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Abstract

The work reports on the preparation of polyaniline/lead iodide optoelectronic photo-

detector on antimony tin oxide (ATO) glass (PANI/PbI2/ATO) for providing a low-cost

light sensor in the UV, Vis, and near IR regions (wide optical range photodetector).

The deposition of PbI2 nanoparticles was carried out on the surface of PANI using

the ionic adsorption deposition method. Four ATO/PANI/PbI2 composites (I, II, III,

and IV) were produced by varying the Pb2+ concentrations (0.01, 0.03, 0.05, and

0.07 M, respectively). The chemical structure, morphology, optical, and electrical

properties were assessed using different analytical tools. Scanning electron micros-

copy (SEM) imaging revealed the formation of a nanoporous PANI network. After

PbI2 incorporation within the PANI network, white nanoparticles formed on the sur-

face. The average size of the PbI2 nanoparticles was 220, 270, 280, and 320 nm for

Pb2+ concentration of 0.01, 0.03, 0.05, and 0.07 M, respectively. Moreover, x-ray

diffraction analysis confirmed PANI/PbI2 composite formation, as witnessed by the

appearance of new peaks at 12.77�, 34.31�, and 38.8 � characteristic of PbI2.

Through the optical analyses, the band gap values of the PANI/PbI2 composites I, II,

III, and IV were 2.63, 2.51, 2.46, and 2.48 eV, respectively. ATO/composite III was

applied as an optoelectronic device for detection the light under different intensities

or wavelengths, in which the current density (Jph) increase from 2.5 to 3.42 mA cm�2

upon increasing of the light intensity from 25 to 100 mW.cm�2, respectively. More-

over, the Jph recorded an optimum value of 3.33 mA cm�2 at 390 nm, which

decreased to 2.09 mA cm�2 at 490 nm and increased again to 3.13 mA cm�2 at

636 nm. The optoelectronic photodetector exhibited an optimum incident photon to

electron conversion efficiency (IPCE) of 10.7% at 390 nm. The photoresponsivity (R)

and detectivity (D) were determined to be 107 mA cm�2 and 3.38 � 1010 Jones,
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respectively. Finally, a simple mechanism was proposed to account for the response

of the prepared optoelectronic devices to the photon flux. Soon, our team will work

on design an optoelectronic device that can be applied in the industrial field through

the high technology device such as cameras and aircrafts for light detection.
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ATO/PANI/PbI2 composites, optical properties, photocatalytic activities

1 | INTRODUCTION

Optoelectronic photodetectors are very promising devices, owing to

their applications in different fields such as streets lighting, smart win-

dows, spacecraft, and cameras.1–3 These optoelectronic devices facili-

tate light detection under different intensities and wavelengths. The

light detection takes place through the activation of the photodetec-

tor materials with a photon flux that causes electronic level splitting,

followed by hot electrons collection over the photodetector surface.

These electrons produce Jph and represent the rate of the photoelec-

trochemical process.

