonunique-

: Regarding the discussion
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ness of any energy density (only defined up to a real-space func-
tion whose integral vanishes), constructions often apply known
“global” constraints locally, even though the local versions of the
constraints are usually ill-defined or unknown.

A point in case is the Lieb-Oxford bound."’
gued that any reasonable exchange functional globally satisfies
the Lieb-Oxford bound for any real chemical or physical system,
irrespective of whether the underlying energy density obeys or
violates it locally.°”~ In other words, a local Lieb-Oxford bound
seems to be a sufficient but not a necessary constraint in the de-
sign of functionals — the exact-exchange energy density, in partic-
ular, violates the local Lieb-Oxford bound in the tail of any finite
system. A local enforcement of the Lieb-Oxford bound gives en-
hancement factors of some widely used semilocal exchange func-
tionals (e.g., PBE and SCAN functionals) that are some-
what too low to describe finite systems adequately (in combina-
tion with an appropriate correlation functional), thus hampering
thermochemical accuracy.

(4.5.12) Vignale Concerning the mathematical foundation
of TDDFT, it seems to me that much progress has been made re-
cently by Ruggenthaler and coworkers in establishing the exis-
tence and uniqueness of the density-potential map; see ref. 95 for
a review. This goes significantly beyond the original Runge-Gross
theorem. There are more radical forms of TDDFT (e.g., time-
dependent DFT for the calculation of thermal currents, reviewed
in ref. ) that still lack a rigorous mathematical foundation.

(4.5.13) Ullrich To follow up on contribution (4.5.12):
the requirements for proving a rigorous mathematical structure
of TDDFT are vastly different from those of ground-state DFT.
In recent years, a consensus seems to have developed that the
most promising avenue is to find a fixed-point proof,”~ via the
force-balance equation. The latter is an equation of motion for
the density, involving its second time derivative p(r,t), external
forces, and internal kinetic and many-body stresses. The fixed-
point technique is mathematically very difficult and the TDDFT
proofs based on it are still not fully rigorous.

It has recently been shown that TDDFT can be reformulated
using p(r,?) instead of p(r,7) as the basic variable, which has the
advantage that the causal structure of the theory becomes more
transparent. ’”* This result may provide a new way forward in the
ongoing attempts to solidify the foundations of TDDFT.

Becke ar-

4.6 How can DFT further benefit from numerical analysis

and algorithmic developments?
(4.6.1) Johnson In finite-molecule calculations, use of hy-
brid functionals is routine. However, for plane-wave DFT cal-
culations on periodic solids, use of hybrid functionals remains
prohibitively expensive for most systems. A more efficient al-
gorithm for evaluation of the exact exchange energy in plane-
wave codes would benefit the application of hybrid DFAs to solid-
state systems. Algorithms for efficient evaluation of the exact
exchange-energy density in both finite-molecule and periodic-
boundary codes would also aid the implementation of local hy-
brid functionals~*’ and of Becke’s real-space correlation function-
als.
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(4.6.2) Kronik The overwhelming majority of DFT-based
calculations are performed using either atom-centred basis sets
or plane waves. While calculations based on a real-space grids
have been available for a long time, '”=/"~ their importance can
be expected to increase — first and foremost, since this approach
lends itself easily to massive parallelization across a large number
of processors.

(4.6.3) Cances
element and wavelet

I agree. This also applies to finite-
discretization methods.

(4.6.4) Cances Efficient SCF algorithms are available for
a variety of systems of practical interest.’"”’"/ However, SCF
convergence remains problematic in some cases — for instance,
for large, heterogeneous, systems such as metal-insulator inter-
faces. Progress has been made recently,’"“ based on a better un-
derstanding of the mathematical properties of the Kohn-Sham
model. Some particularly difficult systems are still resisting, mo-
tivating further work in this direction.

(4.6.5) Canceés : Another numerical issue encountered in ma-
terials science, as well as in chemistry in the liquid phase (with
explicit solvent molecules), is the choice of suitable supercells.
The smaller the supercell, the lower the computational cost. On
the other hand, the supercell must be large enough to limit spuri-
ous interactions from the artificial periodic boundary conditions.
Finite-size corrections for point defects in periodic crystals have
been proposed in the physics literature’”” and analysed mathe-
matically. Selecting optimal supercells and associated random
configurations for disordered systems (alloys, glassy materials,
and liquids) is a notoriously difficult problem.

Let us emphasize that the apparently simple case of a gen-
uine, periodic crystal can be challenging also when the crystal
is a metal. Recall that, for periodic crystals, using a supercell
is mathematically equivalent to sampling the Brillouin zone with
the regular k-point grid /" *; the advantage of the latter approach
is that it is far more efficient from a computational viewpoint.
In most calculations, a relatively coarse k-point grid is used to
further reduce the computational burden (say, 3 x 3 x 3 for insu-
lators and 7 x 7 x 7 for metals). This approach is usually sufficient
for insulators because the integrands are periodic, analytic, and
weakly oscillating over the Brillouin zone for all relevant physical
observables, but far from sufficient’*“ for metals with compli-
cated Fermi surfaces. Smearing techniques at a fictitious pos-
itive temperature (possibly higher than the melting temperature
of the metal) help to some extent,” " but do not fully solve the
problem. It appears that many computational results on metals
reported in the literature cannot be considered as converged with
respect to k-point discretization.

