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A B S T R A C T

Measuring leaf area is a critical task in plant biology. Meshing techniques, parametric
surface modelling and implicit surface modelling allow estimating plant leaf area
from acquired 3D point clouds. However, there is currently no consensus on the best
approach because of little comparative evaluation. In this paper, we provide evidence
about the performance of each approach, through a comparative study of four meshing,
three parametric modelling and one implicit modelling methods. All selected methods
are freely available and easy to use. We have also performed a parameter sensitivity
analysis for each method in order to optimise its results and fully automate its use.
We identified nine criteria affecting the robustness of the studied methods. These
criteria are related to either the leaf shape (length/width ratio, curviness, concavity) or
the acquisition process (e.g. sampling density, noise, misalignment, holes). We used
synthetic data to quantitatively evaluate the robustness of the selected approaches with
respect to each criterion. In addition we evaluated the results of these approaches on
five tree and crop datasets acquired with laser scanners or photogrammetry. This study
allows us to highlight the benefits and drawbacks of each method and evaluate its
appropriateness in a given scenario. Our main conclusion is that fitting a Bézier surface
is the most robust and accurate approach to estimate plant leaf area in most cases.

1. Introduction

The accurate measurement of geometric characteristics of
plants and trees, such as height [1], branch angles [2] or leaf
areas [3], are critical in, among others, plant physiology, agron-
omy and forestry. Such measurements are used in developmen-
tal studies [4], phenotyping [1], or inventory [5]. Among these
characteristics, the individual leaf area is of particular interest
for monitoring the development of leaves over time, and to ac-
cess physiological key parameters. For example, leaf area over
time is key for monitoring plant transpiration [6]. It is also es-
sential in computing the leaf area index (the one-sided leaf area
per unit ground surface area) [5], which characterizes the plant
canopy and the amount of light that can be intercepted by the
plant [7].

Manual measurements on real plants face several limitations.
They are time-consuming, labour intensive, prone to errors and
sometimes even impossible. Most importantly, they are often
destructive and thus do not allow to track changes over time.
As a consequence, photogrammetry and laser scanning tech-
nologies have been proposed in the last decade to solve this
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problem [5, 8, 9]. These technologies create a virtual model of
the plant under study in the form of a 3D point cloud. Measure-
ments of the plant geometric characteristics are then automati-
cally computed on this point cloud. Three stages are necessary
to estimate the area of each leaf. In the first stage, points be-
longing to a single leaf blade are segmented from the rest of
the plant. In the second stage, a continuous surface model is
derived from these points. In the final stage, the leaf area is
estimated from this continuous model.

In this paper, we focus on the second stage of this pipeline,
namely the approximation or interpolation of a 3D point cloud
sampled on a leaf blade by a continuous surface. Note that in
the following we use the term “leaf” instead of “leaf blade”
for simplicity purpose. A leaf is usually composed of a 2-
dimensional leaf blade and a 1-dimensional petiole connecting
the blade to a stem.

Three main approaches to approximates a leaf point cloud
by a surface have been proposed in the literature. The
first one directly connects neighbouring points into a triangle
mesh [10, 11, 12, 13, 14, 9, 15]. The leaf area is then ap-
proximated as the sum of all triangle areas. The second ap-
proach uses a parametric surface model to approximate the in-
put points [16, 17, 18, 19, 20, 21]. A mesh sampled on this



model is then used to estimate the leaf area. The third approach
constructs an implicit representation of the leaf from the point
cloud [22]. As in the previous case, the leaf area is estimated
by meshing the resulting implicit surface.

To the best of our knowledge, there is no consensus on
whether one approach is better than the other. In this paper,
we propose a thorough comparative study of eight methods
selected from the three approaches described above. Rather
than focusing on very specific methods, which would be
hardly available, understandable and usable by plant biolo-
gists, we have chosen to select standard methods which are
freely available in open-source software or libraries, except
two of them for which we release a code. We also re-
lease our code to generate the synthetic datasets we used to
evaluate the selected methods. Our code is freely available
at the following address: https://gitlab.unistra.fr/

plant-leaf-area-estimation-gvc-2022.

2. Related work

Existing pieces of work have tackled similar problems, but
only partially. Loch et al. compared two meshing approaches
generating respectively (flat) Euclidean triangles and a smooth
surface made of piecewise cubic (non-flat) Clough-Tocher tri-
angles [16]. More recently, [18] and [20] compared three para-
metric leaf surface models. In these studies, surface models
were evaluated with respect to the maximum or root mean
square distance between the computed parametric surface and
the input point cloud, but no evaluation was given with respect
to the leaf area.

The most related work to our study is that of [23]. As in
[16], the authors compared a piecewise linear mesh model with
a parametric surface, this time for leaf area estimation. The
mesh was computed as a 2D triangulation of the data points
projected onto the best fitting plane of the point cloud, and then
lifted back to their original locations. The parametric model
chosen was a B-spline surface, which was trimmed according
to the boundary of an alpha-shape [24]. Both models were eval-
uated on point clouds acquired with a LiDAR from a flat gauge
block. Only one parameter was tested: the thinness of the point
cloud, which could be related to the noise level. Though Dupuis
et al. only compared these models on simple, flat surfaces, they
showed that the B-spline approach measures leaf areas with
much greater accuracy than the direct triangulation approach.
In our study, we have included the same meshing method, but a
more advanced B-spline technique [25] is tested.

It is also worth mentioning that a comparative analysis across
five geometric models has also been proposed for tree branches
[26]. These models were evaluated on synthetic data with vary-
ing shape, length, noise level, sampling resolution and occlu-
sion level. They were also tested on data acquired from a real
tree with a terrestrial LiDAR. Though our methodology is sim-
ilar to the one proposed by Åkerblom and his colleagues, our
problem is more complex because leaves have greater geomet-
rical variability than branches and are more sensitive to acqui-
sition artefacts. In a broader context, Berger et al. [27] give a
comprehensive survey of mesh reconstruction algorithms from

Table 1. Overview of the selected criteria, their corresponding parameters,
number of different values used for each parameter and their range used
to generate the synthetic data. The lengths are indicated with respect to the
distance between the base and the apex of the leaf: 0.12 means 12% of this
distance. The default value is indicated in bold. By default the sampling
density uses 5, 000 points.

Criterion Parameter(s) Nb Values Range
Length/width ratio R 11 1 − 12

Curviness Cu 19 0 − 360◦

Concavity Co 6 0 − 5 iterations
Sampling pattern S.p 2 Random or Regular

S.n 11 0 − 0.008 m
Sampling density D 16 50 − 75, 000 pts/m2

Nonuniform sampling NU 11 1 − 10
Acquisition noise N 11 0 − 0.15

Misalignment M.d 8 0 − 0.24 m
M.l 6 0 − 0.33 m

Holes H 11 0 − 0.6 m

3D point clouds. However, their study was mostly focused on
meshing watertight surfaces, while the leaves we are interested
in are surfaces with boundaries.