Many materials such as metal oxides, sulfides, and nitrides have

been studied for light detection in various light regions.1,4,5 The perfor-

mance of photodetectors could be enhanced by increasing the density of

active sites on their surface. One efficient route to achieve this goal is

through the utilization of materials featuring high surface area. Therefore,

nanomaterials such as nanorods, nanotubes, nanowires, and nanosheets

have been widely investigated for light detection.6–8

Wang et al9 fabricated a photodetector based on CuO nanowires

for IR detection. The device exhibited low efficiency with a Jph value

of 20 μA at a bias voltage of +5 V. Bai et al10 prepared ZnO/CuO

nanocomposite photodetector and recorded a small Jph value of

107 μA at +1 V. Hang et al11 studied the ability of Si heterojunction

as a photodetector, the device achieved a Jph value of 4.5 μA at a bias

voltage of 0 V. Moreover, PbI2 doped Ag 5% nanostructure film was

prepared by pulsed laser deposition and was applied as photodetec-

tor, the Jph value was 0.2 mA at a bias voltage of 6 V.12 The PbI2/gra-

phene composite nanoplates was applied as photodetector, the Jph

value was 0.4 μA at a bias voltage of 2 V.13

Conductive polymers represent a promising category of poly-

mers applied in the energy field. The response of these polymers to

the light flux depends on the electron–hole separation. For exam-

ple, poly-3-hexylthiophene was applied as a photodetector layer

inside the eye.14 Other studies were carried out using iron-doped

polymethylmethacrylate (Fe-doped PMMA)15 and PMMA/styrene/

carbon nanotubes composite14 as optoelectronic materials for the

light detection.16 Polyvinylpyrrolidone/CsPbBr3 composite was

prepared and used as an optoelectronic device, the Jph was

0.01 mA at 2 V.17 Moreover, various studies were carried out on

aniline derivatives such as triphenylamine as optoelectronic device,

reaching a Jph of 0.001 mA at 0 V.18 The effect of fluorine-doped

benzodithiophene was theoretically studied, revealing an

enhancement in the optical properties of the polymer for the opto-

electronic applications.19 Moreover, Jha et al20 has worked on

recycling of nanofiber PANI-Pb nanocrystals waste for generating

high-performance super-capacitor electrodes. Moreover, they were

worked on nanofibers to nanocuboids of polyaniline self-assembled

materials through which toxic heavy metal ions are automatically

removed from aqueous solution.21

Although the previous literature revealed the benefits of the

application of polymers as optoelectronic materials, there were

many drawbacks related to the high-cost techniques for the prepa-

ration process, low optoelectronic efficiency, small R or D values,

and low device reproducibility. Moreover, most of the previous lit-

erature focused on light detection in just a single region, UV, Vis, or

near IR.

In our previous work, we synthesized TiO2/TiN nanotubes

using Al2O3 template; these tubes operated as a high efficient pho-

todetector with IPCE, R, and D of 9.64%, 450 mA W�1, and

8.0 � 1012 Jones, respectively.22 Moreover, we have studied the

effect of Au on the TiO2/TiN nanotubes' performance. The device

achieved an efficiency of 10.25%, with R and D values of

438 mA W�1 and 8.86 � 1012 Jones, respectively.23 In addition to

that, the effect of alkali metal on CdS performance was studied.

IPCE, D, and R values of >10%, 1.5 � 1010 Jones, and 38 mA W�1

were recorded, respectively.24

Our current study alleviates the previous limitations through the

synthesis of a high efficiency optoelectronic photodetector ATO/

PANI/PbI2, in which the geometric hexagonal PbI2 is decorated inside

PANI. This highly optical responding composite can detect the light in

abroad light regions: UV, Vis, and IR. Moreover, the photodetector

response to the light under different intensities from 25 to

100 mW cm�2 with high IPCE, R, and D values that represent the high

light sensing efficiency. In addition to that, the device displayed high

reproducibility for light sensing. Through our study, the utilization of

an in situ polymerization process to deposit a porous polyaniline

(PANI) layer on antimony tin oxide (ATO) glass was carried out. The

PANI matrix assisted further deposition of PbI2 nanosheets. The

chemical structure, morphology, optical and electrical properties of

the obtained materials were examined using different analytical tools.

The influence of light intensity (25–100 mW cm�2) and wavelength

(390–636 nm) on the device performance was studied. Finally, a plau-

sible mechanism was proposed for the light sensing using the polymer

composite optoelectronic device.
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2 | EXPERIMENTAL SECTION

2.1 | Materials

Pb(NO3)2 was purchased from El Naser chemical Co., Egypt. Aniline,

iodine (I2), and potassium iodide (KI) were bought from Biochem Com-

pany, Egypt. Silver paste, acetic acid (CH3COOH), and ammonium per-

sulfate ([NH4]2S2O8) were obtained from Alpha chemical Co., Egypt.

ATO glass was purchased from American Elements, USA.

2.2 | Preparation of PANI/PbI2 on antimony tin
oxide glass

Polyaniline (PANI) was prepared through an in situ oxidation polymeri-

zation method on ATO glass. A volume of 50 ml of aniline (0.1 M) was

dissolved in 0.5 M CH3COOH under ultrasonication (at room temper-

ature for 30 min). Separately, 50 ml of 0.15 M (NH4)2S2O8 (oxidant)

was nicely dispersed in 0.5 M CH3COOH under ultrasonication. Then,

the oxidant solution was added dropwise onto the aniline solution in

the presence of an ATO glass. After 1 h, PANI precipitate was formed

over the ATO glass. The ATO/PANI was dried at 60�C for 6 h and

then dipped in Pb(NO3)2 solution (50 ml) at different concentrations

(0.01–0.1 M) for 2 h at 298 K. The resulting ATO/PANI/Pb2+ film was

dipped into 0.01 M I2 aqueous solution (50 ml) for 15 min. During this

process, PbI2 precipitates and coats of the PANI network. This reac-

tion carried out at room temperature, this led to the arrangement of

PbI2 on the PANI surface during the composite formation. The opti-

mum ATO/PANI/PbI2 composite was determined from the optimum

light absorbance values through optical absorption analyses. By vary-

ing the Pb2+ concentration (0.01, 0.03, 0.05, and 0.07 M), ATO/

PANI/PbI2 composites I, II, III, and IV are prepared, respectively. The

hexagonal PbI2 shape on the PANI surface increases the light absorp-

tion properties.