(4.6.6) Galli : To enable first-principles MD with hybrid func-
tionals for thousands of atoms and for time scales on the order of
nanoseconds, algorithmic developments that reduce the scaling of
the solution of the Kohn—-Sham equations are needed. Such devel-
opments are also required for the derivation of deep-MD poten-
tials based on the acquisition of DFT data for many configurations
and under many different thermodynamic conditions

Many groups have worked on the development of &(N) tech-



niques, from the early nineties up to very recently. Nevertheless,
robust ¢'(N) techniques for first-principles MD, where energies
can be evaluated with a controlled error, are not yet available.
Based on the experience acquired in the literature with &(N)
methods implemented using plane waves, wavelets, or other lo-
calized basis sets, it appears that methods with controllable accu-
racy may come from the development of real-space based tech-
niques, which would also require the development of specific
pseudopotentials for periodic DFT calculations.

(4.6.7) Cances : What is the error in the output of DFT codes
relative to the exact value of a chemical or physical quantity of in-
terest (e.g., the dissociation energy of a molecule, the bulk mod-
ulus of a material)? This question is obviously of major impor-
tance and is usually addressed by comparing experimental and
computational results on large databases. However, such statis-
tical analyses do not really answer legitimate questions of most
users, which can be formulated as follows: “What will be the er-
ror for the specific system I am interested in if I use this code,
with these numerical parameters (basis set / energy cutoff, con-
vergence thresholds, etc.)? How should these parameters be cho-
sen to obtain the accuracy I need, at the lowest computational
cost?”

Providing partial answers to these questions is the purpose of
a field of applied mathematics called a posteriori error analysis.
This field has reached its maturity in, for example, finite-element
based computational mechanics, where most academic and com-
mercial codes provide numerical results (e.g., the lift and drag of
an aircraft) complemented by error bars. To understand what can
or cannot be done in this direction for DFT, it is useful to decom-
pose the overall error in several pieces:

1. the model error, coming from replacing the reference very
accurate model (the N-body Schrédinger model or one of
its relativistic counterparts) by a DFT approximation (LDA,
PBE, B3LYP, etc.), possibly with pseudopotentials;

2. the discretization error due to the use of a finite basis set;
3. the algorithmic error due to finite convergence thresholds;

4. the finite-arithmetic error (computations are usually done in
double precision);

5. execution error (negligible for current computers but an is-
sue for future exascale’’>’*° and quantum computers).

It is already possible to estimate the discretization, algorith-
mic, and finite-arithmetic errors for linear Schrédinger equations
discretized in plane-wave basis sets.’'”>’“" The more recently de-
veloped error estimators are

1. guaranteed: mathematical theorems prove that the exact
value indeed lies in the confidence interval;

2. accurate: the actual error is of the same order of magnitude
as the error bar;

3. cheap to compute: evaluating the error bars requires only a
moderate computational extra cost; and

4. systematically improvable: provide detailed information on
how to increase the accuracy at the lowest cost.

Extending these techniques to the nonlinear Schrédinger and
Kohn-Sham equations is work in progress. Such estimators
would allow the computer program to choose adaptively, in a
black-box manner, the best numerical parameters to reach a given
numerical accuracy at the lowest computational cost (error bal-
ancing). Error balancing would be particularly useful for building
large databases for ML, requiring hundreds of millions of single-
point DFT calculations.

Let us finally discuss the model error. For wave-function
methods, it is in principle possible to estimate this component
of the error by a careful mathematical analysis of the residual
HN‘P?\fp — EN‘I’;I\})p , where Hy is the N-electron Hamiltonian, and
WP and E\PP are the computed approximations to the ground-
state wave function and energy; this is a topic of ongoing re-
search. In the DFT setting, a promising approach is the use of
(non-guaranteed) estimates based on a statistical analysis of the
model error - see, for example, ref. -341,344. Whether non-
statistical, guaranteed, accurate, and cheap-to-compute model er-
ror estimators can be constructed using DFT is a completely open
question.

4.7 What role will machine learning play in the future of
DFAs and DFT?

(4.7.1) Scheffler Artificial intelligence (AI) accepts that
there are relationships or correlations that cannot be expressed
in terms of a closed mathematical form. Thus, in principle, Al is
more flexible than the theory of the past. The algorithm outlined
in (2.1.4) “p(r) — ground-state energy (and even everything)”
may be a case where an Al model can capture the relationship
better than a mathematical functional. However, at present, the
flexibility of Al comes together with a lack of interpretability, and
the missing knowledge of the domain of applicability is probably
an even more severe problem for Al models than it is for DFAs.
Al can only predict aspects that were included in the training.
If this is considered sufficient, then Al is a numerically efficient
approach, once the laborious training has been performed with
appropriate care.