3. Materials and methods

3.1. Leaf point clouds

Several criteria can affect the robustness and the accuracy of
surface reconstruction approaches. We have identified nine cri-
teria (Table 1) and we have built synthetic data to study their
individual influence on area estimation results. In order to eval-
uate the eight approaches we have selected, we also used point
clouds acquired from real plants associated with manual mea-
surements of leaf area.

3.1.1. Criteria and synthetic data
Synthetic leaf model. Geometrically speaking, a plant leaf is a
surface with one boundary because it is usually 2-dimensional.
Several synthetic leaf models have been proposed in the litera-
ture, for example using ellipses [28] or polynomials [29]. We
propose a simpler model which still covers a broad range of
species, as we explain below.

We first approximate synthetic leaves by a flat hexagon. Two
of its six vertices, opposite to each other, correspond to the base
and the apex of the leaf. The distances between the base and
the apex and between the opposite left and right sides are equal,
and the hexagon area is set to 1. Let us now describe the nine
criteria that we have used to generate synthetic data. The first
three are related to the shape of the leaf and define our synthetic
leaf model. The others simulate defects in the point clouds due
to the acquisition process. A single parameter is usually associ-
ated with each criterion.

Most leaves are not isotropic and exhibit one principal direc-
tion, which corresponds to the base-to-apex axis (the midrib).
We thus define the length/width ratio (R) of the leaf as the
first of our nine criteria. Similarly, leaves are curved rather than
planar objects. Hence we identified curviness (Cu) as a second
criterion. We define curviness as the angle between the tangent
planes at the base and at the apex of the leaf. We create a curvy
leaf by smoothly bending it along its base-apex axis only. Note

https://gitlab.unistra.fr/plant-leaf-area-estimation-gvc-2022
https://gitlab.unistra.fr/plant-leaf-area-estimation-gvc-2022


that curviness is not limited to 360 ◦; a leaf with Cu > 360 takes
the shape of a Swiss roll. Finally, the leaf boundary is not al-
ways convex and can contain so-called teeth; our third criterion
is then concavity (Co). Its value is defined recursively: it is
0 for a convex shape, 1 when a zigzag is created by breaking a
straight boundary edge into three smaller straight edges, 2 when
a zigzag is itself divided into three zigzags (thus defining nine
edges), etc. We generated a set of synthetic leaves by varying
each criterion independently (see Fig. 2-(a-c)). All generated
shapes share the same unit area.

The perimeter, area and convex-hull perimeter of a leaf can
easily be expressed with respect to the length/width ratio and
the concavity criteria, as detailed in Appendix A. This enables
us to give exact formulas about the aspect ratio, circularity and
solidity indicators, which are used in [30] to classify plant taxo-
nomic groups based on their leaf shapes. The definitions given
in [30] for the three indicators used are:

• Aspect Ratio: AR = R

• Circularity: Ci = 4π( A
P2 )

• Solidity: S = A

CH

with P the perimeter of the leaf, A its area and CH the area
of its convex hull. Based on the study detailed in Appendix
A, we can easily express these indicators with respect to R and
Co. For each value of Co between 0 and 5, we have plotted
Ci vs. 1/AR, S 8 vs. 1/AR and Ci vs. S 8 on the pictures given
in [30], see Fig. 1 (note that solidity S is usually so close to 1
that it should be used to the power 8). It shows that our synthetic
leaf model crosses the morphospace of the following taxonomic
groups: Solanaceae, Brassicaceae, Alstroemeria, Passiflora
and Viburnum. It is however too simple to cover other groups
such as Cotton, Grape and Ivy. This is mainly because our
definition of concavity does not allow for zigzags of various
sizes along the leaf edge.

Impact of the acquisition process. Laser scanning and pho-
togrammetry techniques sample a real plant as a 3D point cloud.
While laser scanners follow a regular pattern to sample the 3D
space, photogrammetry relies on the detection of feature points
in the images, leading to point clouds with irregular sampling.
We thus integrated a criterion related to the sampling technique:
the sampling pattern (S.p) is defined as either regular or ran-
dom in order to mimic either laser scanners or photogramme-
try. The regularity of laser scanner sampling is also affected by
the leaf orientation, hence we included a random noise affect-
ing the location of the points on the leaf surface in the regular
sampling process. This noise is in the leaf plane and is the
second parameter S.n related to this criterion. In practice, its
value corresponds to the maximum distance between the actual
and the expected locations of a point. Laser scanning and pho-
togrammetry can generate 3D point clouds of varying precision
depending on the distance to the scanner or the number and
quality of pictures used in the 3D reconstruction. Hence, we
included an additional criterion related to the sampling qual-
ity: the sampling density (D) which is the number of sampled
points per surface unit.

Fig. 1. Morphospaces spanned by traditional leaf shape descriptors for dif-
ferent taxonomic groups, and the position of our synthetic model (pink
lines). Images from [30].



[27] has listed five potential artefacts in such point clouds:
nonuniform sampling, noisy data, outliers, misaligned scans,
and missing data. We do not consider outliers since, in our
context, most authors suggest to filter the point cloud as a pre-
processing step. Such filtering is however investigated, see
Section 3.3.2. We consider the four remaining listed criteria.
Nonuniform sampling can result from the registration of sev-
eral scans from different viewpoints. It is modelled in our study
by sampling the leaf with two different densities. The bottom
half of the leaf (next to its base) is sampled using the density
D, while the top half (next to the leaf apex) is sampled using
the density multiplied by a user-defined nonuniform sampling
ratio (NU). Additionally, point cloud acquisition from a real
plant is not perfectly accurate, leading to erroneous point coor-
dinates. This can be due to imperfections in the sensor’s opti-
cal and mechanical components, or to the environmental con-
ditions, such as the ambient light or the leaf’s texture. In this
study, we name acquisition noise (N) the uncertainty in point
coordinate measurement. We model it by a Gaussian noise af-
fecting each point in the normal direction to the leaf surface.
We express it as a percentage of the leaf size to make it indepen-
dent of this size. The registration of several scans is also often
imperfect and leads to misalignment (M). We model it by sep-
arating the leaf into two overlapping parts, one starting from the
base and the other from the apex. One part is then translated in
its normal direction and points are sampled on both parts. The
(vertical) distance between the two parts M.d and the overlap
length M.l are the two parameters related to this criterion. Fi-
nally, our last criterion is the presence of holes inside the shape.
They represent missing data due to occlusions during the acqui-
sition process, or when the leaf has been partially eaten by an
insect, for instance. To evaluate the influence of this criterion
on the robustness of each geometric model, we have generated
hexagonal leaves with square holes of varying edge length (H).