2.3 | Characterization

X-ray diffraction (XRD) patterns of the samples were recorded on a Bru-

ker D8 advance diffractometer using Cu Kα radiation (λ = 0.15418 nm).

The morphology of the samples was studied by a field-emission scanning

electron microscope (FE-SEM, Hitachi, S-4800) at an acceleration voltage

of 5.0 kV. The optical analyses of the samples were carried out using a

double beam spectrophotometer (Perkin Elmer Lamba 950, USA). Raman

spectra were performed using Enwave Raman microscopy (spot 1 μm)

with a 532 nm laser excitation.

2.4 | Electrochemical measurements

All the electrochemical measurements were carried out using the elec-

trochemical workstation (CHI660E) through the voltage range from

�1 to +1 V, as shown in Figure 1. The electrochemical measurements

were acquired under a Xenon lamp, in which ATO and ATO/PANI/

PbI2/Ag represent the two sides electrodes of the photodetector. The

effect of light intensity (25–100 mW cm�2) and light wavelength

(390–636 nm) on the prepared photodetector performance was

assessed. Moreover, the reproducibility and dark current were evalu-

ated. The measurements were carried out at 25�C in air environment.

3 | RESULTS AND DISCUSSION

3.1 | Structural, optical, and morphological
properties

The XRD plots of the prepared PANI and PANI/PbI2 composites (I, II,

III, and IV) are shown in Figure 2A. The PANI peaks (black line)

appeared at 2θ = 20.78� and 25.55� and are assigned respectively to

the (021) and (200) diffraction planes. These semi-sharp peaks indi-

cate the lamellar structure nature of the prepared PANI.25

After PANI/PbI2 formation, there is an obvious shift in the PANI

peak located at 25.55�–26.05�, and the peak intensity increases from

composite I to III. The shifts in the peak is related to the composite

formation, the increasing in the intensity indicate high crystallinity of

the formed composite.26,27

Moreover, after composite formation, there is an appearance of

new peaks at 12.77�, 34.31�, and 38.8 � characteristic of PbI2.
28 The

crystal size of composite III was determined to be 33.3 nm (for the

peak at 12.77�) using the Scherrer equation (Equation 1):

D¼0:94λ=ßcosθ ð1Þ

ß denotes the full-width half maximum,29 λ is the wavelength

(0.154 nm), and θ corresponds to the Bragg's angle.

The Raman spectra of PANI and its PbI2 composites I, II, III, and

IV are depicted in Figure 2B. From these results, one clearly sees

some differences in the peaks related to the PANI and PANI/PbI2

composites, proving PbI2 incorporation in the PANI network. The

Raman peaks at 1584 and 1489 cm�1 are related to the C C and

N H benzene ring vibrations, respectively.30 The peaks at 1160 and

1220 cm�1 are related to the C H stretching vibrations.31,32 These

peaks increase with increasing of the PbI2 concentration from com-

posite I to III, then decrease in composite IV. Moreover, the peak at

400 cm�1 in the PANI (black line) is related to the in-plane vibration

modes. The peak at 180 cm�1 is characteristic of the A1
2 hexagonal

vibration mode of PbI2,
33 Moreover, this peak confirms the crystallin-

ity of the PbI2 material.34 The effect of crystallinity of PbI2 appears

clearly in the composite III that has the optimum intensities of the

peaks in comparison with other composites. The results are in full

accordance with the XRD analyses.

The optical absorption spectra of the PANI and PANI/PbI2 com-

posites are displayed in Figure 2C. The PANI absorption peaks are

located in the UV region at 325 nm and in the Vis region at 450 and

600 nm. After the formation of the PANI/PbI2 composites, the peak

intensities at 325 and 600 nm increased, and new additional peak at

HADIA ET AL. 3



878 nm appeared in the IR region. The increasing in the peak intensity

indicates the enhancement in the optical properties related to high

light response.35 The peaks in the UV or Vis regions are related to the

band-to-band electron transitions, while the peak in the IR region is

related to the electron vibrations. The intensities of the peaks reached

their optimum values in the composite III, in agreement with the XRD

and Raman analyses.