(4.7.2) Salahub Recent progress in AI/ML has been so as-
tounding that even the “old guard” to be aware. .. and beware. ..

As far as DFT is concerned, ML can have a great impact from (at
least) three perspectives: 1) improving DFAs, 2) accelerating DFT
calculations, evaluation of potential-energy surfaces and (Born-
Oppenheimer) molecular dynamics or, catastrophically for DFT,
3) obviating the need for DFT if ML-accelerated wave-function
calculations become “infinitely” efficient (of course the advan-
tages of a (Kohn—Sham) orbital picture would remain). I think
the next few years will be very dynamic on all of these fronts, and
others. And we, DFT aficionados, should also be paying attention
to advances in quantum computers. . .

(4.7.3) De Proft and Geerlings ML may be a valuable tool
to inspire researchers in conceptual DFT to look for possible rela-
tionships between reactivity and conceptual-DFT descriptors that
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are not obvious when a limited number of cases are explored “by
hand”. Care should of course be taken that, in the end, the re-
searcher comes to a point where the link proposed by the ML
ansatz provides him/her with a reasonable insight into the prob-
lem.

(4.7.4) Grimme The primary purpose of Kohn—Sham DFT
for AI/ML approaches seems to be the efficient generation of
the required huge amount of reasonably accurate reference data
(mostly energy and forces).

(4.7.5) Chermette, Adamo, and Ciofini Al will be also
involved in the building of exchange—correlation functionals — for
example, by following Perdew’s approach of satisfying 17 theo-
retical constraints; see contribution (3.1.2). A paper in this vein
by Kirkpatrick and Cohen appeared recently.

(4.7.6) Galli I would like to mention DFT-based deep-
potential MD (DeePMD) by Robert Car and Weinan E’s group in
Princeton and machine learning dielectric screening for the
simulation of excited state properties of molecules and materi-
als’~*, which may eventually be used also to derive dielectric-
dependent hybrid DFAs.

(4.7.7) Trickey It is important to scrutinize ML results to
see if they actually match the DFT on which they are supposed
to be founded. We recently found an example in which such
a match does not occur — namely, the liquid-liquid phase tran-
sition of hydrogen (in which H, dissociates to atomic H). A
machine-learned potential (MLP) had been developed by Cheng
et al. /=", primarily by training on small (mostly 108-atom) and
some intermediate-sized (512 atom) AIMD-DFT calculations. The
resulting MLP-AIMD simulations for systems of 1728 atoms has a
qualitatively different continuous transition from the first-order
transition found by all the prior AIMD-DFT simulations (which
were on smaller systems). Supposedly, the MLP-AIMD allowed
bigger systems, hence overcame finite-size effects in the earlier
AIMD-DFT studies. So we redid the brute-force AIMD-DFT cal-
culations not only for 512 atoms but also 1024 and 2048 atoms.
Our results were consistent with the earlier AIMD-DFT ones, a
first-order transition. They do not confirm the MLP-AIMD results.
Something artefactual remains in the MLP such that it is not a
faithful extrapolation of the AIMD-DFT potential. I suspect that
there is much yet to learn about the limitations of ML regard-
ing extrapolation toward the thermodynamic limit, particularly
in the treatment of phase transitions. Scrutiny, if not outright
scepticism, is warranted.

4.8 How should interpretive tools based on DFT evolve?
(4.8.1) Ayers, Chattaraj, Chermette, De Proft, Fuentealba,
Geerlings, Liu, Vela, and Yang In the case of conceptual
DFT, the prospects and concomitant issues were summarized in
the status paper*/~ mentioned in Section 3.9. Regarding first the
interpretive aspect, some issues should clearly be communicated
by the experts to the practising chemist using conceptual DFT. For
example :

1. Is the use of a temperature-dependent version of concep-
tual DFT necessary to avoid the E(N) differentiability
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problem when considering temperatures typical for labora-
tory conditions in synthetic work (leaving high-temperature
chemistry aside)?

2. Can the pros and cons of going from the canonical ensemble,
with the associated E[N,v] functional, to the grand canoni-
cal ensemble, with a state function Q[u,v] that allows fluc-
tuations in the number of electrons, be clarified for the
practising chemist? See also contribution (2.4.1).

3. Can one expect that the perturbation series of E[N,v] of a
given reactant upon interaction with a perturbing reaction
partner (the second reactant) converges properly in most
cases?

4. Can the proper use of the of the principles mentioned in con-
tribution (3.9.1) be supported by delineating their domain of
applicability — that is, by formulating the conditions under
which a meaningful application of the different principles is
possible?

5. Can potential pitfalls in using conceptual DFT when going
from kinetic (reactivity) to thermodynamic (stability) rea-
soning be identified?