Generated dataset. We generated a synthetic dataset by vary-
ing each criterion independently as summarized in Table 1. The
amount of noise is defined with respect to the leaf length. For
example, N = 0.15 corresponds to an uncertainty of 1.5 cm for
a 10 cm-long leaf. The default density value D = 5, 000 points
is chosen so that the leaf boundary is densely sampled and to
avoid sampling inhomogeneity to be interpreted as holes. Some
examples of synthetic data are shown in Fig. 2. We have cho-
sen to vary each criterion independently to better study their
individual effects on leaf area estimation methods, although our
code is able to generate synthetic leaves with as many different
artefacts as desired. In order to take randomness of the sam-
pling and/or the noise into account, we created 10 point clouds
for each parameter value, leading us to generate 1240 synthetic
point clouds in total. Note that each point cloud is a different
approximation of an hexagon which area remains equal to 1.

3.1.2. Real data
In order to evaluate the geometric models in real-life sce-

narios, we have scanned a set of selected plants, collected and
measured their leaves to obtain ground truth area measure-
ments. Species were chosen in order to test leaves with different

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Examples of synthetic data generated from a flat hexagon: (a) shape
with an increased length/width ratio, (b) shape with an increased curviness,
(c) shape with an increased concavity, (d) shape sparsely sampled, (e) shape
regularly sampled, (f) shape with a nonuniform sampling, (g) shape with a
high acquisition noise, (h) shape with misalignment, (i) shape with a hole.



Table 2. Leaf area, number of points and point density ranges for each of
our five datasets of real plants scans.

Dataset Number Leaf areas Points per leaf Point density
of leaves (cm2) (pts/cm2)

Chestnut 19 4 − 52 964 − 18108 20 − 50
Oak 10 9 − 110 2950 − 45673 23 − 45

Birch 7 8 − 27 3301 − 11745 31 − 35
Maize (LiDAR) 12 36 − 202 3541 − 39314 47 − 234
Maize (photo) 10 36 − 202 3334 − 20579 7 − 42

length/width ratios, curvatures and concavity levels. Some re-
sulting point clouds are shown in Fig. 3. Table 2 provides an
overview of the selected dataset.

(a) (b) (c)

(d) (e)

Fig. 3. Examples of real data: (a) sweet chestnut leaf, (b) red oak leaf,
(c) silver birch leaf, (d) maize leaf obtained with a LiDAR, (e) maize leaf
obtained by photogrammetry.

We first used the data set described in [11] where the authors
scanned three plants seedlings using a Leica Geosystems HDS-
6100 LiDAR from three positions at 1.5 m: a sweet chestnut
(Castanea sativa Mill.), a red oak (Quercus rubra L.), and a
silver birch (Betula pendula Roth). The point clouds were then
segmented as detailed in [11]. For our study we only considered
the segments corresponding to leaves. All leaves in this data set
are non-planar. In addition, some sweet chestnut leaves suffer
from misalignment and holes caused by insects. Red oak leaves
are all concave and three of them contain holes. The silver birch
leaves exhibit significant noise, mostly located on their bound-
aries. The reference leaf areas were measured in the laboratory
with a laser area meter (CI-203, CID, Camas, WA).

The last plant is a maize plant (Zea mays L.) scanned with
two different devices: a Faro 3D X130 laser scanner, and a
multiview system made of 9 Sony-RX0 cameras. We used the
Colmap software [31] to generate the 3D point clouds from the
images. Leaves are elongated, curved and show some torsion.
Both the LiDAR and photogrammetry point clouds contain oc-
cluded areas, hence holes. The registration of LiDAR point
clouds led to small but noticeable misalignments. The pho-
togrammetry datasets exhibit a variable point density. The leaf
areas were measured with a Licor LI-3100 Leaf Area Meter.

3.2. Geometric models for leaves
In this section, we present the eight geometric models and

methods we selected for comparison. Since our goal is to pro-
vide a practical guide for users in application fields (e.g. plant

physiology, agronomy, etc.), we explain how to use them and
highlight their parameters. In our comparative study, we have
chosen the parameters for each algorithm after a sensitivity
analysis, see Section 3.3.1 and Table 4.

3.2.1. Mesh reconstruction
We selected four simple and readily available meshing meth-

ods, that have already been applied to leaf surface reconstruc-
tion. We discarded those requiring additional manual work,
such as the ones presented in [32, 10].

2.5D Triangulation. Considering a leaf is a 2-dimensional ob-
ject, the simplest approach to reconstruct its surface is to trian-
gulate the projections of its points onto a plane and to lift the
resulting triangles back to the original points [11, 9]. This pro-
cess, sometimes called 2.5D triangulation, uses the least-square
fitting plane to project the 3D points followed by a 2D Delaunay
triangulation. In our tests, we use the CloudCompare software
[33] to perform such computations. It adds an optional post-
processing stage which removes triangles with edges longer
than a given threshold. We introduce a meta parameter dmn
related to the dimensions of the bounding box in order to adapt
the threshold to the leaf size. This threshold is the only param-
eter of the 2.5D triangulation and the post-processing filter is
disabled by default. Our sensitivity analysis demonstrated that
ignoring the post-processing gives, on average, optimal results.

Alpha-Shape. The boundary of a Delaunay triangulation is the
convex hull of the point set. Thus, it is a poor approximation
for concave objects. As a subset of a Delaunay triangulation,
alpha-shapes are better suited to mesh concave objects [24].
They depend on a single parameter α ≥ 0 restricting the set of
valid triangles, hence allowing for non-convex reconstructions.
When α = +∞ the alpha-shape is the convex hull of the input
points, while when α = 0 it degenerates to the set of points.
Alpha-shapes have been used in 2D to estimate the surface of
plant leaves [12]. They have also been used in 3D [13], with
an empirically chosen value α = 0.6. However in this case the
reconstructed surface is watertight, meaning that a leaf is ap-
proximated by a thin volume. Since the result is a volume with
a negligible thickness, the leaf area can still be approximated
by halving the total mesh area. Alpha-shapes are implemented
in Meshlab [34] and in the Open3D library [35]. In our tests we
use 3D alpha-shapes as implemented in Open3D. The optimal
α value depends on the point cloud density and the size of the
smallest feature. We have developed an automatic optimization
method to set the α value for our point clouds based on distance
to the nearest neighbour statistics in the point cloud. Two statis-
tics were tested independently, median and first-decile (see Sec-
tion 3.3.1). Our tests have shown that using the median gives
slightly better results than using the first-decile statistics. As
a consequence, only the first is used in the followings, and we
define the median distance mcα between a point and its closest
neighbour over the point cloud, multiplied by a set factor, as
the sole parameter for our study. Our sensitivity analysis has
shown that two different values of factor are optimal depending
on the criterion to test: mcα1 = 1 for data with concavities, and
mcα2 = 15 in all other cases



Ball-Pivoting Algorithm (BPA). The Ball-Pivoting Algorithm
(BPA) [36] is a classical 3D mesh reconstruction method, that
outputs a subset of an alpha-shape as a 2-manifold mesh inter-
polating the input points. Starting from a seed triangle, it incre-
mentally builds the mesh by pivoting a ball around the boundary
edges until it hits a point, from which a new triangle is created.
The parameter of the BPA is the ball radius ρ. The algorithm is
provided in Meshlab and the Open3D library. We have chosen
to use Meshlab [34], since it proposes an improved version that
produces more consistent meshes than the strict implementa-
tion found in Open3D, which generates non-watertight meshes
with holes, as we will explain later. This version comes with
two additional parameters: a clustering radius cr and an angle
threshold θ. The value of ρ is automatically chosen based on
the bounding box diagonal of the point cloud.