The optical bandgap can be determined using the Kubelka–Munk

equations (Equations 2–4)36 using molar absorption coefficient (K) and

scattering factor (S), as shown in Figure 2D. A bandgap of 3.0 eV was

determined for PANI, this value well-matched with the recently-reported

values.25,37 The band gap values of the PANI/PbI2 composites I, II, III,

and IV were 2.63, 2.51, 2.46, and 2.49 eV, respectively. The enhance-

ments in the bandgap values are related to the composite formation

(PANI and PbI2) which accept a highly optical properties for enhance-

ment its applications as a light detection device, in which the composite

III has the optimum bandgap (2.46 eV). This value favors the application

of the composite III as an optoelectronic device, owing to its ability of

light sensing through electron motion behavior.

F Rð Þ¼K
S

ð2Þ

K¼ 1�Rð Þ2 ð3Þ

S¼2R ð4Þ

The morphologies of the prepared PANI and PANI/PbI2 composites

are assessed using SEM imaging (Figure 3). The SEM image of PANI in

Figure 3A exhibits a homogeneous and porous polymer layer. The sur-

face has a particle size of about 40 nm. In the SEM images of PANI/

PbI2 composites, PbI2 white spots covering the PANI network are

F IGURE 1 The schematic diagram of the ATO/PANI/PbI2 photodetector electrochemical measurements using the power station under
xenon lamp irradiation. ATO, antimony tin oxide; PANI, polyaniline

F IGURE 2 (A) XRD patterns,
(B) Raman spectra, (C) optical
absorbance, and (D) optical
bandgap of PANI and PANI/PbI2
composites I, II, III, and IV. PANI,
polyaniline; XRD, x-ray diffraction
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visible. These PbI2 white spots increase in number and size from com-

posite I to III, Figure 3B–E, respectively. In addition to that, the PbI2

particles exhibit hexagonal shapes and form sheets over the surface

of composites III and IV. The PbI2 average particle size increased with

increasing of the Pb2+ concentration to reach 220, 270, 280 and

320 nm for composites I, II, III and IV, respectively.

TEM image of the composite III (Figure 3F) confirms that the PbI2

crystalline sheets grew throughout the PANI network with a particle

size of about 280 nm.

The surface morphologies and cross-sections are confirmed with the

software program (ImageJ), as shown in Figure 4. This software confirms

the roughness behavior obtained from SEM analyses. From Figure 4A,

PANI owns a rough uniform nonporous structure. The film thickness is

about 580 nm. After composites' formation, the PbI2 particles appear like

obelisks that penetrate the PANI network with cuboid and hexagonal

structure. These obelisks shape increases in height and thickness from

composite I to IV. The overall film thickness for the composites was

about 1000 nm. The PbI2 has the optimum distribution in composite III,

in accordance confirm with XRD, Raman, and optical analyses.

3.2 | The photodetector electrochemical study

3.2.1 | Effect of light intensity on the current
density

The influence of light intensity on the produced current density (Jph)

of the optoelectronic photodetector, ATO/PANI/PbI2 (composite III),

was assessed and the results are presented in Figure 5A. Also, the

recorded Jph values at a bias of +1.0 V under light illumination are

shown in Figure 5B. The results evidenced an increase in the Jph

values from 2.5 to 3.42 mA cm�2 upon increasing of the light intensity

from 25 to 100 mW cm�2, respectively. This increase is related to the

high sensitivity of the ATO/PANI/PbI2 photodetector to light illumina-

tion, which was able to detect small light intensity variation.38 Under

light illumination, the photodetector accepts more photons and liber-

ates photoelectrons, which are collected on the surface, leading to

enhanced current density, Jph. Moreover, Jph values represent the light

response due to the total electrons collected on the surface after their

transfer from the valence band to the conduction band; the generated

holes are collected on the other electrode side.29,39,40 The nonlinear

relation indicates the generation of a Schottky barrier with the com-

plex relation of holes and electrons.41

The high Jph values of 3.42 mA cm�2, recorded in a small poten-

tial range (�1 to +1 V), originates from the high surface area of the

ATO/PANI/PbI2, owing to its high roughness and porous nature.

These features increase the light sensing, especially with incorporating

the PbI2 light spots that can detect even a small number of photons.

The reproducibility study of the ATO/PANI/PbI2 is displayed in

Figure 5C under three separate runs. It is clear that the photodetector

has great reproducibility with a standard deviation of 1.1%, reflecting

the stability of the photodetector for light detection and sensing.