On the other hand, the theory is in need of extensions — for
example:

1. the inclusion of new variables in the E[N,v] functional such
as electric and magnetic fields, mechanical forces, pressure
to cope with the increasing variety of reaction conditions
encountered in present-day chemistry; <>

2. a proper and possibly elegant inclusion of spin to ex-
tend the theory to transition metals, of crucial importance

in catalysis, and to radical reactions;

3. a generally applicable extension to excited-state reactiv-
ity *°%>/2%7°° to deepen the insight into photochemical phe-
nomena and, in the same vein, an extension to time-
dependent conceptual DFT;

4. a deeper connection between conceptual DFT and infor-
mation theory and its density functionals*”*
the reaction-force ansatz when considering reaction mecha-
nisms.

and with

Recognizing that the ultimate goal of conceptual DFT is predic-
tion, it was realized that the one reactant approach on the basis
of the above mentioned E[N,v] expansion should be scrutinized
to identify what terms in the expansion of E[N,v] are most likely
to be efficient for a given problem, thereby challenging chemical
intuition. Characteristics of the second reactant most probably
should be explicitly introduced at various levels of refinement for
quantifying the AN and Av perturbations.

(4.8.2) Gao In contribution (3.7.11), I described MS-
DFT as a hybrid wave-function and DFT method in the con-
text of ensemble DFT. The basis states used to generate the en-
ergies of the adiabatic states in the ensemble can be viewed
as effective valence-bond configurations. These configurations,



obtained either through fragmental block-localization or by lo-
cal electronic excitations, correspond to well-defined Lewis res-
onance structures, whose variational optimization can be di-
rectly used for block-localized wave-function interaction energy-
decomposition analysis (BLW-EDA) to provide a quantitative in-
terpretation of DFT results, such as aromaticity, hyperconjuga-
tion, and the Dewar-Chatt-Duncanson o-dative donation and
n-backbonding in transition-metal complexes. Furthermore,
these localized electronic structures can be used to define dia-
batic states by orthogonal projection, suitable for dynamics
simulations of nonadiabatic processes, including electron trans-
fer, excited-state energy transfer, and photochemical reactions.

Recently, a general approach was introduced for treating spin-
coupling interactions of open-shell molecules by MSDFT. “°° The
TDF energies that determine spin coupling are obtained by en-
forcing the multiplet degeneracy of the S+ 1 state in the Mg =S
manifold. Spin-adapted configuration states were used as the ac-
tive space in MSDFT calculations of core excitations of open-shell
molecules.

(4.8.3) Ayers While existing density-based tools can pro-
vide deep insight into chemical bonding, molecular electronic
structure, and even the thermodynamic driving forces for chem-
ical processes’~”, there are still outstanding issues. I am not en-
tirely convinced that there is any fully satisfactory definition of
bond order, atomic partial charge, etc. I am not even convinced
that the canonical Parr-Pearson definition of chemical hardness
is the best one.’*" Perhaps some of these concepts must be dis-
carded. However, the power of DFT is that, unlike most (but not
all) other approaches, it is mathematically rigorous and grounded
on physical observables. This allows one to attempt to approach
chemical concepts axiomatically: first one lists the key proper-
ties/tests one expects a concept to possess/satisfy, then one tries
to find a mathematical definition.

5 Communicating and sharing our results

5.1 How should the DFT community organize and share in-
formation?

(5.1.1) Loos No one should have to code the B3LYP func-
tional again: the democratization of open-source software and
libraries such as libxc, xcfun, and numgrid, are a big
step in this direction. The availability of the source code should
be strongly encouraged, especially for research funded by public
money.

(5.1.2) Krylov I would like to distinguish between open
sharing of ideas and basic tools useful for prototyping versus
open-sourcing production-level codes. Yes, we should openly ex-
change ideas and share basic tools of development, or some li-
braries. But, as described in this Viewpoint article,
ability of code development cannot be ensured by present funding
models and license income then provides a way to sustain scien-
tific developments and software maintenance. We should remem-
ber that our ultimate goal is to provide chemists with software
that is robust, effective, and usable. The commercial software-
development model provides a vehicle for achieving this goal.

sustain-

(5.1.3) Trickey Most of the issues associated with this sec-
tion seem to be generic to the practice of scientific research and
not specific to DFT. Those issues include the sociology of science,
national funding policies (note Krylov’s contribution (5.1.2)), pri-
orities, and mandates (e.g., data management plans in the USA),
institutional practices and policies (e.g., tenure and promotion in
the USA compared to say China or Germany or México). Given
that enormously variegated setting and given the sprawling uti-
lization of many-fermion DFT in myriad diverse specialities and
technologies, one might ask whether there are DFT-specific as-
pects of dissemination, communication, and/or data manage-
ment, for which the DFT development community has explicit
responsibilities and/or opportunities.

One such DFT-specific aspect has been pointed out by Loos in
his contribution (5.1.1). But as usual there is a hitch. First,
just because a DFA (or KEDF) is implemented for some kind of
Gaussians, this doesn’t mean that it will work for a plane-wave
PAW code. (It may not even work for another kind of Gaussians
without some fiddling.) Secondly, there are mis-implementations.
(The B3LYP DFA itself is a kind of mis-implementation and there
are the notorious VWN versions.) Postdocs in my group have
found several mis-implementations in popular codes and one of
our finite-temperature DFAs was mis-implemented in libxc. Espe-
cially for intricate DFAs (and KEDFs), it seems healthier to have
several independent implementations.