Incremental Reconstruction. Developed with robotics applica-
tions in mind, the mesh reconstruction algorithm described in
[37] is designed to be fast and robust to noise. To these ends, it
is incremental and resamples the input point cloud. As a con-
sequence, it neither requires the surface to be closed nor inter-
polates the data. This algorithm is implemented in the Point
Cloud Library (PCL) [38] and has been used in [14] for leaf
area estimation after downsampling and smoothing the input
point cloud. This algorithm has seven parameters, but the most
impactful one is the nearest neighbour distance ratio µ, set to 5
in our tests as recommended in the original paper. The others
are set to their default values after the sensitivity analysis.

3.2.2. Parametric modelling
In the context of Functional-Structural Plant Modeling

(FSPM), parametric surfaces have been used to approximate
leaf shapes. Usually, the proposed models are flexible and adapt
themselves to morphological shape variations. We only focus
on 3D point clouds in our study, hence we discard methods re-
quiring additional information, such as veins or the midrib of
the leaves [17, 39, 40, 41]. There are two main methods that
respect this constraints: B-spline and Bézier surfaces.

B-spline. [23] compare leaf area estimation using B-Spline sur-
faces and mesh models. In that study, a regular 2D grid is
first defined using the principal axes of the point cloud to de-
fine the knot points of the spline. The B-spline is then trimmed
by computing the boundary of an alpha-shape. Recently Har-
mening and Paffenholz have proposed an alternative B-spline-
based method to compute individual leaf area [21]. This method
relies on the accurate computation of boundary curves around
the leaf point cloud. In our study, we have chosen to con-
sider the approach proposed by [25] for two reasons. First, it
is implemented in the PCL, and hence is easy to use for a bi-
ologist. Second, the trimming is done robustly using a closed
B-spline curve carefully designed to handle concavities. This
approach requires tuning 19 parameters. However, as stated
in [25], a standard set of values provides satisfactory results
for most point clouds. Indeed, for most parameters the default
value is robust to a large variety of input point clouds. Most of
the parameters are dedicated to a very specific use case (e.g.,
boundary weight allows to adapt the surface boundary to the

Table 3. Execution time (s) for 10 point clouds with B-Spline order 3, num-
ber of iterations equal to 5, and mesh resolution set to 64.

Nb of points \ Refinement 2 3 4 5
1000 3 5 60 4185
5000 10 19 171 5804

10000 22 39 318 7716

boundary points). We refer to the PCL [38] for more details.
We thus use these default values, except for the B-spline order
o, the number of iterations i and the mesh resolution rs. Finally
the refinement parameter r f has a great impact on the compu-
tation time, as shown in Table 3. We made a trade-off between
the global accuracy of the final mesh and the computation time
to choose its value after a sensitivity analysis.

Bézier Leaf Model. A parametric leaf model based on Bézier
surfaces has been proposed by Chaurasia and Beardsley [19].
In this model, a leaf is represented as a Bézier surface de-
rived from three main components: the leaf midrib, together
with its left and right silhouettes. The model uses 3rd degree
Bézier curves to approximate these components (4th degree for
the midrib), along with four additional Bézier curves describ-
ing the interior part of the leaf. Given the midrib curve and
the silhouettes, a UV mapping of the point cloud is computed
from which the model’s parameters are optimised, including the
midrib curve. The resulting Bézier surface is then regularly
sampled and meshed. To our knowledge, no implementation
of this model is publicly available. Therefore in this study, we
have used our own implementation. The main parameter to set
is the number of scanlines s, defined at regular intervals of the
midrib curve.

Trimmed Bézier. The use of a midrib curve along with silhou-
ette curves in the work of [19] matches botanical observations
of real leaves. However, this specific model induces rigidity, no-
tably with the imposed symmetry around the midrib. Therefore
we also considered general Bézier surface modelling to allevi-
ate this limitation and to allow reconstructed surfaces to closely
match the input point clouds. In this proposed method we first
used an affine transformation to project the leaf point cloud onto
the 2D domain using the best fit plane where the transformed
point cloud fits in the unit bounding box (from (0,0) to (1,1)),
and the base and apex of the leaf are set to (0.5, 0) and (0.5, 1)
respectively. We then considered this projection as a uv map-
ping of the input 3D point cloud and used linear least-square
fitting to obtain the desired Bézier surface. As the last step of
this method, we propose an additional trimming stage inspired
by the scanlines of [19]: the Bézier surface is only meshed in
the [umin, umax] interval in each of the n bins of v parameter.
The proposed method is based on four parameters: dU and dV
indicate the degree of the desired Bézier surface, meshU and
meshV the meshing resolution along u and v (the number of
scanlines n is automatically set equal to meshV).

3.2.3. Implicit modelling
Implicit modelling has been applied with success to point

clouds and constitutes a major approach of surface reconstruc-
tion from such data [42, 43, 44, 45]. Methods from this ap-



proach fit an implicit function to a set of points. A level-set of
this function is then extracted and meshed to approximate the
sampled surface.

Screened Poisson Reconstruction. Surface reconstruction from
a point cloud with normal vectors can be formulated as a Pois-
son problem. This formulation was proposed by Kazhdan et
al. to reconstruct watertight surfaces [43] and was further ex-
tended to open surfaces [44]. This method is known as screened
Poisson reconstruction. The authors provide the source code as
well as executable software on their web page together with us-
age examples. The main parameter of the screened Poisson sur-
face reconstruction algorithm is the importance pw of point in-
terpolation during the screened Poisson formulation (so-called
point weight in the provided software). The other parameters
are called tree depth td, exponent scale es and accuracy acc.
They are set as shown in Table 4. This method was used in [22]
to compute maize leaf areas, but additional manual trimming
was required. The output of Poisson surface reconstruction
is a mesh with an estimation of local point density associated
with each vertex. [44] then recommended trimming the result-
ing mesh according to this density value, i.e. to remove vertices
corresponding to a density lower than a user-defined threshold.
The sensitivity analysis led us to use the mean of local density
over the point cloud as the threshold tt.