The dark current (Jd), due to charge accumulation under applied

voltage, is presented in Figure 5D. The values recorded from �1 to

+1 V are small in comparison with the Jph values acquired under light

irradiation.22

F IGURE 3 SEM images of (A) PANI, (B) composite I, (C) composite II, (D) composite III, and (E) composite IV. (F) TEM image of composite III.
PANI, polyaniline; SEM, scanning electron microscopy

HADIA ET AL. 5



3.2.2 | Influence of light wavelength on the current
density

The effect of the monochromatic light (390–636 nm) on the ATO/

PANI/PbI2 photodetector is summarized in Figure 6A. The

monochromatic light has a great influence on the photodetector

response; the Jph reached an optimum value of 3.33 mA cm�2 at

390 nm, which decreased continuously to 2.09 mA cm�2 at 490 nm.

Then, there is an increase in the Jph value again to 3.13 mA cm�2 at

636 nm. The variation in the Jph values matched well with the optical

F IGURE 4 The surface roughness and cross-section of (A) polyaniline, (B) composite I, (C) composite II, (D) composite III, and (E) composite IV

F IGURE 5 (A) The influence
of light intensity, (B) current
density recorded at +1.0 V
versus light intensity,
(C) reproducibility, and (D) dark
current of the ATO/PANI/PbI2
photodetector at 25�C. ATO,
antimony tin oxide; PANI,
polyaniline

6 HADIA ET AL.



absorption curve in Figure 2C. This behavior is clearly highlighted

through the relation between the wavelengths and the recorded Jph

values at a constant potential of +1.0 V (Figure 6B). The Jph values

correspond to the light detection and sensing behavior.39,42,43

The high Jph value on the blue side is related to the high light fre-

quency, while the high value on the red side is ascribed to the electron

vibrations for the unsaturation properties in the IR region.42,44 These

properties indicate the ability of the ATO/PANI/PbI2 photodetector

to respond to light over a broad optical region including UV, Vis, and

IR. So, the prepared photodetector is a unique device for light

responding in these regions, with the great advantages of the very

low cost that qualifies this photodetector for potential industrial

applications.

3.2.3 | The efficiency of the optoelectronic device

The efficiency of the ATO/PANI/PbI2 photodetector depends on

many parameters: IPCE, R, and D values. The R values depend on both

Jph and Jd under light irradiation and dark, respectively45 along with

the light intensity value (P), as shown in Equation (5).46 This relation is

represented in Figure 7B for different wavelengths. The results indi-

cate that the prepared photodetector respond to light in a broad

wavelength range from UV/Vis to near IR. The optimum photorespon-

sivity was 107 mA W�1 at 390 nm.

The D value of the photodetector mainly depends on the

R values, surface area (A), electron charge (e) and dark current, as

shown in Equation (6) and Figure 7B. The device achieved an optimum

F IGURE 6 (A) The response
of the ATO/PANI/PbI2
photodetector and (B) the
recorded Jph values at +1.0 V
under different monochromatic
light wavelengths from 390 to
636 nm. ATO, antimony tin
oxide; PANI, polyaniline

F IGURE 7 (A) R, (B) D, and
(C) IPCE values of the
ATO/PANI/PbI2 photodetector.

ATO, antimony tin oxide; PANI,
polyaniline

HADIA ET AL. 7



D value of 3.38 � 1010 (Jones) at 390 nm and decreased to

1.16 � 1010 Jones at 490 nm, followed by a small increase to reach

1.36 � 1010 Jones at 636 nm. The large D values of the photodetec-

tor confirm its responsivity to different light wavelengths (UV, Vis,

and near IR).

The IPCE47 of the ATO/PANI/PbI2 photodetector was calculated

using Equation (7),48 and the obtained results are depicted in

Figure 7C. The IPCE, corresponding to the electrons collected follow-

ing the photon flux, reached an optimum value of 10.7% at 390 nm.

This value decreased at 490 nm and increased again at 636 nm to

5.17% and 6%, respectively. Although there are variables in the IPCE

values, the photodetector still features high values in all light regions.

This property is related to the light absorption over a broad wave-

length range. All these properties are related to the construction of

the optoelectronic photodetector, in which the PbI2 has a great light

absorption that can capture effectively the photons, and then transfer

them to the PANI network to generate a photocurrent. So, the pre-

pared ATO/PANI/PbI2 photodetector operates well under different

light intensities and wavelengths, which qualifies it for potential indus-

trial applications.