Another step would be for presentation of a new DFA to include
an explicit, unambiguous statement near the outset of whether it
was intended for only a certain class of molecules or only for
molecules but not condensed phases, etc. and on what class of
systems it had been tested.

(5.1.4) Draxl I agree, for example, with contribution
(5.1.1) that we should share as much as possible to avoid that
many people are doing the same again and again. We should use
our human resources for going beyond what is done already. This
also implies, however, that many of us contribute to open-source
libraries; testing and feedback is another issue. It is also not bad
though to have alternative implementations for comparison.

Very important, we as a community also need to appreciate
much more the work that some people are putting into develop-
ing codes and tools. It often happens that such work is considered
“nonscientific” or “programming jobs only”. Also, when publish-
ing papers on implementations, referees reject because of lack of
novelty. People dedicating months and years to develop tools that
are used by the community should not have a disadvantage when
being considered (or not) for a job because they published less
during this time.

(5.1.5) Ayers I see no drawback to being aggressively
open. Indeed, I believe we should aspire to share so aggres-
sively that reproducing, and even extending, a study is not
only possible but feasible. This requires more than FAIR shar-
ing of content/data; it requires more than releasing open-
source software; it requires a high standard of communica-
tion/documentation for theory, data, algorithms, and code. I con-
cur with contribution (5.1.3) that some of these issues are very
broad, and we can certainly learn from other researchers in the
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computational mathematical sciences.

(5.1.6) Savin One aspect related to sharing information is
improving the condensed information we share — for example, the
way we summarize the results obtained from benchmarks. This
means that we need good tools to analyse the existing and ever-
increasing amount of data.

(5.1.7) Draxl The need of benchmarks is also emphasized
in contribution (5.2.3). A very first step was made by Lejaeghere
et al. in a true community effort, known as the Delta test.
From the beginning of the initiative to publication, it took several
years during which codes and pseudopotentials were significantly
improved. Still, this is only a very first step as this work only
concerns total energies for elemental solids and a single semilo-
cal exchange—correlation functional (PBE). We need comparative
studies for very different properties (barriers, band gaps, spectra,
etc.) and very different types of materials (organic, inorganic, sur-
faces, interfaces, hybrid materials, etc.), carried out on different
levels of methodology. Even the Delta test data, though appearing
extremely consistent across many codes with regard to the total
energy, exhibits an unacceptable spread when it comes to proper-
ties, as revealed in a subsequent analysis.

(5.1.8) Crawford I fully agree that the broad dissemi-
nation of both established and emerging DFAs and related DFA
technologies is to the benefit of the scientific community, and
optimized libraries such as libxc, xcfun, and numgrid
provide superb examples of the added value of such an ap-
proach. The impact of libxc, in particular, is noteworthy in
that it provides more than 600 density functionals (LDA, GGA,
and meta-GGA) to dozens of community quantum-chemistry
and materials-science software packages, both open-source (e.g.,
PySCF, Psi4, Quantum ESPRESSO’°°) and commercial
(e.g., ORCA, ADF, Molpro’~®). Furthermore, the library
is applicable not only to Gaussian basis sets, but also to plane
waves, adaptive grids, and finite-element representations.
Libraries and modules such as these not only provide high per-
formance, but also improved reproducibility and standardization,
both of which are becoming more vital as the complexity of our
models advances. To that end, emerging standards and tools for
sharing computational results will similarly grow in importance.
In the materials-science domain, for example, this has long been
underway with community-drive resources such as the Materi-
als Project’~’ as a paradigm, although the standardization of the
content of materials databases is still under development within
that community. In the computational-chemistry domain, new
tools such as the Quantum Chemistry Schema (QCSchema) and
Quantum Chemistry Archive (QCArchive) (an open, public-
facing database of computational results) developed by the
Molecular Sciences Software Institute (MolSSI)’~”>/°" would al-
low much greater interoperability between codes by facilitating
standards for data sharing. In addition, the Simulation Envi-
ronment for Atomistic and Molecular Modeling (SEAMM),
also under development by the MolSSI, provides a lightweight,
Python-based plug-in environment for complex, shareable work-
flows, which will permit sophisticated computations involving
multiple community code components in a fully reproducible and
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publishable manner. The broader the adoption of standards and
tools such as these, the faster our community will be equipped to
handle more complex and important scientific challenges.

(5.1.9) Reining Since data from models, such as the quan-
tum Monte Carlo data for the homogeneous electron gas,“”~ have
turned out to be so precious for DFT, we should think about the
best way to share such data. Some of us think that models more
complex than the homogeneous electron gas may contribute to
better approximations, ““”>’°~ not only finite models with uniform
electron density as Loos mentions in contribution (3.1.5), but
truly inhomogeneous, still simple, systems. To tabulate and/or
interpolate such model data will be hard work on its own, and
sharing the results will be crucial.