3.3. Methodology

We evaluated the accuracy of the selected methods by com-
paring their results to the ground truth values. For each method,
we used the set of best parameters identified through the sensi-
tivity analysis described in Section 3.3.1. Each method has been
applied on each of the 1240 synthetic leaf models generated as
described in Section 3.1.1. Additionnally, for each real dataset
presented in Section 3.1.2, methods have been tested on raw
and on filtered point clouds (see Section 3.3.2).

Once the leaf areas were estimated, each method has been
evaluated based on its signed mean relative error (SMRE):

S MRE =
1
n

n∑
i=1

Aei − Ati

Ati

where n is the number of point clouds considered and Ati and
Aei are the ground truth area and the estimated area for the ith

point cloud, respectively.
We have also used the unsigned mean relative error (UMRE),

defined as UMRE = 1
n

n∑
i=1

∥Aei − Ati∥

Ati
to determine the norm of

the relative error on each dataset, in order to check for compen-
sation phenomenon in the SMRE computation. According to
our study the UMRE is less informative than the SMRE and the
reliability of the SMRE is enough to draw our conclusions.

3.3.1. Sensitivity analysis
We performed a parameter sensitivity analysis to determine

which parameters need to be carefully tuned in order to reach
the most accurate leaf area estimate with each method, and how
to tune these parameters. In addition to the leaf area, we also

Table 4. Optimal value(s) for each parameter of each method.
Method Parameter (unit) Optimal value(s)

2.5D Triangulation dmn 0
Alpha-Shape Median mcα 1, 15

BPA ρ (% BBOX) 0
cr (% ρ) 50
θ (◦) 180

Incremental µ (% BBOX) 5
Reconstruction Radius (% BBOX) 0.025

Number of points 100
Maximum surface angle (rad) π

4
Minimum angle (rad) π

18
Maximal angle (rad) 2π

3
Normal consistency false

B-Spline o 3
r f 3
i 5

rs 64
Bézier Leaf Model meshU 5

meshV 40
s 50

Trimmed Bézier dU 2
dV 4

meshU 5
meshV 40

Poisson td 8
pw 4
es 3

acc (m) 0.001
tt 50th -percentile

checked the geometry and topology of the generated surface to
discard inaccurate surfaces: parameter values leading to non-
manifold surfaces, surfaces with holes or self-intersections are
considered as non-optimal regardless of the accuracy. A subset
of the synthetic data described in Section 3.1.1 has been ran-
domly chosen and used to conduct this analysis. 130 of the
1240 generated point clouds have been clustered according to
the 11 criterion parameters. This allowed us to test each method
parameter with respect to each criterion independently.

We varied the value of each parameter individually according
to the identified set of values to be tested. Table 4 summarizes
the optimal values found. The SMRE was computed for each
parameter value among all point clouds of a data set defining a
criterion parameter. Among all tested values of a parameter, the
one that reaches the SMRE closest to zero among all data sets
while generating a geometrically and topologically correct sur-
face was chosen as the optimal value of the parameter. Finally,
we have checked that the combination of optimal values for all
parameters of the method generates better results than the com-
bination of one optimal value for a given parameter and default
values for the other ones.

For some methods, parameters may depend on the point
cloud density or size. In such cases, a fixed value for such
parameters is not suitable. Therefore we also introduce meta-
parameters linking method parameters and point cloud features
and have optimized their values using the same strategy as de-
scribed above. For 2.5D Triangulation we propose a meta-
parameter dmn defined as the diagonal of the point cloud’s
bounding box divided by the number of points in the cloud.
For Alpha-Shape we propose to compute the distribution of
the distances from each point to its closest neighbour. We have



tested both the median mcα and the first decile dcα of this dis-
tribution as a meta-parameter. When studying the median, we
noticed that results for the Co criterion were very different from
results in all other cases. This is why we decided to keep two
optimal values for mcα instead of only one. Finally for Poisson
reconstruction, we use the mean of the local point cloud density
as the trimming threshold tt.

3.3.2. Point cloud pre-processing
In this study, we assume that the point clouds have been seg-

mented to only include leaf. However, input point clouds may
still contain noise. As an additional contribution, we studied
the effect of pre-processing filters on the leaf area estimated by
the selected methods. To do so we selected two classical filters.
The Statistical Outlier Removal filter (SOR) [46] is based on
the distance from a point to its neighbours: it discards points
with a distance higher than the standard deviation computed on
the entire point cloud. Based on the definitions of Moving Least
Square surfaces (MLS) [47], the MLS filter proposed in Cloud-
Compare projects each data point on a smooth surface defined
as the stationary point of a projection operator. While it can be
used to up- or down-sample a point cloud, we only used it to re-
duce the amount of noise in the point clouds. Many variants of
the MLS approach have been proposed in the literature. In addi-
tion to the version proposed in CloudCompare, we have experi-
mented the Algebraic Point Set Surface (APSS) definition pro-
posed by [48]. We ran the leaf area estimation methods on raw
input point clouds as well as SOR filtered point clouds, MLS
filtered point clouds and SOR +MLS filtered point clouds. Re-
sults show a negligible difference of leaf area estimation be-
tween raw data with SOR filtered data on the one hand, and
between MLS filtered data and SOR+MLS filtered data on the
other hand. This demonstrates that the SOR filter may be useful
to remove major outliers but is not enough to improve leaf area
estimation in noisy point clouds. On the contrary, the MLS fil-
ter both improves the accuracy of all methods and reduces the
dispersion of the estimates. Results are similar with both MLS
definitions (see Fig.7), except for Poisson reconstruction. Con-
sequently, we have only considered the data filtered with the
MLS filter proposed in CloudCompare in our study.

4. Results

The methods described in Section 3.2 have been tested on
the data introduced in Section 3.1. Tests on synthetic data al-
lowed us to evaluate the accuracy of the methods with respect
to each criterion independently. The results of this quantita-
tive assessment are presented and discussed in Section 4.1. We
draw general comments about the capability of each model to
handle real-life cases based upon the tests on real acquisitions
in Section 4.2.

4.1. Results on synthetic data

The influence of each criterion on the area estimation is il-
lustrated in Fig. 4. Each curve shows the leaf area SMRE for a
given method with respect to a criterion parameter value. Note

that each computation has been done ten times to factor ran-
domness in generated synthetic data. Each dot in each curve of
Fig. 4 shows the average leaf area over these ten trials. These
results on synthetic data provide the material to discuss the ef-
fects of each criterion separately and to highlight specific cases
of failure.

4.1.1. Leaf shape criteria
Overall, the length/width ratio has a low impact on the area

estimation: SMRE does not vary much (at most 0.05), except
for Poisson reconstruction. This is because the trimming step,
based on density, in Poisson reconstruction reaches limitations.
As the density increases in one preferred direction with the ra-
tio, the expected accuracy in the orthogonal direction decreases
at the trimming step.