TABLE 1 Comparison of the
performance of the prepared ATO/PANI/
PbI2 photodetector with previous works

Structure [reference] Wavelength (nm) Bias (V) R (mA W�1)

Polyaniline/MgZnO49 250 5 0.1

Diketopyrrolopyrrole50 390 0.1 36

Graphene/P3HT51 325 1 N/A

N,N0-dioctyl-3,4,9,10-perylenedicarboximide52 480 1 20

TiO2-PANI53 320 0 3

2,1,3-benzothiadiazole19 734 0 N/A

PbI2-5%Ag12 532 6 N/A

PbI2-graphene
13 550 2 N/A

GO/Cu2O
54 300 2 0.5

CuO nanowires9 390 5 -

ZnO/Cu2O
10 350 2 4

ZnO-CuO55 405 1 3

CuO/Si nanowires11 405 0.2 3.8

TiN/TiO2
38 550 5 -

Se/TiO2
56 450 1 5

TiO2/NiO57 350 0 0.4

Graphene/GaN58 365 7 3

ZnO /RGO59 350 5 1.3

Al-CdS60 532 5 0.1

CdS-ZnO61 460 1 -

CdS62 840 - 3.8

ZnO/graphene/CdS63 365 0 2.7

TiN/TiO2
38 550 5 -

Se/TiO2
56 450 1 5

GO/Cu2O
54 300 2 0.5

ATO/PANI/PbI2 (this work) 390 1 107

Abbreviations: ATO, antimony tin oxide; PANI, polyaniline.

F IGURE 8 The mechanism of the ATO/PANI/PbI2 optoelectronic
photodetector device. ATO, antimony tin oxide; PANI, polyaniline
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The recorded IPCE, R, and D values of the prepared ATO/PANI/

PbI2 optoelectronic photodetector are compared with the previous

results, as shown in Table 1. From this comparison, the prepared

ATO/PANI/PbI2 optoelectronic device has a great photoresponsivity

at a small bias voltage (1.0 V) in the visible region. This confirms the

high sensitivity and detection of the light photons. These properties

with the previous advantages qualify our photodetector for industrial

applications.

3.3 | The mechanism of the light sensing

The plausible mechanism of light sensing by the ATO/PANI/PbI2

optoelectronic device is explained using the energy band theory

(Figure 8). The porous network nature of PANI and the PbI2 nanoma-

terials with high light absorption behavior cause the creation of a

bandgap. Upon light irradiation, electron–hole pairs are formed and

the photoelectrons are collected at the surface.64,65 The bandgap of

the PANI/PbI2 composite is 2.46 eV, with a small depletion layer due

to the transfer of electrons from the PANI to the PbI2 surface. This

depletion layer appears as a Schottky barrier that forms the leakage in

the behavior of the current–voltage curves. Although the presence of

the Schottky barrier, there is a transfer of many hot electrons from

the PANI surface to PbI2, which is reflected by the high Jph value of

3.42 mA cm�2 (Figure 5A). This behavior confirms that there is a con-

tinuous free electron flow with no carrier recombination.66 After the

electron transfer, the energy transfer due to the surface plasmonic

resonance (localized SPR) appears through the electrons. These phe-

nomena cause the accumulation of electrons on the PbI2 surface,

resulting in high Jph values. The hexagonal sheets of PbI2 (highly crys-

talline) increase the light capture through its small bandgap, and then

increases the electron collections in its surface.67

4 | CONCLUSIONS

A novel optoelectronic photodetector, ATO/PANI/PbI2 was prepared

and assessed for light detection over a wide optical region ranging

from UV, Vis, to near IR. The optoelectronic device responded to vari-

ous light intensities from 25 to 100 mW.cm�2 to produce enhanced

current densities, Jph, values of 2.5–3.42 mA cm�2, respectively.

Moreover, the photodetector has an excellent response to various

wavelengths (390–636 nm), with a Jph value of 3.33 mA cm�2

recorded at 390 nm. This value decreased to 2.09 mA cm�2 at

490 nm and increased again to 3.13 mA cm�2 at 636 nm. Moreover,

the photodetector achieved optimum IPCE, R, and D values of 10.7%,

107 mA W�1, and 3.38 � 1010 Jones, respectively. The ATO/PANI/

PbI2 photodetector was qualified for its reproducibility, response to

various light intensities, and operation under various light wave-

lengths (UV, Vis, and near IR). The obtained results combined with the

low cost and easy preparation hold great promise for industrial appli-

cation of the developed ATO/PANI/PbI2 photodetector.
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