5.2 How and what should we publish?

(5.2.1) Loos Publishing negative results should be encour-
aged much more in our community because they may be as valu-
able as the positive ones and may provide important insights.

(5.2.2) Loos Hopefully, the popularity of open-access
repositories for electronic preprints and postprints (such as arXiv
or ChemRxiv) keeps growing in our community so that re-
searchers have rapid access to free, new science. I personally
believe that the present model where researchers seek funding,
supervise students/postdocs, write articles, and review them is a
broken, unsustainable model.

(5.2.3) Draxl I agree with both — we should change our
publication culture, including also publication of negative results.
But we also need more “positive results”. While in chemistry,
verification/validation and benchmarking are a matter of course
and have been for many years, or even decades, in computational
physics this is still in a very early stage. All this is, however, crucial
for assessing methodology and distinguishing between accuracy
(of a method) and (numerical) precision.

(5.2.4) Jones I have participated in countless discus-
sions over many years concerning scientific publication, mostly
in physics. Common conclusions have been that too much is pub-
lished in too many journals, and improved refereeing is needed
to reduce the number of publications whose quality is borderline
or below. The world has gone in the opposite direction. Open
access publication has some advantages, but it has contributed to
the continuing proliferation of journals and can result in a lower-
ing of standards (accepted papers bring income, rejected papers
do not). The widespread use of electronic archives increases the
number of articles that are not reviewed at all. I see little hope for
change and have depended for years on private communications
about new developments.

Identifying something as “broken” and/or “unsustainable” as in
contribution (5.2.2) could be the first step towards repairing it,
but I am not optimistic. I am reminded of the alleged response of
a local in rural Ireland: “If I wanted to get to Dublin, I wouldn’t
start here.” Ever-increasing pressure to obtain external funding
will both hamper risk-taking and increase focus on “fashionable”
topics.



(5.2.5) Savin I agree with contribution (5.2.4). I feel
drowned in the publication flood. Finally, the question is about
transmitting information. Maybe we should try to establish ways
to present essential findings that is incremental, and can be up-
dated, in the style of Wikipedia. The numerical support could be
put in a database that can be searched by automatic tools.

(5.2.6) Trickey : Again we are faced with generic challenges
in physical science. Funding pressures are one. Competition
among publishers to have the most exclusive journals is another.
Emphasis is on the allegedly spectacular. These influences com-
bine to make it hard to publish careful, incremental advances,
let alone negative results. Within the DFT community, maybe
we should urge editors to accept the publication (hence, also,
respectful refereeing) of careful presentation of negative results
about well-motivated, well-grounded attempts at advancement?

(5.2.7) Gori-Giorgi : We should also not forget that the pres-
sure to publish goes hand in hand not only with the competi-
tion to obtain funding but also with how we evaluate (young)
scientists. There is now (finally) an attempt to shift from cri-
teria based on quantity (like the number of publications, the h-
index, etc.) to move towards quality.’°” How to define the latter
is of course a big challenge — although experts usually recognize
quality in their field, any definition has exceptions. There is also
more focus on collaboration and team science, which are positive
developments. But without appropriate funding and reason-
able career perspectives for young people, the situation regarding
overpublishing and overselling results (writing artificial success
stories) will probably remain dire.

(5.2.8) Romaniello I agree with contribution (5.2.4). In
particular, open-access publication seemed a nice idea at the start
but, as with most human activities where money circulates, the
system got corrupted. The publishing fees are now so high that it
is much cheaper for the scientific community to keep the standard
subscription model. Moreover, nowadays everybody can wake
up in the morning and create their own journal, which makes it
difficult for the institutions to keep track of “serious” journals. I
like the idea proposed in contribution (5.2.5), which puts back
in the spotlight the importance of sharing knowledge and not of
increasing the h-index.

(5.2.9) Galli I would like to alert the community on one
of our efforts to make data available on a per-publication basis,
which could be used also for DFT publications. Please see Qresp,
a tool for curating, discovering and exploring reproducible sci-
entific papers.’°"’"> For an example of a curated paper, see ref.

(5.2.10) Ayers For traditional electronic-structure calcula-
tions on molecules and materials, there are existing platforms like
QC-Archive ’®/ and the NOMAD repository ' °° for securely storing
and sharing data. These databases provide good search capabili-
ties, support most popular electronic-structure packages, use the
well-defined JSON schema, which can be directly accessed/used
(especially NOMAD), and at least partly fulfil the goals of making
data findable, accessible, interoperable, and reusable (FAIR).