The most robust methods to curviness are the BPA, the In-
cremental reconstruction and Poisson reconstruction, which
produce consistent meshes even for highly curved leaves.
Trimmed Bézier, Bézier Leaf Model and the 2.5D Trian-
gulation assume that a leaf is similar to an elevation surface.
Therefore, these methods are not suited to reconstruct leaves
with a curviness higher than 180◦ where folds appear and their
accuracy decreases (Fig. 6-(a)). When curviness reaches al-
most 360◦, the Alpha-Shape and B-Spline methods produce
erroneous meshes, as illustrated in Fig. 6-(b). Therefore, even
though the estimated areas may be accurate with respect to the
ground truth, these methods cannot be applied to such data rep-
resenting rolled leaves. Moreover the Alpha-Shape produces
3D volumes that do not take into account the curvature, which
explains why the computed surface area decreases when the
curvature increases.

According to our experiments, all methods give almost con-
stant leaf area estimates with respect to concavity. Even though
the Bézier Leaf Model and the Trimmed Bézier models are
not expected to correctly capture concave shapes, we hypothe-
size that they benefit from concavities being evenly distributed
around the boundary of the reconstructed surface (Fig. 6-(c)),
which could not be the case for more complex concavity mod-
els. Since the 2.5D Triangulation is based on a Delaunay tri-
angulation, the resulting mesh is very close to the point cloud
convex hull, leading to an area overestimation when the shape
is concave.

4.1.2. Sampling criteria
All methods are stable with the regular sampling, whatever

the amount of horizontal noise S.n, given that enough points
are produced.

Unsurprisingly, in the case of a sufficiently high point density
(≥ 1, 000 points per unit area), area estimation is very stable for
all methods, except Incremental Reconstruction which needs
around 6, 000 points to be accurate. When density decreases, all
methods tend to underestimate the leaf area due to the appear-
ance of holes in the reconstructed meshes, or because the leaf
boundary is no longer accurately described by the point cloud.
The more consistent methods with respect to this criterion are
Poisson reconstruction and the 2.5D Triangulation.
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Fig. 4. Influence of each criterion on the leaf area estimation using 2.5D Triangulation, Alpha-Shape Median, BPA, Incremental Reconstruction, B-Spline,
Bézier leaf model, Trimmed Bézier and Poisson. More results for misalignment can be found in Fig. 5.



Fig. 5. Misalignement results on synthetic data, for different values of M.d and M.l.



(a) (b) (c)

(d) (e) (f)

Fig. 6. Some specific cases where the quality of the surface reconstruction
impacts the accuracy of the leaf area estimation: (a,b) Cu , (c) Co, (d,e) N,
(f) H.

All methods are stable with nonuniform sampling except In-
cremental Reconstruction, the BPA and Poisson reconstruc-
tion. This is because Incremental Reconstruction and the
BPA depend on the uniformity of the distances between points
to create the mesh. As for Poisson reconstruction, its statisti-
cal parameters are skewed with nonuniform sampling and the
trimming step is incorrect.

4.1.3. Acquisition defects
The parametric models are by far the most robust to noise.

Since 2.5D Triangulation directly triangulates the input points,
it produces many small triangles for which height is directly
correlated to the noise strength (Fig. 6-(d)). This artificially in-
creases the computed area, which is then always overestimated.
The same problem arises with Incremental Reconstruction,
but in this case, the area is underestimated because the method
does not allow for large triangles, leading to holes in the mesh.
For a very small amount of noise, the Alpha-Shape surface is
close to being two parallel sheets. Its area is thus twice the
area of the leaf. For a higher noise amount, the surface does
not look like a thin object anymore, and the overestimation
arises from the additional volume boundary (Fig. 6-(e)). The
trimming step in Poisson reconstruction, being based on point
density, is compromised by the noise. Results of the BPA are
quite unpredictable in presence of noise, as evidenced by the
chaotic behaviour of the related curve. Either a surface or a
volume is created, making it difficult to establish a general rule
for area computation, and the density unevenness introduced by
the noise leads to many holes in the reconstructed mesh.

The more robust approach to misalignment is the Incremen-
tal Reconstruction. This is because its triangle size restriction
allows the reconstruction of two separate surface sheets. The
2.5D Triangulation is highly sensitive to misalignment, lead-
ing to large leaf area overestimates (S MRE > 1, hence the cor-
responding curves are not visible on the graphs in Fig. 4 and 5).

This method creates triangles between the two parts of the sur-
face. A great misalignment length leads to many triangles while
a large misalignment distance leads to big triangles, meaning
the leaf area overestimation by the method increases as soon
as the value of one of the two parameters increases. The BPA
is sensitive to misalignment length while the Alpha-Shape and
to some extent Bézier Leaf Method and Trimmed Bézier are
sensitive to misalignment distance. In the BPA case, this is be-
cause the bounding box of the point cloud is much more mod-
ified by the misalignment length than by the misalignment dis-
tance. As for both Bézier methods, the projection step cancels
the misalignment length problem, but not the misalignment dis-
tance. B-spline is robust to misalignment when the distance
between the two parts of the point cloud is small (< 0.05), be-
cause this case is similar to a single surface with nonuniform
sampling and noise, two criteria this method is robust to. On the
contrary Poisson reconstruction underestimates the leaf area in
this case since it is not robust to these criteria because of den-
sity modification with the global shape. When the distance is
too large B-spline overestimates the leaf area as the length of
misalignment increases, as it tries to create a single, folded sur-
face approximating the two parts of the alignment. For a better
understanding, we refer to the graphs in Fig. 5 showing the be-
haviour of the methods for various values of the two parameters
M.d and M.l.

All methods are robust to holes except the BPA, the In-
cremental Reconstruction and Poisson reconstruction. Since
the BPA and the Incremental reconstruction exploit the point
cloud density, holes greater than a threshold are not meshed,
leading to an underestimation of the area (Fig. 6-(f)). The trim-
ming step in Poisson reconstruction being based on the local
point density, the result is similar.

4.2. Results on real data
We evaluated the accuracy of each selected method on the

point clouds derived from real acquisitions. In this evaluation,
we considered as error measure the signed relative error be-
tween the estimated leaf area and the ground truth as recovered
from manual measurements. Fig. 7 shows the box-and-whisker
charts of errors for all leaves of each plant and each geometric
model. Point clouds were filtered using either the MLS filter
proposed in CloudCompare or the APSS framework of [48],
with 30 nearest neighbours and 5 successive projections on the
implicit surface.