5.3 What format should workshops and conferences take in
the future?

(5.3.1) Maitra and Ullrich : In the past 15 years or so, there
have been a number of schools and workshops geared towards
graduate students and postdocs — notably, the DFT/TDDFT tuto-
rials at the March Meeting of the American Physical Society, the
biyearly TDDFT series at the Benasque Center for Science since
2004, a similar series in the US since 2017, and the CECAM work-
shops on learning the theory of DFT. Despite the positive feedback
these events have received, their impact is limited to those who
can travel to their locations. The Zoom activities that arose out
of necessity during the pandemic (e.g., the international PhD stu-
dent seminar series on (TD)DFT theory development’®”) offer
us the possibility to think about establishing hybrid schools and
workshops routinely: not only to reduce our carbon footprint at
the heights of the climate crisis, but also to enable students truly
from all over the world to attend.

(5.3.2) Romaniello We should not go back to the pre-
pandemic model. In this last year, we have learned that we can
easily follow a workshop/conference from our office/home. Of
course, we also need real interactions, but we could select one
or two events per year in which to participate in person and the
rest online. Together with the advantages mentioned in contri-
bution (5.3.1), let me add that the possibility of hybrid events
will be beneficial also for female scientists just back from mater-
nity leave, for whom it is usually complicated to leave home for
several days.

(5.3.3) Reining I would like to advance two more argu-
ments in favour of using online tools in general: First, if we talk
about family matters, this should concern not only women, but
also, and equally, men who care for their family. Second, we are
scientists and know about the climate — so, let us make an effort
to travel less and shorter distances, preferably by train.

We should work out new formats that do not force us to choose
between taking a plane and having coffee with colleagues, or just
sitting in front of a screen. We could work out, for example, a de-
localized physical conference, where smaller hubs are connected
by internet and people can travel to the nearest hub. Such a
format would necessitate new forms of discussion but, if we are
not too conservative, we can certainly come up with solutions.
Besides, online tools also allow us to make material available in
advance, such that newcomers in the field can be better prepared
and profit more.

5.4 How can we best teach and communicate DFT?

(5.4.1) Helgaker I believe too much is made of the
Hohenberg-Kohn theorem — expressing the ground-state energy
as a function of the density alone in the manner E[p] is unhelpful
and obfuscates the theory. We do not ever attempt to obtain the
energy is this manner, by some miraculous use of the Hohenberg—
Kohn theorem. The constrained-search approach is a much more
intuitive and transparent introduction to DFT and the theory of
Lieb provides an elegant mathematical framework that captures
the essence of DFT.
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(5.4.2) Jones In my experience, lecture courses and sem-
inars involving DFT usually give a rather boring view of its his-
tory. The world began in 1964 with Hohenberg-Kohn, Kohn-
Sham made DFT usable, and so on. The listener learns nothing
about the excitement people working in DFT experienced during
the bleak years up to 1990, perhaps because the speaker does not
know or care. Here are some points for consideration.

The Hohenberg-Kohn theorem™ is ubiquitous, but little used
in practice. Its proper place today is in review articles and text-
books, and we should focus on the constrained-search approach
and the formulation of DFT in terms of Legendre transforms.
Kutzelnigg’s “beginner’s” guide to the latter is accessible to most
in the DFT field.

As noted in contribution (2.1.14), “the power of DFT derives
from Kohn-Sham theory,” but the successes of Kohn—Sham theory
are linked closely to the ability of local density approximations to
the exchange—correlation energy Ex. to give useful results in most
cases. Kohn noted “I believe that formal DFT would have been of
very little interest if there had not been a simple and very practical
approximation for Exc, the LDA, which has yielded surprisingly
accurate results.”

Kohn and Sham proposed using an LDA for Ex. that is exact in
two limits (slowly varying densities and high densities).”” These
are far from the density distributions found in atoms, molecules,
and condensed matter. Kohn and Sham, and many others, were
therefore convinced that LDAs would not describe chemical bond-
ing well. Nevertheless, they gave “reasonable” answers in early
tests of energy differences (including small molecules*"/>"°/>
and jellium half-spaces ) and remain the basis of many ap-
proximations for Ex.. The initial successes of LDA were so surpris-
ing that they motivated work to understand why it could provide
useful energy differences for systems with densities far from the
regions of obvious validity. This work led to “adiabatic coupling”
and studies of the exchange and correlation holes, their spher-
ical averages and related sum rules,”/>**"
of lasting value in DFT studies. This surprisingly satisfactory de-
scription of reality often provided by LDAs was essential to the
ultimate success of DFT.

which have been

(5.4.3) Chattaraj : The density (its advantage over the wave
function), density matrices (writing energy in terms of them),
and density functionals (a map from a function to a number)
should be introduced. DFT highlights the fact that, as N and
v(r) fix the Hamiltonian, the Schrédinger equation is a map from
these quantities to the density, whereas the corresponding in-
verse map (along with normalization) is DFT. Of course, Kato’s
cusp condition” for the ground state of any system, provides v(r)
through nuclear positions and the charges, in case the density is
known. Various techniques (Kohn-Sham, Levy-Lieb, orbital-free
DFT, etc.) exist for calculating the density. A recapitulation of
Hartree-Fock theory may be helpful.

(5.4.4) Maitra and Ullrich : DFT is taught in many ways and
at many levels: in addition to the tutorials, workshops, and sum-
mer schools mentioned in contribution (5.3.1), there are online
courses,’’~ regular courses at universities, and pedagogical text-
books. 2/ The targeted audience often tends to be at an
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advanced level (graduate students, postdocs, researchers). How-
ever, there is an urgent need to teach DFT at a more basic, in-
troductory level, to make it accessible to undergraduate students
and to those who may not have a strong background in quantum
mechanics, and who wish to understand and learn how to use
DFT.

When teaching DFT to beginners, we face similar choices as in
other fields of physics (e.g., quantum mechanics, electrodynam-
ics): we can follow the historical path in which the field was es-
tablished, or we can start with the most fundamental theorems
and then build up the formalism, or we can introduce the subject
through examples, case studies, and hands-on applications. In
our experience, students tend to learn DFT better when the latter
approach is taken; if we start with the theorems or with many-
body theory, students often fail to see the connection to the “real
world”. Thus, as a community, we should make an effort to make
DFT more accessible and inclusive, and to do this it will be helpful
to develop (and share) simple numerical examples and hands-on
exercises.

(5.4.5) Grimme The title of this paper contains the word
“workhorse” and hence we should not forget to teach this aspect
— that DFT really works every day in thousands of applications.
DFT is a theory that is generally robust but students should also
know when it fails (rarely) and why and how this is related to the
DFAs (and other) approximations involved. Therefore, it is espe-
cially important to teach the basics of DFT in the context of real-
world applications to illustrate that scientists are able to use it as
a versatile tool to solve chemical and physical problems through
many disciplines. The perception of DFT as a valuable component
of today’s fundamental chemistry—physics method toolbox should
be promoted accordingly, through practicals and lectures with a
pronounced hands-on mentality.

(5.4.6) Gori-Giorgi : Ifully agree with everything said above,
especially on using the constrained-search approach instead of
introducing the Hohenberg-Kohn theorem. Obstacles I often see
students facing when trying to learn DFT are:

1. To understand the theory behind DFT, you need to have a
good understanding of many-electron wave functions and
reduced density matrices, especially in real space, which they
often lack.

2. Most pedagogical material focuses on DFT without spin den-
sities, while in applications the latter are used.

3. Modern exchange—correlation functionals are very compli-
cated and look obscure to them.

4. The language is often ambiguous — for example, in the liter-
ature and in conferences the term “local” is sometimes used
to indicate a multiplicative potential (the local Kohn-Sham
potential, as opposed to the nonlocal Hartree-Fock poten-
tial) and sometimes to indicate a local dependence on the
density.

5. The role of symmetry breaking is very important and often
neglected in pedagogical material.



Finally, I believe it would be useful to teach LDA in a more
modern way, by including the recent works on the large-N limit of
neutral atoms, which show in which sense LDA is a universal limit
for Coulombically bound systems and how gradient expansions
arise; see, for example, ref. for a recent review.

(5.4.7) Reining Good teaching should help the learner to
take a step back and understand the essential elements, rather
than the technical details. A crucial question that is in my opin-
ion often neglected but merits deep thought, is the motivation:
Why should we choose to work with DFT? The reason cannot
just be that so many people do it successfully. In other words,
we should (in general, and also for DFT) talk more about how
we make choices in science. The answer may include a historical
component and should mention alternatives — not for a detailed
comparison, but to highlight some basic choices that may distin-
guish or be common to different methods. For DFT, I would insist
on the following points:

* We know in principle how to calculate observables in terms
of many-body wave functions, but we cannot do it in prac-
tice in most cases. The choice of DFT, instead, is to express
ground-state observables as functionals of the ground-state
density. The density is an object that is more compact (de-
pending on fewer variables) than the many-body wave func-
tion;

* We could also express observables as functionals of other
quantities that are more compact than many-body wave
functions — DFT uses the ground-state density, but we could
also choose density matrices, for example, as a good descrip-
tor;

* As a rule of thumb, the more compact we make the descrip-
tor, the fewer observables can be calculated as explicit func-
tionals. We can therefore discuss when and why the density
is a convenient choice — for example, when the Hartree en-
ergy is important;

* The idea to use an auxiliary system to determine one or
more, but perhaps not all, observables exactly should be ex-
posed clearly;

* In many-body physics, we know from the very start that ap-
proximations will be needed. It is then crucial to discuss why
DFT is a good starting point for approximations;

* We should also discuss the choice of strategies for develop-
ing approximations, rather than the technical details. One
example in DFT is to calculate the kinetic energy from a
non-interacting system with the same density as the inter-
acting one. Another example is to use the intuitive concept
of nearsightedness. *“*

These are very general ideas that can be found — maybe under
different names — also in contexts other than DFT, but they have
all been important for the success of DFT.
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density functional

density-functional approximation
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density-functional theory
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DFT with Hubbard U correction
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density-matrix embedding theory
density-matrix functional theory
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C Mathematical symbols
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electron affinity

set of v-representable densities
total electronic energy

Hartree density functional
exchange—correlation density functional
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universal density functional
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Hamiltonian

ionization potential
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