For the sweet chestnut, the red oak and the silver birch data,
the most robust and accurate methods are the Bézier Leaf
Model and the Trimmed Bézier method. It is to be noted that
the B-Spline method has failed to produce a mesh for some
leaves, leading to a zero estimate for their area. As for the
2.5D Triangulation and the Screened Poisson method, they
tend to overestimate the leaf areas. This can be explained by
holes caused by insects being filled as well as concavities.

Results on the maize scanned with a laser scanner and the
maize acquired with a multiview system are very similar, indi-
cating that the acquisition process has little impact on the meth-
ods’ efficiency. Most of them exhibit a large dispersal of the
computed leaf areas, meaning they are not robust. This is be-
cause the leaf geometry causes problems, more precisely the



Fig. 7. Box-and-whisker charts of leaf area SMRE on real data filtered
using either the CloudCompare MLS filter (left) or the APSS framework
(right), using 2.5D Triangulation, Alpha-Shape Median, BPA, Incremental
Reconstruction, B-Spline, Bézier leaf model, Trimmed Bézier and Poisson:
from top to bottom, sweet chestnut, red oak, silver birch, maize (LiDAR
acquisition) and maize (photogrammetry acquisition). Whiskers represent
minimum and maximum values of the computed errors for a given model
on a given dataset (excepting outliers), a box represents errors between the
25th and 75th percentile, the line inside this box shows the median error.
Computed errors are considered as outliers if they lie 1.5 times the length
of the box, from either of its ends.

high R for Poisson reconstruction, the high Cu for the B-Spline
method, and the combination of both for the 2.5D Triangula-
tion and Bézier Leaf Model, since both have trouble finding
the right projection plane for the data. The four other methods
are more robust, but Alpha-Shape and BPA however underesti-
mate the leaf area. The most accurate methods are the Trimmed
Bézier method and the Incremental Reconstruction.

These results are consistent with those on synthetic data since
the behaviour of each model can be explained by the combina-
tion of multiple criteria. However, results on real data highlight
the impact of additional criteria on the estimated areas, such
as the intrinsic nature of the noise near leaf borders like in the
birch dataset or the presence of holes separating a point cloud
into multiple clusters like in the oak or the maize photogram-
metry datasets.

We show in Fig. 8 to 10 the meshes computed by each
method for one leaf of each dataset.

5. Discussion

From our experiments, we can draw three conclusions. As
a first conclusion, our sensitivity analysis has highlighted the
benefit of using an automatic and objective solution for setting
each parameter of the selected method to an optimal value. In
particular, since it appeared that the behaviour of many meth-
ods highly depends on the density of the point cloud, we have
proposed to automatically set the main parameters of 2.5D Tri-
angulation, Alpha-Shape and the trimming step of Poisson
reconstruction using meta-parameters based on the global or lo-
cal density of the point cloud. Overall, our sensitivity analysis
showed that the choice of parameters influences all methods ex-
cept for the three parametric models (B-Spline, Bézier Leaf
Model and Trimmed Bézier) which tend to be rather unaf-
fected. The tuning of the Incremental Reconstruction method
across our synthetic data was the most sensitive.

A second conclusion drawn from the results obtained on syn-
thetic data sets is that the leaf curviness, acquisition noise and
misalignment are the criteria impacting the most the accuracy of
the results. The parametric models we tested are robust to noise
as well as to misalignment up to a threshold, but cannot prop-
erly fit a highly curved leaf. The Incremental Reconstruction
method is robust to curviness and misalignment but is sensitive
to noise.

An additional conclusion derived from the experiments on
real data sets is that the MLS filter improved the accuracy and
robustness of all methods, but not the SOR filter. Hence we
recommend systematically filtering the raw point clouds with
this filter before further processing.

These conclusions lead us to recommend the use of the MLS
filter combined with the Trimmed Bézier method, which is the
most robust and accurate method in most cases and is easy to
set: the parameter values dU = 2, dV = 4, meshU = 5 and
meshV = 40 can most often be used. However, in the case of a
plant with highly curved leaves such as the maize we used for
our tests, this method may underestimate the leaf areas. Since
results are consistent over the plant leaves (Fig. 7), a solution
can be to manually measure a batch of individual leaves, report
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Fig. 8. Reconstructed meshes on a sweet chestnut leaf.
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Fig. 9. Reconstructed meshes on a red oak and a silver birch leaves.
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Fig. 10. Reconstructed meshes on maize leaves.

the ratio between the measured and the computed area for each
leaf, compute the mean ratio and then multiply the computed
area for any other leaf of the plant by this mean ratio.

6. Conclusion

Many parametric, implicit or mesh-based models have been
designed to reconstruct a continuous surface from a point cloud
and successfully used to measure the geometry of the surface
(area, normal, curvature, . . . ). In order to automatically esti-
mate the leaf area of small plants, seedlings and crops from
3D point clouds, and despite the relatively complex geometry
of their leaves, plant biologists usually use simple, generic and
readily available geometric models. In this paper, we evaluated
six of them for this specific purpose, as well as one parametric
model dedicated to this aim [19] along with a more classical
Bézier surface fitting. We have defined three criteria about the
leaf geometry and six criteria about the acquisition process that
could affect the robustness and the accuracy of these geomet-
ric models. We have designed 1240 synthetic leaf point clouds
based on these criteria and tested the methods on them, after
a careful sensitivity analysis that led us to design an automatic
way to set the parameter values for each of them. We have also
evaluated the methods on six acquisitions of real plants that had
been previously manually measured and we have tested the ad-
ditional effect of denoising the point clouds as a pre-processing
step.

Our results show that the use of both a moving-least squares
(MLS) filter and Bézier surface fitting is recommended. How-
ever, this may not work in some cases and precisely estimating
leaf area from point clouds remains a challenging issue. Our
analysis is a first work highlighting useful data pre-processing
and assessing how various geometric models can estimate leaf
areas. It is inherently limited by the data and criteria we have se-
lected. Our synthetic data was generated starting from a simple
hexagon, which is not adapted to the modelling of multi-lobed
leaves. Another difficulty with real-life scenarios is that data is
generally missing on the surface boundary. In this case, a ge-
ometric model should take into account the expected boundary
shape as prior knowledge in order to be robust.

Three directions seem promising to overcome such limita-
tions. Similar to [19], the first one is to design a model inte-
grating some prior knowledge about the leaf geometry. How-
ever, such a model would, by nature, be specific to some plant
species. The second research direction is to investigate more
advanced generic approaches, such as the combination of par-
titioning and local modelling as in [49, 15], or local flattening
[50]. The last research direction is to use machine learning to
implicitly incorporate prior knowledge about the leaves while
maintaining a generic approach. Since manual measurement
is a tedious task, a promising idea would be to learn on syn-
thetic data, despite the difficulty to mimic the real world. The
criteria we propose in this paper are a first step towards this
goal. However, as shown on real leaves, more work is neces-
sary to account for more complex phenomena such as the leaf
torsion, the presence of outliers (since a clean filtering or seg-
mentation is not always easy to recover), occlusions leading to



holes at the leaf boundaries, as well as the combination of sev-
eral criteria. Nevertheless, a generic method will only be useful
in practice for plant experts if its code is freely available and
easy to use. Moreover, its parameters should be meaningful
and easy to tune, whatever the species and the acquisition con-
ditions. Our code to generate the synthetic data associated with
our study, as well as for both Bézier methods, has be released
for free1. Since the other selected approaches have been imple-
mented in freely available software or libraries, this allows both
plant practitioners to compare the geometric models on their
own data and researchers to evaluate other models.
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Appendix A. Synthetic leaf model: perimeter, area and
convex hull formulas

In this section we express the perimeterP, areaA and convex
hull area CH of our synthetic leaf model with respect to our
leaf shape criteria, namely the length/width ratio R and the
concavity level Co. In this study we restrict to flat leaves, that
is to say the curviness Cu is always zero. We start by deriving
the perimeter, area and convex hull in the simplest case, and
then progressively extend our approach.

Appendix A.1. Simplest case: R = 1 and Co = 0

Fig. A.11. Geometry of our synthetic leaf model in case R = 1 and Co = 0.

Fig. A.12. Geometry of our synthetic leaf model in case of R = 1 and
Co = 0, with areasA1 andA2 depicted in green and orange respectively.
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By definition of our model A = 1. The underlying hexagon
shape relies on a length d as shown on Fig. A.11. Its value can
easily be computed since the area A is the sum of a rectangle
areaA1 and two triangle areasA2 (see Fig. A.12):

A =
d2
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+ 2

d
2

d
3
⇔

2d2

3
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3
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(A.1)

The perimeter P of the hexagon is equal to:
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√
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32 +
d2

22 ) =
2d
3
+

4
6

√
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13)
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2
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(A.2)
Finally, since the hexagon is convex, the convex hull area

CH is equal toA = 1.

Appendix A.2. Convex case: R variable and Co = 0

Fig. A.13. Geometry of our synthetic leaf model in case Co = 0 .

This case is depicted on Fig. A.13. The hexagon area, which
is by definition equal to 1, can be expressed as:

A = 2(
d
√

R
3

)
d
√

R
= 2

d2

3
= 1 (A.3)

which lead to the same value for d as in the previous simplest
case.

Again, the shape being convex we have CH = 1.

The hexagon perimeter P can be expressed as:

P = 2
d
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√
R + 4l (A.4)
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8R , which leads to:
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Appendix A.3. Simplest concave case: R variable and Co = 1
When Co = 1 the basic shape is not a hexagon anymore,

but a non-convex polygon with 18 edges (an octadecagon), see
Fig. A.14. This is because each edge of the initial hexagon is
split into three edges, as shown on Fig. A.15. Let us note P1P⊥2

Fig. A.14. Geometry of our synthetic leaf model in case Co = 1.

Fig. A.15. Each edge P1P2 is split in three edges P1P3, P3P4 and P4P2
when Co is increased.

the orthogonal vector to P1P2 and n = 1
9 P1P⊥2 . Then P3 and P4

are defined such that P1P3 =
1
3 P1P2+n and P1P4 =

2
3 P1P2−n.

Note that the 1
9 ratio defining n is arbitrary and can be changed.

When an edge P1P2 is split, its length L changes to

L′ = ∥P1P3∥ + ∥P3P4∥ + ∥P4P2∥ (A.6)

We have:
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which leads to:
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Let us note α = 1
9 (2
√

10 +
√

13). We have shown that
when the edge P1P2 is split into three smaller edges, its total
length is multiplied by the constant factor α. Consequently, the
perimeter of the octadecagon is αP, with P the perimeter of
the hexagon as computed in the previous section.



By construction the area of the octadecagon is the same
unit area A as the hexagon, while the convex hull area CH is
increased by the area of each triangle P1P3P2, see Fig. A.16.

For each edge P1P2, let us define T such that P1T = 1
3 P1P2

(see Fig. A.15). Then the added area P1P3P2 is the sum of the
areas of the two triangles P1T P3 and T P3P2, which can easily
be expressed as:

P1T P3 =
1
2
∥P1T∥∥T P3∥ (A.11)
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=
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Along each edge P1P2 of length L, the convex hull area is thus
increased by L2

18 .

Fig. A.16. Added area to the convex hull (in yellow) in our synthetic leaf
model, in case Co = 1.

Noticing that in the convex case the length of an edge of

the hexagon is either d
√

R
3 =

√
R
6 (the two vertical edges

on Fig. A.13) or l =
√

R
6 +

3
8R (the four diagonal edges on

Fig. A.13) and remembering that our hexagon has a unit area,
we can derive that the convex hull area CH of the octadecagon
is:
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Appendix A.4. General case: induction study

We now derive values for P and CH in the general case
(A is always equal to 1, by construction). This is done by

induction on Co.

LetPn and CHn be the perimeter and convex hull area values
for Co = n. We know from the previous sections that:

P0 =
2R
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8R
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+

6
R

(A.19)

P1 = αP0 (A.20)
CH0 = 1 (A.21)

CH1 = 1 +
R
18
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1
12R

(A.22)

Generalizing the study done in section Appendix A.3, it is
easy to see that when Co is increased by one then each edge is
split in three and the associated length is multiplied by a con-
stant factor α = 1

9 (2
√

10 +
√

13). Hence:

∀n ≥ 1,Pn = αPn−1 = α
nP0 (A.23)

Now let P1P2 be one edge of the initial hexagon. When Co =
n, n ≥ 1, this edge is split into 3n edges (see an example on
Fig. A.17 for Co = 2). Let us note P1P3n−1+2 the first of these
edges.

Fig. A.17. Split of an edge P1P2 into 9 edges when Co = 2.

We have seen in the previous section that when Co = 1, only
the triangle P1P3P2 is added to the convex hull of the shape.
Similarly when Co = 2, only the triangle P1P5P3 is added to
the convex hull (see Fig. A.18). More generally, when Co = n,
only the triangle P1P3n−1+2P3n−2+2 is added to the convex hull.

Using the same reasoning as in the previous section, the area
of such a triangle is L2

n−1
18 , with Ln−1 the length of edge P1P3n−2+2.

Ln−1 can be computed recursively thanks to Eq. (A.7):
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Fig. A.18. Added area in to the convex hull (in green) in synthetic leaf
model, in case Co = 2.

Consequently, for each edge of length L of the original
hexagon, increasing Co from n−1 to n, n ≥ 1, locally increases
the convex hull area by a factor of L2

n−1
18 = ( 10

81 )n−1 L2

18 . Since two

of these edges have length
√

R
6 and the four other ones have

length
√

R
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3
8R (see above), the convex hull area can be recur-

sively computed as:
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